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SINGULAR COSPHERE BUNDLE REDUCTION

OANA M. DRAGULETE, TUDOR S. RATIU, AND MIGUEL RODRIGUEZ-OLMOS

ABSTRACT. This paper studies singular contact reduction for cosphere bun-
dles at the zero value of the momentum map. A stratification of the singular
quotient, finer than the contact one and better adapted to the bundle struc-
ture of the problem, is obtained. The strata of this new stratification are a
collection of cosphere bundles and coisotropic or Legendrian submanifolds of
their corresponding contact components.

1. INTRODUCTION

The main goal of this paper is to carry out the singular reduction of cosphere
bundles at the zero value of the contact momentum map. This presents interest
because cosphere bundles carry considerably more structure than a general contact
manifold and have the same privileged position in contact geometry that cotan-
gent bundles have in symplectic geometry. They have been intensively used in
topological problems dealing with the classification of immersions and embeddings.
Associating to each immersion (embedding) of a smooth manifold a Legendrian
submanifold in its cosphere bundle one can use Legendrian contact homology to
construct topological invariants. A beautiful introduction to the applications of
these contact constructions is [7].

Contact reduction appears for the first time in the work of Guillemin and Stern-
berg [I0] in the context of reducing symplectic cones. Albert [I] and, several years
later, Geiges [8] and Loose [13] independently defined and studied contact reduction
at the zero value of the contact momentum map for free proper contact actions of
Lie groups. Reduction at a general value of the momentum map was studied by
both Albert [I] and Willett [20] who proposed two different versions of dealing with
it. It turns out that Willett’s method is the one that naturally parallels the sym-
plectic reduction theory, even in the singular case as shown by Lerman and Willett
[12]. They prove that the resulting contact quotient depends only on the contact
structure, that it is independent of any contact form defining the contact foliation,
and that it is a stratified space, more precisely, a cone space. For an extension
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of Willett’s method, where the contact space can be defined at any value of the
momentum map, see [21].

The case of cosphere bundle reduction for proper free lifted Lie group actions
was studied in [5] with a view of comparing the theory to that for cotangent bun-
dle reduction. It turns out that in regular contact reduction of cosphere bundles
there are no analogues of magnetic terms. In parallel, in [I7] the authors have
developed the theory of singular cotangent bundle reduction at the zero value of
the momentum map and have found a finer stratification than that given by the
general theory due to the additional structure of the cotangent bundle and the fact
that the Lie group action is a cotangent lifted action. A similar phenomenon occurs
in contact reduction of cosphere bundles. Applying the general theory of singular
contact reduction due to Lerman and Willett [I2] yields contact stratified spaces
that, however, lose all information of the internal structure of the cosphere bun-
dle. Based on the cotangent bundle reduction theorems, both in the regular and
singular cases, as well as regular cosphere bundle reduction, one expects additional
bundle-like structure for the contact strata. The cosphere bundle projection to the
base manifold descends to a continuous surjective map from the reduced space at
zero to the orbit quotient of the configuration space, but it fails to be a morphism
of stratified spaces if we endow the reduced space with its contact stratification and
the base space with the customary orbit type stratification defined by the Lie group
action. The present paper introduces a new stratification of the contact quotient
at zero, called in what follows the C-L stratification (standing for the coisotropic
or Legendrian nature of its pieces), which solves the above-mentioned two prob-
lems. Its main features are the following. First, it is compatible with the contact
stratification of the quotient and the orbit type stratification of the configuration
orbit space. It is also finer than the contact stratification. Unlike the cotangent
bundle case, the isotropy lattice of the group action on the base manifold @ no
longer suffices for the description of this new stratification. In fact, this lattice I
indexes a new decomposition of each contact stratum of the reduced space, but the
isotropy lattice of the zero level set of the momentum map is given by Ig with-
out those elements corresponding to orbit type submanifolds of dimension equal to
that of their orbits. Second, the natural projection of the C-L stratified quotient
space to its base space, stratified by orbit types, is a morphism of stratified spaces.
Third, each C-L stratum is a bundle over an orbit type stratum of the base and
each contact stratum can be seen as a union of C-L pieces, one of them being open
and dense in its corresponding contact stratum and contactomorphic to a cosphere
bundle. The other strata are coisotropic or Legendrian submanifolds in the contact
components that contain them.

The paper is structured as follows. Section 2 presents the definitions, conven-
tions, and results on stratified spaces and contact reduction (regular and singular)
that are used throughout the paper. Section 3 quickly reviews the relevant results
on regular contact cosphere reduction. Section 4 presents the stratification of the
zero level set of the momentum map and begins the work on the stratification of the
quotient by studying the case of one single orbit type (Theorem [£1]). The contact
stratification and contact geometry of the reduced space are studied in Section 5,
having as main results Theorems [5.1] and The new C-L stratification is also
introduced here and its properties are investigated. Theorem [5.3] presents a com-
plete description of its frontier conditions. Also explained is the tool needed for an
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analysis of Whitney or local triviality conditions for this new stratification. Sec-
tion 6 studies the singular cosphere bundle reduction for almost semifree actions,
that is, actions that are in bijective correspondence with free lifted actions on the
cosphere bundle. The stratification is computed explicitly, and the particular case
of the circle acting on the cosphere bundle of the plane is carried out in detail.
Section 7 studies the example of the diagonal action of the two-torus on two copies
of the plane, lifted to the cosphere bundle. This example is rich enough to illustrate
the relationships between the various stratifications, and the strata are computed
explicitly.

2. PRELIMINARIES

In this section we will survey the main results of several topics that will be needed
in the subsequent development of the paper. We will assume that all topological
spaces are paracompact. In addition, manifolds will be real, smooth and finite-
dimensional. By a group we will mean a finite-dimensional Lie group. Every action
of a group G on a manifold M is supposed to be smooth, and the usual notation
g-m for g € G and m € M will be employed. The natural pairing between a vector
space and its dual will be denoted by (-, -). By a submanifold, we will always mean
an embedded submanifold.

2.1. Stratified spaces and proper group actions. The natural framework for
singular reduction is the category of stratified spaces. We briefly recall here the
basic concepts (see [18]). Let X be a topological space and Zx = {S; : i € I} a
locally finite partition of X into locally closed disjoint subspaces S; C X, where [ is
some index set. We say that (X, Zx) is a decomposed space if every S; is a manifold
whose topology coincides with the induced one from X and if the frontier condition
holds: S; HST- # @ implies S; C Sij, whence S; C 05}, where 95} := ST-\S’T In this
case, the elements of Zx are called pieces of the decomposition.

In a topological space X, two subsets A and B are said to be equivalent at x
if there exists an open neighborhood U of x such that ANU = BN U. These
equivalence classes are called set germs at x. Let S be the map that associates
to each point € X the set germ S, = [O], of a locally closed subset O of X.
We say that (X,S) is a stratified space if, for every point z € X there exists a
neighborhood U of x endowed with a decomposition Zy such that for every y € U,
Sy = [Z(y)],, where Z(y) € Zy denotes the piece containing y. In this case we say
that the decomposition Zy locally induces S.

Given two stratified spaces (X, S) and (Y,7) and a continuous map f: X — Y,
we say that f is a morphism of stratified spaces (or shorter, a morphism) if for
every x € X there exist neighborhoods V of f(z) and U C f~1(V) of = such that

(i) there exist decompositions Zy and Zy locally inducing the stratifications
S and 7 respectively, with the property that for every y € U contained
in a piece S € Zy there is an open neighborhood y € W C U such that
f|W(S N W) is contained in the unique piece R € Zy that contains f(y),
and
(ii) flgnp i SNW — R is smooth.
In addition, we will say that f is a stratified immersion (resp. submersion, diffeo-
morphism, etc.) if so are all the maps f|sr1 - for every point z € X. Given two
different stratifications S and S’ on the same topological space X, we say that S
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is finer than S’ if the identity map 1x, viewed as a map between stratified spaces
(X,8) — (X,8'), is a morphism.

Smooth manifolds are trivially stratified spaces, and smooth maps between mani-
folds are their morphisms. Note that a decomposed space (X, Zx) induces naturally
a stratification (X, S) by just taking S, to be the set germ of the piece containing
x, for every x € X. In this case, we call the pieces S; € Zx the strata of (X,S)
and say that they satisfy the frontier conditions defined by the underlying decom-
position. In this paper the stratifications that will appear will be of this form and
thus, for the sake of simplicity, when this is the case we will work most of the time
with the decompositions inducing these stratifications.

