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1. Introduction

It is known (see [A] and [EM]) that the group of volume preserving diffeomor-
phisms of a compact oriented Riemannian manifold is the configuration space of
incompressible ideal hydrodynamics. The group of symplectic diffeomorphisms
plays a similar role in plasma physics (see [MW]). Both groups carry a structure of
metric space, natural from the point of view of mechanics, which can be defined,
starting with the L?-norm on their Lie algebras, as the infimum of length of paths
connecting two points (see §2 for exact definitions). Shnirelman in [Sh] has proved
that the group of volume-preversing diffeomorphisms of the cube in IR? has finite
diameter and has announced the result that this is false for the square.

Despite the fact that Shnirelman formulated his theorem only for the 3-
dimensional cube, his proof can be modified for the case of the group of volume
preserving diffeomorphisms of any compact simply-connected Riemannian ma-
nifold of dimension >2. However, the diameter can become infinite if the
fundamental group is not trivial (see Appendix).

It turns out that the situation with the group of symplectic diffeomorphisms is
completely different. We prove in this paper that the diameter of the symplectomor-
phism group of any compact exact symplectic manifold (necessarily with boundary)
isinfinite. We think that the result is true without the assumption of the exactness of
the symplectic form.

It is important to point out that, as a contrary to the volume-preserving case,
infiniteness of the diameter of the group of symplectomorphisms has local nature
and has nothing to do with the topology of the underlying manifold. The distinction
between the cases comes from the fact that the fundamental group of the group of
linear symplectic transformations is infinite while in the volume preserving case it is
finite in dimension > 2.

—————
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Although the structure of metric space on the group of symplectomorphisms 2,
considered in this paper is natural from the point of view of continuum mechanics,
there exist other metrics which are quite natural from the geometric point of view. In
fact, we prove in this paper infiniteness of the diameter in the metric on g,
generated by the L! — (rather than the L? -) norm on its Lie algebra. This implies, of
course, the result for all LP-norms, p 2 1. Moreover, the group %, admits even more
interesting metrics. One of them which is actually biinvariant and can be canonically
defined in terms of the symplectic structure was recently discovered by H. Hofer
(see [H]). Infiniteness of the diameter of &, in Hofer’s metric can also be seen within
the philosophy of our paper. While the main ingredient in our proof is the Calabi
invariant (which is a volume-like symplectic invariant), the proof for Hofer’s metric
requires more subtle symplectic invariants — Ekeland-Hofer-Zehnder’s capacities or
Gromov’s width.

The paper is organized as follows. In Sect. 2 we define the metric on &, and
state the main theorem. Section 3 contains a reduction to the case of exact
symplectomorphisms. Section 4 is devoted to a general inequality which we use in
the Sect. 5 to prove the main results. In the Appendix we give a brief explanation of
the role of the fundamental group in the volume preserving case.

Note that the proof can be greatly simplified for the case of the group of exact
symplectomorphisms fixed at the boundary of the manifold. In this case the result
follows (see [ER]) from three main ingredients: an inequality between the length of
a path and the value of the Calabi invariant of the resulted symplectomorphism ; the
independence of the Calabi invariant from the choice of the path; the existence of
symplectomorphisms with arbitrarily large values of the Calabi invariant.

The proof in the general case requires more work. But even in the special case
above the approach of this paper has some advantages. It shows that not only Z,,
but all its non-trivial normal subgroups have infinite diameter (see Theorem 2.2
below).

2. Statement of the results

2.1 Metrics on the group of volume preserving diffeomorphisms

Let M be a compact manifold (possibly with boundary) with a volume form p. Fixa
Riemannian metric on M. Let 2 be the connected component of the identity in the
group of volume preserving diffeomorphisms of (M, ). A tangent vector to & ata
point 7 is a map X, : M— T1M such that X, (x)e 7, ,,(M), xe M (see [EM]). Let us

put | X, | pz(‘f | X, ()17 1 P, where the norm | X, (x)| is taken with respect to the
M

chosen Riemannian on M. Note that | X, |, 2c,||X,||; for a positive constant c,.
Given a path n,€ 9, te [0, 1],we define its p-length /,({n,}) by the formula

dn,

p pdt.

