Available online at www.sciencedirect.com

SCIENCE@DIRECT° J.ournal o.f

Differential
< Equations
ELSEVIER J. Differential Equations 216 (2005) 282-323

www.elsevier.com/locate/jde

Symmetry breaking for toral actions in simple
mechanical systems

Petre Birted, Mircea Putd, Tudor S. Ratift*, Razvan Tudorah

@Departamentul de Matemat¢ Universitatea de Vest, RO-1900 Tam@ra, Romania
bsection de mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Received 5 December 2003; revised 2 June 2005

Abstract

For simple mechanical systems, bifurcating branches of relative equilibria with breaking
symmetry from a given set of relative equilibria with toral symmetry are found. Lyapunov
stability conditions along these branches are given.
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1. Introduction

This paper investigates the problem of symmetry breaking in the context of simple
mechanical systems with compact symmetry Lie gr@ipf dimension at least one. By
symmetry we always understand continuous symmetry. We shall obtain two types of
symmetry breaking results depending on whether the principal stratum @-tetion
on the configuration manifold is associated to the trivial subgroyp} or to some
non-trivial closed subgroupl of G.

In the first case, every point of the princip@-stratum inQ has trivial isotropy.
Because of this simplifying assumption, the symmetry breaking phenomenon can be
analyzed in great detail. Lef be a maximal torus o5 whose Lie algebra is denoted
by t. Let g, € Q be a given point with non-trivial symmetry subgroup,, # {e},

dim G4, > 1, and assume thak,, € T. We shall make the hypothesis that the values
of the infinitesimal generators of elementstirat ¢, are all relative equilibria of the
given mechanical system. These relative equilibria form a vector subspaZg @f
which will be denoted byt - ¢.. As will be shown, every relative equilibrium in this
subspace has symmetry equal @g,. The main result of the first part of the paper
gives sufficient conditions that insure the existence of points in this subdpage
from which symmetry breaking branches of relative equilibria with trivial symmetry
will emerge. In addition, sufficient Lyapunov stability conditions along these branches
will be given if the symmetry grous equals the torudr.

To prove this symmetry breaking result one has to proceed in a somewhat non-
conventional manner. One of the main difficulties is that the points of bifurcation in
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the subspacé - ¢, C T,,Q are not known a priori so one cannot begin a standard
bifurcation theoretical investigation at a given relative equilibrium. To circumvent this
problem the following strategy is adopted. Denotegothe Lie algebra ofs and letg*

be its dual. Take a regular elememte g* which happens to be the momentum value
of some relative equilibrium defined by an elementtoRecall thatu is regular if the
coadjoint orbit throughu is maximal dimensional. Choose a one parameter perturbation
Pz, w) € g* of u, (0, n) = u, that lies in the set of regular points gf, for small
values of the parameter > 0. Consider theG,, -representation on the tangent space
7, 0. Let v, be an element in the principal stratum of this representation and also in
the normal space to the tangent space.ato the orbitG - g.. Assume that its norm

is small enough in order for,, to lie in the open ball centered at the origip, G
T,,© where the Riemannian exponential map ExpQ — Q is a diffeomorphism.
The curvety,, projects by the exponential map to a curyg(tr) = Exp(rv,,) that

lies in a neighborhood of, in Q and whose value at = 0 is ¢.,. We search for
relative equilibria inTQ, starting at points int - ¢., such that their base curves @
equalg.(tr) and their momentum values af¥t, u). Not all perturbationsi(z, u) are
possible in order to achieve this and it is part of the problem to determine which
ones will yield symmetry breaking bifurcating branches of relative equilibria. To do
this, let {(t, v,,, 1) € g be the image off(z, u) by the inverse of the locked inertial
tensor of the mechanical problem under consideration evaluated(at for t > 0.

If one can show that the limi{(0, v,,, ) of {(r,v,,, ) exists and belongs to for

7 — 0, then the infinitesimal generator 6{0, v,,, 1) evaluated ay. is automatically

a relative equilibrium since it belongs tb- ¢.. We shall determine an ope@,,-
invariant neighborhoodJ of the origin in the orthogonal complement to the tangent
space to the orbiG - g. such that this limit exists whenevey, € U. Next, we will
determine a family,, (z, ;) € TQ and, among all possiblé(z, v, , 1), another family

{(z, uq) € g such that the infinitesimal generators{®t, i;) evaluated at the base points
Exp(tvg, (1, 11)) of Tvg, (t, uy) are relative equilibria. Herg, is a certain component of

w in a direct sum decomposition @f naturally associated to the bifurcation problem.
This produces a branch of relative equilibria starting in the subspage which has
trivial isotropy for > 0 and which depends smoothly on the parametee g*. In

the process, the precise form of the perturbatitin, 1) is also determined; it is a
quadratic polynomial it whose coefficients are certain components in the direct sum
decomposition ofy* mentioned above.

There are two technical problems in this procedure: the existence of the limit of
{(z,vq,, w) ast — 0 and the extension of the amended potential at points with sym-
metry. The amended potential criterion is one of the main tools that we shall use in
order to achieve the results described above. Recall that the classical amended potential
is not defined at points with symmetry and this is one of the difficult technical problems
that needs to be addressed in the proof. The existence of the limit is shown using the
Lyapunov—Schmidt procedure. To extend the amended potential and its derivatives at
points with symmetry, two auxiliary functions obtained by blow-up are introduced. The
analysis breaks up in two bifurcation problems on a space orthogonal tG-tbit.

This symmetry breaking bifurcation result in the first part can be regarded as an
extension of the work of Hernandez and Marsd@&h The main difference is that one
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single hypothesis fronf6] has been retained, namely that all pointst of, are relative
equilibria. We have also eliminated a strong non-degeneracy assumption in [6]. But the
general principles of the strategy of the proof having to do with a regularization of the
amended potential at points with symmetry, where it is not a priori defined, remains
the same.

The second result of the first part gives sufficient Lyapunov stability conditions along
the bifurcating branches found before under the additional assumptionGthatT.

The stability method used is the energy-momentum method (see [19]) in a formulation
due to Patrick (see [16]) that is particularly well suited for our purposes. It should
be noted that the Lyapunov stability is only for perturbations transverse tasthe

orbit since drift is possible in the symmetry directions; hérg denotes the isotropy
subgroup of the coadjoint action at the momentum valug the relative equilibrium.

In calculating the second variation of the amended potential there appear terms that
make it indefinite, if the symmetry grou@ is non-Abelian. On the other hand, if

G is Abelian, these terms vanish and the energy-momentum method gives the desired
stability result.

In the second part of the paper we treat the general situation when the principal
stratum of theG-action on the configuration manifol® of the given mechanical
system is associated to a non-trivial closed symmetry subgfup G. In this case
each point on this stratum has symmetry subgroup conjugdte e extend the results
of the first part under the additional hypothesis ti#atC T, where T is a maximal
torus of the compact Lie grou. The main result of this part is the existence of
symmetry breaking bifurcating branches of relative equilibria with principal symmetry
emanating from the vector subspaiceg, C 7,, Q. As opposed to the situation in the
first part, the amended potential criterion along the emanating branches is not applicable
anymore, because each point on such a branch has non-trivial isotropy. Thus we shall
use the augmented potential and the same type of techniques as in the first part to treat
branches with non-trivial isotropy. However, we can obtain only bifurcating curves of
relative equilibria and not multi-parameter families; we lose the explicit dependence on
the momentum value along the bifurcating branch (which used to be known in the first
part whenH = {e}).

The paper is organized as follows. In Section 2 we quickly review the necessary
material on symmetric simple mechanical systems and introduce the notations and con-
ventions for the entire paper. Relative equilibria and their characterizations for general
symmetric mechanical systems and for simple ones in terms of the augmented and
amended potentials are recalled in Section 3. Section 4 gives a brief summary of facts
from the theory of proper Lie group actions needed in this paper. After these short
introductory sections, Section 5 presents the first bifurcation result of the paper. The
existence of branches of relative equilibria starting at certain pointsgp, depending
on several parameters and having trivial symmetry, is proved in Theorem 5.17. In Sec-
tion 6, using a result of Patrick [16], Lyapunov stability conditions for these branches
are given if the symmetry group of the given mechanical system is a torus. The second
bifurcation result of the paper is presented in Section 7. The existence of bifurcating
branches of relative equilibria with non-trivial symmetry is proved in Theorem 7.1. Due
to the presence of symmetry along the branch, this result is somewhat weaker than the
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one in Sectiorb yielding only one-parameter families of bifurcating relative equilibria
as opposed to the multi-parameter families described in Theorem 5.17.

