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Abstract

Let

α (p, q, r) = inf

(ku0kp
kukq

: u ∈W 1,p
per (−1, 1) \ {0} ,

Z 1

−1
|u|r−2 u = 0

)
.

We show that

α (p, q, r) = α (p, q, q) if q ≤ rp+ r − 1
α (p, q, r) < α (p, q, q) if q > (2r − 1) p

generalizing results of Dacorogna-Gangbo-Subía and others.

1 The main result
In the present article we discuss the following minimization problem

α (p, q, r) = inf

(
ku0kp
kukq

: u ∈W 1,p
per (−1, 1) \ {0} ,

Z 1

−1
|u|r−2 u = 0

)

where p > 1, q ≥ r − 1 ≥ 1 and

kukq =
µZ 1

−1
|u|q

¶1/q
W 1,p

per (−1, 1) =
©
u : u ∈W 1,p (−1, 1) and u (−1) = u (1)

ª
.

We will denote by p0 the conjugate exponent of p (i.e. 1p +
1
p0 = 1) and the Beta

function

B (p, q) =
Γ (p)Γ (q)

Γ (p+ q)
=

Z 1

0

tp−1 (1− t)q−1 dt .

Our main result will be
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Theorem 1 Let p > 1, q ≥ r − 1 ≥ 1 then

α (p, q, r) = α (p, q, q) if q ≤ rp+ r − 1
α (p, q, r) < α (p, q, q) if q > (2r − 1) p.

Furthermore

α (p, q, q) = 2

µ
1

p0

¶ 1
q
µ
1

q

¶ 1
p0
µ

2

p0 + q

¶ 1
p− 1

q

B

µ
1

p0
,
1

q

¶
.

The above formula is also valid when q = r > 1, q = 1 (p > 1 and r = 2) and
p =∞ (q ≥ r − 1 ≥ 1).

Remark 2 (i) If the domain of integration is (a, b) instead of (−1, 1) the best
constant becomes

αa,b (p, q, r) =

µ
2

b− a

¶ 1
p0+

1
q

α (p, q, r) .

(ii) The case p = q = 2 is the classical Wirtinger inequality and the constant
is then

α (2, 2, 2) = π.

(iii) The nonlinear case has first been investigated by Dacorogna-Gangbo-
Subía [3] where the cases r = q and r = 2 were considered. They computed
the actual value of α (p, q, q) and proved that when q ≤ 2p then α (p, q, 2) =
α (p, q, q), while for q >> 2p then strict inequality holds, showing in particular
that

α (p,∞, 2) = 21/p (p0 + 1)1/p
0
.

The problem with r = 2 was then improved by many authors. Belloni-Kawohl
[1] and Kawohl [6] proved that the range where equality holds can be extended
to 2p + 1. Buslaev-Kondratiev-Nazarov [2], refining a result from Egorov [4],
showed that strict inequality holds as soon as q > 3p.
(iv) The importance of these best constants is, when r = q, to generalize

an isoperimetric inequality known as Wulff theorem, cf. [3] (see also Lindquist-
Peetre [8]). The case r = 2 is important in many different contexts, see for
example [5], [7], [9] or [10].
(v) In [3] the cases r = q and r = 2 were treated separately. One of the aims

of the present article is, by the introduction of the parameter r, to unify these
treatments and, at the same time, to generalize the known results.
(vi) We would like to conclude this introduction by calling the attention to

some problems that we were not able to resolve. It is believed, and supported
by some numerical evidences, that the equality between α (p, q, r) and α (p, q, q)
breaks down at exactly (2r − 1) p (B. Kawohl informed us that A.I. Nazarov has
recently shown that when r = 2 the equality does indeed hold when q ≤ 3p). A
related question is to know the actual value of α (p, q, r) when the equality breaks
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down. Another problem is to know for which r ∈ [2, q + 1] min
2≤r≤q+1

{α (p, q, r)}
is attained. By the theorem we know that

max
2≤r≤q+1

{α (p, q, r)} = α (p, q, q) .

2 Proof of the main result
We proceed first with three lemmas and then with the proof of the theorem.

Lemma 3 Let p > 1, q ≥ r − 1 ≥ 1. Let F,K : (0, 1]→ R be defined by

K (m) = 2

µ
p0

q

¶ 1
p0
·
q(p− 1) + p

2p (1− r (m))

¸ p0+q
p0q

Z 1

−m

h
1− r (m) + r (m) |z|r−2 z − |z|q

i 1
p0
dz

F (m) =

Z 1

−m

|z|r−2 zh
1− r (m) + r (m) |z|r−2 z − |z|q

i1/p dz
where

r (m) =
1−mq

1 +mr−1 .

