
A 200 000 rpm, 2 kW Slotless Permanent Magnet

Motor

Pierre-Daniel Pfister, Student Member IEEE and Yves Perriard, Senior Member IEEE

Integrated Actuators Laboratory (LAI), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Abstract—The paper presents the development of a very high
speed (200 krpm, 2 kW) slotless permanent magnet motor, using
an analytical model. The multiphysics analytical model allows
a quick optimization process. The presented model includes
the magnetic fields, the mechanical stresses in the rotor, the
electromagnetic power losses, the windage power losses and the
power losses in the bearings. The paper also presents the results
of the measurements on a prototype that reached 200 krpm.
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I. INTRODUCTION

Due to their high power density, very high speed (VHS)

permanent magnet (PM) motors are increasingly demanded

on the market [1]. Indeed, as the mechanical power is given

by P = Tω, for a given output power P at high speeds ω

one needs a much lower torque T and volume than at lower

speeds.

VHS motors can allow small energy conversion systems

to have high efficiency. They are hence used in energy con-

version systems such as gas turbines, turbochargers [2] and

superchargers [3].

The domains of applications of VHS machines are very

diverse: automotive industry (supercharger, electrically as-

sisted turbocharger, fuel cell compressor), machining in-

dustry (micro-machining), home appliance industry (vacuum

cleaner), medical industry (teeth cutter), and other specific

applications (compressors, cryocooler, vacuum pump, gas tur-

bines).

In a VHS motor, the different parts and materials are pushed

to their thermal and mechanical limits. Indeed, as the speed is

very high, high stresses appear in the rotor. The mechanical

aspects need to be considered. Also, as the energy density is

high, it is critical to optimize the efficiency to decrease the

power losses and hence its temperature.

A traditional way to design motors is to do the optimization

using each of its submodels (thermal, mechanical, electromag-

netical, ... ) separately, iteratively. This is called a fragmented

conception. In our case, the mechanical optimum for the motor

would be to reduce the rotor diameter to diminish the stress

in it, but it would reduce the motor torque. The magnetic

optimum would be to reduce the air gap, but it would increase

the windage power losses. These two simple examples show

us the necessity of having an optimization which uses the

complete multiphysics model of the system.

Figure 1. Motor structure

There are two different approaches for doing multiphysics

systems optimization. The first one is with finite elements

methods. It has the advantage that it can solve complicated

structures. The disadvantage is that the computer time require-

ments are too long when there are different physical aspects

and different parameters to optimize.

The second method is to create a fully analytical model

and to do a mathematical optimization. The advantage of this

method is that it is extremely fast. This method was chosen

for our VHS motor development.

This article shows this innovative multiphyisics analytical

optimization approach and prototype measurements.

II. THE ANALYTICAL MODEL

The analytical model is applied to the motor structure shown

in Fig. 1. Our geometry is: a PM at the center, a sleeve, an

air gap, 3 coils and a stator yoke.

A. The torque due to magnetostatic fields

Using Xia and Zhu’s article [4], the torque T produced

by the interaction of one coil and the PM is calculated as

presented in [5]:
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with BR the PM remanent field, µr the PM relative perme-

ability, p the number of pole pairs, J the current density, r1

the outer radius of the PM, rci the inner radius of the coil, rce

the outer radius of the coil, ryi the inner radius of the stator

yoke, θ the rotor position, la the active length, and

g(p, rce, rci) =


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r−p+2
ce −r

−p+2

ci

−p+2 if p ∈ N
∗ \ {2}

ln
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rce

rci
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if p = 2
(2)

and

f(αi, θ, p) = sin(p(α4 − θ)) − sin(p(α3 − θ))

− (sin(p(α2 − θ)) − sin(p(α1 − θ))) (3)

with αi i = 1, ..., 4 the angles which set the dimensions of

one coil.

B. Mechanical stresses

The mechanical stresses (σr, σα) in the rotor are calculated

using the equilibrium equation [6]:

dσr

dr
+

σr − σα

r
+ Fr = 0 (4)

with Fr the radial force density.

As we make the hypothesis of a constant speed and because

of the symmetry of the problem, the strain can be expressed

by:

εr =
∂u

∂r
(5)

εα =
u

r
(6)

with u being the radial displacement function.