2. Lagrangian mechanical systems

This section summarizes the key facts from the theory of Lagrangian systems with
symmetry and sets the notations and conventions to be used throughout this paper. The
references for this section are [1,2,9-12,18].

2.1. Lagrangian mechanical systems with symmetry

We shall use the following notation throughout the paperf ifM — N is a smooth
map from the manifoldM to the manifoldN, the symbol7,, f : T,,M — TN
denotes the tangent map, or derivative, of the rhap the pointm € M.

Let Q be a smooth manifold, the configuration space of a mechanical system. The
fiber derivativeor Legendre transfornfL : TQ — T*Q of L is a vector bundle map
covering the identity defined by

d
(FL(vg), wg) = — L(vg +twy)
dt |,—o

for any v,, w, € TQ. The energyof L is defined byE(v,) = (FL(vy), vy) — L(vy),
vy € T;Q. The pull back byFL of the canonical one- and two-forms @f*Q give

the Lagrangian oneandtwo-forms®; andQ; on TQ, respectively, that have thus the
expressions

(OL(vy), 5vq> = (FL(vy), Tvan(évq»’ vy € 1,0,
5vq € TvqTQ, QL = —d@L,

wherep : TQ — Q is the tangent bundle projection. The Lagranglaris called
regular if FL is a local diffeomorphism, which is equivalent €y, being a symplectic
form on TQ. The Lagrangiarl is called hyperregularif FL is a diffeomorphism and
hence a vector bundle isomorphism. Tha&grangian vector field{z of L is uniquely
determined by the equality

Qp (V) (XE(vg), wy) = (AE(vy), wy) for v, w, € T,0.
A Lagrangian dynamical systeror simply aLagrangian systenfor L is the dynamical
system defined bXg, i.e.,v = Xg(v). In standard coordinateg’, ¢') the trajectories

of X are given by the second-order equations

aoL o,
dt 0¢"  0qi

’

which are the classical the Euler—Lagrange equations.
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Let G be a Lie group of dimension at least ongjts Lie algebra,g* its dual, and
¥ : G x Q0 — Q asmooth left Lie group action o®. We shall often denote by
g-q :=¥(g, q) the action of the element € G on the pointg € Q. The infinitesimal
generatorof ¢ € g is the smooth vector field, € X(Q) defined by

d
o) = — . exprs) - g

for any ¢ € Q. The left lifted G-actions onTQ and 7*Q are defined by
g-vg i =T,¥(vy) and g-oy:= T;qq”g—l(d({)

for g € G, v, € T, 0, anday € 77 Q. The equivariant (relative to the left lifte@-action
on T*Q and the left coadjoint action d& on g*) momentum mapl : 7*Q — g* is
given by

(I(og), ©) = (09, Ep(q)) foray € T;Q. Ceg,

where (, ) always denotes the pairing between a space and its dual.

Let L : TQ — R be a Lagrangian that is invariant under the lifted actionGofo
TQ, that is, L(g - v4) = L(vy) for all g € G and v, € TQ. From the definition of the
fiber derivative it immediately follows thafL is equivariant relative to the (left) lifted
G-actions toTQ and T*Q, thatE is alsoG-invariant, and tha r is G-equivariant, that
is, ‘PZXE = X for any g € G. The G-action onTQ admits an equivariant momentum
mapJ; : TQ — g* given by

<‘JL(Uq), &) = (”:L(Uq)’ iQ(Q)) for Vg € Tq 0, ¢« 9
and hencel; = Jo FL. By Noether’s theorem); is constant on the flow oK.

2.2. Simple mechanical systems

A simple mechanical systerfQ, (-, )¢, V) consists of a Riemannian manifold
(Q, -, ) o) together with a potential functio® : Q — R. These elements define a
Hamiltonian system o7 *Q, w) with Hamiltonian given byH : T*Q — R, H(x,) =
%((ocq, ag )+ +V(q), wherea, € T70, (-, )7+ is the vector bundle metric ofi*Q
induced by the Riemannian metric €, and w = —d0 is the canonical symplectic
form on the cotangent bundIg* Q. In canonical coordinateg;’, p;) on 7*Q, we have
0 = p;dg’ and w = dg’ A dp;. The Hamiltonian vector field(y is uniquely defined
by the relationiy, w = dH.

The dynamics of a simple mechanical system can also be described in terms of
Lagrangian mechanics, whose description takes placEQmhe Lagrangiarl. : TQ —

R for a simple mechanical system is given liyv,) = %((vq, vy o — V(g), where
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v, € T,0. The energy ofL is E(v,) = %((vq, ve)) + V(g). Since the fiber derivative
for a simple mechanical system is given ByL(v,), w;) = (vg, weh o, Or in local
coordinatesFL (4°0/0q") = gi;4/dq’, whereg;; is the local expression for the metric
on Q, it follows thatL is hyperregular. The relationship between the Hamiltonian and
the Lagrangian dynamics is the following: the vector bundle isomorphisrijectively
maps the trajectories oX g to the trajectories ofXy, (FL)*Xy = Xg, and the base
integral curves ofXy and Xy (that is, the projections t® of the integral curves of
Xy and Xg) coincide.

2.3. Simple mechanical systems with symmetry

Let G act on the configuration manifol@ of a simple mechanical syste(@, (-, -)) o,
V) by isometries. The potential functioll : Q0 — R is assumed to b&-invariant.
The locked inertia tensofl : O — L(g, g*), where L(g, g*) denotes the vector space
of linear maps fromg to g*, is defined by

()& m = (@), np@ho

for any ¢ € Q and any¢, n € g. Note that kerl(g) = g, = {Eegliplg =0
The G-action onQ is said to belocally free atg € Q if g, = {0} which is equivalent
to G, being a discrete subgroup @. In this casel(g) is an isomorphism and hence
defines an inner product om

Suppose the action is locally free at every pajne Q. Then one can define the
mechanical connectiont € Q*(Q: g) by

A@)(vg) = 1q) N1 (vy), v, €T,0.

If the G-action is free and proper, s@ — Q/G is a G-principal bundle, thend is a
(left) connection one-form on the principal bundie — Q/G, that is, it satisfies the
following properties:

o A(g) : T,Q — g is linear andG-equivariant for every; € Q, which means that

A(g - 9)(8 - vg) = Adg[A(g)(vg)],

for any v, € T, 0 and anyg € G, where Ad denotes the adjoint representation of
G on g;
o A(g)(&p(g) =¢, foranyeg.

If 1 e g*is given, we denote by, e Q1) the u-component ofA4, that is, the one-
form on Q defined by(A,(q), v4) = (1, Alg)(vy)) for anyv, € T, Q. The G-invariance
of the metric and the relation

(AdeO)o(g) =g-Epg™tq),
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implies that
I(g-q) = Ad}_10l(q) o Ad,-1, (2.1)

where Ac{{_1 denotes the left coadjoint action gfe G on g*. We shall also need later
the infinitesimal version of the above identity

T,1(¢o(q) = —ad 0 I(g) — I(g) o ad:, (2.2)

where ad : g — g is the linear map defined by ag:= [, »] for any ¢, € g and
ad;i 1 g* — ¢* is its dual. This identity implies

(T,1Co @& n) =dUOE (@) (Lo@) = (M@IE L,m) + (@& . ) (2:3)

forall g € 0 and allé, 5, { € g.

3. Relative equilibria

This section recalls the basic facts about relative equilibria that will be needed in
this paper. For proofs sgé,9,11,12,19].