The following then holds

α (p, q, r) = inf {K (m) : m ∈ (0, 1] and F (m) = 0} .

Proof. The proof is similar in spirit to the one of [3] but it differs in many
technical aspects.
Step 1 (Existence of minima). The minimum is easily seen to be attained.

Moreover there exists a minimum u that satisfies also

u = u (x) = u (p, q, r, x) ∈W 1,p
0 (−1, 1) \ {0}

(which means, in particular, that we can assume that u (−1) = u (1) = 0) so
that

α (p, q, r) =
ku0kp
kukq

and
Z 1

−1
|u|r−2 u = 0.

In this step we only need p, r > 1, q ≥ 1.
Step 2 (Euler-Lagrange equation). The function u found in the preceding

step satisfies
u, |u0|p−2 u0 ∈ C1 ([−1, 1])

and there exists µ ∈ R so that

p
³
|u0|p−2 u0

´0
+ pαp kukp−qq |u|q−2 u− µ(r − 1) |u|r−2 = 0. (1)

3



Before briefly explaining how this equation can be derived we want to point
out that it can be shown, with simple arguments, that the Lagrange multiplier
µ = 0 when q = r. It is this fact that makes the whole analysis easier when
q = r and that allows also to treat the case 1 < q = r < 2; however we do not
discuss this case in details and we refer to [3].
Let u be a minimum and let ϕ, θ ∈ C∞0 (−1, 1) with (r− 1)

R 1
−1 |u|r−2θ = 1 and

let |ε|, |t| < 1. Define then

Φ(ε, t) =

Z 1

−1
|u0 + εϕ0 + tθ0|p − αp

·Z 1

−1
|u+ εϕ+ tθ|q

¸ p
q

,

Ψ(ε, t) =

Z 1

−1
|u+ εϕ+ tθ|r−2[u+ εϕ+ tθ].

It is easily seen that Φ is differentiable as well as Ψ if r ≥ 2 and that Ψt(0, 0) =
1 6= 0 for any choice of θ as above. Therefore, applying the implicit function
theorem to Ψ, we find that there exist ε0 << 1 and a function τ ∈ C1(−ε0, ε0),
with τ(0) = 0 such that Ψ(ε, τ(ε)) = 0, ∀ε ∈ (−ε0, ε0); in particular we deduce
that τ 0(0) = (1−r) R 1−1 |u|r−2ϕ. Since Φ(ε, τ(ε)) is minimum at ε = 0 we deduce
that Φε(0, 0) + Φt(0, 0)τ 0(0) = 0. This leads to the Euler-Lagrange equation in
the weak form which holds for every ϕ ∈ C∞0 (−1, 1), namely

p

Z 1

−1
|u0|p−2u0 ϕ0 − αp p kukp−qq

Z 1

−1
|u|q−2uϕ+ µ(r − 1)

Z 1

−1
|u|r−2 ϕ = 0

where µ = µ (α, θ, u) = −Φt(0, 0) ∈ R is a constant. We then deduce that
|u0|p−2 u0 ∈ C1 and that (1) holds. Moreover since the function g (t) = |t|p−2 t
has a continuous inverse we have that u0 = g−1

³
|u0|p−2 u0

´
is continuous and

hence u ∈ C1.
Note, for further reference, that we also have¡|u0|p¢0 = p0

³
|u0|p−2 u0

´0
u0 . (2)

This is obviously true if u ∈ C2. In our context this follows from the fact that
the functions f (v) = |v|p0 and v = |u0|p−2 u0 are both C1 which hence implies
the claim, namely¡|u0|p¢0 = ³f ³|u0|p−2 u0´´0 = f 0

³
|u0|p−2 u0

´³
|u0|p−2 u0

´0
= p0u0

³
|u0|p−2 u0

´0
.

Step 3 (Integrated Euler-Lagrange equation). Multiplying the preceding
equation by u0, using (2) and integrating we get (c being a constant)

(p− 1) |u0 (x)|p + p

q
αp kukp−qq |u (x)|q − µ |u (x)|r−2 u (x) = c. (3)

It is this version of the Euler-Lagrange equation that we will almost always use
(but not exclusively).
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We propose, although this is not necessary for the future developments, to derive
directly (3) without using (1). The advantage of this direct derivation is that
it is also valid if 1 < r < 2; however it is not clear how to infer the required
regularity of u from (3). We now sketch the proof of this fact. Consider the
functional

G(v) = kv0kpp − αpkvkpq
where v ∈Wr =

n
v ∈W 1,p

0 (−1, 1) and R 1−1 |v|r−2 v = 0o. We know that it has
a minimum at u. Consider for any ϕ ∈W 1,∞

0 (−1, 1) such that R 1−1 |u|r−2uϕ0 = 0
and for |ε| ≤ 1 the function

wε(x) = x+ ε
ϕ(x)

2 kϕ0k∞
.

