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I. Introduction 

It is known (see [A] and [EM]) that the group of volume preserving diffeomor- 
phisms of a compact oriented Riemannian manifold is the configuration space of 
incompressible ideal hydrodynamics. The group of symplectic diffeomorphisms 
plays a similar role in plasma physics (see [MW]). Both groups carry a structure of 
metric space, natural from the point of view of mechanics, which can be defined, 
starting with the L2-norm on their Lie algebras, as the infimum of length of paths 
connecting two points (see w for exact definitions). Shnirelman in [Sh] has proved 
that the group of volume-preversing diffeomorphisms of the cube in ~3 has finite 
diameter and has announced the result that this is false for the square. 

Despite the fact that Shnirelman formulated his theorem only for the 3- 
dimensional cube, his proof can be modified for the case of the group of volume 
preserving diffeomorphisms of any compact simply-connected Riemannian ma- 
nifold of dimension > 2. However, the diameter can become infinite if the 
fundamental group is not trivial (see Appendix). 

It turns out that the situation with the group of symplectic diffeomorphisms is 
completely different. We prove in this paper that the diameter of the symplectomor- 
phism group of any compact exact symplectic manifold (necessarily with boundary) 
is infinite. We think that the result is true without the assumption of the exactness of 
the symplectic form. 

It is important to point out that, as a contrary to the volume-preserving case, 
infiniteness of the diameter of the group of symplectomorphisms has local nature 
and has nothing to do with the topology of the underlying manifold. The distinction 
between the cases comes from the fact that the fundamental group of the group of 
linear symplectic transformations is infinite while in the volume preserving case it is 
finite in dimension > 2. 

-~Partially supported by NSF grant DMS89-96210 
** Partially supported by NSF grant DMS8701318-01 
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Although the structure of metric space on the group ofsymplectomorphisms 9~ 
considered in this paper is natural from the point of view of continuum mechanics, 
there exist other metrics which are quite natural from the geometric point of view. In 
fact, we prove in this paper infiniteness of the diameter in the metric on 9o, 
generated by the L 1 - (rather than the L 2 -)  norm on its Lie algebra. This implies, of 
course, the result for all LP-norms,p > 1. Moreover, the group 9,~ admits even more 
interesting metrics. One of  them which is actually biinvariant and can be canonically 
defined in terms of the symplectic structure was recently discovered by H. Hofer 
(see [H]). Infiniteness of the diameter of 90, in Hofer's metric can also be seen within 
the philosophy of our paper. While the main ingredient in our proof  is the Calabi 
invariant (which is a volume-like symplectic invariant), the proof  for Hofer's metric 
requires more subtle symplectic invariants-  Ekeland-Hofer-Zehnder's capacities or 
Gromov's  width. 

The paper is organized as follows. In Sect. 2 we define the metric on 9o, and 
state the main theorem. Section 3 contains a reduction to the case of exact 
symplectomorphisms. Section 4 is devoted to a general inequality which we use in 
the Sect. 5 to prove the main results. In the Appendix we give a brief explanation of 
the role of the fundamental group in the volume preserving case. 

Note that the proof  can be greatly simplified for the case of the group of exact 
symplectomorphisms fixed at the boundary of the manifold. In this case the result 
follows (see [ER]) from three main ingredients: an inequality between the length of 
a path and the value of  the Calabi invariant of the resulted symplectomorphism; the 
independence of the Calabi invariant from the choice of the path; the existence of 
symplectomorphisms with arbitrarily large values of the Calabi invariant. 

The proof  in the general case requires more work. But even in the special case 
above the approach of this paper has some advantages. It shows that not only 9o, 
but all its non-trivial normal subgroups have infinite diameter (see Theorem 2.2 
below). 

