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Abstract

We discuss some existence theorems for partial di¤erential inclusions,
subject to Dirichlet boundary conditions, of the form

�(Du(x)) 2 f�; �g; a:e: x 2 
;

where � is a quasia¢ ne function and so, in particular, for �(Du) =
detDu.

We then apply it to minimization problems of the form

inf

�Z



g(�(Du(x))) dx : u 2 '+W 1;1
0 (
;Rm)

�
:

1. Introduction

In this article we will discuss existence of solutions for some �rst order partial
di¤erential equations and then apply these results to minimization problems of
the calculus of variations.
Let us �rst discuss the model case and introduce some notations (we will

always adopt those of [5]). For maps u : 
 � Rn �! Rn, we will denote its
gradient by Du 2 Rn�n and its determinant by detDu.
We will also, given a matrix � 2 Rn�n, de�ne the singular values of � as the

eigenvalues of (��T )1=2 and we will denote them by

0 � �1(�) � �2(�) � � � � � �n(�):

Our �rst theorem will be
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Theorem 1.1 Let 
 � Rn be a bounded open set, � < � and 0 < 
2 � ::: � 
n
be such that


2

nY
i=2


i > max fj�j ; j�jg :

Let ' 2 C1piec(
;Rn) (the set of piecewise C1 maps) be such that, for almost
every x 2 
, 8><>:

� < detD'(x) < �;
nY
i=�

�i(D'(x)) <
nY
i=�


i; � = 2; :::; n;

then there exists u 2 '+W 1;1
0 (
;Rn) so that�

detDu 2 f�; �g; a:e: in 
;
��(Du) = 
� ; � = 2; :::; n; a:e: in 
:

Remark 1.2 (i) This theorem generalizes a theorem of Dacorogna-Marcellini
[5] where � = �� > 0.
(ii) The theorem is also true if � = � 6= 0 (the condition � < detD' < �,

being replaced by detD' = �) and therefore also generalizes a theorem of
Dacorogna-Tanteri [9].

We then apply this theorem (for details see Theorem 5.1) to the following
minimization problem

(P ) inf

�Z



g(detDu(x)) dx : u 2 '+W 1;1
0 (
;Rn)

�
:

This problem is important for applications (see [2] and [3]).
It should immediately be pointed out that even when g is convex, it is not

clear that (P ) admits a minimizer (unless ' is a¢ ne and in which case u = ' is
a minimizer). It was proved in [2] and then extended in [6], that if 
 is smooth
and ' is a C1;�, 0 < � < 1, di¤eomorphism then there exists a minimizer �u of
(P ), that also solves8<: detD�u =

1

j
j

Z



detD'(y) dy; in 
;

�u = '; on @
:

The non convex case was then investigated by Mascolo-Schianchi [10] for non
a¢ ne ' and by Cellina-Zagatti [1] and Dacorogna-Marcellini [4] when ' is a¢ ne.
Theorem 1.1 will allow us to give a new proof of the existence of minimizers for
(P ) when g is non convex.
We then discuss the case of quasia¢ ne functions. We recall that for m =

n = 2 (for the general case, m;n � 2, see Section 2) a quasia¢ ne function is of
the form

�(�) = �(0)+ < �1; � > +�2 det �;
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where �1 2 R2�2 and �2 2 R.
We will then prove the following theorem, which is from some aspects more

general than Theorem 1.1 (since we can allow general quasia¢ ne functions) and
from some other parts weaker (since we cannot prescribe other equations such
as �i(Du) = 
i; for some extensions see [11]).

Theorem 1.3 Let 
 � Rn be a bounded open set, � < �, � : Rm�n �! R a
non constant quasia¢ ne function and ' 2 C1piec(
;Rm) such that, for almost
every x 2 
,

� < �(D'(x)) < �:

Then there exists u 2 '+W 1;1
0 (
;Rm) satisfying

�(Du) 2 f�; �g; a:e: in 
:

This theorem has a direct application to the minimization problem

inf

�Z



g(�(Du(x))) dx : u 2 '+W 1;1
0 (
;Rm)

�
when g is non convex, recovering a theorem already proved, by di¤erent means,
by Cellina-Zagatti [1].