Observe that wε : [−1, 1] → [−1, 1] is a homeomorphism. It is easy to see that
if vε (x) = u(w−1ε (x)), then vε ∈Wr and therefore G(u) = 0 ≤ G(vε), which in
turn implies that

d

dε
G(vε)

¯̄̄̄
ε=0

= 0.

We then deduce that

(1− p)

Z 1

−1

|u0(t)|pϕ0(t)
2 kϕ0k∞

dt = αp
p

q
kukp−qq

Z 1

−1

|u(t)|qϕ0(t)
2 kϕ0k∞

dt . (4)

In order to have a more classical weak form of the integrated Euler-Lagrange
equation, we need to remove the hypothesis that

R 1
−1 |u|r−2uϕ0 = 0. To do this

we let ψ ∈W 1,∞
0 (−1, 1) be arbitrary and we choose

ϕ (x) = ψ(x)−
·Z 1

−1
|u(t)|r−2u(t)ψ0(t)dt

¸
f(x),

where

f(x) =

R x
−1 |u(s)|r−2u(s)dsR 1
−1 |u(a)|2r−2da

.

With this choice we obtain from (4) that

(1− p)

Z 1

−1
|u0|pψ0 + σ

Z 1

−1
|u|r−2uψ0 − αp

p

q
kukp−qq

Z 1

−1
|u|qψ0 = 0

for an appropriate σ = σ (α, f, u) ∈ R (which turns out to be identical to the
µ in (3)) and for any ψ ∈ W 1,∞

0 (−1, 1). The integrated form (3) follows then
immediately.
Step 4 (Value of µ, c and kukq in terms of m). First observe that by

rescaling u, we can assume that

max
x∈[−1,1]

{u (x)} = 1

min
x∈[−1,1]

{u (x)} = −m, m ∈ (0, 1] .
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Writing

r (m) =
1−mq

1 +mr−1 , (5)

we claim that
µ =

p

q
αp kukp−qq r (m) , (6)

c = αp
p

q
kukp−qq (1− r(m)), (7)

kukq =
·
2p(1− r(m))

q(p− 1) + p

¸ 1
q

. (8)

We start by establishing (6) and (7). Writing the integrated Euler-Lagrange
equation (3) for the point of maximum x0, i.e. u(x0) = 1 (and u0(x0) = 0), and
for the point of minimum x1, i.e. u(x1) = −m (and u0(x1) = 0), we get

µmr−1 + αp
p

q
kukp−qq mq = −µ+ αp

p

q
kukp−qq = c. (9)

The identities (6) and (7) follow then immediately. The integrated Euler-
Lagrange equation becomes then

(p− 1)|u0|p + αp pqkukp−qq |u|q − αp pqkukp−qq r(m)|u|r−2u
= αp pq kukp−qq [1− r(m)].

(10)

or equivalently

|u0| =
·
p0

q
αp kukp−qq

¸ 1
p

[1− r(m) + r(m)|u|r−2u− |u|q] 1p . (11)

Integrating (10) over (−1, 1) and recalling that ku0kp = α kukq we get (8).
Step 5 (Qualitative properties of the solution). We now show that

u0 (x) = 0⇐⇒ u (x) = 1 or u (x) = −m. (12)

Indeed the implication (⇐) is trivial. We next discuss the counter implication.
Let

g (X) = 1− r(m) + r(m)|X|r−2X − |X|q, X ∈ [−m, 1]

so that

|u0| =
·
p0

q
αp kukp−qq

¸ 1
p

[g (u)]
1
p .