3.1. Basic definitions and concepts

LetW:G x M — M be a left action of the Lie grouf with Lie algebrag on the
manifold M. A smooth vector fieldX : M — TM is said to beG-equivariantif

Tn'Wo (X (m)) = X(Wg(m)) or, equivalently, lP;x =X

forallm e M andg € G. If X is G-equivariant, therG is said to be aymmetry group
of the dynamical systemi = X (m). A relative equilibriumof a G-equivariant vector
field X is a pointm, € M such that

X(m,) € TmF(G M),

where G - m, := {g - m, | g € G} is the G-orbit throughm,. Since 7,,,(G - m,) =
{Ey(me) | € € g} =: g-m,, this condition is equivalent to the statement that there is
some¢ € g, usually called thevelocity of m,, such thatX (m.) = &,;(m.). A relative
equilibrium m, is said to beasymmetricif the isotropy subalgebra,, = {1 € g |

Ny (me) = 0} = {0} and symmetricotherwise. Note that ifrn. is a relative equilibrium
with velocity ¢ € g, then for anyg € G, g - m, is a relative equilibrium with velocity
Ad, ¢ The flow of an equivariant vector field induces a flow on the quotient space.
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Thus, if the G-action is free and proper, a relative equilibrium defines an equilibrium
of the induced vector field on the quotient space and conversely, any element in the
fiber over an equilibrium in the quotient space is a relative equilibrium of the original
system.

3.2. Relative equilibria in Hamiltonian G-systems

Given is a symplectic manifoldP, w) and a left symplectic Lie group action &
on P that admits a momentum map: P — g*, that is,X;: = &p, for any ¢ € g, where
J(p) == (I(p), &), p € P, is the &-component of). We shall also assume throughout
this paper that the momentum madpis equivariant, that isJ(g - p) = Adz_lJ(p),
for any g € G and anyp € P. Note that the momentum mags: 7*Q — g* and
Jr : TQ— g* presented in SectioR.1 are particular examples of this general situation.

Given is also aG-invariant functionH : P — R. Noether's theorem states that
Jo F, =J for any ¢t € R for which the flow F; of the Hamiltonian vector field(y is
defined. In what follows(P, w, H, J, G) is called aHamiltonian G-systemConsistent
with the general definition presented above, a pginte P is a relative equilibrium
of Xy if

Xu(pe) € Tpg(G “ De)-

As in the general case, is a relative equilibrium if and only if there existse g,
called the velocity ofp,, such thatXy(p.) = ¢p(p.). Relative equilibria are charac-
terized in the following manner.

Proposition 3.1 (Characterization of relative equilibria Let p.(t) be the integral
curve of Xy with initial condition p.(0) = p. € P. Then the following are equiv-
alent

(i) pe is a relative equilibrium.
(i) There existst € g such thatp, (1) = exp(t&) - pe.
(iii) There exists: € g such thatp, is a critical point of the augmented Hamiltonian

He(p) == H(p) — (I(p) — I(pe), €).

We shall use later the following properties of relative equilibria in Hamiltonian
systems.

Proposition 3.2. Let p, be a relative equilibrium of{y with velocity £. Then

(i) for any g € G, g - p. is also a relative equilibrium whose velocity A, &;

(i) € € gyp,) =11 €gl act;J(pe) = 0}, the coadjoint isotropy subalgebra at
J(p.) € g*, which is equivalent to the identitx\dzxplf\](pe) = J(p.) for any
teR.



P. Birtea et al. / J. Differential Equations 216 (2005) 282-323 291
3.3. Relative equilibria in simple mechanical G-systems

In the case of simple mechanicalsystems, the characterization (iii) in Proposition
3.1 can be simplified in such way that the search of relative equilibria reduces to the
search of critical points of a real-valued function @ Depending on whether one
keeps track of the velocity or the momentum of a relative equilibrium, this simplification
yields theaugmentedor the amendedpotential criterion, which we introduce in what
follows. Let (Q, (-, ‘) o. V, G) be a simple mechanic#b-system.

e For ¢ € g, the augmented potentiaV; : Q — R is defined byV:(q) :

1
AUCISESR
e For u € g*, the amended potentiaV, : Q0 — R is defined byV,(¢) := V(¢) +

2w 1) 2.

It is important to notice that the amended potential is defineg @tQ only if g in an
asymmetric point. The amended potential has the alternate exprégsient o Ay.

Vig) —

Proposition 3.3 (Augmented potential criterign A point (¢, p.) € T*Q is a relative
equilibrium of a simple mechanical G-system if and only if there exisfseag such
that

(i) pe=(¢0(qe), ) € T 0 and
(i) g. € Q is a critical point of V.

Proposition 3.4 (Amended potential criterion A point (¢., p.) € T*Q is a relative
equilibrium of a simple mechanical G-system wjthan asymmetric point if and only
if there is au € g* such that

() pe = Au(ge) € T, Q and
(i) g. € Q is a critical point of V,,.

4. Some basic results from the theory of Lie group actions

We shall need a few fundamental results form the theory of group actions which we
now review. For proofs and further information sg4,7,15].

4.1. Maximal tori

Let V be a representation space of a compact Lie gi@up point v € V is regular
if there is noG-orbit in V whose dimension is strictly greater than the dimension of
the G-orbit throughv. The set of regular points, denotégg, is open and dense M.
In particular, geq and greq, denote the set of regular points gand g* with respect
to adjoint and coadjoint representations, respectively. A subgroup of a Lie group is
said to be atorus if it is isomorphic to ST x - - - x S1. Every compact, connected,
Abelian Lie group of dimension at least one is a torus. A subgroup of a Lie group
is said to be amaximal torusif it is a torus that is not properly contained in some
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other torus. IfG is a compact Lie group with Lie algebkg every & € g belongs to at
least one maximal Abelian subalgebra and eve#y g,¢4 belongs to exactly one such
maximal Abelian subalgebra. Every maximal Abelian subalgebra is the Lie algebra of
some maximal torus ii. Let t be the maximal Abelian subalgebra corresponding to
a maximal torusT. Then for any¢ € t N g,eq, We have thalG: = T for details see

[4].

4.2. Twisted products

Let G be a Lie group and? C G a Lie subgroup. Suppose thet acts on the left
on a manifoldA. The twisted actionof H on the productG x A is defined by

h-(g,a)=(gh,h™t-a), heH, geG, acA.

Note that this action is free and proper by the freeness and properness of the action
on theG-factor. Thetwisted productG x A is defined as the orbit spac& x A)/H

of the twisted action. The elements 6f xy A will be denoted by|g, a], ¢ € G,

a € A. The twisted producG x g A is a G-space relative to the left action defined by

g -[g,al = [g'g, al. Also, the action ofH on A is proper if and only if theG-action

on G xy A is proper. The isotropy subgroups of teaction on the twisted product

G xpy A satisfy

Giea) = gHag™t, g€G, acA.

4.3. Slices

Throughout this paragraph it will be assumed tHat G x Q0 — Q is a left proper
action of the Lie groupG on the manifoldQ. This action will not be assumed to be
free, in general. Foyy € Q we will denote byH := G, :={g € G| g-q = q}
the isotropy subgroup of the actio® at g. We shall introduce also the following
convenient notation: ifK c G is a Lie subgroup ofG (possibly equal toG), f is
its Lie algebra, andg € Q, thent.q := {ny(q) | n € f} is the tangent space to
the orbit K - ¢ at g. A tube around the orbitG - ¢ is a G-equivariant diffeomorphism
¢ :Gxyg A — U, whereU is a G-invariant neighborhood ot - ¢ and A is some
manifold on whichH acts. Note that th&-action on the twisted produdt xy A is
proper since the isotropy subgrotipis compact and, consequently, its action Aris
proper. LetS be a submanifold of) such thaty € S and H - S = S. We say thatSis
a slice at q if the map

¢:GxyS— U defined by [g,s]—> g-s

is a tube about - ¢, for someG-invariant open neighborhood @ - ¢. Notice that if
Sis a slice atq theng - S is a slice at the poing - ¢g. The following statements are
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equivalent:

(i) There is atubep : G xy A — U aboutG - g such thatp([e, A]) = S.
(i) Sis a slice atq.
(i) The submanifoldS satisfies the following properties:

(@) The setG - S is an open neighborhood of the orliit- ¢ and S is closed in
G-S.