lp({m})=§ |

The length function /, defines a distance function d, on & by d,(f,g)=inf lp({n,})a
where the infimum is taken over all paths n,,2¢€[0, 1], joining n,=f and n, =4
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For any pathwise connected subset 4<% we define its p-diameter by the
formula

diam,(A4)= sup d,(f.9).
f.ged
For a pair A< B in 2 we define a relative p-distance by the formula

d,(f,91B)=infl,({n,})

where the infimum is taken over all paths y,€ B, t€[0, 1], joining 5= f,n, =g€ 4.
The relative p-diameter of 4 in B is now defined by the formula

diam (4|B)= sup d,(f,¢g|B).
f,geA

Note that
diam,, (4|B) 2 c,diam, (4|B).

In this paper we are proving infiniteness of diameters of certain subgroups of 2.
According to the inequality above the strongest results are with respect to diam, .
From now on we will consider only this case and we will drop the index “1”’ from our
notations.

2.2 Groups of symplectomorphisms

Let M be a compact exact symplectic manifold (necessarily with boundary) with the
symplectic form w=dAi. Then p=w" is a volume form on M. Let us denote by
2., D, < 9, the identity component of the group of symplectomorphisms of M, i.e.
diffeomorphisms f: M—M with f*o=ow.

A symplectomorphism f € ,, is called exact if the closed 1-form A, = f*A—4is
exact. The exactness of A, is independent on the choice of 4 with dA=w. Let 2 be
the subgroup of 2, which consists of exact symplectomorphisms. Note that Z¢, is
path connected (see 3.5.2 below). By 2. ; we will denote the subgroup of & which
comnsists of diffeomorphisms which are fixed near the boundary oM.

Calabi in [Ca) defined an epimorphism

Cal: 2% ,-»R;

see 5.1 below.

The kernel of this homomorphism which we will denote by 229 consists of
symplectomorphisms with zero Calabi invariant. According to Banyaga (see [B])
223 is the commutator [2¢ 5, 2¢ 5] and it is a simple group.

Theorem 2.2.1.
diam(92,)=+ w0
Theorem 1 is a direct corollary of the following more precise result:

Theorem 2.2.2.
diam (25%12,,)= + ©
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3. Reduction to the exact case

3.1 Exact symplectomorphisms

Let (M, w=d4) be an exact compact symplectic manifold. A vector field X on M is
called symplectic if its dual 1-form § = X]w is closed which is equivalent to £y =0.
If 6 is exact then X is called Hamiltonian. If ,,t [0, 1], is a path in &, then for any

-1
te{0, 1] the vector field X,(x) =dr7,_(?1a,’t__(_JQ

will consider in this paper, will start at the identity and we will usually assume that
without mentioning it. We will call the path ,, t€ [0, 1], Hamiltonian if the field X, is
Hamiltonian for all € [0, 1]. The function H,, te [0, 1], with dH, =6, is called, in this
case, the (time-dependent) Hamiltonian which generates #,, t€ [0, 1]. The function
H, is determined up to adding a constant C,.

The following standard fact relates the notions of exact symplectomorphisms
and Hamiltonian paths.

is symplectic. All paths in &,, which we

Lemma 3.1.1. The path n,, te [0, 1] is Hamiltonian if and only if it consists of exact
symplectomorphisms.
Indeed,

t d * x t t
mea—i=f o o Oty +d [ (s
0 0 0

Thus n* A — A is exact for all 1€ {0, 1] if and only if the form 0, =X, |w is exact for all
te[0,1]. O

3.2 The characteristic line bundle

The restriction w|;,, has 1-dimensional kernel K< T(0M) which is called the
characteristic line bundle of M. A symplectic field X on M is tangent to oM if and
only if the form 6=X]w vanhishes on K. In this case X integrates to a flow
X':M—-M,teR, such that X*(0M)=0M,teR. Let us denote by Hy(M;R) the
subspace of H'(M;R) which consists of cohomology classes of closed 1-forms
vanishing on K.

3.3 Special flows

For a closed 1-form o« we denote by [«] its cohomology class.

Let us fix closed 1-forms 6, ,..., 8y vanishing on K and such that [6,],..., [0y]
form a basis of Hy(M;R). Let 9, be the symplectic field dual to the forms 6,
k=1,...,N, namely, 0, =0,]w.