Let ¢ : G x M — M be a smooth action of the Lie group G on the manifold M.
Since M is paracompact it admits a Riemannian metric; so if it is connected, M is
second countable. The action is called proper if ¢ x idy; is a proper map. In this
paper we only work with proper actions. For instance, every action of a compact
group is automatically proper. The main properties of a proper action of G on M
are:

(i) For each m € M, its stabilizer (or isotropy group) G, is compact.

(ii) The manifold structure of the orbit G -m is the one that makes the natural
bijection G/G,, — G - m a diffeomorphism. The inclusion G - m — M is
an injective immersion. In addition, the orbit is a closed subset of M. If
M 1is connected, then the orbit is an embedded submanifold of M.

(iii) The quotient space equipped with the quotient topology is paracompact
and the orbit map 7 : M — M/G is open and closed.

(iv) M admits a G-invariant Riemannian metric.

(v) If all the stabilizer groups are conjugate to a given subgroup H C G, then
M/G is a smooth manifold, the orbit map = : M — M/G is a smooth
locally trivial fiber bundle whose fibers are diffeomorphic to G/H, and the
structure group of this locally trivial fiber bundle is N(H)/H, where N(H)
is the normalizer of H in G.

We now quote Palais’ Tube Theorem [16] in a form adapted to our needs, which
is of great importance in the local study of proper actions. Let m € M. Choose an
invariant Riemannian metric on M and use it to decompose T, M = g-m @& S,
where g-m = {{p(m) @ € € g}. This splitting is G,,-invariant for the linear action
of G,, on T,,, M. The twisted action of G, on G x S, is defined by

(2.1) h-(g,8) = (gh~ ', h-s)

for h € Gy, 9 € G and s € S,,. Since G, acts freely on the right on G, the twisted
action is free. In addition, G, is compact by property (i) of proper group actions,
so the quotient space, denoted by G x¢,, Sm, is a manifold. The Tube Theorem
implies the existence of a G,,-invariant open ball U around the origin in S,, such
that the map ¢ : G xq,, S — M defined by

(2.2) U([g,5]) = g - expyy,(s)

maps G'xq,, U diffeomorphically and equivariantly onto a G-invariant neighborhood
U’ of G-m in M. Here, exp,, is the exponential map at m associated with the
chosen Riemannian metric. The map 1 is called a tube for the action and 5, is
called a linear slice, or simply a slice of the action at m.
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Let I be the isotropy lattice of M, i.e., the set of conjugacy classes of subgroups
of G which appear as stabilizers for the action of G on M. Such classes, called orbit
types, are denoted by (H) . For each element (H) € I the (H)-orbit type manifold
is defined by

(2.3) Mgy = {m € M | (G) = (H)}.

In the same way, for any subset A of M one defines the orbit type sets of A by
Ay = AN Mgy and the isotropy lattice of A by restriction. For a proper G-action
on a manifold M such that M/G is connected, there is always a subgroup Hy C G
such that My, is open and dense in M and Hy is conjugate to a proper subgroup
of any other stabilizer. This orbit type (Hp) is called the principal orbit type of In;.

Obviously, the collection of orbit type manifolds forms a partition of M. For
simplicity, we will from now on make the following important assumption: for
every (H) € Iy, all the connected components of M) have the same dimension
and M is second countable. Hence we have:

(i) For every (H) € Ins, Mgy is a G-invariant submanifold of M, and

(i) M and M/G are stratified spaces with strata Mgy and M) := M) /G
respectively. Their frontier conditions are:

M) c oMD) — (L) < (H),

and correspondingly for M, where (L) < (H) means that L is conjugate to
a proper subgroup of H. Since < defines a partial ordering in I; we say
that the frontier conditions of the stratification of M /G are induced by the
isotropy lattice In;.

Remark 2.1. If one allows the connected components of the orbit type manifolds
to have different dimensions, then one needs to work in the larger category of X-
manifolds and Y¥-decompositions. A Y-manifold is a countable topological sum of
connected smooth manifolds having possibly different dimensions (see [I8] for more
details). However, our results on the stratified nature of the studied quotient spaces
remain valid.

2.2. Reduction of contact manifolds. Recall that a contact structure on a
smooth (2n + 1)-dimensional manifold C is a codimension one smooth distribu-
tion H C TC maximally non-integrable in the sense that it is locally given by the
kernel of a one-form 7 with n A (dn)™ # 0. Such an 7 is called a (local) contact
form. Any two proportional contact forms define the same contact structure. A
contact structure which is the kernel of a global contact form is called ezxact. In the
case of exact contact manifolds, dn has rank n, implying the existence of the Reeb
vector field R uniquely defined by

ipdn=0 and n(R)=1.

In the following we will consider only exact orientable contact manifolds.

When studying the geometry of the singular reduced spaces of cosphere bundles,
one needs the notions of coisotropic and isotropic submanifolds in the contact con-
text. Any integral submanifold N of H has the property that its tangent space at
every point is an isotropic subspace of the symplectic vector space (ker 7, dn,.) and
that’s why, sometimes, they are also called isotropic submanifolds. In particular,
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dim N < n; if dim NV = n, then N is called a Legendrian submanifold. A submani-
fold N of the contact manifold (C,n, R) is coisotropic if for any x € N the subspace
T, N Nkern, is coisotropic in the symplectic vector space (ker 7, dn,).

A group G is said to act by contactomorphisms on a contact manifold if it pre-
serves the contact structure H. For an exact contact manifold (C,n), this means
that g*n = fyn for a smooth, real-valued, nowhere zero function f;. G acts by
strong contactomorphisms on C, if g*n = n; i.e., G preserves the contact form, not
only the contact structure. A G—action by strong contactomorphisms on (C,7) ad-
mits an equivariant momentum map J : N — g* given by evaluating the contact
form on the infinitesimal generators of the action: (J(z),§) := n(&c)(x). Note the
main difference with respect to the symplectic case: any action by strong contac-
tomorphisms is automatically Hamiltonian. Note also that orbits which lie in the
zero level set of the contact momentum map are examples of isotropic submanifolds.
For more details on contact manifolds and their associated momentum maps see
[2], [@], and [20].

Reduction theory for co-oriented contact manifolds in the singular context was
introduced by Willett in [20]. We now review briefly this construction at zero
momentum, since it will be used in our next refinement to the cosphere bundle
case. Let G be a group that acts by strong contactomorphisms on an exact contact
manifold (C,7n). By the definition of the momentum map, its zero level set is a
G-space. The contact quotient (reduced space) of C at zero momentum is defined
as

Co = JH0)/G.

Note that, as in the symplectic case, this quotient is in general a singular space.

Theorem 2.1. Let (C,n) be an exact contact manifold and G a Lie group acting
properly on C by strong contactomorphisms. Then for every stabilizer subgroup H
of G the set
H _ _
G = (171 (0)an /G = (Cary N T (0)/C
is a smooth manifold, and the partition of the contact quotient

Co = (J71(0)) /G

into these manifolds is a stratification with frontier condition induced by the partial
order of I;-1). Moreover, there is a reduced eract contact structure on C(SH)

generated by the one-form néH) characterized by

H H ~
Wé; )77(() )= v(H)N,

where FéH) : (J7H0) )y — CéH) is the projection on the orbit space and i(g) :

(J=H0))(zry = C is the inclusion.

In what follows this stratification will be referred to as the contact stratification
of Co.

3. REGULAR COSPHERE BUNDLE REDUCTION

Cosphere bundles are the odd-dimensional analogs of cotangent bundles in con-
tact geometry. In the following, we will briefly recall their construction and their
equivariant regular contact reduction, referring to [5] and [19] for more details.
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Let @ be an n-dimensional manifold and 6 the Liouville one-form on 7*(@), defined
by 8(Xp,) = (P2, Tp, 7Xp, ), where p, € T)Q, X € T, (T"Q), and 7: T*Q — Q is
the canonical projection. Let @ : G x Q — @ be an action of G on (). Denote by

D, :GxT'Q—T7Q

its natural (left) lift to the cotangent bundle. Consider the action of the multiplica-
tive group Ry by dilations on the fibers of T*Q \ {07+ }-

Definition 3.1. The cosphere bundle S*@Q of @ is the quotient manifold
(T*Q\ {07+ })/R+.