Hook’s law gives the dependence of the strain ε on the

stresses:

εr =
1

E
(σr − νσα) (7)

εα =
1

E
(σα − νσr) (8)

with E Young’s modulus and ν poisson’s ratio.

In a rotating system a volume element is subject to the

following force density F :

F = ρω2r (9)

with ω the anglular velocity.

Equations (7) and (8) are inverted to obtain:

σr =
E

1 − ν2
(εr + νεα) (10)

σα =
E

1 − ν2
(εα + νεr) (11)

Using (4), (5), (6), (10) and (11) we find:

d2u

dr2
+

1

r

du
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− u

r2
= −

(

1 − ν2

E

)

ρω2r (12)

The solution of the differential equation is:

u = −(1 − ν2)
ρω2r3

8E
+ C1r +

C2

r
(13)

with C1 and C2 being constants.

Two regions are defined, the sleeve (s) and the PM (m).

Using (5), (6) and (13), we find for the sleeve and the PM

i = s,m:

ui = −(1 − ν2
i )

ρiω
2r3

8Ei
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r
(14)
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Let r2 the outer radius of the sleeve. We have the following

conditions at the boundaries:

σmr(r = 0) = σmα(r = 0) (17)

σmr(r = r1) = σsr(r = r1) (18)

σsr(r = r2) = 0 (19)

um(r = 0) = 0 (20)

um(r = r1) = us(r = r1) (21)

We define σ1, the radial stress at the interface:

σ1 = σmr(r = r1) = σsr(r = r1) (22)

If there is no prestressing, at no angular velocity we have:

σ1 = 0 (23)

Equations (14), (15), (16) have to be finite at r = 0. It

implies that Cm2 = 0.

Using (22) and (15), we find the consant Cm1:

Cm1 =
σ1

(

1−ν2
m

Em

)

+
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m)ρω2r2
1

8Em
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(24)

Using (14), (15), (16) we find the stresses and the displace-

ment function in the PM:
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Equations (15), (19) and (22) define Cs1 and Cs2. Knowing

these constants and using (15) and (16) we find the stresses
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in the sleeve:
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We need to calculate the contact stress σ1 at the interface.

We do that in two steps: first we calculate the stress in a no

speed case and then we add the effect of the speed.

Let’s first consider the case where the speed is equal to

zero. The PM is fragile. In order that it does not break at high

speeds, it is prestressed in the sleeve. We define the mechanical

interference e to be the sum of the contraction of the magnets

outer radius (|u0
m|), and the expansion of the sleeves inner

radius (|u0
s|):

e = |u0
s| + |u0

m| (30)

To calculate u0
s we consider first the sleeve without PM

and calculate the displacement as a function of the stress at the

interface. We use (15) with the following boundary conditions:

σsr(r1) = σ1 (31)

σsr(r2) = 0 (32)

It defines the values of the two constants that we use in

(14). We obtain:

u0
s = − σ1r1

Es(r2
2 − r2

1)
((1 − νs)r

2
1 + (1 + νs)r

2
2) (33)

To calculate u0
m we consider the PM without sleeve. We

use (15) with the following boundary conditions:

σmr(0) = finite (34)

σmr(r1) = σ1 (35)

It defines the two constants that we use in (14). We obtain:

u0
m =

σ1(1 − νm)r1

Em

(36)

From (30), (33) and (36) we can define σ1:

σ1 = − e

r1

(

1
Es

(

r2
2
+r2

1

r2
2
−r2

1

+ νs

)

+ 1−νm

Em

) (37)

The second step is as follows: the calculation of interference

e needs to take into account the effect of the speed. We

calculate uω
m(r1) and uω

s (r1) as if there was no contact

between the PM and the sleeve, no pressure, but with a given

ω.