Take continuous functions 4, ,..., Ay : [0, 1]-R with 4,(0)=0,k=1,..., Nand
define a vector field 4(¢), 1€ [0, 1], by the formula

N
A(t)-—-k);1 A, ()0,

Let A*(t),ue R, be the flow generated by A(¢), for a fixed 7€[0,1]. Thus

dA¥(t)
du

=A(t)o A*(1).
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Lemma 3.3.1. y
[(A¥()*A—A)=u kZ EROICAE

Proof. We have (comp. 3.1.1):

[(4*(@)*A—42]

(4" (@) * (4 (D)}w)}dr

I

O ey, & O Gy

[4(D)]wldr=u[A(7)]w]

=u kzl A,0)[6]. O

The following lemma 3.3.2 immediately follows from compactness arguments.
Lemma 3.3.2. Let D=max (|4, (O)]),k=1,...,N,te[0,1]. Then there exists a
C=C(D) such that ||dA"(t)(x) H SC(D) for any te[0,1],xe M, [u|<1.

t
Lemma 3.3.3. Suppose thatj "( )

’ t <D’'. Then there exists a constant C' =C'(D")
such that [({A%(1)}) = C’ (D )for [u| £1.

Proof. Let us embed the compact manifold with boundary M isometrically in an
Euclidean space. From

AW =x=] T A OCs

=§ A (A (1) (x))ds
we conclude that

OO _§ 4oy xnds
0

dA
; j dA(D)(A*(1) () (ﬂ>

and hence
1 u
? “ (’)(x) dts| | 4" @A @) ()| dsdt
o 00
A } ldA@ A @)@ "d"s(’)(") dsdt.
00

However, since A(r)= z A (D, it follows that |4'(5)(»)| <C1 max ZHON

for any y e M, where the constant o depends only on M and the vector ﬁelds O
k=1,,..., N. Thus the first term in the previous inequality is bounded above by

€, max_ lek(t)|dt<C1D’
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,,,,,

constant C, depends only on the vector fields d,,k=1,..., N. But
1
A, OISf 14, (Dds<D’, e
0

for all te[0,1] and all k=1,..., N. Therefore,
laamwc,D.
Thus we have
1

!

Y

dA4*(t)(x)

d4*(1)(x)
dt dt

0

dt:l ds.

uil
HSC,D'+CyD' | [;
g

By Gronwall’s inequality we conclude

LdAx(t ,
g ——;t&l dt<C,D'e?" =C(D").
Therefore
1 dAu
g op={ [ 1“2 uwarsco). o

Remark 3.3.4. The functions C(D) and C'(D) in 3.3.2 and 3.3.3 can obviously be
chosen monotonically increasing with D.

3.4. Estimates on the length of a non-Hamiltonian path

. . d
Letn,,te[0, 1], be a path in 9, (starting at ,=id, see 3.1). Let X,(x) =£ (R E3)]
and a, be the closed 1-form w-dual to X,,¢e[0, 1].

t
Lemma 3.4.1. The cohomology classes of the 1-forms n} A— A and | a,ds coincide. In
particular, [n¥ 2 —A}e Hy(M). 0

Proof.
{'73"/1-/11=£ 3 [ds+d()~(Xs))]dS=(§) [o)ds .

However, «, annihilates the characteristic line bundle K since X, is necessarily
tangent to M. Therefore

;' [a,Jdse HY(M). O
0

Letn,, X, and a, be as above. Let [, ], ... [0y] be the basis of H} (M) considered in
N
3.3. Then [nFA—A)=Y) A, (1)[6:).
1

Lemma 3.4.2,
1
i)z Q max [ 401
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The following lemma 3.4.3 is a key ingredient in the proof of 3.4.2.

Lemma 3.4.3. Let Sc M be an embedded circle and I''S<I' <M, be its tubular
neighborhood. Then for any closed 1-form 8 on M we have

c‘je
C

Jor a constant C independent on 6.