Let m : T*Q \ {Or-q} — S*Q and k : [oq] € S*Q — g € @ be the canoni-
cal projections. Denote by [a,] the elements of the cosphere bundle. Of course,
(m4, Ry, T*Q \ {Or+g}, S*Q) is an R -principal bundle. Also, we will use the 7
notation for any R, projection. The exact contact structure of S*Q is given by
the kernel of any one-form 6, satisfying 6, = %6 for o : S*Q — T*Q \ {Or-g} a
global section. Such a o always exists and, even more, the set of global sections of
this principal bundle is in bijective correspondence with the set of C'*° functions

f:T*Q\ {Or+g} — Ry satisfying

folrag) = Lfolag), T ERy, a, € T*Q\ {0r-g).
(See [5] for details.)

Remark 3.1. 1. Let C(S*Q) = S*Q xR be the symplectic cone over S*Q, endowed
with the symplectic form d(t,). Then one can easily see that T, : C(S*Q) — T*Q
given by T, ([ag], t) = tfs(cg)q is a well-defined symplectic diffeomorphism, that
is, a symplectomorphism.

2. If @Q is zero-dimensional, we set, by convention, S*Q = @.

The action @ lifts to the cosphere bundle yielding a proper action
DG x 5°Q = SQ, Bulg:ag]) = [Bulg. )]

by contactomorphisms with all scale factors positive. In [IT] it has been proved that
for any proper action which preserves an exact contact structure, there exists a G-
invariant contact form. As every contact form on the cosphere bundle is obtained
via a global section as above, we shall choose once and for all a section ¢ for which
(Pyg)*05 = 6,. Relative to this contact form the induced action on the cosphere
bundle is by strong contactomorphisms. The associated momentum map, which
depends on the section o, will be denoted J for simplicity, since in what follows
no other contact form different from 6, will be used. As above, the exact contact
structure of S*(Q/G) can be described as the kernel of a global contact form of
type Oy, where
2:57(Q/G) = T (Q/G) \{0r+(q/e)}

is a global section, and © is the Liouville one-form of T*(Q/G).

Regular reduction of cosphere bundles was done in [5]. Its main result at zero
momentum is

Theorem 3.1. Let G be a finite-dimensional Lie group acting freely and properly
on a differentiable manifold Q. Then (S*Q)o, the reduced space at the regular value
zero of the cosphere bundle of @Q, is contact diffeomorphic to the cosphere bundle

S5*(Q/G).
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In the remainder of this paper, we will generalize this result to non-free ac-
tions, within the framework of stratified spaces, relating our results to the contact
stratification defined in Theorem 2.11

4. THE DECOMPOSITION OF J~1(0)

The geometric study of the contact reduced space (S*Q)o passes through the
analysis of the level set J~!(0) and, in particular, of its isotropy lattice I;-1().
We shall use the fact that both the cosphere bundle S*@ and the lifted action
of G on it are completely determined by the differential structure of @ and its
supported G-action. This will allow us to obtain our first main result, Proposition
[T, which describes this isotropy lattice, and hence the topology of the contact
stratification of (5*Q)o, in terms of the isotropy lattice of @) without those elements
corresponding to zero-dimensional orbit types in @Q/G. Also, as a preliminary
result, and a “building block” for the general construction, we state an intermediary
cosphere reduction result, Theorem [£.I] which applies to base manifolds () on which
the group action is not free but exhibits a single orbit type; that is, I consists of
only one element.

Lemma 4.1. The isotropy lattice of the cosphere bundle coincides with the isotropy
lattice of the cotangent bundle without the zero section

Is-q = Ir+Q\{07+q}-

Proof. 1t is enough to show that G, = G|a,) for any a, € T*Q\ {07-q}. Thus let
g € G[q,)- This implies that gla,] = [ga,] = [ag] <= gag = ray for r > 0. Since
the action of G on @ is proper, there is a G-invariant Riemannian metric on ) and
hence [|gay|| = |layll = 7(lag||. Tt follows that r = 1 and G|o,] C Ga,. The other
inclusion being obvious, the proof is now complete. (I

Remark 4.1. We will write J; : T*Q — g* for the canonical momentum map for
the cotangent-lifted action of G on T*(@Q endowed with the canonical symplectic
form. As J71(0) = 74 (J;*(0) \ {Or~o}) note that

(THO) ) = 7+ (T (0) 1) \ [(Tet (0) ) N {07+ }])
since
(o O\ {0 xy = (Jar (0)) 1) \ [(Jz ' (0)) 2y N {070 }]-
The following theorem is an immediate consequence of Theorems 3.1l and 211

Theorem 4.1. Let G be a finite-dimensional Lie group acting properly on the
differentiable manifold Q@ such that all the points in Q have stabilizers conjugate
to some K (that is, Q = Q(x)). Then J~1(0) is a submanifold of (S*Q)(x) and
(5*Q)o, the reduced space at zero, is contact-diffeomorphic to S*(Q/G).

In the following proposition we give the decomposition of J~1(0) and show how
the topology of the contact quotient at zero is completely determined by the isotropy
lattice of (). For that, we will use the following partition of T*@Q. We fix once
and for all a G-invariant Riemannian metric on . Then, for any (H) € Ig, the
restriction of T'Q) to the submanifold Q) can be decomposed as the Whitney sum
19 @ = TQr) ® NQ(m), where, for every q € Qmr), NoQm) = TqQ(lH)). Note
that each of the elements of the Whitney sum are G-invariant vector bundles over
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Q(m)- Dualizing this splitting over each orbit type submanifold in @, we obtain the
following G-invariant partition of T*Q:

Q=[] T"Qu)® N"Qu).
(H)elq
Now, the restriction of this partition to T*Q\{07+¢}, and afterwards its quotient
by the action of Ry, induces a G-invariant partition of S*Q.

Let I7, denote the isotropy lattice of @ without those elements (H) corresponding
to orbit type submanifolds Q) for which the orbits of the restricted G-action
have the same dimension as Q(g). At this moment, we will need some results on
cotangent-lifted actions, which were proved in [I7].

Lemma 4.2. Assume that G acts on Q and on T*Q by cotangent lifts with mo-
mentum map Jor 1 T*Q — g*. Let (L), (H) € Ig be arbitrary.
(i) (N*Qm))(m) is the zero section of N*Q ).
(ii) Let Jey(my denote the canonical momentum map on T Q) associated with
the lift of the action on Qg obtained by restriction from Q. Then

(4.1) (e () 2y = Ty O ] (Jc_t(lH)(O)X(N*Q(H))(L)>'
(H)>(L)

(iii) If (L) # (H), then (N*Qm)) (L) # @ if and only if (H) = (L).
Proposition 4.1. Suppose G acts properly on the manifold Q. Then we have:
(i) For q € Qg such that Gy = H and (L) € Is-q,

(J7H0) ()N S;Q # o < (L) € Igand ((H) € I or(L) < (H)) .

(i) (L) € Ij-1(0) = (L) € I}y and hence C§” # @ <= (L) € I}y =
dim Q) > 1.

(iii) The cosphere bundle projection k restricts to the G-equivariant continuous
surjection kry : (J7(0))(zy — Q1) which is also an open map.

(iv) For a fized orbit type (L) in the zero momentum level set of the lifted G-
action to S*Q the corresponding orbit type submanifold admits the following
G-invariant partition:

(42) O =IH0 T 7w (b © x (VQun) ) )
(H)~(L)

where (H) € Ig.
(v) For every (H) = (L) with (L) € I, and (H) € Iq the restrictions

t(L) = k(L)|J(_Ll)(0) and t(H)>—(L) = k(L)|‘n’+(~];%H)(O)X(N*Q(H))(L))

are G-equivariant smooth surjective submersions onto Q(r) and Q) re-
spectively. The mappings Joymy and Jpy denote the momentum maps of
the restricted actions of G to T*Q gy and S*Q gy respectively (which are
the same as the canonical momentum maps for the restricted G-action on

Qum))-
Proof. To prove (i), let (L) € Is-q and ¢ € Q) with G4 = H. Then

(4.3) (e (0)) oy N T;Q = (S7)" @ (NG Q) ()
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where S is the linear slice for the G-action on Q) (see section 3 of [I7]). Since
(J7H0) @) NS;Q =2 < (J;'(0) 1) NT;Q = {0}, then (J71(0))(1) N S;Q =
@ only when (SF)* and (N;Qm)) 1) are simultaneously zero. This amounts to
(L) = (H) € Ig\1}), (see Lemma [L.2)) from which the result follows.

(ii) is a forward consequence of (i). The rest of this statement and the G-
equivariant continuous surjectivity of k() are direct consequences of the fact that
Ig=1,- 1(0)" To prove the openness of k(y it suffices to observe that for any open

subset U of (J7H0))(r), keryU) = 71y (x =1 (U)), where 71y : (J5"(0)) (1) — Qz)
is the open canonical cotangent projection map.