Observe that g (−m) = g (1) = 0. Using the hypothesis q ≥ r − 1 one easily
shows that at points X where g0

¡
X
¢
= 0 then g

¡
X
¢
> 0. This shows that the

function g never vanishes in (−m, 1). This implies that u0 (x) 6= 0 if u (x) 6= 1
and u (x) 6= −m, as claimed.
It can then be proved, exactly as in [3] and we omit the details, that u has only
one zero α ∈ (−1, 1) (±1 being, by Step 1, also zeroes of u) and u0 has only
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two zeroes η1 = (α− 1) /2 and η2 = (α+ 1) /2. Furthermore the function is
symmetric in the following sense

u (x) =

 u (2η1 − x) if x ∈ [−1, α]

u (2η2 − x) if x ∈ [α, 1] .
As a consequence we obtain that, for every continuous function f : R2 → R,Z 1

−1
f (u (x) , |u0 (x) |) dx = 2

Z η2

η1

f (u (x) , |u0 (x) |) dx. (13)

Step 6 (The functions K and F ). Letm be the minimal value of the solution
u. We will then establish that

α = K (m) ≡
2
³
p0
q

´ 1
p0
h

q(p−1)+p
2p(1−r(m))

i p0+q
p0q

Z 1

−m

h
1− r (m) + r (m) |z|r−2 z − |z|q

i 1
p0
dz

(14)

F (m) ≡
Z 1

−m

|z|r−2 zh
1− r (m) + r (m) |z|r−2 z − |z|q

i1/p dz = 0. (15)

We now briefly explain how to derive these identities. We start with (14). (Note
that the derivation here is done in a slightly different manner than in [3]. There
a function L was derived instead of the present function K below; they coincide
at the minimal value). Using (10) we obtain

|u0|p =
·
p0

q
αp kukp−qq

¸ 1
p0
[1− r(m) + r(m)|u|r−2u− |u|q] 1p0 |u0|.

Let η1, η2 be the zeroes of u0. Recalling (13), integrating the above equation
over (η1, η2) and performing the change of variable z = u (x) in the right hand
side of the equation we obtain

ku0kpp = 2
µ
p0

q
αp kukp−qq

¶ 1
p0
Z 1

−m
[1− r(m) + r(m)|z|r−2z − |z|q] 1p0 dz

which combined with (8) and with ku0kp = α kukq implies (14).
To obtain (15) we rewrite the condition

R 1
−1 |u|r−2 u = 0 in the following manner.

We first observe that (η1, η2 being the zeroes of u0), we have, appealing to (10)
and (13),

0 =

Z 1

−1
|u|r−2u = 2

Z η2

η1

|u|r−2u = 2
Z η2

η1

|u|r−2uu0
u0

= 2

·
p0

q
αp kukp−qq

¸−1
p
Z η2

η1

|u|r−2uu0h
1− r (m) + r (m) |u|r−2 u− |u|q

i1/p .
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Performing the change of variable z = u (x) we get (15).
Step 7 (Equivalence of minima). Denote by

β = inf {K (m) : m ∈ (0, 1] and F (m) = 0} .
The aim of this step is to show that α = β concluding thus the proof of the
lemma. From the previous steps we know that β ≤ α. We now wish to show
the reverse inequality. Let m ∈ (0, 1] be such that β = K (m) and F (m) = 0
(such an m exists by continuity of the functions F and K and by the fact that
F (0) 6= 0). To conclude to the inequality α ≤ β it is enough to show that we
can find u ∈W 1,p

per(−1, 1) with
R 1
−1 |u|r−2 u = 0 such that

K(m) =
ku0kp
kukq

. (16)

This u will be first constructed on (−1, 0) as follows. We claim that we can find
u ∈W 1,p(−1, 0) a solution of the problem

(Em)

 u0 = γh(u), x ∈ (−1, 0)
u(−1) = −m, u(0) = 1
maxu(x) = max |u(x)| = 1

where

h(s) = [1− r(m) + r (m) |s|r−2s− |s|q] 1p , γ =

Z 1

−m

ds

h(s)
.

Note, for further reference, that since h (−m) = h (1) = 0 then

u0 (−1) = u0 (0) = 0.

A solution of (Em) is constructed as follows. Let H : [−m, 1] → [−γ, 0] be
defined by H(y) =

R y
1

dx
h(x) . The solution of (Em) is then given by

u (x) = H−1(γx).

Using the fact that F (m) = 0 we obtain thatZ 0

−1
|u|r−2u =

Z 0

−1

|u|r−2uu0
u0

=
1

γ

Z 0

−1

|u|r−2uu0
h (u)

=
1

γ

Z 1

−m

|z|r−2 z
h (z)

dz =
1

γ
F (m) = 0.

We then extend u to (0, 1) so as to be even. It is then clear that u ∈W 1,p
per(−1, 1)

and that
R 1
−1 |u|r−2u = 0.