<] ok

Proof. Let x:Sx 2*" 1T be a decomposition of the tubular neighborhood I’

and gt— be a unit tangent vector field along S!. Then
0 -
loluze, (o (Suzci [ |rr@( e
92!-1 xs] .
| rofs)a
xx St

T

92»—1 S

g j din 1

gzu 1

=C/

dz"”1x=C'£9,. O

Proof of 3.4.2. Let us choose disjoint embedded circles S, ,..., S;< M such that their
homology classes [S;],...[S;] form a basis of H,(M). Choose disjoint tubular
neighborhoods I;>S;,i=1,...,/. Let us complete the basis [6,],...[04] of
HK(M)CHI(M) to a basis [91] - 1081, [6,] of HI(M) Let B= (br) be a

[ y” for

yeRLbH>0. We have

I({n.})= ;{ 1 X (1 (x)) || it

l
;(}) k‘; { Il

Applying 3.4.3 and 3.4.1 we get

I{nh=¢

Oty

i
5[] afa

k=1 |S

N
Y Aj'(t)sj 0;|dt

¢

x
il
-

(=R N - L

l N 1
YUY budj(n)fdi2C, (j) | By|dr

k=1 |j=1

G

Where y=(A4/(1),..., A3(t),0,...,0)e R". Therefore

1 1
K(n)2Cab [ |y]drz Qmax [ 14i0idr. O
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3.5 Reduction to the exact case

In this section we continue to use the notations which were introduced above. In
particular, #,, 1€ [0, 1], is a path in &, X, is the corresponding symplectic vector
field, o, is w-dual to X,,7e[0,1]. We denote by [6,]...[0,] a basis in HL(M)
and by d,,...,0y symplectic fields dual to 01,... fy. We define functions

Ay,...,Ax:[{0,11-> R by the formula [g*A— ] = Z A (£)[6,]. We keep the notation

A(?) for the vector field Z A ()0, 1€ [0, 1], and denote by A*(f), uc R, the flow
k=1
generated by A4(¢).

1
Lemma 3.5.1. Let D——:maxj |Ag(D\dt. Suppose that n, is an exact symplectomor-
kE o

phism. Let = A" ()on,, te [0, 1]. Then the path {y,} is Hamiltonian, y, =n, and
Iy = CD)({n )+ C'(D)
for increasing functions C(D) and C’'(D).

Proof. First note that [Y*A—A]=[(4 ' (£)*A—A]+[n*A—A1]=0 according to
3.3.1. Therefore, {y,} is Hamiltonian by 3.1.1. Now we have

=] | “d‘”“")

< 4"

1
=l({A“(t)})+§ Af, |dA™1 () (X, (x)))| pdt .

dA=1(t)

(m,(x ))“+HdA ulee (m(ﬂ))\])#dl

Applying 3.3.2 and 3.3.3, we get

(WD C D)+ CDY{n).
Finally note that 4(1)=0 because #, is exact. Therefore ¢, =%,. 0
The following lemma 3.5.2 is the main result of this section.

Lemma 3.5.2. Let Z¢, be the subgroup of 9, which consists of exact xmplectomor-
phisms M— M. Then there exists an increasing function ¢:R . —IR such that
d(id, /12;) < 9(d(id, f19,,)) for any f€2,,.

Proof. Take a diffeomorphism f=n,e92. Let L=d(id, f|9,). Then 7, can be
joined with the identity by a path n,e9, with I({,})<2L. Applying the
construction from 3.5.1 we can find a Hamiltonian path y,, t€ [0, 1], with i, =
such that

Iy, = CD)Y{n}+C'(D)S2C(D)L+C'(D).

But Lemma 3.4.2 implies that

1 2L

{r}<"—

D<
= 9

—e
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Therefore,

2L 2L
/ <2clZ= 22 =
(v h= C(Q)L+C <Q> o(L)

d(id, |2, 9(did,f12;). O

Remark 3.5.3. Lemma 3.5.1 implies, in particular, that the group 2¢ is path-
connected (see Section 2).

or

4. An inequality

The goal of this section is the following inequality 4.1.

Proposition 4.1. Let u be a compact Riemannian manifold (with or without boundary )
with volume form u, H: M—IR be a smooth function. Then

I T H@-HDlmpsC | |VH|u.