(b) For anys € S we haveT,Q = g-s + T,S. Moreover,g-sNT,S = b -,
wherel) := {n € g | 75(q) = 0} is the Lie algebra offf := G,. In particular
1,0=9-9q@T1,S.

(c) Sis H-invariant. Moreover, ifs € S and g € G are such thag - s € S, then
geH.

(d) Leto: U c G/H — G be a local section of the submersich— G/H. Then
the mapF : U x S — Q given by F(u, s) := a(u) - s is a diffeomorphism onto
an open set of.

(iv) G-S is an open neighborhood @f-¢ and there is an equivariant smooth retraction
r:G-S—-G-q

of the injectionG - ¢ — G - S such thatr—1(g) = S.

Theorem 4.1 (Slice theorem Let the Lie group G act properly on the manifold Q.
For any ¢ € Q there exists a slice at.q

Theorem 4.2 (Tube theorem Let the Lie group G act properly on the manifold, Q
g € Q, and denoteH := G,. Then there exists a tubg : G xg B — U aboutG - ¢
such thato([e, 0]) = ¢ and ¢([e, B]) =: S is a slice at ¢ B is an open H-invariant
neighborhood of0 in the vector spacd, Q/T,(G - ¢), on which H acts linearly by
B (vg+ Ty(G - q) i= T, ¥h(vy) + T,(G - q).

If Q is a Riemannian manifold theB can be chosen to be @,-invariant neigh-
borhood of 0 in(g - ¢)*, the orthogonal complement tg- ¢ in T,Q. In this case
U=G- Equ(B), where Exg : 7,0 — Q is the Riemannian exponential map.

4.4. Type submanifolds and fixed point subspaces

Let G be a Lie group acting on a manifol@. Let H be a closed subgroup @.
We define the following subsets :
Quny=1q€ Q| G,=gHg " g G},
0" ={qge Q| HCG,
Qn=1lq€Q|H=0Gy).
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All these sets are submanifolds Qf The setQ g is called the( H)-orbit type subman-
ifold, Qp is the H-isotropy type submanifojcand 9 is the H-fixed point submanifold
We will collectively call these subsets thgpe submanifoldsWe have:

0" is closed inQ;

OQuwy=G-0n;

Qy is open inQ#.

the tangent space gte Qy to Qg equals

7,01 = (v, € T,0 | T,¥n(vy) = vy, Yh € H} = (T,0)" = T,0";

T,(G-q¢)N (TqQ)H =T,(N(H) - q), where N(H) is the normalizer oH in G;
e if His compact therQy = 0 N Oy and Qg is closed inQ ).

If Q is a vector space on whicH acts linearly, the seQ” is found in the physics
literature under the names space of singlet®r space of invariant vectors

Theorem 4.3 (The stratification theorejn Let Q be a smooth manifold and G be a Lie
group acting properly on it. The connected components of the orbit type mangojgs
and their projections onto the orbit spaa@ /G constitute a Whitney stratification
of Q and Q/G, respectively. This stratification a@/G is minimal among all Whitney
stratifications ofQ/G.

The proof of this result, that can be found 4] or [17], is based on the Slice
Theorem and on a series of extremely important properties of the orbit type manifolds
decomposition that we enumerate in what follows. We start by recalling that the set
of conjugacy classes of subgroups of a Lie gr@mdmits a partial order by defining
(K) < (H) if and only if H is conjugate to a subgroup ¢f. Also, a pointg € Q
in a properG-spaceQ (or its correspondindgs-orbit, G - ¢) is called principal if its
corresponding local orbit type manifold is open@ The orbitG - g is calledregular
if the dimension of the orbits nearby coincides with the dimensiorGofg. The set
of principal and regular orbits will be denoted I@princ/ G and Qreg/ G, respectively.
Using this notation we have:

e For anyg € Q there exists an neighborhoddl of g that intersects only finitely many
connected components of finitely many orbit type manifoldsQIlfs compact or a
linear space wher& acts linearly, then th&-action onQ has only finitely many
distinct connected components of orbit type manifolds.

e For anyq € Q there exists an open neighborhobdof g such that(G,) < (G,),
for all x € U. In particular, this implies that dintz - ¢ < dim G - x, for all x € U.

e Principal Orbit TheoremFor every connected compone@? of Q the subse princN
QY is connected, open, and dense @Y. Each connected componet®/G)° of
Q/G contains only one principal orbit type, which is connected open and dense in

(Q/G)°.
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5. Regularization of the amended potential criterion

In this section we shall follow the strategy [i6] to give sufficient criteria for finding
relative equilibria emanating from a given one and to find a method that distinguishes
between the distinct branches. The criterion will involve a certain regularization of
the amended potential. The main difference with [6] is that all hypotheses but one
have been eliminated and we work with a general torus and not just a circle. The
conventions, notations, and method of proof are those in [6].

5.1. The bifurcation problem

Let (Q, (-, o, V,G) be a simple mechanicab-system, withG a compact Lie
group with the Lie algebray. Recall that the lefiG-acton¥ : G x Q — Q is by
isometries and that the potentiédl: 9 — R is G-invariant. Letg, € Q be a symmetric
point whose isotropy groug,, is contained in a maximal toru$ of G. Denote by
t C g the Lie algebra ofT. Throughout this section we shall make the following
hypothesis:

(H) everyy,, €t-q. is a relative equilibrium

Throughout this paper the symbst := {«x € V* | («, x) = 0} denotes theannihilator
of the subsetS ¢ V in the vector space/*, relative to the duality pairing,) :
V* x V — R. Note thatS° is always a vector subspace ©f.

The following result was communicated to us by J. Montaldi.

Proposition 5.1. In the context above we have

(i) dVi(ge) =
(i) Mgt < | g, t]e.

Proof. (i) Because all the elements i ¢, are relative equilibria, we have by the
augmented potential criteriodV:(¢.) = 0, for any ¢ e t. Consequently, fo€ = 0 we
will obtain 0= dVo(g.) = dV (o).

(i) Substitutingq by ¢g. and settingy = ¢ € t in relation @.3), we obtain:

(10)E, €) (@) (Co(ge)) = (1(ge)lE, {1, €) + (I(ge) &, S, CD) = 2(0(ge) &, [€, D)
for any £ e t and { € g. The augmented potential criterion yields
0=dVe(ge) = dV(ge) — 3 d(1C)E, E)(qe)-

SincedV (g.) = 0 by (i), this impliesd(1(-)¢&, &)(¢.) = 0 and consequentlyl(g.)Z,
[&, D) =0, for any et and{ € g. So we have the inclusion

I(ge)E < (g, &°.
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Now we will prove thatlg, £]° = [g, t]° for regular element§ < t. For this it is enough

to prove that[¢, g] = [t, g] for regular elementg < t. It is obvious thatl&, g] C [, g]

if £ e t. Equality will follow by showing that both spaces have the same dimension.
To do this, letF; : ¢ — g, F:(7) := ad:n, which is obviously a linear map whose
image and kernel are If;) = [, g] and ke(F;) = ac- Becausel € t is a regular
element we have thaj: = t and so kefF;) = t. Thus dimg) = dim(t) + dim((¢&, g])

and so using the fact that di) = dim(t) + dim([t, g]) (sinceg =t @ [g, t], g being

a compact Lie algebra), we obtain the equality difng]) = dim([t, g]). Therefore,
[&, g] = [t, g] for any regular elemenf € t. Summarizing, we proved

I(ge)¢ < [g. 11°,

for any regular elemenf € t. The continuity ofl(g.), the closedness dfg, t]°, and
that fact that the regular elemenis= t form a dense subset @f implies that

(ge)¢ < g, 11°,
for any & € t and hencd(g.)t C [g,1]°. O

Lemma 5.2. For eachvy, € t- g, we haveGqu =G,.