It therefore remains to prove (16). From (Em), the fact that
R 1
−1 |u|r−2u = 0

and the evenness of u we deduce that

ku0kpp = γp[2(1− r(m))− kukqq]. (17)
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In a similar way we have from (Em) that

(u0)p = γp−1 [h(u)]p−1 u0 ;

using the evenness of u, and after a change of variables we deduce that

ku0kpp = 2γp−1
Z 1

−m
[h(s)]p−1 .

Recalling the definition of K (m) we obtain

ku0kpp = γp−1
µ
q

p0

¶ 1
p0
·
2p (1− r (m))

q (p− 1) + p

¸ p0+q
p0q

K (m) . (18)

From (Em) we also have

|u0|p = γp[1− r(m) + r (m) |u|r−2u− |u|q].

Differentiating this equation, using (2), we get after a simplification by u0 that

p0
³
|u0|p−2 u0

´0
= γp

£
(r − 1) r(m)|u|r−2 − q|u|q−2u¤ .

Multiplying this equation by u, integrating, bearing in mind that
R 1
−1 |u|r−2u =

0, that u is even and that u0 (−1) = u0 (1) = 0, and using (17) we get

ku0kpp =
q

p0
γp kukqq and kukqq =

2p0 (1− r (m))

q + p0
=
2p (1− r (m))

q (p− 1) + p
. (19)

Combining (18) and (19) we find the claimed result

K(m) =
ku0kp
kukq

.

We now study the functions F (cf. Lemma 4) and K (cf. Lemma 5).

Lemma 4 Let F : (0, 1] → R be the function defined in the preceding lemma.
The following properties then hold.
(i) F (1) = 0, for every p > 1 and q ≥ r − 1 ≥ 1.
(ii) If q ≤ rp+ r − 1 then F (m) 6= 0 for every m ∈ (0, 1).
(iii) If q > (2r − 1) p, then there exists m ∈ (0, 1) (i.e. m 6= 1) such that

F (m) = 0. Moreover F < 0 for m close to 1 (m < 1).

Proof. The function F ∈ C1 ((0, 1]) and we can rewrite F in the following
way

F (m) =

Z 1

0

gm(t) dt,
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where

gm(t) =
tr−1

[1− r(m) + r(m)tr−1 − tq]
1
p

− tr−1mr

[1− r(m)− r(m)tr−1mr−1 −mqtq]
1
p

.

Step 1. Note that since r(m) = 0, recalling that r (m) = 1−mq

1+mr−1 , whenever
m = 1, we deduce that g1(t) ≡ 0 and thus F (1) = 0.
Step 2. We will now prove that, when q ≤ rp+ r − 1, then

gm (t) ≥ 0, ∀t ∈ [0, 1]
leading to the claim. Observe that gm(t) ≥ 0 if and only if
hm(t) ≡ 1− r(m)− r(m)tr−1mr−1 −mqtq −mrp[1− r(m) + r(m)tr−1 − tq]
= (1−mrp) (1− r(m))− ¡mr−1 +mrp

¢
r (m) tr−1 − (mq −mrp) tq ≥ 0 .

(20)
Note that

h0m(t) = − (r − 1)
¡
mr−1 +mrp

¢
r (m) tr−2 − q (mq −mrp) tq−1. (21)

To establish (20) we divide the proof into two cases.
Case 1: q ≤ rp. Observe that, in this case, since 0 < m ≤ 1, then trivially

h0m(t) ≤ 0. On the other hand hm(0) ≥ 0 = hm(1), therefore (20) is proved.
Case 2: rp < q ≤ rp+ r− 1. We will show that if there exists t ∈ [0, 1] with

h0m(t) = 0 then necessarily hm(t) ≥ 0. This fact coupled with the observation
that hm(0) ≥ 0 = hm(1) shows (20). Note that h0m(t) = 0 if and only if

t
q−r+1

=
r(m)(r − 1)(mrp +mr−1)

q (mrp −mq)
.

We therefore have (assuming that t ≤ 1, otherwise nothing is to be proved)

hm(t) = [1− r(m)](1−mrp)− t
r−1

r(m)(mr−1 +mrp) q−r+1q

≥ [1− r(m)](1−mrp)− r(m)(mr−1 +mrp) q−r+1q

≥ 1
q

mr−1
1+mr−1 {q(mq−r+1 + 1)(1−mrp)− (q − r + 1)(1−mq)(1 +mrp+1−r)}.

To obtain the claim it is thus sufficient to show that, for every m ∈ [0, 1],
G(m) ≡ q(mq−r+1 + 1)(1−mrp)− (q − r + 1)(1−mq)(1 +mrp+1−r) ≥ 0.