For the calculation of uω
m, we use the following boundary

conditions:

uω
m(0) = 0 (38)

σmr(r1) = 0 (39)
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Figure 2. Radial stress at the interface between the PM and the sleeve as a
function of the speed and the radial interference.

and we obtain:

uω
m =

1 − νm

4Em

ρmω2r3
1 (40)

For the calculation of uω
s we use the boundary conditions:

σsr(r1) = 0 (41)

σsr(r2) = 0 (42)

and we obtain:

uω
s =

(3 + νs)(1 − νs)

8Es

ρsω
2r2

2r1

(

2 + νs

1 − νs

− 4 + νs

3 + νs

(

r1

r2

)2
)

(43)

Now e is modeled the following way:

e = uω
m − uω

s + e0 + r1(cm − cs)(Tr − 20 ◦C) (44)

with e0 the interference between the PM and the sleeve at

no speed and 20◦C, cm and cs the dilatation coefficients of

the PM and the sleeve, Tr the rotor temperature given in ◦C.

Using the following values:

νs = 0.32 νm = 0.3

ρs = 4.42 × 103 kg

m3 ρm = 7.7 × 103 kg

m3

Es = 116 × 109 N
m2 Em = 150 × 109 N

m2

cs = 8.6 10−6 ◦C−1 cm = 5 10−6 ◦C−1

r1 = 6.244 × 10−3 m r2 = 8.24 × 10−3 m

Tr = 20 ◦C

we obtain the results shown in Fig. 2.

The limiting factors are the radial stress at the center of

the PM, the tangential stress at the inner side of the sleeve at

high speeds, and the radial stress at the interface. A negative

radial stress σ1 at the interface ensures that there is contact

between the PM and the sleeve. Fig. 2 represents feasible

designs according to this last limiting factor.
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C. Thermal model

The steady state temperature T is calculated using the heat

diffusion equation [7]:

k∇2T + q̇ = ρcp

∂T

∂t
(45)

with k the thermal conductivity, ρ the material density, q̇ the

rate at which thermal energy is generated per unit of volume

and cp the specific heat.

Because of the 3D thermal interactions in the motor, and

because of the air movements in the air gap, this 2D thermal

model is not consistent with the reality. It is used to give us

indications and not to constraint the model. Further investiga-

tions in the thermal modeling need to be done.

As the motor is designed by minimizing the total power

losses, the thermal aspect is indirectly taken into account.

D. Electromagnetic power losses

Joule power losses density pcop in the coils is calculated as:

pcop = ρcJ
2 (46)

with ρc the resistivity and J the current density.

The stator iron power losses Piron are assumed to be

generated only by the PM. Their density piron is calculated

approximately using Steinmetz equation:

piron = c1f
c2B̂c3 (47)

with ci, i = 1, 2, 3 being empirical coefficients, B̂ the maxi-

mum magnetic field and f the frequency. The same empirical

approach used in [8] for the hysteresis power losses is used

here for the iron power losses.

The eddy current and hysteresis power losses in the PM are

neglected. The eddy currents in the sleeve and in the coils are

also neglected.

E. Windage power losses

The article from Vrancik [9] indicates us that the windage

power losses Pw are calculated as:

Pw = πCdlr
4
2ω

3ρair (48)

with l the length considered, ω the angular velocity and ρair

the air density. The skin friction coefficient Cd is calculated

using an empirical formula:

1√
Cd

= 2.04 + 1.768 ln(Re
√

Cd) (49)

with Re the Reynolds number:

Re =
r2(rci − r2)ω

ν
(50)

with ν the kinematic viscosity.

Fig. 3 shows the windage power losses given by this model

for a sleeve outer radius of 8.24 mm.
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Figure 3. Windage power losses in an air gap cylinder of 34 mm of height
as a function of speed and air gap thickness, for a sleeve outer radius of 8.24

mm.

Table I
MEASURED PARAMETERS OF THE BALL BEARINGS TORQUE MODEL.

Preload 17 mNm 35 mNm

c4 1.17× 10
−6 mNm 6.12× 10

−6 mNm
c5 2.15 1.97

F. Mechanical power losses in the bearings

The power losses in the bearings Pbearings [10] can be

estimated by:

Pbearings = c4ω
c5 (51)

with c4 and c5 be two empirical constants.

In our case, ceramic ball bearing are used. To define this

model, an experimental setup was designed [11].

The measurements are fitted to the given model, as shown

in Fig. 4. The friction torque of the ball bearings is dependent

on the speed and on the preload.

The results are shown in Tab. I.

III. MODEL OPTIMIZATION

A. Optimization procedure

The analytical model contains more than 140 equations and

190 variables. The system has 13 degrees of freedom.