Proof. The inclusionG,,, € G, is obviously true, so it will be enough to prove that
Gy, 2G,,. To see this, leg € G, andv,, = ¢0(ge) € t-qe, with £ € t. Then, since
Gy, is Abelian (because by hypothesis, c T), we get

d
T, Y, (qu) = T3 ¥, (éQ(%)) =T ¥, (E

\Pexp(tc“) (%))

t=0

d d
= d_ (‘Pg o lIlexp(tg“)) (qe) = — (\Pexp(tf) S \Pg)(QG)
tli=o dt|—o
d
= d_ ‘Pexp(té) (qe) = éQ(Qe) = Vq,,
t,—

that is, g - v4, = vg,, as required. [J

The bifurcation problem for relative equilibria arQ can be regarded as a bifurcation
problem on the spac@® x g* as the following shows.

Proposition 5.3. The mapf : TQ — Q x g* given byv, — (g, J.(v,)) restricted to
the set of relative equilibria is one to one and onto its image.

Proof. The only thing to be proved is that the map is injective. To see this, let

(q1. (€1 o(q1)) and (g2, (&2)o(g2)) be two relative equilibria such thaf (g1, (1)
(91)) = f(q2,(£2)0(g2)). Thengy = g2 =: g and I (g, (&1 — &) 0(q)) = l(g) (&1 —
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¢2) = 0 which shows thaté; — & € kerl(g) = g, and hence({1)o(q) =
(&o(g). O

We can thus change the problem: instead of searching for relative equilibria of the
simple mechanical system iFQ, we shall set up a bifurcation problem @hx g* such
that the image of the relative equilibria by the mis precisely the bifurcating set.
To do this, we begin with some geometric considerations. We constr@tnaariant
tubular neighborhood of the orhit-g, such that the isotropy group of every point in this
neighborhood is a subgroup &f,,. This follows from the Tube Theoremh.2. Indeed,
let B C (g-g.)" be aG,,-invariant open neighborhood of, 0¢ (g - ¢.)* such that on
the openG-invariant neighborhoods - Exp,, (B) of G -q., we have(G,,) < (G,) for
everyq € G.Eque(B). MoreoverG acts freely 0nG~Equ€ (B N (T, Q){e}). It is easy
to see thatB x g* can be identified with a slice ., 0) with respect to the diagonal
action of G on (G -Exp,, (B)) x g*. The strategy to prove the existence of a bifurcating
branch of relative equilibria with no symmetry from the set of relative equilibrig,
is the following. Note that we do not know a priori which relative equilibriumt irg,
will bifurcate. We search for a local bifurcating branch of relative equilibria in the
following manner. Take a vectar,, € BN (T, Q) and note that Exp(vg,) € O is
a point with no symmetry, that ii;Eque(vqe) = {e}. Thenty,, € BN (T;, Q) for
T € I, wherel is an open interval containin, 1], and Exp, (tvg,) is @ smooth path
connectingg,., the base point of the relative equilibrium fng, containing the branch
of bifurcating relative equilibria, to Exp(vg,) € Q. In addition, we shall impose that
the entire path Exp(tv,) be formed by base points of relative equilibria. We still
need the vector part of these relative equilibria which we postulate to be of the form
C(r)Q(Equg(wqe)), where {(t) € g is a smooth path of Lie algebra elements with
{(0) € t. Since Exp (tv,) has no symmetry for > O, the locked inertia tensor is
invertible at these points and the pdtér) will be of the form

{(1) = I(Exp,, (tvg,)) " H(B(1)),

where f(t) is a smooth path ig* with $(0) € [(g.)t. Now we shall use the char-
acterization of relative equilibria involving the amended potential to require that the
path (Exp,, (1v4,). B(1)) € (G - Exp,,(B)) x g* be such thatf ~1((Exp,, (tvg,). (1))

are all relative equilibria. The amended potential criterion is applicable along the path
Exp,, (tvg,) for T > 0, because these points have no symmetry. As we shall see be-
low, we shall look forf(t) of a certain form and then the characterization of relative
equilibria via the amended potential will impose conditions on hett) andv,,. We
begin by specifying the form of (7).

5.2. Splittings
We shall need below certain direct sum decompositions &id g*. The compactness

of G implies thatg has an invariant inner product and thgt t®[g, t] is an orthogonal
direct sum. Letf; C t be the orthogonal complement tg:= g,, in t. Denotingt, :=
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[g,t] we obtain the orthogonal direct sum= o @ f1 & fp. For the dual of the Lie
algebra, letny; := (f; @ I)° where (i, j, k) is a cyclic permutation of0, 1, 2). Then

g* = mo ® my @ my is also an orthogonal direct sum relative to the inner product on
g* naturally induced by the invariant inner product gn

Lemma 5.4. The subspaces defined by the above splittings have the following proper-
ties

(i) fo, Ty, T are G4, -invariant and G, acts trivially onfp and fy;
(i) mo, my, my are G4, -invariant and G4, acts trivially onnip and n;.

Proof. (i) BecauseG,, is a subgroup ofl it is obvious thatG,, acts trivially on
t = To @ f; and hence on each summand. To prove ¢hg-invariance off; = [g, t],
we use the fact that Ad¢;, &o] = [Adg &1, Adg &5, for any &1,¢ e g and g € G.
Indeed, ifé; € g, & ety g € Gy, we get Ad[Ey, & € [g, 1] = To.
(i) For g € G4,, 1 € mg we have to prove that @du € mp. Indeed, ifé = &1+ & €
i1 @ Iz, we have
(Ady 1, &) = (Ady p, &1+ &2) = (1, Adg (&1 + &2))

= (u, &1 +Ady &) =0

since G,, acts trivially onfy, I is G4, -invariant andmg = (f1 @ f2)°. The same type
of proof holds form; andm,. Forg € G,,, n € mg we have to prove that Agdu = U
Let £ =¢p+ &1+ E g, with & e, i =0,1,2. We have
(Adg pt—p, &) = (Adg i, So+S1+ Ca) — (1, So+ E1 + C2)
= (1, Adg (&g + &1+ &) — (i, So+ &1+ &2)
= (1, o+ &1+ Adg &) — (1, Co) = (1. &1 +Adg &) =0

becauseG,, acts trivially onfp @ I, > is G, -invariant, andmg = (f1 @ 12)°. The
same type of proof holds foi;. [

Recall from Sectior2.3 that kefl(g,) = 8, = fo. In particular,1(g.)fo = {0}. The
value of l(g.) on the other summands in the decompositips T @ 1 @ t2 is given
by the following lemma.

Lemma 5.5. For i € {1, 2} we have thatm; = [(g.);.

Proof. Let k; € f; with i € {0, 1, 2} be arbitrary. Then

(1(ge) k1, ko + x2) = (l(ge)Kk1, ko) + (1(ge) k1, k2) = (I(ge)x0, K1) + (1(ge) k1, 12) =0

as kerl(g.) = To and, by Propositiorb.1 (ii), l(g.)t C 5. This proves thaf(¢.)f1 C
my. Counting dimensions we have that ditg.)f; = dimf; — dimker(I(g.)ly,) =
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dimg — dimfp — dimf; = dimmy, since ker(ﬂ(qe)hl) = {0}. This proves thatn; =
[(g.)t1. In an analogous way we prove the equality foe 2. [

In the next paragraph we shall need the direct sum decompogjtica ny @ m,
where m; = I(g.)t and m := mg & my. Let I11 : g* — [(g.)t be the projection
along m. Similarly, denotet := 1 @ f> and writeg = g,, @ f. Thus there is another
decomposition ofy*, namely,g* = g;e@f". However, for any, € g,, and any¢ € g, we
have (1(g.)¢, {) = (€0(ge). Lo(ge)) = 0 sincely(g.) = 0, which shows that(g.)g C
9, - Since kell(g,) = g, it follows that diml(g.)g = dim g — dim kerl(g.) =
dim g —dim g, = dim g7 , which shows thatyy, = l(g.)g. Thus we also have the
direct sum decomposition* = [(g.)g @ °. Note thatl(g.)g = m1 & my, by Lemma
5.5 and thatng = £°. Summarizing we have:

g=modmi ®@my =1 ®Il(g)g, where l(g)g=mi®dmy and mg=1.

5.3. The rescaled equation

In this subsection we shall set up the bifurcation problem that will be studied in
detail later on.