2. Preliminaries

In this preliminaries we will state the main abstract existence theorem that we
will use in the following sections and we will also brie�y de�ne the notion of
quasia¢ ne function.
We start by recalling the notion of rank one convex hull of a given set (for

more details, see [5]).

Notation 2.1 We let, for E � Rm�n,

FE =
�
f : Rm�n ! R = R[f+1g and f jE � 0

	
RcoE =

�
� 2 Rm�n : f (�) � 0, for every rank one convex f 2 FE

	
:

We will denote by intRcoE the interior of the rank one convex hull of E.

We start with the following de�nition introduced by Dacorogna-Marcellini
in [5], which is the key condition to get existence of solutions.

De�nition 2.2 (Approximation property) Let E � K (E) � Rm�n. The
sets E and K (E) are said to have the approximation property if there exists a
family of closed sets E� and K (E�), � > 0, such that
(1) E� � K (E�) � intK (E) for every � > 0;
(2) for every " > 0 there exists �0 = �0 (") > 0 such that dist(�;E) � " for

every � 2 E� and � 2 [0; �0];
(3) if � 2 intK (E) then � 2 K (E�) for every � > 0 su¢ ciently small.
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The main abstract existence theorem that we will use in our analysis is (cf.
Theorem 6.3 combined with Theorem 6.14 in [5], or for a slightly more general
version see Dacorogna-Pisante [7]).

Theorem 2.3 Let 
 � Rn be open. Let E � Rm�n be compact. Assume
that RcoE has the approximation property with K (E�) = RcoE�. Let ' 2
C1piec

�

;Rm

�
(where C1piec denotes the set of piecewise C

1 maps) be such that

D' (x) 2 E [ intRcoE, a.e. in 
:

Then there exists (a dense set of) u 2 '+W 1;1
0 (
;Rm) such that

Du (x) 2 E, a.e. in 
:

Finally we recall the notion of quasia¢ ne functions, cf. for more details [3].

De�nition 2.4 We say that � : Rm�n ! R is quasia¢ ne if

�(�) = �(0) +

m^nX
k=1

< Ak; adjk� >;

where m ^ n = minfn;mg; Ak 2 R�(k), �(k) = (mk ) � (nk) , adjk� is the matrix
of the minors of � of order k and < ; > denotes the scalar product.
In an equivalent form, we can write

�(�) = �(0) +
m^nX
q=1

X
1�i1<���<iq�m
1�j1<���<jq�n

�
i1���iq
j1���jq det

0BB@
�i1j1 � � � �i1jq
...

...
�
iq
j1

� � � �
iq
jq

1CCA ;
for some constants �i1���iqj1���jq 2 R; 1 � q � m ^ n.

We moreover have

Proposition 2.5 Let � : Rm�n ! R be quasia¢ ne and 
 � Rn be a bounded
open set. ThenZ




�(Dv(x)) dx =

Z



�(Du(x)) dx; 8 v 2 u+W 1;1
0 (
;Rm):

3. Rank one convex hulls

In this section we will compute the rank one convex hull of sets E involving the
condition

�(�) 2 f�; �g;
where � is a quasia¢ ne function. We start in Section 3.1 by the case of the de-
terminant where extra conditions on the singular values are allowed. In Section
3.2 we will deal with general quasia¢ ne functions.
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3.1. The case of the determinant

The theorem we will prove is the following.

Theorem 3.1 Let � � �, 0 < 
2 � ::: � 
n be constants so that


2

nY
i=2


i � max fj�j ; j�jg :

Let
E =

�
� 2 Rn�n : det � 2 f�; �g ; �i(�) = 
i; i = 2; :::; n

	
then

Rco E =

(
� 2 Rn�n : det � 2 [�; �] ;

nY
i=�

�i(�) �
nY
i=�


i; � = 2; :::; n

)
:

Moreover, if � < �,

int Rco E =

(
� 2 Rn�n : det � 2 (�; �) ;

nY
i=�

�i(�) <
nY
i=�


i; � = 2; :::; n

)

and if � = �

int Rco E =

(
� 2 Rn�n : det � = �;

nY
i=�

�i(�) <

nY
i=�


i; � = 2; :::; n

)

where the interior is to be understood relative to the manifold fdet � = �g :

Remark 3.2 The theorem extends [8] and [5] if � = �� > 0 and [9] if � = �.
In particular note that if we let, when � = �� > 0,