2. Statement of the results 

2.1 Metrics on the 9roup o f  volume preservin9 diffeomorphisms 

Let M be a compact manifold (possibly with boundary) with a volume form/~. Fix a 
Riemannian metric on M. Let 9 be the connected component of the identity in the 
group of  volume preserving diffeomorphisms of (M, #). A tangent vector to 9 at a 
point r/is a map X �9 M--* T M  such that X (x)~ T~x)(M), x~  M (see [EM]). Let us 

l 

put 
\M / 

chosen Riemannian on M. Note that ]IX, llp~cp]IX~[ll for a positive constant %. 
Given a path ~/t~ @, te [0, l],we define its p-length Ip({~h} ) by the formula 

11 , I l,({.,})=! dt. 
P 

The length function lp defines a distance function d r on 9 by dp(f, g ) =  inf/p({qt}), 
where the infimum is taken over all paths r/t, t6  [0, 1], joining ~/o = f  and r h =g. 
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For any pathwise connected subset A c ~ we define its p-diameter by the 
formula 

diamp(A)= sup dp(f,g). 
f,g~A 

For a pair A c B in ~ we define a relative p-distance by the formula 

dp(f, g[B) = inf lv ({r/,}) 

where the infimum is taken over all paths r 5 ~ B, t e [0, 1 ], joining r/o = f ,  r/1 = g ~ A. 
The relative p-diameter of A in B is now defined by the formula 

Note that 

d iam(AlB)= sup dp(f, glB). 
f,g~A 

diamp (AIB) >= cp diam 1 (A IB). 

In this paper we are proving infiniteness of diameters of certain subgroups of ~ .  
According to the inequality above the strongest results are with respect to diam 1 . 
From now on we will consider only this case and we will drop the index "1"  from our 
notations. 

2.2 Groups of symplectomorphisms 

Let M be a compact exact symplectic manifold (necessarily with boundary) with the 
symplectic form co =d2.  Then p = o~" is a volume form on M. Let us denote by 
~ ,  ~,~ c ~ ,  the identity component of the group of symplectomorphisms of M, i.e. 
diffeomorphisms f : M ~ M  with f ' c o  = co. 

A symplectomorphism f ~ ~o, is called exact if the closed 1-form 2y = f *  2 -  2 is 
exact. The exactness of 2 s is independent on the choice of 2 with d2 = co. Let ~ be 
the subgroup of  ~ ,  which consists of exact symplectomorphisms. Note that ~ is 
path connected (see 3.5.2 below). By @s we will denote the subgroup of ~ which 
consists of diffeomorphisms which are fixed near the boundary OM. 

Calabi in [Ca] defined an epimorphism 

Cal : ~ , o ~ I R  ; 

see 5.1 below. 
The kernel of this homomorphism which we will denote by ~,]i ~ consists of 

symplectomorphisms with zero Calabi invariant. According to Banyaga (see [B]) 
~ : 0  is the commutator  [ ~ e ,  ~,~,0] and it is a simple group. 

Theorem 2.2.1. 
diam (~o,) = + 

Theorem 1 is a direct corollary of the following more precise result: 

Theorem 2.2.2. 
diam (~, ' ,~1~)  = + oo 
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3. Reduction to the exact  case 

3.1 Exact symplectomorphisms 

Let (M, co = d2) be an exact compac t  symplectic manifold.  A vector  field X on M is 
called symplectic if its dual  1-form 0 = X] co is closed which is equivalent  to ~xco  = 0. 
I f 0  is exact then Xi s  called Hamiltonian. I f  r/t, t~  [0, 1], is a pa th  in ~o, then for  any 

dr/r(r/t-1 (x) is symplectic. All pa ths  in ~,o which we t e [0, 1] the vector  field X t (x) dt 

will consider in this paper ,  will start  at the identity and we will usually assume that  
wi thout  ment ioning  it. We will call the pa th  rh, t ~ [0, 1 ], Hamiltonian if the field X t is 
Hami l ton ian  for  all t ~ [0, 1 ]. The funct ion Hi,  t ~ [0, 1 ], with dH, = 0 t is called, in this 
case, the ( t ime-dependent)  Hami l ton i an  which generates r/t, t ~ [0, 1 ]. The function 
H t is determined up to adding a cons tant  C t. 

The following s tandard  fact relates the not ions of  exact symplec tomorph i sms  
and Hami l ton ian  paths.  

L e m m a  3.1.1. The path r/t, t ~ [0, 1] is Hamiltonian if and only if it consists of exact 
symplectomorphisms. 