Observe first that G(0) ≥ G(1) = 0. Define, for α ≥ 0,
H(α,m) = q(mα−r+1 + 1)(1−mrp)− (q − r + 1)(1−mα)(1 +mrp+1−r).

Note that H(q,m) = G(m). Moreover if α ≥ β ≥ 0, then H(β,m) ≥ H(α,m).
If we can show that H(rp+ r − 1,m) ≥ 0 we would obtain

G(m) = H(q,m) ≥ H(rp+ r − 1,m) ≥ 0
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as claimed. It therefore remains to show that, for every m ∈ [0, 1],eH (m) ≡ H(rp+ r − 1,m)
= (r − 1) (1−m2rp) + (q − r + 1)(mrp+r−1 −mrp+1−r) ≥ 0.

This is proved by observing that eH (0) = r−1 ≥ eH (1) = 0 and that eH 0 (m) ≤ 0.
To prove this last inequality we first observe thateH 0 (m) = −mrp+r−2ϕ (m)

where

ϕ (m) = 2rp (r − 1)mrp−r+1+(q − r + 1) (rp− r + 1)m−2r+2−(q − r + 1) (rp+ r − 1) .
We next see that ϕ (0) = +∞ and from the hypothesis of Case 2

ϕ (1) = 2 (r − 1) (rp+ r − 1− q) ≥ 0.
To conclude to ϕ (m) ≥ 0 for every m ∈ [0, 1], we observe that at a point m
where ϕ0 (m) = 0, one has ϕ (m) ≥ 0 and this concludes the proof.
Step 3. We will now prove that F 0(1) > 0 if and only if q > (2r− 1)p. Since

F (1) = 0 and F (0) > 0 this will show, as wished, that there exists m0 ∈ (0, 1)
such that F (m0) = 0 and that F < 0 for m close to 1 (m < 1). A direct
computation shows that

F 0(1) =
q

p

Z 1

0

t2r−2 − tr−1+q

(1− tq)1+
1
p

dt− r

Z 1

0

tr−1

(1− tq)
1
p

dt .

Changing the variable s = tq we get

F 0(1) =
1

p

Z 1

0

s
2r−1
q −1 − s

r
q

(1− s)1+
1
p

ds− r

q

Z 1

0

s
r
q−1

(1− s)
1
p

ds

=
1

p

Z 1

0

s
2r−1
q −1 − s

2r−1
q

(1− s)1+
1
p

ds+
1

p

Z 1

0

s
2r−1
q − s

r
q

(1− s)1+
1
p

ds− r

q

Z 1

0

s
r
q−1

(1− s)
1
p

ds .

Note that the first expression is readily given as

1

p

Z 1

0

s
2r−1
q −1 − s

2r−1
q

(1− s)1+
1
p

ds =
1

p

Z 1

0

s
2r−1
q −1

(1− s)
1
p

ds =
1

p
B

µ
2r − 1

q
,
1

p0

¶
.

Integrating by parts the second term in F 0 (1) and applying L’Hôpital’s rule we
obtain

1

p

Z 1

0

s
2r−1
q − s

r
q

(1− s)1+
1
p

ds =

"
s
2r−1
q − s

r
q

(1− s)
1
p

#¯̄̄̄
¯
1

0

−
Z 1

0

2r−1
q s

2r−1
q −1 − r

q s
r
q−1

(1− s)
1
p

ds

= −2r − 1
q

Z 1

0

s
2r−1
q −1

(1− s)
1
p

ds+
r

q

Z 1

0

s
r
q−1

(1− s)
1
p

ds

= −2r − 1
q

B

µ
2r − 1

q
,
1

p0

¶
+

r

q

Z 1

0

s
r
q−1

(1− s)
1
p

ds .
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Combining these results we have

F 0 (1) =
µ
1

p
− 2r − 1

q

¶
B

µ
2r − 1

q
,
1

p0

¶
which leads to the assertion.

Lemma 5 Let q > (2r − 1) p, then there exists m0 ∈ (0, 1) (i.e. m0 < 1) such
that inf {K (m) : m ∈ (0, 1] and F (m) = 0} = K (m0) < K (1).

Proof. Step 1. As already mentioned it is easy to see that the minimum is
attained and we therefore wish to show that m0 < 1 and K (m0) < K (1). To
this aim we first observe that K ∈ C1 ((0, 1]) and that lim

m→0
K(m) = +∞. We

will then prove, in the next step, that there exists a constant c(p, q) > 0 such
that

K0(m) =
c (p, q)

p0
r0 (m) (1− r (m))

1
p− 1

q−2
µ
1− r − 1

q
r (m)

¶
F (m) .