1 = �

 
nY
i=2


i

!�1
then

E =
�
� 2 Rn�n : det � 2 f��; �g; �i(�) = 
i; i = 2; :::; n

	
=

�
� 2 Rn�n : �1(�) = 
1; �i(�) = 
i; i = 2; :::; n

	
:

Proof. We will divide the proof into two parts. In the �rst one we will obtain
the characterization of Rco E and in the second a characterization of its interior.
Part 1. We let

X =

(
� 2 Rn�n : det � 2 [�; �] ;

nY
i=�

�i(�) �
nY
i=�


i; � = 2; :::; n

)

and we wish to show that X = Rco E.
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Step 1: Rco E � X. This is the easy implication. Indeed observe that
E � X and that the functions

� ! �det �; � !
nY
i=�

�i(�); � = 2; :::; n

are rank one convex (see [5]). We therefore have that the set X is rank one
convex and thus the desired inclusion.
Step 2: X � Rco E. Since the set X is compact (the function � ! �n(�)

being a norm), it is enough to show that @X � Rco E. So we let � 2 @X and
we wish to prove that � 2 Rco E. Note that @X = X� [ X� [ X2 [ � � � [ Xn
where

X� = f� 2 X : det � = �g X� = f� 2 X : det � = �g

X� =

(
� 2 X :

nY
i=�

�i(�) =
nY
i=�


i

)
; � = 2; :::; n:

Since all the functions involved in the de�nition ofX are right and left SO(n)
invariant, there is no loss of generality in assuming that � is diagonal

� = diag(x1; x2; :::; xn)

with 0 � jx1j � x2 � � � � � xn. We therefore have �1(�) = jx1j, �i(�) = xi; i =
2; :::; n. We will now proceed by induction on the dimension n; when n = 1 the
result is trivial.
Several possibilities can then happen, bearing in mind that � 2 @X.

Case 1: � 2 X� for a certain � = 2; :::; n (i.e.
nY
i=�

xi =
nY
i=�


i). We write

� 2 Rn�n as two blocks, one in R(��1)�(��1) and one in R(n��+1)�(n��+1) in
the following way � = diag(���1; �n��+1) where ���1 = diag(x1; :::; x��1) and
�n��+1 = diag(x� ; :::; xn).
We then apply the hypothesis of induction on ���1 and �n��+1 (we will

check that we can do so below) and we deduce that � 2 Rco E. Let us now see
that we can apply the hypothesis of induction �rst for ���1. We have (when

�� = 2 or �� = n, terms such as
��1Y
i=2

or
nY

i=�+1

should be replaced by 1)


2

��1Y
i=2


i = 
2

nY
i=2


i

 
nY
i=�


i

!�1
� max

�
j�j


� � � � 
n
;

j�j

� � � � 
n

�
;

det ���1 =

��1Y
i=1

xi =
nY
i=1

xi

 
nY
i=�

xi

!�1
=

nY
i=1

xi

 
nY
i=�


i

!�1

= det �

 
nY
i=�


i

!�1
2
�

�


� � � � 
n
;

�


� � � � 
n

�
;
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��1Y
i=�

�i(���1) =
nY
i=�

xi

 
nY
i=�

xi

!�1
=

nY
i=�

xi

 
nY
i=�


i

!�1
�

��1Y
i=�


i; � = 2; :::; � � 1

and thus the result.
Similarly for �n��+1 since (here the role of � and � is played, for both, by

nY
i=�


i)


�+1

nY
i=�+1


i �
nY
i=�


i;

det �n��+1 =
nY
i=�

xi =
nY
i=�


i;

n��+1Y
i=���+1

�i(�n��+1) =
nY
i=�

xi �
nY
i=�


i; � = � + 1; :::; n

we have the claim.
Case 2: � 2 X� (similarly for the case � 2 X�). We can also assume that

� =2 X� ; � = 2; :::; n, otherwise we apply Case 1. So we can assume that

� 2 int X� =
(
� 2 Rn�n : det � = �;

nY
i=�

�i(�) <
nY
i=�


i; � = 2; :::; n

)
:

This is clearly an open set (relative to the manifold fdet � = �g).
Recall that

� = diag(x1; :::; xn) =

0B@ x1
. . .

xn

1CA :
We then set for t 2 R

�t =

0BBB@
x1

. . .
xn�1 t
0 xn

1CCCA
and observe that det �t = det � = �. Since intX� is bounded we can �nd
t1 < 0 < t2 so that �t1 ; �t2 2 @X� which means that �ti 2 X�i ; i = 1; 2, for
a certain �i = 2; :::; n and therefore, by Case 1, �ti 2 Rco E and thus, since
rank(�t1 � �t2) = 1, we deduce that � 2 Rco E as wished.
This concludes the �rst part of the theorem.