Two commercial software are used for the optimization:

Pro@Design [12] and Mathematica. Pro@Design includes

different optimization algorithms. Some are based on a se-

quential quadratic programming (SQP) solver using the partial

derivatives and penalty functions. One parameter is chosen

to be the objective function and all the others are fixed,

constrained in intervals or free. Mathematica also includes

many optimization algorithms. A code in Mathematica was

written to handle models with large number of parameters.

B. Pareto frontiers

The suggested method for designing VHS motors allows

studying Pareto frontiers.
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Figure 4. Friction power losses as a function of speed of a pair of ball
bearings, for two different preloads. The points represent the measurements,
and the curves represent the model.
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Figure 5. The Pareto frontier of the power losses, the coils thickness and
the air gap.

The Pareto frontier defines optimal parameters sets. It the

boundary between the feasible parameters sets and the parame-

ters sets which are not feasible. For example in Fig. 5, the point

of the surface represents the design with the lower possible

power losses for a given air gap and coil thickness. Below

the surface, there is no feasible design. Above the surface, the

designs are not optimal.

The Figs 5 and 6 are realized by doing 100 optimizations

for each figures. Nevertheless, the advantage of the purely

analytical method is that it is extremely fast. It took less than

21 s for the calculation of the 100 optimizations of Fig. 6.

C. Optimization

Because of the mechanical natural frequencies, the active

length of the motor was constrained to be smaller or equal to

30 mm. The prototype specifications are:

Active length of the motor (la) ≤30 mm

PM remanence (BR) 1.18 T

Number of phases 3

Mechanical power 2 kW

Speed 200 krpm
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130
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Figure 6. The Pareto frontier of the power losses, the coils thickness and
the active length.

Figure 7. VHS prototype.

The design resulted from the optimization of the analytical

model and some construction constraints is:

Active length of the motor 30 mm

Outer radius of the PM 6.244 mm

Outer radius of the sleeve 8.24 mm

Outer radius of the coils 16.8 mm

Air gap 1.36 mm

Number of pole pairs 1

Phase current amplitude (sin wave) 31.14 A

Efficiency 93.7 %

Bearings power losses 53 W

Joule power losses 38 W

Air gap power losses 28 W

Iron power losses 15 W

IV. PROTOTYPE AND MEASUREMENTS

A prototype designed using this analytical model is shown

in Fig. 7.

Fig. 8 shows the measurement of the electrical input power

of the power bridge and the mechanical output power of the

prototype. The maximum output power measured is 1.7 kW at

150 krpm. At this speed, the efficiency overcome 80% and the

power losses are 500 W. Below 150 krpm, the prototype was

limited by the current provided by the electronics; above, it

was limited by the voltage. The limitation for the production
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Figure 8. Electrical input power of the power bridge and the mechanical
output power of the prototype.

of higher powers is the electronics. With this electronics, it

takes 382 ms to accelerate the motor from 0 to 200 krpm.

The measurement method is shown in [11].

V. DISCUSSION AND CONCLUSION

The comparison of the two software used for the optimiza-

tion showed that:

1) Pro@Design is easier to use, has more capabilities

with discrete variables and is more convenient with the

debugging process of the model.

2) Mathematica gives to the user the possibility to create

tools and link them with the optimization process (math-

ematical language translation, advanced representation

functions, other optimization algorithms, ...).

3) The same results were obtained with the two programs.

The optimization process showed in our case that:

1) It is very fast: it takes only a few seconds to find the

optimum.

2) With the given restriction on the active length a 1 pole

pair motor is more efficient than a 2 pole pairs.

The measurements showed that the power losses are higher

than the predicted one. But the model does not include the

power losses due to the power supply in the motor (except

copper power losses), nor the power losses in the power

supply. To improve the model, we need to consider:

1) The eddy currents power losses in the rotor produced by

the field created by the coils.

2) The eddy currents power losses in the coils.

3) The iron power losses in the stator yoke due to the field

created by the coils.

The construction phase showed that they are mechanical

limitations that were not foreseen with the equations. In fact,

the construction gave constraints on the model variables.

We are working on the electronics to be able to reach higher

powers with our prototype.
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