Recall thatB C (g-¢.)" is a G, -invariant open neighborhood of, Oc (g-ge)* such
that on the opefG-invariant neighborhood;-Eque(B) of G-q., we have(G,,) < (G,)
for everyq € G - Exp,, (B). Consider the following rescaling:

qu € BN (T‘Ie Q){e} = Tvqe € BN (T‘Ie Q){e}

peg — Br.peg”
where,t € I, | is an open interval containinfp, 1], and 8 : I x g* — g* is chosen

such thatB(0, p) = Il1u. So, for (vg,, ) fixed, (tvg,, f(z, w)) converges ta0Q,,, IT1x)
ast — 0. Define

Br, ) i= g+ of (W) + 128" ()

for some arbitrary smooth function&, f” : g* — g*. Sincel is invertible only for
points with no symmetry, we want to find conditions 8 ” such that the expression

1(Exp,, (1vg,)) " B(z. 1) (5.1)

extends to a smooth function in a neighborhoodzct 0. Note thaty,, is different
from Q,, sinceG,,, = {e} by construction andzo,, = G,, # {e}. Define

D:1x(BN(Ty,Q)ey) x g x g, xT—>g*
D(t, vg,, 1, &, 1) 1= LEXP,, (tvg,)) (€ + 1) — Bz, ). (5.2)
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Now we search for the velocity + n of relative equilibria among the solutions of
D(7,vg,, 1, &, n) = 0. We shall prove below thaf and# are smooth functions of,
Vg, 4, €ven att = 0. Then B.1) shows that + # is a smooth function of, v,,, u,
for 7 in a small neighborhood of zero.

5.4. The Lyapunov—Schmidt procedure

To solve ® = 0 we apply the standard Lyapunov—Schmidt method. This equation
has a unique solution fot # 0, becauserv,, € B N (T,;, Q) SO I(EXp,, (Tvg,)) is
invertible. It remains to prove that the equation has a solution wherD. Denote by
ngexf the Fréchet derivative relative to the last two factgysx f in the definition of
®. We have

kenglef(D(Ov vqg’ 'l,l, éa ’1) = kerﬂ(‘]e) = gqe'
We will solve the equationd = 0 in two steps. For this, let
IT:g" — l(ge)g

be the projection induced by the splitting = [(g.)g ® °.
Stepl: Solvello ® = 0 for 5 in terms ofz, v,,, u, ¢. For this, let

T(EXP,, (tvg,)) = (Lo )(EXP,, (tvg))]; : T — 1(ge)g
1(Exp,, (1vg,)) := (I o D)(EXp,, (1v5,))lg,,: 8, — 1(ge)8
WhereT(Eque (tvg,)) is an isomorphism even when= 0. Then we obtain
(Io ®)(0, v, p, &, 1) = TT[(ge) (& + ) — BO, 1] = T(ge)n — Map. (5.3)

Denoting Ny :=T(qe)‘1(H1,u), we have(Il o @)(0, v, u, &, n =0. Denoting byD,,
the partial Fréchet derivative relative to the variaple f we get at any given point
0,0, 1%, &% %

Dy(M o ®)(0, v2 . 1%, &, 1% =T(ge) (5.4)

which is invertible. Thus the implicit function theorem gives a unique smooth function
N(T, vg,., i €) such thaty(0, v, 10, &% = n° and

(ITo @) (7, vg,, 1, &, n(t, vy, 1, &) = 0. (5.5)
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The functiony is defined in some open set inx (B N (quQ){e}) x g* x g, containing
0, v, 0, & € {0} x (BN (T,,0)ie}) X §* x g, If we now choosen® = 1,0 =
’[l\(qe)’l(l_ll,uo), then uniqueness of the solution of the implicit function theorem implies

that (0, vy, s, &) = 1, in the neighborhood of0, v , u°, 9. Later we will need the
following result.

Proposition 5.6. We have,, :=T(qe)‘1(H1u) et ct.

Proof. Since we can writd = kerl(g,) @ f; we obtain
T(go)t = (Mo Mgt = 1(ge)tr = I(ge)(t) = Im I,

Now, becaus@(qe) is an isomorphism, it follows tha?t(qe)—l(l'[lu) ctf;. O

Step2: Now we solve the equatiodd — IT) o ® = 0. For this, let
@1 x (BN (T Qe}) x ¢ x g, = F
(p(T, qu’ ,u, é) = (Id - H)q)(f, vqgv tu’ 57 7’](77 quv .uv é)) (56)

In particular,@(0, vg,, 1, &) = (Id—ID)(I(ge) (E+n,)—I11p). Since Iml(g.) = Im IT and
ImII1 = I(ge)t C I(ge)g, it follows that¢(0, v, , 1, &) = 0. We shall solve fo€ e 8y,

in the neighborhood of0, v2 . 1°, &% found in Step 1, the equatiap(t, vy, 1, &) = 0.

To do this, we shall need information about the higher derivatives afith respect
to 7, evaluated at = 0.

Lemma 5.7. Let £, n € g and ¢ € Q. Suppose thadV,(g) = 0, where V,, is the
augmented potential and suppose that botand [£, 7] belong tog,. Thend(I(-)<, 1)

Proof. SincedV;(q) = 0, 17,(q) is a relative equilibrium by Propositio8.3, that is,
Xn(ug) = nr«g(oy), Wherea, = FL(17,(q)). Now suppose that bot8, [<, 7] € 9y
Then

d
Creglog) = 7 FL(eXp(tS) - no(q)) = FL([S, nlo(g)) =0,
=0

where we have used that 1, (q) = (Adg 1) (g -q). It follows that (n + O+ (o) =
Xp (o) @and hence, again by Propositi@8, that 0= d V), :(¢) = dV;(q) —d(I()n, &)
(@) — 3d1IEo()112(g). However,d|| & (-)1%(q) = O since¢ e g, @s an easy coordinate
computation shows. SincdV,(¢) = 0 by hypothesis, we have(l(-)y, &)(¢) = O.
Symmetry ofl(g) proves the result. O
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Let now ¢ € g, andy € t. Sinceg, Ct, we have[,n] = 0 € g,,. In addition,
hypothesis Ki) and Propositior8.3, guarantee thatV:(g.) = 0 which shows that all
hypotheses of the previous lemma are satisfied. Therefore,

d(I()¢ n)(ge) =0 for Ceg,, net (5.7)

5.5. The bifurcation equation

Now we can proceed with the study of equatign= (Id — IT) o ® = 0. We have

0
a—f (T, Vg 1. &) = (Id — I [T (10 EXP, ) (v, ) (& + (T, vg, . 1, &)

0 0
HERD, (00)) S 0 - L m] Y

Proposition 5.8. (%(/)(O, Vgos s &) = —(Id — ID ' ().

Proof. Formula 6.8) gives fort =0

0
a—‘f 0, vy . &) = (Id — D) [(quque)) &+

on op
+0(ge) > 0, vg,, 1, ©) — > O, u)} .

Now, because IM(g.) = ImII we obtain (ld — IT) o I(¢.) = O and hence the sec-
ond summand vanishes. From (5.7) we have #1g}1(v,,)) (1) C g,, = ImIL Us-

ing Proposition 5.6 and sincé € g, C t, we obtain that¢ + n, € t. Therefore

(Id — ID[(T, I(vg N (& + nol = 0. SincedB/ot(0, u) = B’ (1), we obtain the desired
equality. O

Let us impose the additional conditighi(x) C Im I1. Then it follows that

(p(Ta vqgﬂ luv é) = Tzlp(rs vqgﬂ luv é)
for some smooth functioy where

2
7 O v 1.0,

D

NI =

l//(07 Uqg’ H, 5) =

D

We begin by solving the equation

¥(0. v, 1. ©) =0
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for ¢ as a function ofv,, and . Equivalently, we have to solve

10
E a_,:ZD (07 vqg’ :ua f) = O

To compute this second derivative gf we shall use §.8). We begin by noting that
T el > Ty, (1o EXp, )(vg,) is a smooth path inC(g, g*) and so we can define the
linear operator fromy to g* by

0

Vg = = Try,, (I o Exp,,)(vq,) € L(g,g").