Proof. Let us start with the case when M is a ball B of radius { in R". Fix any
nonzero vector zeR". Let us denote by IT,:IR"-IR" a parallel translation
I (x)=x—2z. Let B,=BnII_(B) and D, be the image of B, under the orthogonal
projection n: B— L onto the hyperplane L < IR” which is perpendicular to z. Fora
point ue D, we denote by /, a fiber n7* (1) = B over the point ue D,. Let [, =1,nB,.
So a point ye B, < B has coordinates ue D,, 1e/,. Then we have

Bf |H(y+2)—HO)d"y={ | IH(y+z)—H)ldtd"  u

D: I,

dH n—1
i (r, w)ldrdtd" ' u

={ffJ

b, L, I

<| | [ IVH(t, u)|drdtd *u

z b lu

<2 § [ IVH(z,w)|ded" tu
Dok

=2£ \vH()||d"y

Therefore,
|H(x)—H(y)|d"xd"y

I
B B
}I} Bj |H(y+2)— H(y)|d"yd"z

< 15; Bj |7 H(p)||d"yd"z <2 vol (B) 15; \vH)||d"y
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Now consider the general case. Take embeddings f;,..., fy: B—M such that
N

Mx M=\ fi(B)x f;(B). Then
1

[} ,{, Hx)—HWMppy, =Y, | § [HE—H®) phy

M 1 fuB) Sf:«B)

=G ‘12 C g ,5, \H(f,()) — H(f;0))ld"ud"v

<G,

|V (H-> £,y @)|d"u

W

N PE A

=ij; |VPH|p. O

5. Exact case

Let now (M, w=dA) be a compact exact symplectic manifold.
5.1 Calabi invariant

Let n € 2;, ; be an exact symplectomorphism which is fixed near M. Then the form
A,=n*A—1 is exact and is 0 near OM. Let #: M—IR be a function with Ay, =0,
dh=1,. Then the number | /udoes not depend on the choice of the primitive 4 of w

M
(see [C] and [B]) and is called the Calabi invariant of n;
Cal(p)= | hu.
M

The function Cal defines an epimorphism of the group 2, , onto R.

Let Fix(n)c M be the set of fixed points of n and let Uc=Fix(y) be the
component of Fix (#) which contains the boundary M. Fix a point xe U and for
any ye M let us choose a path y,, which starts at x and ends at y. Then

)= | A—| 4

and, therefore, MOxs)  dey
Cal(q).—.j( [ A= A);L
M \n(yxy) Ty

5.2 An identity

Let n,te[0,1] be a Hamiltonian path in 2, with n,=id,n,=n and let
H,: M->R,t<(0, 1] be its generating Hamiltonian, dH,=X,]w.

Lemma 5.2.1. Let y be a path in M joining two points x,ye M. Then

1 1 1
5‘ A"_f ’1=§ ;"(Xt("r(y))dt_g l(Xz('h(x))dt-Ff (Ht("r(y))”Ht(nr(x)))dt'

n(y) ?



The diameter of the symplectomorphism group is infinite 337

Proof. Let K=[0,1] % [0, 1)< R?. Consider a map S : K— M defined by the formula
S(u, t)=mn,(y(w)), then

[S*w=[ S*i=fA+ | A-] 2= [ 4,

but oK b {n:(¥1} n(y) {ne(x)}
j s w(dn,( f}j) X(m(v(u)))>dudt
- °m)(v(u))< UG )>d d
= —;E (H,(n,(»)) — H,(n,(x))dt .
Therefore,

1 1 1

[ A=]2=] 2X, 00, ()t~ X, (n(X))dt+ [ (H, (. (y) ~ By, oD
7y} y o 0 9

5.3 Exact symplectomorphisms and Calabi invariant

Let us fix an embedded ball B<IntM and a smaller ball By=IntB. Let
A=B\Int B,. We will call a symplectomorphism f : M— M special if f(B)=B and
fly=id. For a diffeomorphism /4 : B—s B which is fixed near éB we denote as in 2.2
and 5.1 by Cal (k) its Calabi invariant.

Proposition 5.3.1. Let 1,,1€[0, 1], be a Hamiltonian path in @, such that n=n, is
special. Then I({n,}) > K Cal(n|g) where the constant K is independent on the choice
of path {n,}.