Applying (1)) and the fact that (N*Qg))(r) does not contain the zero section
when (H) # (L) we have

(Jc_tl(o)\{OT*Q})(L) - ( ct(L) ( )) V07, ) H [ ct(H) (0) x <N*Q(H))(L)}'

(H)»(L)

Hence, applying 7 to this relation, we get

O =T50 TT e (ol ) < (V' Q) ) )

(H)~(L)

which proves statement (iv).
As for the proof of (v), it is enough to notice that

J1)(0) and 7y <Jct(1H)() (N*Q(H))(L)>

are bundles over (1) and Qg respectively. O

Remark 4.2. Notice that for the description of orbit types in J~1(0), we need not
only I, but also the lattice I since each (J~(0))(z) is written as a union with
index (H) in Ig, but (L) belongs to I5).

5. TOPOLOGY AND CONTACT GEOMETRY OF Cy

5.1. The secondary decomposition of C(()L). Define the fiber bundles:
s (1) = Ty (0) X (N* Qi) (1) — Qi)
S(L) = Jc_t(L)(O) — Q1)

Taking into account that 7 (s(g). (1)) are G-invariant pieces of the partition (.2
of (J7'(0))(z) and that the actions of G and Ry commute, we can define:

7T+(3(H)>(L))
G b
J(_Ll) 0) 7 (s@) \ {0101, }) ~ g (Q(L)) .

CSy-(1) =

CCy = =
(L) G G
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Notice that for the above equivalence we have applied Theorem E1] and that each
contact stratum admits the following partition, which is the quotient of ([4.2)):

(771(0)
¢ = = =cCu [ CSun-w

(5.1) (H)=(L)

:( )HCS(H

(H)~(L)

Remark 5.1. In the notation of the previous section, the maps k1), tN( L), and
%V(H)HL) descend to

k) —QW), 1. cCy — QW and )OSy 1y — QU

k(F) is an open continuous surjection, and the other two are smooth surjective
submersions.

Theorem 5.1. With the above notation, we obtain the following:

(1) Q) is a stratified space with strata QU1 , for all (L) < (H) and with
frontier conditions given by

Q) QU £ & = (H) < (K).
Moreover, Q'Y is open and dense in Q(L).

(ii) For every (L) € Ity and (H) € Iq, the partition (5.1 is a stratification of
the corresponding contact stratum CéL), called the secondary stratification.
The frontier conditions are given by

CS(my-(ry COCC 1y forall (H) > (L);
CSuys(ry COCS )y < (H') = (H) > (L).

Moreover, the piece CC(yy is diffeomorphic to S5*QW) | is open and dense

n C(()L), and the map k() is a surjective submersion of stratified spaces.

Proof. Since the G-action is proper, the orbit type decomposition of @) induces a
stratification of )/G and the first part of the theorem follows immediately consid-

ering the relative topology of QL) in Q/G. Also, (B1)) is a locally finite partition
and its pieces are obviously submanifolds of C(()L). As k) is a continuous map and
(kE) =1 QW) = CC(y,, it follows that CC/z is open in CéL). In order to prove the
density, let = € C(()L) and U be any open neighborhood of . Hence, V = k(%) U) is
an open subset of W and, since Q%) is dense in W, there is at least one element
y € VN QW Notice that (k1)) ~(y) = (tP))~L(y) C CC(y and that there is at
least an element in (#%))~'(y), which is in &. This means that ¢ N CCwy # 9,
which proves the density of CC(p).

Using the density of CC/y), the first frontier condition for the secondary strat-

ification becomes obvious. For the second one, consider in CSL) an arbitrary open
neighborhood U of a point x € CS(yrys(1). By the openness property of kL) | we
obtain that @ = k(%) (/) is an open neighborhood of &%) (z) in W Applying (i),
we have that ON Q) £ @ <= (H') = (H) = (L). Furthermore, the surjectivity



4220 0. M. DRAGULETE, T. S. RATIU, AND M. RODRIGUEZ-OLMOS

of t)~=(L) implies (tH=EN=1(2)NU # & for any z € O N QU proving that
CS(H/)>_(L) C 8CS(H)>(L) e (H/) - (H) - (L)
As k() restricted to each piece of the secondary decomposition is surjective,

Remark B.Ilimmediately implies that this map is a stratified surjective submersion.
O

We will refer to the strata of the form CS(y). (1) as contact seams due to their
stitching role, which will be explained later in Remark 5.3

This theorem completes the topological description of each contact stratum C((JL)
in terms of its secondary stratification. We shall now begin the investigation of
geometrical aspects, namely to what extent the strata of this secondary stratifica-
tion admit canonical contact structures in the sense that the 1-forms generating
them are induced by some cosphere bundle structures compatible with the reduced
contact form on the contact stratum. Thus, denote by

VI - OCy) — (S7QUD, 0" )

the bundle isomorphism given by Theorem [£1], where G)(EH) is a contact form on
the cosphere bundle of Q). Observe that the restricted projection onto the first
factor

PL(H)(L) (JCI(IH)(O) \ {OT*Q<H>}> X (N*Qey) () = Jow)(0) \ {07+ Q }
is Ry and G-equivariant. So it descends to the surjective submersion
~(H)>(L o
pim ) CSCyey = CCm,

where

. ' T <Jc;(1H)(O> \ {OT*Q(H)} x (N*Q(H))(L))
CS(my-w) = G

is an open and dense submanifold of the contact seam CS()s(r). Then, for any
pair (H) > (L), we have the following bundle map covering the identity on Q(1):

CI}(H»‘(L) = E/(H) oﬁgH)>(L) : OSFH»—(L) - S*Q(H)v

which is also a surjective submersion. We are now able to endow each cosphere-like
stratum CC(p) and each C’S("H)>(L) with 1-forms given by

and
(5.3) (Ot may = (BB 0 D).

It is impossible to induce in this way a 1-form on the whole piece C'S(p). (1), and
hence we are forced to restrict ourselves, for the time being, to C’S("H)> () However,
we will show later how to extend this form to the whole C'S gy (1)-

Theorem [ZT] gives the existence of an abstractly defined contact structure on

each contact piece C(()L) generated by a 1-form GaéL). One of the aims of this

section is to investigate the compatibility of the previously defined forms 7z and

N(m)>(r) With the reduced contact form HUBL) and to describe as much as possible
this abstract contact structure.
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Tty O\ {01+ g} X (N*Q(ary) (1) (0) \ {07+ 0 1) (1) e T* Q\ {07}

_ . iHy-(L) (L) N
T (Jct(lm(o) \ {07+ g} X (N Q(H))(L))C—> (JH0) () —————=5"Q

LU= (L) lw(m
G G

. (=) s

CSTry-(1)¢ st

FUD-(L)
S*QUH)

FIGURE 1. Diagram defining 7z

Theorem 5.2. The strata CC(ry and C'SPy._ ;y within the contact stratum CéL)
satisfy the following properties:
(i) (CCry,nry) is an open dense contact submanifold of the contact stratum
C((JL) contactomorphic to (S*(Q(L)),@(EL)).

(ii) Using the above notation, the conformal classes of 0y and 1y (1) admit

L)

smooth extensions to C(()L) equivalent to 908 , namely

(L) ~ (L) ~
0o |CC(L)*77(L) and 94 |CSE’H)HL>*77(H)>(L)-

The extension of 1) is unique.

(iii) The conformal class of nm)s (1) can be smoothly and uniquely extended to
the whole stratum CS gy, (ry. If (H) € 1§y, then C'S(my» (1) is a coisotropic
submanifold of the contact stratum CSL). When (H) € Iq \ 1), then

CS(mys>(r) 18 a Legendrian submanifold of the contact stratum C((JL).