Recall that r0(m) < 0 for every m ∈ (0, 1]. Since F < 0 for m close to 1
(m < 1) (by Lemma 4), we deduce that m = 1 is a local maximum of K in
(0, 1]. Therefore the global minimum of K in (0, 1] is at a point m0 ∈ (0, 1)
where F (m0) = 0. This is the claimed result.
Step 2. We now compute K0(m). Recall that

K (m) = c (p, q) (1− r (m))
− 1
p0− 1

q

Z 1

−m

h
1− r (m) + r (m) |z|r−2 z − |z|q

i 1
p0
dz

= c (p, q) (1− r (m))−
1
qZ 1

−m

h
1 + r (m) (1− r (m))−1 |z|r−2 z − (1− r (m))−1 |z|q

i 1
p0
dz

where

c (p, q) = 2

µ
p0

q

¶ 1
p0
·
q(p− 1) + p

2p

¸ p0+q
p0q

.

Writing z = (1− r (m))
1
q t, α (m) = −m (1− r (m))−

1
q , β (m) = (1− r (m))−

1
q

and γ (m) = r (m) (1− r (m))
−1+ r−1

q we obtain

K (m) = c (p, q)

Z β(m)

α(m)

h
1 + γ (m) |t|r−2 t− |t|q

i 1
p0
dt .

Noting that

1 + γ (m) |β (m)|r−1 − |β (m)|q = 1− γ (m) |α (m)|r−1 − |α (m)|q = 0
we obtain

K0 (m) =
c (p, q)

p0
γ0 (m)

Z β(m)

α(m)

|t|r−2 th
1 + γ (m) |t|r−2 t− |t|q

i 1
p

dt .
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Performing backward the change of variable t = (1− r (m))
− 1
q z we get

K0 (m) =
c (p, q)

p0
γ0 (m) (1− r (m))

− r
qZ 1

−m

|z|r−2 z dzh
1 + r (m) (1− r (m))

−1 |z|r−2 z − (1− r (m))
−1 |z|q

i 1
p

=
c (p, q)

p0
γ0 (m) (1− r (m))

1
p− r

q F (m)

=
c (p, q)

p0
r0 (m) (1− r (m))

1
p− 1

q−2
µ
1− r − 1

q
r (m)

¶
F (m)

as wished.
We are now in a position to conclude the proof of the main theorem.
Proof. (Theorem 1). Step 1. If q ≤ rp+ r− 1, then, since F (m) = 0 if and

only if m = 1, we deduce that

α(p, q, r) = α(p, q, q) = K(1) = 2

µ
p0

q

¶ 1
p0
·
q(p− 1) + p

2p

¸ p0+q
p0q

Z 1

−1
[1− |z|q] 1p0 dz

which easily leads to the value given in the theorem.
If q > (2r − 1)p, we have, as claimed, that

α(p, q, q) = K(1) > inf{K(m) : m ∈ (0, 1], F (m) = 0} = α(p, q, r).

It remains to discuss the limit cases.
Step 2. The case q = r ≥ 2 is part of the previous analysis. If, however

1 < q = r < 2, then the result still holds and we refer to [3] for more details.
Step 3. We now discuss the value of α(p, 1, 2). Let

W2 =

½
v ∈W 1,p

per(−1, 1),
Z 1

−1
v = 0

¾
.

We have just seen that for every q > 1 then, using also Hölder inequality,

kv0kp ≥ α(p, q, 2) kvkq ≥ α(p, q, 2)2
− 1
q0 kvk1 , ∀v ∈W2

and hence denoting by

ᾱ = lim
q→1

α(p, q, 2) = 2
1
p
(p0 + 1)

1
p0

p0
B

µ
1

p0
, 1

¶
= 2

1
p (p0 + 1)

1
p0

we get
kv0kp ≥ ᾱ kvk1 , ∀v ∈W2.

We therefore have just obtained that α(p, 1, 2) ≥ α. We now prove the reverse
inequality. Let for q > 1, uq ∈W2 be a minimizer, i.e.°°u0q°°p

kuqkq
= α(p, q, 2) .
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Recall that with our conventions −1 ≤ −m ≤ uq (x) ≤ 1 and hence kuqk∞ ≤ 1.
From the integrated Euler-Lagrange equation (11) we then get

°°u0q°°∞ ≤ C(p).