Part 2. The representation formula for intRco E is easy and its proof is very
similar to the ones in [5] or [8] and we skip the details. 2
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3.2. The case of a quasia¢ ne function

We will need, prior to the main theorem, two elementary lemmas but we post-
pone their proofs to the end of the present subsection. The �rst one will be used
to assert that condition (3.1) below can be ful�lled by some cij > 0 and will also
be used in Theorem 1.3. Lemma 3.4 will be used in the proof of Theorem 3.5.

Lemma 3.3 Let � : Rm�n �! R be a non constant quasia¢ ne function and
M;N > 0. Then there exist cij > N , i = 1; :::;m; j = 1; :::; n so that

inffj�(�)j :
���ij�� = cijg > M:

Lemma 3.4 Let � : Rm�n �! R be a non constant quasia¢ ne function. Then
� has no local extremum.

We can now state the main theorem.

Theorem 3.5 Let � : Rm�n �! R be a non constant quasia¢ ne function,
� < �, cij > 0 satisfying

inffj�(�)j :
���ij�� = cijg > maxfj�j ; j�jg: (3.1)

Let

E =
�
� 2 Rm�n : �(�) 2 f�; �g;

���ij�� � cij ; i = 1; :::;m; j = 1; :::; n	
then

Rco E =
�
� 2 Rm�n : �(�) 2 [�; �];

���ij�� � cij ; i = 1; :::;m; j = 1; :::; n	 ;
intRco E =

�
� 2 Rm�n : �(�) 2 (�; �);

���ij�� < cij ; i = 1; :::;m; j = 1; :::; n	 :
Proof. Part 1. We let

X =
�
� 2 Rm�n : �(�) 2 [�; �];

���ij�� � cij ; i = 1; :::;m; j = 1; :::; n	
and we show that X = Rco E. The inclusion Rco E � X follows from the
combination of the facts that E � X and that the set X is rank one convex
(the functions �, �� and j�j being rank one convex).
We therefore have to show only that X � Rco E. So we let � 2 X and we

can assume that � < �(�) < � otherwise the result is trivial. We observe that
(3.1) implies that for every � 2 X there exists (i; j) so that

���ij�� < cij . So let for
t 2 R

�t = � + tei 
 ej
and observe that by compactness there exist t1 < 0 < t2 so that �

t� 2 @X,
� = 1; 2 which implies that either �(�t� ) 2 f�; �g or

��(�t� )ij�� = cij ; � = 1; 2. If
the �rst possibility happens then we are done, if however the second case holds
then we restart the process with a di¤erent (i; j), since it is not possible by (3.1)
that

��(�t� )ij�� = cij for every (i; j).
8



Part 2. We now de�ne

Y =
�
� 2 Rm�n : �(�) 2 (�; �);

���ij�� < cij ; i = 1; :::;m; j = 1; :::; n	
and observe that since Y � Rco E and Y is open, then Y � intRco E. So let
us show the reverse inclusion and choose � 2 intRco E. Clearly such a � must
have

���ij�� < cij . Lemma 3.4 shows also that � should be so that � < �(�) < �.
These observations imply the result. 2

We now prove Lemma 3.3.

Proof. Since � is quasia¢ ne, we can write

�(�) = �(0) +
m^nX
q=1

X
1�i1<���<iq�m
1�j1<���<jq�n

�
i1���iq
j1���jq det

0BB@
�i1j1 � � � �i1jq
...