Proof. (i) is a simple consequence of Theorem .11
For (ii), let (L) and (H) be two fixed elements of If, and I respectively and

i(()H)HL) : CS&JH)ML) — CéL) the inclusion map. By definition,

L : 0o
90((] )|CSE7H> - ( ): NH)-(L) < df >0 in C (CS(H)>_(L)) such that
L (H)=(L) \xp (L i~ o (H
90(() )|CSE)H)>(L) = foumsw) (2(() )= (L) ) 908 )~ (GH)= (L)) @(E ).
To simplify the reading of the proof, consider Figures [l and [2] where ﬂéH)>(L) and
ﬁ(GH) denote the canonical G-projections and all the horizontal arrows in the first
and second diagram are injections and projections respectively.
As ﬂéH)>(L) o 74 is a submersion, it suffices to prove that

(5.4) (z‘(()H)HL) o ﬂéH)>(L) omy )*GaéL) ~ (\TI(H)>(L) o WéH)>_(L) omy )*@(EH).
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P1(H)~(L)

(J(;;(lH)(O) \{07+qu, } X (N*Q<H))<L>) = Ty )\ {07+ ) }

- . PL(H)-(L) S b x
7 (Jaaben O\ 0700, b X (N*Quin) 1 ) Tih(0) S Qun
W(H)Hml ~ ()

G G

o p1 ()= (L) o (H) o

CS(ay- () CCuy ———— 57 Q"
FIGURE 2. Diagram defining n(m)s (1)

Observe that i((JH)HL) o WéH)>_(L) oMy = WéL) o7y o i()>(r) and the first term of

(E4) becomes

L . * L L * L)\ % L
(m&”) om0 it (1) ) 0ol = Y(H)-(L) © T+ ((me”) 0oy )

= i{my-(ry © T3 (i{ryle ) = (T4 0 Jin) 0 @ )",
where in the last line we have used Theorem 2] together with the equality 7y o
Jy o ® =iy o Ty o i(H)s (1), With jg) and ® inclusions defined by

®: (JC;(IH)(O) \ {07 Q) } X (N*Q<H>)<L>) = T"Qlaum \{0r-qun }
and
JH) T*Q|Q(H> \ {OT*Q<H)} = T*Q\{0r-q}-
Using this time ﬁ(GH) O M4 OPI(H)»(L) = ZB?LH)HL) °© W(GH)>(
second term of (B.4) as

L .
) o T4, we can write the

(D o "B o B o, oL = (W o7 o 1y 0 pyay(ry )7L
* (T _(H) \x(H * 7%
= (1 opimye(ry ) (B 07dD V0L ~ (mp 0 pigmys(ry ) L Omys,

where 0(f)x is a contact form on S*Qg). Let pigy : T*Q|Q(H) \{OT*Q(H)} —
T*Qmy be the projection map. Since l(g) o Ty © Pi(H)»-(1) = 7T+ © P(r) © P, the
second term is in the same conformal class as @*pE‘H)ﬂj_H( m)s and, hence, equation
(E4) is equivalent to

S p(mym i 0ms = QT jgy b = PPy (Eom) Oy = Oy (00T )"0

— i Febin = O G fo0,

where ¢ and ) are the canonical one-forms on T*Q and T*Q g respectively,
and o, X are sections in the associated cosphere bundles. But p’(kH)G( H) = jEkH)H, as
can easily be seen in local coordinates, which proves (&.4).

As for the extension of the conformal class of 7z, an analogous proof can be
developed just by considering the limit case (H) = (L), when CS?H)>—(L) degen-
erates in C'C(z). In order to prove the uniqueness of this extension, let us con-
sider a point z € CéL) and one tangent vector v, € TzCéL). As CC(p,) is open

and dense in C(SL), there is a sequence of points x; € CC(z) and one of vectors
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Uy € Tr, CC(py = T, C§F) such that
lim zp =2, lim v, =v,.
k—oo k—oo

From the above arguments and using the continuity of 90(()L), we have that

) (@k) (vay,) . L L
Jim SEES = im0 (00) (02,) = 067 (@) (),
with g € C*°(CC(yy) a positive function such that 7 = gﬁg(()L)‘CC(L). We have

thus proved that the class of GgéL) is the unique smooth extension of the class of
M) to C(SL).

(iii) To extend the class of 1) f)s(z) from CS(OH)>-(L) to the whole piece C'S( ) (1),
we will apply the same type of arguments as before, using this time that CSFH)H L)
is open and dense in CS(fyy(1). Namely, for any point x € CS(y), (1) and any
vy € ToCS(my- (1), there is a sequence of points zj, € CS(C’H)>_(L) and one of vectors
Vo), € Tu, CSPhyy (1) = T CS(my- (1) such that

lim zp =2, lim v, =v,.
k—oo k—o0
Observe that
lim 77(H)>-(L)($k)(vzk) _ HUéL)(x)(Ux),
k—oo f(l'k)

and notice that this extension is also unique and given by the conformal class of
(L)
900 |CS(H)>(L)'
To check the coisotropy and Legendrian submanifold conditions, let = €
C’SZ’H)> (L) A direct count of dimensions gives

dimker 0,5 (z) = dim¢{") — 1 = 2(dim Q1) — dim G + dim L — 1)

since S*Q) is open in the corresponding contact stratum. At this point we need
the following intermediate result.

Lemma 5.1. The dimension of the tangent space to a contact seam is
(5.5) dim TICS(H»_(L) = dim Q(H) + dim Q(L) —2dimG +dim H +dim L — 1.

Proof. We want to compute dimT,CS(g)s(ry = dimCS(g)s(r). For this, let
m(z) = k°(x) be the base point of z, where z € Qx) with G. = H and note
that dim C'S()(r) = dim(J;'(0) N T3 Q) 1) + dim Q) — dim G + dim L — 1,
where the class (L) refers to the linear H-action on the vector space J_,*(0) N TQ.
On the other hand, the inverse of the Riemannian bundle isomorphism 7Q — T*Q
maps (J;'(0) N T7Q)(r) H-equivariantly isomorphically to (S.)). Now, if 1,
U, and U’ are as in the Tube Theorem (2.2)), then 1 restricts to a diffeomor-
phism between G x g ((Sz)(L) OU) and U N Q). Since dimG xpg (5.)1) =
dim G + dim(S> ) () — dim H, we can compute

dim(Sz)(L) = dim Q(L) — dim G + dim H.

Finally we obtain dim T$CS(H)>(L) = dim Q(H) + dim Q(L) —2dimG + dim H +
dim L — 1. (]
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Consequently, a simple dimension count gives

1
dim 720811 (1) — 5 dimker 6,6 (z) = dim Q(zr) — dim G + dim H
= dim(Sz)(H) Z 0,
where 2z € Q) is the base point of x and S, is the associated linear slice. Sup-
pose first that (H) € I, and so dim T,,C'S s (1) — %dimker@aé]“)(x) = 0. This
implies that CSE’H)>(L) and CS(p)s-(r) can be neither isotropic nor Legendrian

. L o L o
suli\rlnamlfc;lds of Cé ) and that ToCSlye (1) ¢ ker 90(() )(x) for any = € OS¢y, (1)
ow le

Wo = ToCS{s (1) Nker 0,87 (x) = TuCS(rrys (1) N ker 655" (x)
and

Ve = {v € TmC’SE’H)>(L)\ker9(,éL)(x) tv=vg ®kR(z),k € R, vy € kerGJéL)(x)}.

One can easily check that V; is a one-dimensional vector space and that for any = €
CSEH)>(L)7 we have TxCSE)H)>(L) =W, ®V,. As W)= (L) ig 5 surjective submer-

L) ~ : O (H)-(L _ (H)
|CS(OH)>—(L) ~ 1)) (L), it follows that T, V)= (W) = ker 05" (y)

sion and 908
and T,WH=L)/(V,) = span{Ryx(y)}, where y = UE)=(L) () and Ry(y) is the
Reeb vector field of (S*QU), @(EH)). Therefore, we obtain

rank dn gy () () |w, = dim W, — dim ker dn gy (1) (2)|w,
= dim W, — dim{v € W, :dOY") (y)(T, $ =Dy 7, G =L yp) =0, Y € W, }
= dim W, — dimker 7, F>B)] = dim §*Q) — 1.

This shows that rankdn(H)>(L)(x)|W = 2dimW — (dimC(()L) — 1) proving that
CS&’H»_(L) is a coisotropic submanifold. Since CS&’H»_(L) is dense in CS(gys (1), by
an extension argument similar to the one used before, we have that C'S(p)s (1) is
also a coisotropic submanifold of the corresponding contact stratum.

If (H) € Ig \ I, then dim T,CS(s)» (1) = & dimker 6,5 (z) and by the def-
inition (B.3), 7(#)-(r) = 0 since S*QW) is the trivial bundle, proving thus that
CS(s)» (1) is a Legendrian submanifold of C§". O

Remark 5.2. Note that the contact seams C'S(fr), (1) can never be contact subman-
: (L)
ifolds of Cy ™.