Indeed, 

dr/~*(x) d~ = I  r / ? (Xjw)d~+d  I r/~*(,~(x3)d~. 
r/,*;t- ~ = ~ o o 

Thus  r/* 2 - 2 is exact for  all t ~ [0, 1 ] if  and only if the fo rm 0 t = XtJ w is exact for  all 
t~  [0, 1]. [] 

3.2 The characteristic line bundle 

The restriction colOM has 1-dimensional  kernel K c  T(OM) which is called the 
characteristic line bundle of  OM. A symplectic field X on M is tangent  to OM if and 
only if the fo rm 0 = X]co vanhishes on K. In  this case X integrates to a flow 
X ~ : M ~ M ,  t ~ IR, such tha t  Xt(OM)= OM, t ~ F,.. Let us denote  by HI(M;  R)  the 
subspace of  H 1 (M;  R )  which consists o f  cohomology  classes of  closed 1-forms 
van ish ing 'on  K. 

3.3 Special flows 

For  a Closed 1-form ~t we denote  by [0t] its c o h o m o l o g y  class. 
Let us fix closed 1-forms 01 . . . . .  O N vanishing on K and such tha t  [01] . . . . .  [ON] 

fo rm a basis o f  HI(M;  ~). Let Ok be the symplectic field dual  to the forms Ok, 
k = 1 . . . . .  N, namely,  O k = dk] co. 

Take  cont inuous  funct ions A1 . . . . .  AN : [0, l ] - , IR  with Ak (0) = 0, k = 1 . . . . .  N and 
define a vector  field .4(0, t~ [0, 1], by the formula  

N 

A(t)= ~ Ak(t)a~. 
k = l  

Let AU(t) ,u~R, be the flow generated by A(t), for  a fixed t~  [0, 1]. Thus  

dAU(t) 
- - = A ( t )  oAU(t). 

du 
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L e m m a  3 . 3 . 1 .  
N 

[ (A"( t ) )*2-2]=u ~ Ak(t)[Ok]. 
k = l  

Proof. We have (comp. 3.1.1): 

-i [(A"(t))*)t-)t]- [(A"(~))* (A(~)Jco)]d~ 
0 

=i [A(~)lo~I&=u[A(~)loJ] 
0 

N 

=u y~ &(t)[0~l .  [] 
k = l  

The following lemma 3.3.2 immediately follows from compactness arguments. 

Lemma 3.3.2. Let D=max(IAk(t)J) ,k= 1 ..... N, te  [0, I]. Then there exists a 
C = C(D) such that IIdA"(t)(x)I] < C(D) for any t e [0, 1], x e M, lul < 1. 

Lemma 3.3.3. Suppose that S dt < D '. Then there exists a constant C' = C' (D ') 
u 

such that l({A"(t)}) <= C'(D')  for lul < 1. 

Proof. Let us embed the compact manifold with boundary M isometrically in an 
Euclidean space. From 

we conclude that 

" d  
A"(0(x)- x = ~ ~s (A ~(t)(x))ds 

0 

-= i A (t)(A s(t)(x))ds 
0 

and hence 

aA"(t)(x) i A'(t)(A~(t)(x))as 
dt o 

+~ dA(t)(A~(t)(x)) dA ~ (x) ds 
0 

1 dA~(t)(x) dsdt. +! oi lL"A t)<AV) x)IL 
N 

However, since A( t )=  Z Ak(t)Ok, it follows that ]lA'(t)(y)l]<C 1 max IA~(t)l, 
k = l  k = l  . . . . .  N 

for any y ~ M, where the constant C~ depends only on M and the vector fields Ok, 
k ~ 1 . . . . . .  N. Thus the first term in the previous inequality is bounded above by 

! 

' < D ' .  C~ max S IAk(t)ldt=Cl 
k = l  . . . . .  N 0 
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By compactness of M, IIdA(t)(y)ll <=c~ max IAk(t)t, for all y~M, where the 
k = l  . . . . .  N 

constant C 2 depends only on the vector fields Ok, k =  1 .. . . .  N. But 

1 

I A k ( t ) l < ]  " IA/,(s)lds<O', i.e. 
0 

for all t ~ [0, 1 ] and all k = 1 .. . . .  N. Therefore, 

IIdA (t)(y)][ < CzD' . 
Thus we have 

By Gronwall's inequality we conclude 

i dAU(t)(x) dt<CxO,eC2O,=~(D,). 
o -d 

Therefore 

[] 

Remark 3.3.4. The functions C(D) and C'(D) in 3.3.2 and 3.3.3 can obviously be 
chosen monotonically increasing with D. 