...
�
iq
j1

� � � �
iq
jq

1CCA :
Since � is not constant we can �nd 1 � s � m ^ n, 1 � i1 < � � � < is � m and
1 � j1 < � � � < js � n so that �i1���isj1���js 6= 0 and �i1���iqj1���jq = 0; 8 q > s. Assume
without loss of generality that

�1���s1���s 6= 0: (3.2)

Let us de�ne the set

� =
�
� 2 Rm�n : �ij 2 f�1g

	
and the product A�B 2 Rm�n, for two given matrixes A;B 2 Rm�n, as

(A�B)ij = Aij �Bij :

We want to �nd a matrix C 2 Rm�n such that cij > N and

� = C � �; � 2 � =) j�(�)j > M:

In fact we will prove that the matrix can be chosen of the form C = �A where
� > 0 and for t > 0

Aii = t if 1 � i � s;
Aij = 1 if not (i:e: if i 6= j or if i = j � s+ 1):

We observe that

�(�) = �(C � �)

= �(0) +
sX
q=1

� q
X

1�i1<���<iq�m
1�j1<���<jq�n

�
i1���iq
j1���jq det

0BB@
Ai1j1�

i1
j1

� � � Ai1jq�
i1
jq

...
...

A
iq
j1
�
iq
j1

� � � A
iq
jq
�
iq
jq

1CCA
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and that for � and t su¢ ciently large it is possible to �nd 
 > 0 so that

j�(�)j � 
� sts:

So choosing � and t su¢ ciently large we have indeed found cij > N and j�(�)j >
M as wished. 2

We now prove Lemma 3.4.

Proof. We will prove that if � has a local extremum then it must be constant.
We proceed in two steps.
Step 1: We �rst show that if � is a local extremum point of �, then � is

constant in a neighborhood of �.
Assume that � is a local minimum point of � (the case of a local maximizer

being handled similarly). We therefore have that there exists " > 0 so that

�(�) � �(� + v); for every v 2 Rm�n so that
��vij�� � ": (3.3)

Let us show that this implies that

�(�) = �(� + v); for every v 2 Rm�n so that
��vij�� � ": (3.4)

We write
v =

X
1�i�m
1�j�n

vije
i 
 ej

and observe that, since � is quasia¢ ne,

�(�) =
1

2
�(� + v11e

1 
 e1) +
1

2
�(� � v11e1 
 e1)

and since (3.3) is satis�ed we deduce that

�(� � v11e1 
 e1) = �(�);
��v11�� � ": (3.5)

We next write, using again the fact that � is quasia¢ ne,

�(�+v11e
1
 e1) =

1

2
�(�+v11e

1
 e1+v12e1
 e2)+
1

2
�(�+v11e

1
 e1�v12e1
 e2)

and since (3.3) and (3.5) hold, we deduce that

�(� + v11e
1 
 e1 � v12e1 
 e2) = �(� + v11e1 
 e1) = �(�);

��v11�� ; ��v12�� � ":
Iterating the procedure we have indeed established (3.4).
Step 2: We now show that if � is locally constant around a point � 2 Rm�n

then � is constant everywhere establishing the result. So assume that

�(� + v) = �(�); 8 v 2 Rm�n with
��vij�� � " (3.6)
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and let us show that

�(� + w) = �(�); 8 w 2 Rm�n: (3.7)

The procedure is similar to that of Step 1 and we start to show that for all
w11 2 R and

��vij�� � " we have
�
�
� + w11e

1 
 e1 +
X

(i;j) 6=(1;1)

vije
i 
 ej

�
= �(� + w11e

1 
 e1) = �(�): (3.8)

Indeed if
��w11�� � " this is nothing else than (3.6) so we may assume that ��w11�� > "

and use the fact that � is quasia¢ ne, to deduce that

�
�
� + "

w11
jw11j

e1 
 e1 +
X

(i;j) 6=(1;1)

vije
i 
 ej

�
=

=
"

jw11j
�
�
� + w11e

1 
 e1 +
X

(i;j) 6=(1;1)

vije
i 
 ej

�
+

+

�
1� "

jw11j

�
�
�
� +

X
(i;j) 6=(1;1)

vije
i 
 ej

�
:

Therefore appealing to (3.6) and to the preceding identity we have indeed es-
tablished (3.8). Proceeding iteratively in a similar manner with the other com-
ponents (w12; w

1
3; :::) we have indeed obtained (3.7) and thus the proof of the

lemma is complete. 2

4. Existence of solutions

We discuss the proofs of the two main theorems of the Introduction.

4.1. The case of the determinant

We recall Theorem 1.1.