5.2. The C-L stratification of Cy. In this subsection we prove the existence
of a new stratification of the contact reduced space Cy, different from the contact
stratification in Theorem 2.1l The existence of this new stratification, which we call
the C-L stratification since its strata are coisotropic or Legendrian submanifolds of
the corresponding contact stratum, is due to the bundle structure of the contact
manifold that we start with. We will see that the C-L stratification is strictly finer
than the contact one if the base manifold Q has more than one orbit type. In
principle, this is not an advantage since the contact stratification partitions the
singular contact quotient in fewer and larger smooth components. However, if we
take into account the bundle structure of the problem, we can see why this new
stratification is more appropriate.
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The most important feature of regular cosphere bundle reduction, Theorem [3.1]
is that if we start with the cosphere bundle of a manifold @), we end up again
with a cosphere bundle, this time over @/G. Furthermore, the reduced contact
structure on S*(Q)/G) equals the canonical cosphere contact structure. In the
singular setting, however, the lack of smoothness of the quotient spaces involved
forces us to choose another definition of fibration. The most natural one when
working with decomposed or stratified spaces is the following: if A and B are
decomposed spaces together with a continuous surjection f : A — B, we say that
f : A — B defines a stratified bundle over B if f is a morphism of decomposed
spaces. In our case, there is a natural projection k° : Cy — Q/G induced from the
cosphere bundle projection k : S*@Q — Q. If we consider the natural orbit type
stratification of /G and the contact one of Cp, then the projection does not define

a stratified bundle over @/G since the image of a contact stratum C(()L) under the

projection is Q(X), which includes several orbit type strata of Q/G. We will prove
that the choice of the coisotropic stratification for the contact quotient Cy solves
this problem.

Consider the partition of Cy obtained by putting together all the secondary strata
found in every contact stratum:

(5.6) G=JIccw, TI CSwn-uo

(L) (K')~(K)
for every pair of classes (L), (K) € I, and every (K') € Ig.

Theorem 5.3. The partition (58] is a decomposition of Cy inducing a stratifica-
tion, called the C-L stratification, that satisfies the following properties:

(1) If Q/G is connected and (Lo) is the principal orbit type in Q, then CC(r)
is open and dense in Cy.
(2) k% : Cy — Q/G is a stratified bundle with respect to the C-L stratification
of Co and the orbit type stratification of Q/G.
(3) If I consists of more than one class, the C-L stratification is strictly finer
than the contact one, and they are identical otherwise.
(4) The frontier conditions for the C-L stratification of Cy are:
(i) CCxy C 0CCH (H) < (K),
(11) CS(K)>(H - 300 (H) < (K),
(iii) Cixy C OCS (k) (H <:> (H) < (K),
(IV) CS(KI)>(H C 805 (K)-(H) < (H) < (K) < (K’),
(v)
Proof. For (1), recall by Proposition L] that I;-1(gy = If;. The principal orbit
type of the isotropy lattice corresponds to an open and dense piece, so (J_l(O))(LO)
is open and dense in J~1(0), since (Lg) is by hypothesis the principal orbit type
in Ij) (assuming that dim @ # 0) and hence in I;-1(p. Consequently, as the orbit

CSirys-(ay C OCS(rys(H <:> (H) < (H) < (K).

map J~1(0) — Cp is continuous and open, Cé 0 s open and dense in Cy. Now,
since C(()LO) is equipped with the relative topology with respect to Cp and CC(r,) is
open and dense in it (Theorem[5.T)), it follows that C'Cy,) is also open and dense in
Co. For (2), note that the restrictions of k° to CC(r) and CS(g)s (1) coincide with
the corresponding restrictions of k(*), which, by Remark [5.1], are smooth surjective
submersions over Q%) and Q) respectively for every (L) € I o and (H) € Ig. This
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shows that these restrictions map each C-L stratum of Cy to an orbit type stratum
of Q/G. Therefore, k¥ is a morphism of stratified spaces. To prove (3), recall from
Theorem E Tl that if I consists of a single orbit type (H), then Cy = C(SH) =CCm
(assuming dim @) # 0) and its contact and C-L stratifications are both trivial and
identical. If there is more than one orbit type in the base, the number of C-L strata
is strictly greater than the number of contact strata (which is equal to the number
of orbit types of If)). The identity map in Cp injects each C-L stratum in the unique
contact stratum to which it belongs and is hence a morphism of stratified spaces.
Therefore, the C-L stratification is finer than the contact one. For (4), relations
(#i) and (iv) follow from the frontier conditions of the secondary stratum C(()H). To
prove (i), it suffices to recall from the general theory of singular contact reduction
that C(()K) C 5‘C6H) if and only if (H) < (K). Using the density of any maximal
secondary stratum C'C(yy in the corresponding contact piece CéL), (7) follows. (i)
is a consequence of (v) if one considers the limit case CCx) = CS(x)s(k)-
Finally, to prove (v), choose a point [x] € C'S(x)» () C Co and an open neighbor-
hood [z] € O C Cy. We shall show that O N CS k) (m) # @ if (H) < (H') < (K).
Let 2 € J71(0) be a preimage of [z]. We can assume without loss of generality
that G, = H' and that the projection of xz, i.e. the point z = k(z) € @Q, satisfies
G. = K. Let U be the only open G-saturated set in J~!(0) such that U/G = O.
Then, identifying S*@Q with the unit bundle in T*Q via a G-invariant metric on @),
we have that x is a unit covector lying in the subset of the cotangent fiber at z given
by (SE)* ® (NZQx))(mr)- By the general properties of linear representations of
compact groups on vector spaces and the property (iii) of cotangent-lifted actions
in Lemma [.2] it follows that po(U NT7Q) N (N Q(k))m) # @ for every compact
subgroup H of K such that H < H" and (N} Q) ) # @, ie., (H) € Ig. Here,
pa is the linear projection (SK)* @ N;Qk)y — N;Q). From this, it follows that
if 2’ € pg(U N T;Q) N (N:Q(K))(H)v then [.’L‘/] eOn CS(K)>(H). O

Remark 5.3. The previous result shows that, identifying a stratum CC(z) with
S*Qmy as shown in Theorem [B.2] the reduced space Cy is almost everywhere a
collection of cosphere bundles, one for each orbit type stratum of positive dimension
in @Q/G. These cosphere bundles satisfy the same frontier conditions as their bases,
ie., S*QU) c 98*QU) if and only if Q) ¢ QM) (condition (1)), but in this case
there is always a contact seam CS k). () between them, which “glues together”
these two cosphere bundles, as reflected in conditions (ii) and (iii).

5.3. A remark on the local properties of the C-L stratification of Cg.
Throughout this paper we have used a purely topological concept of stratification
(see subsection 2.I). However, in the literature most of the time the notion of
stratification is a finer one, in a sense incorporating some sort of smooth structure
not confined to each stratum. Namely, the additional condition usually imposed
on a stratified space X is that of being a locally trivial cone space (which together
with a smooth structure of degree > 2 implies that X is a Whitney space, see [1§]
for details).

According to [12], the contact quotient Cy together with the stratification given
by Theorem 21lis a locally trivial cone space. In that paper, the authors prove this
fact using a contact analogue of the equivariant symplectic tubular neighborhood of
Marle, Guillemin and Sternberg. They study the conical properties of the stratifica-
tion in the local model provided by the corresponding equivariant tube ¢ : C — U.
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This is possible since the basic ingredients to construct the strata, the orbit types
C(m), are mapped in the local model to U(gy. However, this is not the case for the
cosphere bundle. The building blocks of the secondary and C-L stratifications of
a cosphere bundle quotient are my (s \ {0r-q,}) and my (s(z)»(z)). In order
to express them in the tubular neighborhood, one would need the tube ¢ to be
explicitly defined or at least adapted to the cosphere bundle category in a way that
reflects the fibrated nature of C. Consequently, the problem of studying the local
triviality of the secondary or C-L stratifications implies finding such an adapted
normal form for cosphere bundles, which is yet unknown.

6. SINGULAR ACTIONS ON THE BASE WITH REGULAR LIFTS
TO THE COSPHERE BUNDLE

In the following definition we introduce a class of actions which may have singu-
larities on @ but that will be proven to yield regular lifted actions on S*@.

Definition 6.1. An almost semifree action of G on @ is a smooth action such
that a) it is free almost everywhere, b) the connected components of every orbit of
non-maximal dimension are isolated, and c¢) for every non-trivial isotropy subgroup
H € I with Lie algebra b, its induced adjoint representation on (g/h) \ {0} given
by h - [£] = [Ady €] is free.

Note that for any almost semifree action, the quotient space @Q/G consists of an
open and dense stratum Q(¢), except possibly for a set of isolated singular points.
The next proposition shows that the class of almost semifree actions is in one-to-one
correspondence with the class of free actions on S*Q.