=0

With this notation, formulasH.8), (5.2), (5.6), and Proposition 5.6 yield

2

0 0
a—r‘ﬁ 0, v, 11, &) = (Id — ) [Avqe@ ) + 2T, 0(vg,) 2

pn (0, vg,., 1, &)

& )
+0(ge) a—fz 0, vg,, 1, &) — 2P (M):|
= (Id —IT) [A (& + 1) + 2T, 1(vg,)

0
a_z (O, Vg, > i, 5) - Zﬁ”(ﬂ)] (59)

since (Id — IT) I (g.) 62;1/612 (0, vg,, 1, &) = 0. Let{¢y, ..., ¢} be a basis ogqe. Since

ﬁz(p(‘c, Vgos 1, €)/0T% € T° and g = g, @I, the equation&zq)(o, Vgos 1, €)/0T% = 0 is
equivalent to the following system qf equations:

2
<% (0, vg,, u, ), Cb> =0 foral b=1,...,p,
which, by 6.9), is

0
<(Id - H) |:Avqe (5 + 77#) + Zqu[l(vq(») a_’z (07 qu’ U, f) - Zﬁ//(.u)i| ) éb> = 0
forall b=1,...,p.

We shall show that in this expression we can drop the projeldor I1. Indeed,
let o« = op+ 01+ a2 € g = mg @& my  mp, whereo; € my, for i = 0,1,2.
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Sincell : g* — [(g.)g = m1 ® mp, we have
((d = IDa, &) = (o, &) — (0, Cp) — (22, &) = (2, &p)

because(as, £,) = 0, sinceas € my = (fo ® 2)°, &, € g,, = To, and (x2, §) = 0,
sinceap € mp = (fo d £1)°, &, € 8y = fo. The system to be solved is hence

<Auqe (€ +ny) + 274, 1(vg,) % (0, vg,, 1, ) — 28" (W), 5b> =0
forall b=1,...,p. (5.10)

In what follows we need the expression fon/dt(0, v,,, 1, £). Differentiating 6.5)
relative tot at zero and taking into account (5.4) and (5.2), we get

0 -~ 0
a_z (07 Vge» Uy 5) = _U(qe)il a (H o q))(ov Vge» U, fs nu)

)™M [ T4, 00 )€+ 1) = B (0]

- (F(qe)—l o Ty, F(vqe)) ¢ = (W™ o 7, Tw,) 0 Tg) ™)

(M1p) + 1(ge) "2 (W) (5.11)

-~

since7,, | = HqueU|gqe and 7,0 = ITo T, [l;. Expanding¢ in the basis{¢y, ..., ¢}
as ¢ = o/ ¢; and taking into account the above expression, sys&d0) is equivalent
to the following system of linear equations in the unknows. .., o?:

Apo® +B, =0, a,b=1,...,p,

where
Aav = 0,0 0) - 2( (11000 0T F o1, T ) 606} 532)
By = <(Aqu o lT(ge) o Hl) 1 §b>
2((740000,) 0 Tg) ™ 0 7wy 0 Tlg) ™ 0 Tha) 1. &)

12((T 00 0 Ta) ™) B0, &) — (B (0. &) (5.13)

Denote byA :=[A,] the p x p matrix with entriesA,,. Thus, ifv,, ¢ Z =: {y,, €
BN (T, Q) | det A = 0} this linear system has a unique solution #6c..., 0P, that
is for £, as function ofv,,, u. We shall denote this solution b§g(vg,, 1.



P. Birtea et al. / J. Differential Equations 216 (2005) 282-323 305
Summarizingif v, ¢ Z, then &y(vy,, 1) is the unique solution of the equation

2
¢

072

(0, vg,, 1, &) = 0. (5.14)

Lemma 5.9. The setZ is closed andG,,-invariant in B N (T,, Q)

Proof. The setZ is obviously closed. Sincé is G, -invariant it follows thatf® is
Gy, -invariant. Formula Z.1) shows thatl(¢.)g is also G4, -invariant. Thus the direct
sum l(¢g.)g ® I° is a G, -invariant decomposition ofy* and thereforell : g* —
I(ge)g is Gy, -equivariant. From theG,, -equivariance of Exp and (2.1), it follows
that I(EXP,, (h-vg,)) = Ad;,lo ﬂ(Eque(vqe))OAdh—l. Therefore,l](EquE (h- vqe))|gqe =
?ﬁzfl o I](Eque(vqe))|gqe for any h € G4, sinceG,, C T and hence A;;J|gqe =id.

us

1(EXp,, (h - vg,)) = [0 I(EXp,, (T, ¥h - vg,))lg, = IToAd?_ o I(EXp,, (v,)]g,

= Ad;_y o T o I(EXp,, (vg,))]g,, = Ad?_; o 1(EXp,, (vg,)

for all h € G, andvy,, € B. Replacing herey,, by sv,, and taking thes-derivative at

zero shows thaty, 1 (2 - v,,)¢ = Ad;‘l_l (qu ﬂ(v,@é) foranyh € G, and ¢ € 8y,

that is, T,, 1 (vg,)¢ is G4 -equivariant as a function of,,, for all ¢ 9, - Similarly
Ty I(h - vg,) = Ady_y 0 Ty, I(vg,) 0 Adj-1. From (2.1) and the definition af(ge) L, it
follows that 1(g.)~* = Adj, o I(g.) L o Ad; for any h € Gg,. Thus, forh € G,, the
second summand id,;, becomes

<(quﬂ(h +vg) 0 Tg) o Ty, UG- qu)> Sa> 5b>
= <(Ad;l 0 T, (vg,) 0 Ady-1 0 1(ge) Lo AdY ;0 T, E(u@) &, éb>
_ <(Ad;1 0 Ty, M(vg,) 0 Tge) o T, F(vqg) Ea, éb>
= <(qu 1(vg,) 0 U(ge) Lo Ty, H(vqe)) Ca» Ay -1 5b>

= <<qu U(qu) O’l]\(‘h)_l o qu E(Uqf)> éav éb>

since Ag,-1¢, = ¢, becauseh € G, and ¢, € g, . This shows that the second
summand inAg, iS Gy -invariant. Next, we show that the first summand Ay, is
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Gy, -invariant. To see this note that

0
<Av‘1€ Cfa’ Eb) - 6_ <T‘w¢1€ (Io Eque)(véh)éav éb)
T|:=0
2
= 0<”(Eque(wqe))5a»éb).
=

Therefore, for anyh € G,, we get from 2.1)

2

0
(Ahﬂ)qg Cas gb) = ﬁ <|](Eque (th - qu))éav fb)
=0

= | (10 Exp,, (tvg))E0. &)
7=0

= | (Ad;_I(Exp,, (tvg,))Ad)-1 &y &)
7=0

= | (IExp, (tvg,)Ad),-1&,, Ad)-1 &)
=0

= —| (MExp, (1vg,))Ea. &) = (Av,, Ear &)
=0

as required. OJ

Proposition 5.10. The equationg(t, vy, , 1, &) = 0 for (t,v,,, 1, &) € I x (B N(Ty,
O)ier \ Z) x g* x g,, has a unique smooth solutiof(z, vy, ) € g,, for (z, vg,, ) €
I x (BN (Ty, Qe \ 2) x g*.

Proof. Denote by D: the Fréchet derivative relative to the variakiec g, - Recall

that &o(vg,, p) € g, s the unique solution of the equati(ﬁ%go/arz(o, Vg, 4, €) = 0.
Formulas §.9) and (5.11) yield

62(,0
ﬁ (07 vqe7 K, 6)

= (Id -0 [A,,qe &+, -2 (quﬂ(vqe) ol(ge) o T, H(u@) &
= 2T, 000,) 0 g) ™ 0 T4, Tw,,) 0 T ™) (Mg

+2(T0g) 0 Ta0) ™) (B0 - Zﬁ’/(u)] (5.15)
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and hence

2
0" @ .
DCV ﬁ (0’ qu’ K, CO(vqgv ,Ll))

= (Id — H) |:Avqe |ﬂz1e - ZTQEH(UQe) o,h\(q(f)_l © Tq" ﬂ(qu)] : gqe -~ fo.