3.4. Estimates on the length of a non-Hamiltonian path 

r h, t ~ [0, 1 ], be a path in ~o, (starting at qo = id, see 3.1). Let X t (x) = ~ t  (qt- i (x)) Let 
and ~t be the closed l-form w-dual to Xt, t E [0, 1 ]. 

t 4 g  

t 

Lemma 3.4.1. The cohomology classes of the 1-forms rl* 2 -  2 and S ct~ds coincide. In 
particular, [q* 2 - 2] ~ HI(M ). o 

Proof 
t t 

[~?~-~1 =S ,ff [~s+d(~(x~))]ds=~ [c, M s .  
0 0 

However, at annihilates the characteristic line bundle K since X~ is necessarily 
tangent to OM. Therefore 

i [~s]dseH~(M). [] 
0 

Let qt, Xt and 0~ be as above. Let [01] .... [ON] be the basis of  H~(M) considered in 
N 

3.3. Then [ r / ' 2 - 2 ]  = ~  Ak(t)[Oh]. 

1.emma 3.4.2. 
1 

l({rh}) > Q max ~ IA~(t)ldt. 
k 0 
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The following lemma 3.4.3 is a key ingredient in the proof  of  3.4.2. 

Lemma 3.4.3. Let S = M  be an embedded circle and F, S c F c M ,  be its tubular 
neighborhood. Then for any closed 1-form 0 on M we have 

c !0 -<--! ll0tl. 
jbr a constant C independent on O. 

Proof. Let z : S •  ~ 2 " - 1 ~ F  be a decomposition of the tubular neighborhood F 
c~ 

and ~ be a unit tangent vector field along S ~. Then 

$ Iloll~=>c, ! o(4 ~>=c, ~,-!.s, 
F 

- t  x x S t  

s_, o 

Proof of  3.4.2. Let us choose disjoint embedded circles S 1 .... , S t = M such that their 
homology classes [$1] .... [St] form a basis of H I ( M  ). Choose disjoint tubular 
neighborhoods FiDSi, i= I  ..... L Let us complete the basis [01] .... [ON] of 
H I ( M ) = H I ( M )  to a basis [01] . . . . .  [ON] .... , [0l] of  Hi(M) .  Let B=(bo)  be a 
( Ix / ) -matr ix  bij= S Oi. Then B is nondegenerate and, therefore, IIByll-->b[ly[[ for 

Sj  
y ~ IR t, b > 0. We have 

1 

z({~,})=$ S Ilx,(~,(x))ll~,dt 
0 M 

1 ! 

>--~ E g ll~,(x)II~dt 
0 k = l  Fk 

Applying 3.4.3 and 3.4.1 we get 

0 k = l  

0 k = l  

i '  = Cl E 
0 k = l  

where y = (A~ (t) ..... A[~(t), 0 .. . . .  O) ~ IRk Therefore 

1 1 

l({rlt})>= C2b S llylldt ~ Qmax S IA~(t)ldt. 
0 k 0 

t 0q dt 

[] 
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3.5 Reduction to the exact case 

In this section we continue to use the notat ions which were introduced above. In 
particular,  r/t, t e [0, 1 ], is a pa th  in 9~,, X t is the corresponding symplectic vector 
field, s t is co-dual to Xt, t e [ 0 , 1  ]. We denote  by [01]...[0N] a basis in H~(M) 
and by O 1 . . . . .  c3 N symplectic fields dual to 0~ . . . . .  ON. We define functions 

N 

A 1 . . . . .  A s : [0, 1 ]--) ~, by the formula  It/* 2 - 2] = ~ A~(t) [Ok]. We keep the notat ion 

N 

A(t) for the vector field ~ A~(t)Ok, t~ [0, 1], and denote by A"(t),u~IR, the flow 
k = l  

generated by A (t). 

1 

Lemma 3.5.1. Let D = m a x ~  ]A~(t)ldt. Suppose that rll is an exact symplectomor- 
k 0 

phism. Let ~t=A-l( t )oqt ,  t e [0, 1]. Then the path {~bt} is Hamiltonian, tpl =rll and 

l({~9,}) < C(D )l({q,}) + C' (D ) 

for increasing functions C(D) and C'(D). 