Proposition 6.1. Let S*Q be the cosphere bundle of Q endowed with the lift of a
proper action of a Lie group G on Q. This lifted action is free if and only if the
action on Q is almost semifree.

Proof. Recall that, identifying, with the help of a G-invariant Riemannian metric,
S*@ with the unit bundle SQ C TQ and T'Q with T*Q, G acts freely on S*Q if
and only if its tangent-lifted action on T'Q is free on the unit bundle, and hence if
it is free away from the zero section (since by linearity the lifted action intertwines
the fiber, rescaling by non-zero factors). Let ¢ € @ with stabilizer G, = H # {e},
S C TyQ a linear slice for the G-action at ¢ and v = £g(q) + s € T,Q \ {0}. Note
that all the admissible ¢’s differ by an element of the Lie algebra of H. Then
U =G -exp,(S) is a G-invariant neighborhood of the orbit G - ¢ = G - exp,(0) and
there is an H-isomorphism f : T,Q — g/hx .S given by f(£o(q)+s) = ([€], s), where
the H-invariance is with respect to the linear action on 7@ and the diagonal action
on g/bx .S given by h-([(],s) = ([Adn €], h-s). Consequently, G, = H, = H;NHpg.

Suppose first that the lifted action of G on S*Q is free. Then any point ¢’ €
U\ G - q can be written as ¢' = g - exp,(s) for some 0 # s € S with g € G and
Gy = gHsg7 ' = {e}, since G, = Hy = {e} as assumed above. Hence the G-action
on () is almost semifree.

For v = £g(qo) € T4, @ \ {0} with £ € g, £ ¢ b we obtain that G, = {e¢} = H, =
Hig), thus proving that the induced adjoint representation on (g/b) \ {0} is free.

To prove the converse implication, let v € T,Q\{0} as before, with v = s+£¢(qo),
where s € S and £ € g. If s is different from zero, multiplying it if necessary by
a positive scalar smaller than one, we can guarantee that G - exp,(s) C U\ G - q.
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Shrinking U if necessary, we can guarantee that all of the points in U \ G - qo
have trivial isotropy, since the orbits of non-maximal dimension are isolated by
hypothesis. Using again the Tube Theorem, the isotropy groups of these points are
gHsg~1 = {e}, for every g € G, which forces Hs; = {e} and hence H, = {e}. In the
case when s = 0, we have that G, = Hyg = {e}, thus completing the proof. O

Remark 6.1. To geometrically express the third condition in Definition [6.1] notice
that every non-trivial isotropy subgroup H = G, € I acts freely on (g/h) \ {0}
if and only if for any element h € H the associated diffeomorphism of @ maps
bijectively {exp,(t§)-q : t € R} to {exp,(tAdp &) -q : t € R} for every £ € g with
€] #0in g/b.

Notice that this is a major difference with the cotangent bundle case, where the
cotangent-lifted action is free if and only if the base action is free as well. In the
context of cosphere bundle reduction the reason for the special interest in semifree
actions and in finding necessary and sufficient conditions for the freeness of the
lifted cosphere action is the following. Given a cosphere bundle C = S*@Q with the
lift of a proper almost semifree action on @, if we ignore the bundle structure of
the contact manifold C we are in the hypothesis of regular contact reduction, since
G acts freely, properly, and by strong contactomorphisms on C. Therefore, the
contact reduced space Cy is a well-defined smooth contact manifold.

On the other hand, since the action on @ is not free in general, we cannot
apply the main result on regular cosphere bundle reduction of [5] (see Theorem
BI) because in that case the quotient /G will not be a smooth manifold. In fact,
one expects Cy to be a smooth reduced manifold fibrating continuously over the
topological stratified space /G, but this bundle description cannot be achieved
by only applying the scheme of regular cosphere bundle reduction. However, the
results of the previous section will allow us to provide such a “stratified bundle”
picture of the contact quotient Cy. Indeed, we have the following result.

Theorem 6.1. Let G be a Lie group acting properly and almost semifreely on Q
and by lifts on the cosphere bundle S*Q with contact momentum map J : S*Q — g*.
Write the orbit type decomposition of Q/G as

Q/G=Q9 I "

(H)eIQ\I

where Q©) = Q(.)/G is open and dense in Q/G and each *(H) with (H) € Ig \ I
is an isolated point of some lower-dimensional stratum QW) with (H) > (e), lying
in the boundary of Q\®). Then the quotient Co = J~1(0)/G is a smooth manifold
which can be decomposed as

(6.1) Co~5QY [ s,

(H)eIo\Ig

where each CS™) is a trivial bundle over ) and a connected submanifold of Cy
lying in the boundary of S*Q'®). Moreover, the manifolds CS™) are Legendrian
submanifolds of Cy in one-to-one correspondence with the singular orbits of the
G-action on @ and have dimension dim@Q — dim G — 1.
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Proof. Since J~1(0) consists of a single orbit type (e), due to the fact that the
lifted action to S*@ is free, the secondary and C-L stratifications coincide with the
partition (6.I). As for every (H) € Iq different from (e) we have (H) € I \ If),
the contact seams C'S(1) .= CS(m)s(e) are Legendrian submanifolds of Cp. The
dimension of each connected component is then given by formula (B3] noting that
dim Q(¢) = dim Q and dim Q") = dim Qay) — dim G +dim H = 0 for every (H) €
Ig \ 1}y, since the action on () is almost semifree. O

Recall that a group action is called semifree if it is free everywhere except for a set
of isolated fixed points. Semifree actions are important particular cases of almost
semifree actions and they are commonly found in examples. The following example
explicitly illustrates the geometric constructions of this paper in that situation.

Example: S! acting on S*R2. Consider Q@ = R? with Euclidean coordinates
(x1,72) and its cotangent bundle T*R? = R? x R? with coordinates (1,2, y1,%2)-
The action of S by rotations on R? (a semifree action with R? g1y = {(0,0)}) lifts
to T*R? by the induced diagonal action. A Hilbert basis for the ring of S!-invariant
polynomials for this cotangent lifted action is given by (see [3], §1.4)

o = w4234yl +ys,
oy = 2(xiy1 + x2y2),
o3 = yi+ys—ai—a3,
04 = Z1Y2 — T2Y1-

These polynomials satisfy the semialgebraic relations
01>0, o?=0o3 +0§+40’Z.

We can identify the cosphere bundle S*R? with the subset of T*R? given by the
constraint

o1+ 03 =2.

The cotangent lifted action restricts to S*R? giving the free lifted action by con-
tactomorphisms. Its associated momentum map is given by

J($1,$2,y1,yz) =04

for (w1, 22,y1,y2) € S*R%. Consequently, using invariant theory, the contact re-
duced space J71(0)/S? is identified with the semialgebraic variety of R® =
{02,03,01} defined by

Co =~ {(02,03,01) eER3 : oy >0, afzcrg—l—ag, 01—|—03=2}.

This contact reduced space is in fact a smooth manifold since it is the parabola
obtained by intersecting the plane P = {0y + 03 = 2} with the upper half of the
cone 0} = 02+ 03 (see Figure 3). Its smooth structure is induced from the ambient
space R2. This was to be expected since the action on the contact manifold S*R?
is free.

However, this reduced space is no longer a cosphere bundle since the action on
the base is semifree. We investigate now how the stratified bundle structure of
Co obtained in the previous sections arises here. Note that Q/G = R?/S! can be

identified with the subset of R3 given by
Q/G ={(0,-t,t) : t >0},
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%

\ /K0

%
FIGURE 3. The contact reduced space as a parabola fibrating over
a half-closed line

which is a half-open line parallel to the plane P containing Cy. According to the
notation employed in this section, Q/G is a stratified space with strata Q(¢) and
* = (0,0,0). The continuous fibration £° : Cy — Q/G is given by k°(oq,03,01) =
(0,1 — 01,01 — 1). Note that (k°)~1(Q®)) = L]]R and (k°)~'(x) = (0,1,1) (see
Figure [B)), where Co = L[ R]J{(0,1,1)}. In addition, recall that Q(®) ~ R and
that S*R =R UR.

So (K9)~1(Q'®)) = L] R is diffeomorphic to the cosphere bundle S*Q(¢). The
fiber over a point (0,—t,t) € Q¢ is the pair of points (2v%,1 —t,1 + t) and
(—2vt,1 —t,1 + t) which lie in L and R respectively. Finally, the point (0,1, 1),
the minimum of the parabola Cy, is the seam CS(g1)s (¢) lying in the boundary
of §*Q®). Finally, since both Cy and S*Q(®) are one-dimensional, their contact
structures are trivial, due to the fact that the corresponding contact distributions
must be zero-dimensional.