Therefore there exists ū and a subsequence, still denoted by uq, such that uq
∗
ū

in W 1,∞ and uq → ū in L∞. This implies by weak lower semicontinuity

ku0kp ≤ lim infq→1
°°u0q°°p .

Moreover ¯̄̄
kuqkq − kuk1

¯̄̄
≤ kuq − ukq +

¯̄̄
kukq − kuk1

¯̄̄
≤ 2 1q kuq − uk∞ +

¯̄̄
kukq − kuk1

¯̄̄
and, since limq→1 kukq = kuk1, we get

lim
q→1

kuqkq = kuk1 .

Combining these facts we have the claim, namely

α(p, 1, 2) ≤ kū
0kp

kūk1
≤ lim inf

q→1

°°u0q°°p
kuqkq

= lim
q→1

α(p, q, 2) = ᾱ.

Step 4. We now compute α(∞, q, r). We let

Wr =

½
v ∈W 1,p

per(−1, 1),
Z 1

−1
|v|r−2v = 0

¾
.

As above we have

2
1
p kv0k∞ ≥ kv0kp ≥ α(p, q, r) kvkq , ∀v ∈Wr

and hence, if we denote by

ᾱ = lim
p→∞α(p, q, r) = lim

p→∞α(p, q, q) =
2

q

µ
q + 1

2

¶ 1
q

B

µ
1,
1

q

¶
= 2

1
q0 (q + 1)

1
q ,

we obtain
kv0k∞ ≥ ᾱ kvkq , ∀v ∈Wr.

We therefore proved that α(∞, q, r) ≥ α. Let us now show the reverse inequality.
For p > 1, let up ∈Wr be a minimizer, i.e.°°u0p°°p

kupkq
= α(p, q, r) .

Recall that since we assumed −1 ≤ −m ≤ up (x) ≤ 1 we have kupk∞ ≤ 1.
Choosing p sufficiently large so that rp + r − 1 ≥ q, we can rewrite (11) as
(recalling that we are then in the case where m = 1 and thus r (m) = 0)

|u0p| = α(p, q, r) kupkq
µ
p0

q

¶ 1
p

kupk−
q
p

q [1− |up|q] 1p ,
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which implies °°u0p°°∞
kupkq

= α(p, q, r)

µ
p0

q

¶ 1
p

kupk−
q
p

q .

Note that by (8) we have

kupkq −→p→∞
µ

2

q + 1

¶ 1
q

.

By definition of α(∞, q, r) we therefore get

α(∞, q, r) ≤ α(p, q, r)

µ
p0

q

¶ 1
p

kupk−
q
p

q −→
p→∞ ᾱ

which is the desired inequality.

Acknowledgements. We thank the Fonds National Suisse (21-61390-00) for
its financial support. We also benefitiated of discussions with B. Kawohl.

References
[1] M. Belloni and B. Kawohl: A symmetry problem related to Wirtinger’s and

Poincaré’s inequality, J. Differential Equations 156 (1999), 211—218.

[2] A.P. Buslaev, V.A. Kondratiev and A.I. Nazarov: On a family of extremum
problems and related properties of an integral (Russian) Mat. Zametki 64
(1998), 830—838; translation in Math. Notes 64 (1998), 719—725 (1999).

[3] B. Dacorogna, W. Gangbo and N. Subía: Sur une généralisation de l’inégalité
de Wirtinger, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 29—50.

[4] Y.V. Egorov: On a Kondratiev problem, C.R. Acad. Sci. Paris Série 1, Math.
324 (1997), 503—507.

[5] Y.V. Egorov and V.A. Kondratiev: On spectral theory of elliptic operators.
Operator Theory: Advances and Applications, 89. Birkhäuser, Basel, (1996).

[6] B. Kawohl: Symmetry results for functions yielding best constants in
Sobolev-type inequalities, Discrete Contin. Dynam. Systems 6 (2000), 683—
690.

[7] P. Lindquist: Note on a nonlinear eigenvalue problem, Rocky Mountain
Journal of Mathematics, 23 (1993), 281-288.

[8] P. Lindquist and J. Peetre: p-arclength of the q-circle, preprint (2000).

[9] R. Manasevich and J. Mawhin: The spectrum of p-Laplacian systems under
Dirichlet, Neumann and periodic boundary conditions, to appear.

[10] M. Otani: A remark on certain nonlinear elliptic equations; Proc. Fac Sci.
Tokai Univ. 19 (1984), 23-28.

15