Proof First note that  [0* 2 -  2] = [(A - 1 (t))* 2 - 2] + It/* 2 -  2] = 0 according to 
3.3.1. Therefore,  {@t} is Hamil tonian  by 3.1.1. Now we have 

1 

lldA-'(t)(X,(x))ll  dt. 
0 M 

Applying 3.3.2 and 3.3.3, we get 

/({ q,,}) <_ C' (D) + C(D)/({q,}). 

Finally note that  A ( I ) = 0  because r/l is exact. Therefore  ~1 =r/1 [] 

The following lemma 3.5.2 is the main result of  this section. 

Lemma 3.5.2. Let 9~  be the subgroup of 9,0 which consists of  exact xmplectomor- 
phisms M ~ M .  Then there exists an increasing function tp:IR+-)P, ,  such that 
d(id, f [9~)  ~ q)(d(id, f ig ,o))  for any f ~ 9,0. 

Proof Take a d i f feomorphism f = q l  e ~ , .  Let L=d(id, flg,o). Then r h can be 
joined with the identity by a path  r/,~9,o with l({qt})<2L. Applying the 
const ruct ion f rom 3.5.1 we can find a Hami l ton ian  path  Or, t e [0, 1 ], with ffl = ~/1 
such that 

/({Or}) < C(D)/{rh} + C'(D) < 2 C(D)L + C'(D). 

But Lemma 3.4.2 implies that  

2 L  D__<Q 
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Therefore, 

o r  

d(id, f ]~ , )~  ~o(d(id, f l ~ ) .  [] 

Remark 3.5.3. Lemma 3.5.1 implies, in particular, that the group ~ is path- 
connected (see Section 2). 

4. An inequality 

The goal of  this section is the following inequality 4.1. 

Proposition 4.1. Let # be a compact Riemannian manifold (with or without boundary) 
with volume form #, H: M~IR  be a smooth function. Then 

[. [. II-I(x)-H(y)ll~x~,NC [. I(VH[I . 
M M M 

Proof Let us start with the case when M is a ball B of  radius 1 in F,". Fix any 
nonzero vector zeIR". Let us denote by / /~:R"--*R" a parallel translation 
I l z (x )=x-z .  Let Bz=BnlIz(B ) and D~ be the image of B~ under the orthogonal  
projection it : B ~  L onto the hyperplane L = IR" which is perpendicular to z. For  a 
point ueD,  we denote by l, a fiber rc-~(u)=B over the point ueD~. Let l '=l,  nB  z. 
So a point y e B~ = B has coordinates u e D~, t e l,. Then we have 

IH(y + z ) -  H(y)ld"y= 
Bz D~ 

IH (y + z) - H (y)ldt d"- 1 u 
lh 

<o, ~ ,:, ~ t, ~ ~ (z,u) dzdtd"-lu 

<--- I I X llvn(~,u)ll dvdtd"-'u 
Dz lu lu 

< 2  f lfvm,.u)lld, d"- ' ,  
D~ lu 

Therefore, 

= 2  I IIIZH(y)lld"y 
B 

I ~ lH(x)-H(y)ld"xd"y 
B B 

~ IH(y+z)-H(y)ld"yd"z 
B Bz 

<~ ~ IIVH(y)I[d"yd"z<-2v~ I 1IITH(y)IId"Y 
B B= B 
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Now consider the general case. Take embeddings fl ..... f N : B ~ M  such that 
N 

M x  M =  U f/(B) x fi(B). Then 
1 

N 

~ IH(x)-H(y)lgx#~<~ ~ ~ IH(x)-H(y)I#~#r 
M M 1 f i (B)  f i (B)  

N 

<C1 ~ C ~ ~ IH(f~(u))-H(f~(v))ld"ud"v 
1 B B 

N 

zc2 E I IIV(no f,)(u)lld"u 
1 B 

N N 

Z I [IVHII  <C, E I IlvHII. 
1 f i (B) 1 M 

= c  $11vnl l .  [] 
M 

5. Exact  case 

Let now (M, to= d2) be a compact exact symplectic manifold. 