7. EXAMPLE: DIAGONAL TORAL ACTION ON R? x R2

We illustrate the main results obtained in this paper with one more example rich
enough to show all the extra structure appearing in the cosphere bundle singular
reduction. This time, the reduced contact space Cy will have dimension greater
than one and will have hence a non-trivial contact structure.

Consider the proper action of G = T2 on @ = R? x R?, where each S* factor
acts by rotations on the corresponding R2 factor. The isotropy lattice for this
action is shown in Figure ] where the subconjugation partial order is represented
by arrows. Also, the corresponding stratification lattice is shown. A stratification
lattice is a graphical arrangement of all the strata of a stratified space where for
any two strata A, B with A C B and such that there is no other stratum C with
the properties A C C and C C B we write A — B. For the action under study, we
have Ig \ I, = {(T2)}.

Let (z,y) = (1, %2,y1,y2) be the Euclidean coordinates of a point in @ and z =
(x,y,u,v) = (1, T2, Y1, Y2, U1, U2, V1, v2) the ones of a covector in T*Q ~ R* x R*.
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The ring of G-invariant polynomials on 7% is generated by

pi = |l + [Jul? o = |[lyl* +[lol?
p2 = 2(z-u) oo = 2(y-v)

ps = |lull* =[] o3 = [l* —llyl?
P4 = T1U2 — Ta2U1 04 = Y1V2 — Y201.

These polynomials, which form a Hilbert basis, are subject to the following semi-
algebraic relations:

p1>0, 01>0, pf=p3+p3+4p, of =05 +03+40;.

Identifying the cosphere bundle S*R* with R* x §3 C R* x R*, where S3 =
{(u,v) € RZ x R? : |Jul|? + ||v]|*> = 1}, it is easy to see that its contact structure
is given by the kernel of the restriction of the Liouville one-form 6 = udx + vdy
and that the associated momentum map J : S*R* — R? is given by J(z,y,u,v) =
(ps,04) € R2. Consequently, we still have two more constraints to describe the
zero-momentum level set:

ps=0 and o4=0.

Notice that we can also see S*R* as the subset of R® defined by the additional
constraint

p1+p3+o1+o3=2.

The associated G-invariant Hilbert map is defined by

v JTH0) = R X RY, y(2) = (p1(2), p2(2), p3(2); 01 (2), 02(2), 03(2)),

and we can identify the reduced contact space with the image of v, i.e., with the
semialgebraic variety of R® defined by

Co=~{(p;0) €R® : p1,01 >0, p{ = p5 + p3, 01 = 05 + 03, p1+ p3 + 01 + 03 = 2}

which is the intersection between the product of two cones, C; x C5, and the
hypersurface H := {(p1, p3,01,03) € R* : py + p3 + 01 + 03 = 2}. (See Figure Fl)

The Reeb vector field on S*R* is given by R(x,y,u,v) = (u,v,0,0) for any
(z,y,u,v) € R* x §3, and the flow of the corresponding reduced Reeb vector field
on Cy at a point (pg; o) is easily computed as

p1(t) = por + pot + 2 (po1 + pos)t>
p2(t) = poz + (po1 + po3)t

) = po3 — po2t — 3(po1 + pos)t?
) = 001 + 0ozt + 3 (001 + T03)t?
) = 002 + (001 + 003)t
=0

03 — 002t — (001 + 003)t>.

Q

[V}
py
Il

Applying Proposition EETl we know that the orbit types of J~1(0) are exactly
those given by I, and hence the contact strata of Cy are in bijective correspondence
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with the strata of @ given by I,. We then have

T*Qe = {(z,y,u,v) € R® : (z,y) # 0}
T*Q(Slxe) - {( Y, 0, U) eR®: y#ﬂ}
T*Qexst = {(z,0,u,0) € R® : z # 0}
N*Qe = {( z,y,0 )$#07y7é0}
N*Qsixe = {(0,y,u,0) : y# 0}
N*Qexsl = {(ZIJ,O, ) : 1'7é 0}

Consequently, a direct computation gives the following orbit types for the zero
momentum map:

J=1(0) = {2z eR*x 83: py(2) = 04(2) = 0},

T e = {ze0):z£0,y£0)
[H{z€J'0) : 2=0,y#0,u#0}
ngEJ_l(O)::c;éO,yzO,v;éO}

[T1{z€{0ps} x5 : us0,v#£0},
(J_l(O))(exsl) = {ze J7H0) :y=v=0, x;éO}

[[{z€JH0) : 2=y =v=0, |u] =1},
(J7H0))(s1xe)y = {2€J7H0): z=u=0,y#0}

[{zeJY0) : 2 =y=u=0, ||v| =1}

Using the image of the Hilbert map v we can realize the contact strata given by

Theorems 2.1, 5.1] and £.3] as:

C(()e) = CC [ICSs xe) H CS(exst)- H CSr2)-(e)

CCle) = {(p;g):pl,ol >O, pl?éps,gl?éa?n P1:P2+P3a
U%=U§+U§7p1+p3+01+03:2}’

CSsixey-(e) = {(p;0):p1,00>0,01# 03, p1 = ps, p2 =0,

2p1—|—0’1—|—0’3:2,0'%:O'%+U§}

= (R+XCQ)Q{2p1+O'1+O'3:2,0'1%03},

CSlexstyse) = 1(p;0):p1,010 >0, p1 # p3, 01 =03, 09 =0,
201 + p1+ ps =2, p? = p} + 3}

(C1 x Ry) N {201 + p1 + p3 = 2, p1 # p3},

CS(12)(e) = {(p0o):p1,01 >0, p1 = p3, 01 =03, pp =02 =0,
P1 +o01 = 1}3

e 1
s = CClexs) I1CSm2)m(exst)s
CClexs) = {(;0):p1>0,p1+ps=2pi =p3+p3}\{(1,0,1;0)},
CS(’]I‘2)>(6><81) = {(17031a0,070)}’

1 [

et e = COC(sixe) [1OS(r2) (510>
CCs1xe) = {(0;0):01 >0, 01 +03 =2, 0%205—%0%}\{(0;1,0,1)},
CS(T2)>-(SI><G) = {(07070717071)}

The corresponding contact, secondary and C-L stratification lattices in Cy are
shown in Figure[ll Notice that (e) is the principal orbit type in @ and, therefore,
CCe) is open and dense in the reduced space Co. The contact seams C'S(72)s (51 xe),
CS(r2)s(ex 51y, and CS(r2), (e) are Legendrian submanifolds of their contact strata,
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']1*2
€ xS St xe Q(exs\ /(Slxe)
\ e / Qe)

FIGURE 4. Isotropy and stratification lattices for the T? action on R*

./ e

FIGURE 5. The ambient space of Cy

while the rest are coisotropic. Every contact seam is mapped by the flow of the re-
duced Reeb vector field into the CC-secondary stratum of its corresponding contact
stratum as can be easily checked.

In order to understand the bundle structure of these stratifications, we embed
Q in T*Q as the zero section and we identify Q/G with the subset of the image of
7 given by

Q/G = {(thoa _tl;t2507 _t2) : tl;t2 Z O} =~ R+ X R+a

a half-plane parallel to H. The strata of its orbit stratification are

Q(e>1<5‘1) — {(tho’ —tl;O) 1t >0}7
QY > = {(0;t,0,—t3) : ty > 0},
Q(e) = {(t170, —tl;t27;0,_t2) :t17t2 >0}7

and we obtain that the corresponding cosphere-like strata of Cy are diffeomorphic
to the cosphere bundles

5* Qx5 ~ g+ Q8" x) ~ RUR and S*Q© ~R2 x S,

The continuous fibration k% : Cy — Q/G is given by k°(p1, p2, p3;01,02,03) =
(p1 71,0,17[)1;0'171,0,170'1).
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e e CSr2)m(exsn)
C(()e) CClexsm)
a) b)
CS(r2)-(e)
CS(12)s (51 /
(T%)-(5% xe) CS(exSl)>-(e) CS(e)>.(e><Sl)
CClexs) CCe)

c) d)
CSt25 (ex51) OS2y (s1xe)
OC(exsl) OS(T2)>(9) CC(SlXe)
CS(ex51)>(e) CS(s1xe)-(e)
CC
e)

FIGURE 6. a) Contact stratification of Cy. Secondary stratifi-
: : (exsh) (8'xe) (e) : :
cations of: b) C, , ¢) Cy and d) C;’. e) Coisotropic-

Legendrian stratification of Cy.
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