Theorem 1.1 Let 
 � Rn be a bounded open set, � < � and 0 < 
2 � ::: � 
n
be such that


2

nY
i=2


i > max fj�j ; j�jg :

Let ' 2 C1piec(
;Rn) (the set of piecewise C1 maps) be such that, for almost
every x 2 
, 8><>:

� < detD'(x) < �;
nY
i=�

�i(D'(x)) <
nY
i=�


i; � = 2; :::; n;
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then there exists u 2 '+W 1;1
0 (
;Rn) so that�

detDu 2 f�; �g; a:e: in 
;
��(Du) = 
� ; � = 2; :::; n; a:e: in 
:

Proof. We now show that the result follows from the combination of Theorem
2.3 and Theorem 3.1. From Theorem 3.1 we have

E =
�
� 2 Rn�n : det � 2 f�; �g ; �i(�) = 
i; i = 2; :::; n

	
;

Rco E =

(
� 2 Rn�n : det � 2 [�; �] ;

nY
i=�

�i(�) �
nY
i=�


i; � = 2; :::; n

)
:

Since ' 2 C1piec(
;Rn) and D' 2 intRco E we only need to verify that E and
Rco E have the approximation property.
For � > 0 such that 
2 � � > 0 and �+ � < � � �, let

E� =
�
� 2 Rn�n : det � 2 f�+ �; � � �g ; �i(�) = 
i � �; i = 2; :::; n

	
:

For a su¢ ciently small � we have

(
2 � �)
nY
i=2

(
i � �) � max fj�+ �j ; j� � �jg

and thus Theorem 3.1 ensures that

Rco E� =

8><>:� 2 Rn�n :
det � 2 [�+ �; � � �] ;
nY
i=�

�i(�) �
nY
i=�

(
i � �); � = 2; :::; n

9>=>; :
We have to verify the three conditions of De�nition 2.2. The �rst one is obvious.
We next verify the second condition. Since � 2 E�, we assume that det � = �+�,
the case det � = �� � being handled in an analogous way. The set E� being left
and right SO(n) invariant, we can assume that

� = diag

�
�+ �

(
2 � �) � � � (
n � �)
; 
2 � �; :::; 
n � �

�
:

If we let

� = diag

�
�


2 � � � 
n
; 
2; :::; 
n

�
we have � 2 E and

dist(�;E) � max
����� �+ �

(
2 � �) � � � (
n � �)
� �


2 � � � 
n

���� ; ��! 0; as � ! 0:

The second condition of De�nition 2.2 then follows.
The third condition of the approximation property follows from the conti-

nuity of the functions involved in the de�nition of Rco E�. We may then apply
Theorem 2.3 to get the result. 2
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4.2. The case of a quasia¢ ne function

We recall Theorem 1.3.

Theorem 1.3 Let 
 � Rn be a bounded open set, � < �, � : Rm�n �! R a
non constant quasia¢ ne function and ' 2 C1piec(
;Rm) such that, for almost
every x 2 
,

� < �(D'(x)) < �:

Then there exists u 2 '+W 1;1
0 (
;Rm) satisfying

�(Du) 2 f�; �g; a:e: in 
:

Remark 4.1 The theorem is in fact slightly more precise and asserts also that
if cij ; i = 1; :::;m; j = 1; :::; n are constants such that

��Dj'i(x)�� < cij and
j�(�)j > maxfj�j ; j�jg; 8 � 2 Rm�n;

���ij�� = cij ; i = 1; :::;m; j = 1; :::; n
then the solutions also verify��Djui(x)�� � cij ; 8 (i; j):
Proof. As ' 2 C1piec(
;Rm), by Lemma 3.3, we can �nd constants cij such that��Dj'i(x)�� < cij and
j�(�)j > maxfj�j ; j�jg; 8 � 2 Rm�n;

���ij�� = cij ; i = 1; :::;m; j = 1; :::; n: (4.1)
We then de�ne

E =
�
� 2 Rm�n : �(�) 2 f�; �g;

���ij�� � cij ; i = 1; :::;m; j = 1; :::; n	 :
As before we only need to verify that the sets E and Rco E have the approxi-
mation property.
Let

E� =

�
� 2 Rm�n : �(�) 2 f�+ �; � � �g;���ij�� � cij � �; i = 1; :::;m; j = 1; :::; n

�
:

We �rst observe that, by continuity, it follows from (4.1) that

j�(�)j > maxfj�+ �j ; j� � �jg; 8 � 2 Rm�n;
���ij�� = cij � �; 8 (i; j):

We can then apply Theorem 3.5 to �nd

Rco E� =

�
� 2 Rm�n : �(�) 2 [�+ �; � � �];���ij�� � cij � �; i = 1; :::;m; j = 1; :::; n

�
:

It imediately follows that the �rst and third conditions of De�nition 2.2 are
veri�ed. It therefore remains to check the second one.
We proceed by contradiction and assume that there exist " > 0 and a se-

quence �n 2 E1=n with dist(�n; E) > ". As
��(�n)ij�� � cij we can extract a

convergent subsequence, still denoted �n, and � 2 E so that �n ! �, which is
at odd with dist(�n; E) > ".
We can therefore invoke Theorem 2.3 to conclude the proof. 2
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5. Existence of minimizers

We consider in this section the minimization problem,

(P ) inf

�Z



g(�(Du(x))) dx : u 2 '+W 1;1
0 (
;Rm)

�
where 
 is a bounded open set of Rn, ' 2W 1;1(
;Rm) and
�g : R �! R = R [ f+1g is a lower-semicontinuous non convex function,
�� : Rm�n �! R is quasia¢ ne and non constant.

We recall that in particular we can have, when m = n, �(�) = det �.
The existence result for the problem (P ) that we will give is based on the

assumption that the relaxed problem

(QP ) inf

�Z



Cg(�(Du(x))) dx : u 2 '+W 1;1
0 (
;Rm)

�
;

where Cg is the convex envelope of g, has piecewise C1 solutions. If ' is a¢ ne
this is trivial, since �u = ' is then a solution of (QP ). When ' is not a¢ ne the
only result available is [6] valid for m = n and �(�) = det �.
The existence result is the following.

Theorem 5.1 Let 
 � Rn be a bounded open set, g : R �! R = R [ f+1g a
lower-semicontinuous function such that

lim
jtj!+1

g(t)

jtj = +1 (5.1)

and ' 2 W 1;1(
;Rm). If (QP ) has a solution u0 2 C1piec(
;Rm) then there
exists �u 2 '+W 1;1

0 (
;Rm) solution of (P ).

Proof. Let
K = ft 2 R : Cg(t) < g(t)g:

The assumptions on g ensure that K is open and that it can be written as a
countable union of disjoint bounded intervals:

K =
[
j2N
(�j ; �j):

Moreover on every [�j ; �j ] the function Cg is a¢ ne i.e.

Cg(t) = aj + bjt; t 2 [�j ; �j ]: (5.2)

We then let


0 = fx 2 
 : g(�(Du0(x))) = Cg(�(Du0(x)))g ;


j =
�
x 2 
 : �(Du0(x)) 2 (�j ; �j)

	
; j = 1; 2; :::
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Since u0 is piecewise C1, we �nd that the sets 
j ; j = 1; 2; ::: are open.
For every j = 1; 2; ::: so that 
j 6= ;, we apply Theorem 1.3, with ' = u0 2

C1piec(
j ;Rm). We obtain in that way the existence of uj 2 u0+W
1;1
0 (
j ;Rm)

so that
�(Duj) 2 f�j ; �jg; a:e: in 
j :

If we de�ne

�u =

�
u0; in 
0
uj ; in 
j ; j 2 N;

we have
g(�(D�u)) = Cg(�(D�u)); a:e: in 
: (5.3)

We claim that �u is a solution of (P ). Indeed we have �u 2 ' +W 1;1
0 (
;Rm).

Moreover appealing to (5.2), (5.3) and Proposition 2.5 we obtain

Z



g(�(D�u(x))) dx =

Z



Cg(�(D�u(x))) dx

=
1X
j=0

Z

j

Cg(�(Duj(x))) dx

=

Z

0

Cg(�(Du0(x))) dx+
1X
j=1

Z

j

(aj + bj�(Duj(x))) dx

=

Z

0

Cg(�(Du0(x))) dx+
1X
j=1

Z

j

(aj + bj�(Du0(x))) dx

=

Z



Cg(�(Du0(x))) dx:

Finally, using the fact that u0 is a solution of (QP ) and inf(QP ) � inf(P ), we
obtain that �u is a solution of (P ). 2
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