5.1 Calabi invariant 

Let r/e 9~,,a be an exact symplectomorphism which is fixed near 0M. Then the form 
2 ~ = r / ' 2 - 2  is exact and is 0 near OM. Let h : M ~ R  be a function with hlaM--0, 
dh = 2,. Then the number ~ h# does not depend on the choice of the primitive 2 of~o 

M 

(see [C] and [B]) and is called the Calabi invariant of r/; 

Cal(O= hr. 
M 

The function Cal defines an epimorphism of the group ~ e a  onto IR. 
Let F i x ( q ) c M  be the set of fixed points of q and let U c F i x ( q )  be the 

component of Fix (q) which contains the boundary OM. Fix a point x ~ U and for 
any y e M let us choose a path Yxr which starts at x and ends at y. Then 

h (y )=  S 2 - S  2 
r/(yxy) ~xy 

and, therefore, 

C a l ( q ) = ~  !x,, 
Tt( yxy 

5.2 An identity 

Let qt, tE[O, 1] be a Hamiltonian path in 9,0 with q0=id, r/l=~/ and let 
H t : M--*~, t~  [0, 1] be its generating Hamiltonian, dHt=Xt]~o, 

Lemma 5.2.1. Let 7 be a path in M joinin9 two points x,y ~ M. Then 
1 1 1 

2-~  2=~ 2(X,(th(y))dt- ~ ).(X,(q,(x))dt+ ~ (H,(rh(y))-Ht(q,(x)))dt. 
~I(Y) Y 0 0 0 



The diameter of the symplectomorphism group is infinite 337 

Proof. Let K =  [0, 1] x [0, 1] c IR 2. Consider  a m a p  S : K + M  defined by the fo rmula  
S(u, t) =t/,(7(u)),  then 

Is*w=I s*x=Ix+ I I 
K OK ~ {r/t(y)} t/(7) {qt(x)} 

but 

s.=! 

= -5.,c, d(H, ot/,)(7(u))\ du ]dudt  

1 

= - 5 (H, (q, (y))) - H, (t/, (x)) dt. 
0 

Therefore,  

I 
1 1 1 

,~ - ~ ,~ = ~ ~. (x ,  (t/, (y))  at  - 5 ,~ (x ,  (~, ( x ) ) a t  + f (H~ (,7, (y)) - hr, (,7, (x)))  dt.  
y 0 0 0 

r-1 

5.3 Exact symplectomorphisms and Calabi invariant 

Let us fix an embedded  ball B c I n t M  and a smaller  ball B o c I n t B .  Let 
A = B \ In t  B 0 . We will call a symplec tomorph i sm f : M ~ M  special if f ( B )  = B and 
f l a  =/d .  Fo r  a d i f f eomorph i sm h : B ~ B  which is fixed near  dB we denote  as in 2.2 
and 5.1 by Cal (h)  its Calabi  invariant .  

Proposition 5.3.1. Let  tb, t ~ [0, 1 ], be a Hamiltonian path in ~o, such that 11 = t/1 is 
special. Then/({t/t}) > K C a l  (t/[B) where the constant K is independent on the choice 
of path {t/t}. 

Proof. Let us fix a point  x ~ A and for  any x e B let us choose  a pa th  Yxy joining the 
points x, y ~ B we have 

Applying now 5.2 we get 

-i 
1 l +[. (H,(n,(yI)-H,(t/,(x))dt ~,. 
0 

Integrating bo th  par ts  o f  the inequali ty over  A we get 

1 

Vol (A) Cal (t/I.) = Vol (A) I I 2 (X, (t/, (y))at/~x 
B 0 

1 

-Vol(B) I I ,~(X,(t/,(x))dt#~ 
A 0 

1 

+I I I (I-I,(t/,(y)-t~,(t/,(x))dt,,#~. 
0 A B 
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Thus 

L 1 1 
Vol(A)lCal(r/In)l~C Vol(A)~  J" IlX,]tdtlx+Vol(B) [. ~ IIx, lldt ] 

OM OM 
1 

+~ I I IH,(r/,(x))-H,(~,(Y)ll.~xl.~y 
O M M  

= C(Vol (A)+  Vol (B))/({,1,}) 
1 

+I  I I In,(x)--n,(Yll#xl~r. 
o M u  

Now we apply the inequality 4.1 and get 

1 

ICal (qIB)I < Cx l({r/t}) + Cz I I [I v/-/,l{#dt = (c ,  + cy ({ r / , } ) .  
0 M 

[] 

6. Proof  of  Theorem 2.2.2 

We start with the following simple lemma. 