Proof. Let us fix a point x € 4 and for any x € B let us choose a path Vxy jOINing the
points x, ye B we have

Cal(nl3)=£< [ oa-g l)u,

7(¥xy) Yy

Applying now 5.2 we get

1 1
Cal(nlp) = !; H A(Xf(m(y)))dt—(f) A(X,(n,(x))dt

+J (H,(n () —Ht(ﬂ:(x))dt] Hy-

Integrating both parts of the inequality over 4 we get

1
Vol(4) Cal(nlg)=Vol(4) | [ A(X,(n,(»))dt p,
B 0
1
—Vol(B) £ (5) AX,(n,(x))dr

1
+{ [ | (H () — H, ()t py -
0 AB
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Thus

1

Vol(A)|Ca1(n|B)|gC[VOl(A) g le | X, || dr p+ Vol (B) g b[{ | X, de )

1
+§ | 1H@,00) = H ()| ety
oMM

=C(Vol (4)+ Vol (B)){({n,})

1
+f [ § IH )= H()| ey -
4]

M M

Now we apply the inequality 4.1 and get

1
Cal (nlp)| = C, I({n,})+C, | le \VH,||pdi=(C, +C)I(n}). O

6. Proof of Theorem 2.2.2

We start with the following simple lemma.

Lemma 6.1. Let B M be an embedded ball as in 5.2. Let h: B~ B be a symplecto-
morphism fixed near the boundary 0B and isotopic to the identity. Then h can be
extended to a symplectomorphism g : M— M fixed near 0M, isotopic to the identity
and such that.

Cal(g)=0.

Proof. Let us choose a ball B, < Int (M\B). Take a symplectomorphism 4, : B, —» B,
fixed near éB, which is isotopic to the identity and such that Cal (k)= —Cal (k).
The required symplectomorphism g : M— M is equal to 4 on B, h, on B, and is the
identity on M\(B,uB). O

Recall that 2¢ denotes the group of exact symplectomorphisms.

Proposition 6.2.
diam (25%25)=+ .

Proof. The Calabi homomorphism is surjective. Therefore, for any N > 0 there exists
a symplectomorphism Ay : B— B with Cal (hy) > N which is isotopic to the identity.
(The required Ay can be, for example, constructed as the time-one map of the
Hamiltonian flow generated by a Hamiltonian H:B—R with H=0 near 0B
and { Hu> N.) Extend hy using 6.1 to a symplectomorphism gye 2,, ,. Take a

B
Hamiltonian path n,€ 2¢,, t [0, 1] with 5y =id, n, =gy. According to 5.3.1 I({n,})
>KN. Hence d(id,gy)=inf, ,/({n})ZKN. Therefore, diam (2% 2:)=
+o0. O

6.3 Proof of Theorem 2.2
Apply 6.2 and 3.5.2. O
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Appendix

As we mentioned in the Introduction, the diameter of the group of the volume
preserving diffeomorphisms of a manifold is finite when the manifold is simply
connected (see [Sh]). We will explain in this section that in the non-simply-
connected case the diameter can be infinite.

Theorem A.l. Let M be a manifold with a volume form u and @ be (the identity
component of ) the group of volume preserving diffeomorphisms of M. Suppose that
HY (M ;R)=*0 and n, (M) has trivial center. Then

diam (2)=0.

Proof. Let a 1-form a represent a nontrivial cohomology class from H* (M ; R). Let
g be the Lie algebra of divergent free vector fields. The formula of (X) = j a(X)u,
M

Xeg,defines &7 as a 1-form on 2. A straightforward computation shows that this is
aclosed 1-form (comp. [Fa)) i.e., for any contractible loop # in & we have | o/ =0.

In fact this form is exact if the evaluation homomorphism =, (2)— H, (AZ’ ;R) is
trivial (see [McD]). For example, this is so if the center of 7, (M) is trivial. Then the
formula

Fx)=| o,

where x € 2 and 5, is a path connecting id with x defines a functional on 2 whichisa
primitive of /. This is the so-called mass flow homomorphism (see [Fa]). It is easy
to see that & is not trivial and, therefore, takes arbitrarily large values.

Now note that
. dn, (1)
f(§o(")u)a

#”udté Cl(n,)

|Z (o)l=|f o=

fx

ci |

iIA

where /(n,) is the length of the path 5, for the metric we consider in this paper
(see (2-2)).
Hence,
d(id, x) 2 C|F (X)),

Therefore, d(id, x) takes arbitrarily large values together with #(x) which
means that diam(2)=oc. O
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