Lemma 6.1. Let B c M be an embedded ball as in 5.2. Let h : B--* B be a symplecto- 
morphism f ixed near the boundary OB and isotopic to the identity. Then h can be 
extended to a symplectomorphism g : M ~ M  f ixed near dM, isotopic to the identity 
and such that. 

Cal(o)=O.  

Proof Let us choose a ball B 1 ~ Int (M\B).  Take a symplectomorphism h 1 : B x --,B1 
fixed near t3Bx which is isotopic to the identity and such that Cal (hx)--- - C a l  (h). 
The required symplectomorphism g : M ~ M  is equal to h on B, h I on Bx and is the 
identity on M \ ( B  IUB). [] 

Recall that ~ ,  denotes the group of  exact symplectomorphisms. 

Proposition 6.2. 
�9 e O  e dlam (~Tg,01~,o) = + oo. 

Proof The Calabi homomorphism is surjective. Therefore, for any N > 0 there exists 
a symplectomorphism h N : B ~ B  with Cal (hN) > N which is isotopic to the identity�9 
(The required h N can be, for example, constructed as the time-one map of the 
Hamiltonian flow generated by a Hamiltonian H : B ~ I R  with H = 0  near 0B 
and ~ H # > N . )  Extend h N using 6.1 to a symplectomorphism g N ~ , . O .  Take a 

B 

Hamiltonian path r/t ~ ~ ,  t ~ [0, 1] with r/o = id, rll = ON. According to 5.3.1 /({r/t}) 
dlam (~7~. 0l~o,) - >KN. Hence d(id, gN)=inf~n,~l({r/,})>KN. Therefore, " e o e - 

+ ~ .  [] 

6.3 Proof o f  Theorem 2.2 

Apply 6.2 and 3.5.2. [] 
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Appendix 

As we ment ioned  in the In t roduct ion,  the diameter  o f  the group  of  the volume 
preserving d i f feomorphisms  of  a manifo ld  is finite when the manifold  is s imply 
connected (see [Sh]). We will explain in this section that  in the non-s imply-  
connected case the d iameter  can be infinite. 

Theorem A.1. Let M be a manifold with a volume form p and ~ be (the identity 
component of) the group of volume preserving diffeomorphisms of  M. Suppose that 
H 1 (M ; IR) 4= 0 and n 1 (M) has trivial center. Then 

diam ( 9 )  = ~ .  

Proof Let a 1-form a represent  a nontr ivial  cohomology  class f rom H l (M;  ~,). Let 
q be the Lie algebra o f  divergent  free vector  fields. The  fo rmula  ~ r  ~ a (X)# ,  

M 

X~ g, defines d as a 1-form on 9 .  A s t ra ight forward compu ta t i on  shows that  this is 
a closed 1-form (comp. [Fa]) i.e., for  any contract ible loop r/in ~ we have ~ d = 0. 

In fact this fo rm is exact if the evaluat ion h o m o m o r p h i s m  n I ( ~ ) ~ H ! ( M ;  IR) is 
trivial (see [McD]).  Fo r  example,  this is so if the center o f  n~ (M)  is trivial. Then  the 
formula 

J(x)= d ,  
qx 

where x e @ and r/~ is a pa th  connect ing id with x defines a functional  on ~ which is a 
primitive of  d .  This is the so-called massflow h o m o m o r p h i s m  (see [Fa]). It  is easy 
to see that  ~ is not  trivial and,  therefore,  takes arbi t rar i ly  large values. 

Now note that  

<C } ~ ~ #dt<~l(q~) 
0 M 

where l(r/x ) is the length o f  the pa th  r/x for  the metric  we consider in this paper  
(see (2-2)). 

Hence, 
d(id, x) > ~[~-(x) l :  

Therefore,  d(id, x) takes arbi t rar i ly  large values together  with ~- (x)  which 
means that  d i a m ( 9 ) =  ~ .  [] 
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