We shall prove that this linear map is injective. To see this, note that relative to the
basis{¢y, ..., ¢,} of g, this linear operator has matrik by (5.12). Thus, ifv,, ¢ Z,
this matrix is invertible. In particular, this linear operator is injective.

Sinceg = g,, ®1, it follows that dimg, = dim g—dim f = dim °, so the injectiv-
ity of the map Di<az<p/arz)(o, v, 10, &Y, 1%) implies that it is an isomorphism.
Therefore, ifv,, € BN (T, Q)i \ Z is nearvge, the implicit function theorem, guar-
antees the existence of an open neighborh®gdc I x (B N (Ty, Qe \ 2) x g*
containing (0, vfl’e, 1% € {0} x (BN (T,, Q) \ 2) x g* and of a unique smooth func-
tion & : Vo — g, satisfying o(t, vy, . &(1, vy, 1)) = 0 such thaté(0, v,?,_,,ﬂo) =
Zo(Q . u0). On the other hand, for 3 0, the equationg(t, v, ) = 0 has a
unique solution foré, namely thegqe—component oﬂ](Equq (rvqe))*lﬂ(r, w), which is
a smooth function ofr, v,,, u. This is true sincel + 5 = I](Equq (rvqe))*lﬂ(r, ) by
construction and we determined the two compongnésg,, andn efin g=g, &f
via the Lyapunov—Schmidt method, precisely in order that this equality be satisfied.
Therefore, the solutiori(z, v,,, 1) obtained above by the implicit function theorem
must coincide with they, -component oﬂ](Equq (rvqe))‘lﬁ(r, w) for > 0. Since this
entire argument involving the Lyapunov—Schmidt procedure was carried out for any
(), 1), it follows that the equatiorp(t, v, 1, &) = 0 has a unique smooth solution
(T, vg, ) € 8, Tor (t,vg,. ) € I x (BN (T, Qi) \ ) x g*. [

Remark 5.11. The previous proposition says that if we define

{(T, vg,.. ) = 1(Exp,, (Tvg,) B, 1)

on (I\{0}) x (BN (T3, Q)ey \ Z2) x g, then{(z, vy, ) can be smoothly extended
for 7 = 0. We have, in fact{(z, vy, p) = &(z, vg,, ) +1(1, vg,, 1, £(t, vg,, W), Where

n(t, vy, u, &) was found in the first step of the Lyapunov—Schmidt procedure and
&(t, vg,, 1) ig\the second step, as given in Propositioh0. Note also thaf(0, v, , u) =

Eo(vg,, 1) + 1(ge) Myp € t.
5.6. A simplified version of the amended potential criterion
At this point we have a candidate for a bifurcating branch from the set of relative

equilibriat-g.. This branch will start af(0, v, , 1) o(ge) € t-g. C T;,,Q. By Lemma 5.2,
the isotropy subgroup af(0, vy, , 1) o(g.) equalsG,,, for anyv,, € BN (T, Q) \ 2
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and u € g*. The isotropy groups of the points on the cul(e, vy, . ) o (EXp,, (tvg,)),
for T % 0, are all trivial, by construction. Hendr, vy, , W o (Exp,, (tvg,)) is a curve
that has the properties of the bifurcating branch of relative equilibria with broken sym-
metry that we are looking for. We do not know yet that all points on this curve
are in fact relative equilibria. Thus, we shall search for conditionsvgnand u
that guarantee that each point on the cutve> {(t, vg,, 1 o (EXp,, (tvg,)) is a rel-
ative equilibrium. This will be done by using the amended potential criterion (see
Proposition 3.4) which is applicable because all base points of this curve, namely
Exp,, (tvg,), have trivial isotropy forr # 0.

To carry this out, we need some additional geometric information. From standard
theory of proper Lie group actions (see e.g. [4,7], or Section 2.3) it follows that the
map

[Vg.. tlG,, € (B x g%)/Ggq, —> [EXp,, (vg,), tlc € (G -Exp, B) x ¢")/G  (5.16)

is @ homeomorphism ofB x g*)/ G4, with ((G-Exp,, B) xg*)/G and that its restriction

to (BN (T, Qo) \ 2) x g%)/ Gy, is a diffeomorphism onto its image. We think of

a pair (Exp,, (vg,), 1) as the base point of a relative equilibrium and its momentum
value. All these relative equilibria come &-orbits. The homeomorphisnb.(16) allows

the identification of G-orbits of relative equilibria withG,,-orbits of certain pairs
(vg,, w). We shall work in what follows on both sides of this identification, based on
convenience. We will need the following lemma, which is a special case of stability of
the transversality of smooth maps (see e.g. [5]).

Lemma 5.12. Let G be a Lie group acting on a Riemannian manifold¢Qe Q, and
let £ C g be a subspace satisfyirign g, = {0}. Let V C T, Q be a subspace such that
f-q®V =T,0. Then there is arx > 0 such that |f||vq|| < ¢,

TEqu(Uq)Q =1. Equ(Uq) &) (Tuq Equ)V

To deal withG-orbits of relative equilibria, we need a different splitting of the same
nature. The following result is modeled on a propositior{6h

Proposition 5.13. Let v,, € B N (T, Q)e) \ Z be given. Consider the principal,, -
bundle BN (T, Q)(e}\ Z — [BN(Ty, Q)e} \ 21/ Gy, (this is implied by Lemm&.9). Let
U be a nelghborhood of0,,1 € (T, Q)/G,,e and define the open sét := =Un [BN
(T4, Q)(e}\ 21/ Gg, In [BN(Ty, Q) e} \ 21/ Gy, Leta : U C [BN(Ty, Q)e)) \ 21/ Gg, —
B m (T, Q)iey \ Z be a smooth sectioriv, ] € U, and G := Eque oog:U — Q. Then
there exists > 0 such that forO < t < ¢ sufficiently smallwe have

To(ito,n Q@ = t-3([1vg, D) & Tirv,,10(Tizv,,1U)
S (Ta([‘wqe]) Eque)(fZ “ge).
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Proof. Sinceg=f@ i1 df andip = g, We haveT,, 0 =t1-¢. @t q. D (g- ge)t.
Apply the above lemma with =f; andV =1, - ¢. ® (§- g.)*. For thee > 0 in the
statement choose such that O< 7 < ¢ and ||a([tv, 1| < & Then

To(1r,n @ = T1-3([tvg, D) & (To(ev, nEXP,) (2 g © (g - g

=t 3[04, & (To(ru,, nEXD,) (8- g0))
® (To(rv, nEXP, ) (F2 - ge) (5.17)

since Exp, is a diffeomorphism onB c (g - g.)*. Since (s, U) is a smooth local
section,Z is closed andG,, -invariant in BN (T, Q) e}, and (T, Q)i is open inT,, O,
it follows that B N (T, Q)¢ is open in(g - g.)= and thus we get

(84" = To(teog ) B N Ty, Qo) \ 2) = Tz, 10(Tizu,, 1U) @ To - 0 ([T, ).

wherefp-o([tv,,]) = {CTqEQ(O'([Tqu]) | { € To}. The G4, -equivariance of Exp implies
that

Tuqe Eque (6T

qe

o(ug,)) = Co(EXp,, (ug,)) forall Cefo, ug €70
and hence

(Toeog, NEXP,, ) (8- ge) ™)

= (Ta([rvqg]) Eque o T[rvqe]a)(T[‘rvqe]U) @ (To([w,h,]) Eque)(fo : 0([“]515]))
= T[wqe]E(T[wqe]U) @ fo - a([tvg, D). (5.18)

Introducing 6.18) in (5.17) and taking into account that fo®f; we get the statement
of the proposition. (I

We want to find pairs(v,, ¢) such thatdVpg. ) (Exp,, (tvg,)) = 0 for = > 0. Since
Vi, 18 G g, w-invariant, this condition will hold if we only verify it on a subspace
of TEqug(wqe)Q complementary t® g7 0 - EXPy, (Tvg,) = t- Exp,, (tvg,)- The previous
decomposition of the tangent space immediately yields the following result.

Corollary 5.14. Suppose that € g* is such thatgg, ,, =t for all = in a neighborhood
of zero. Let U andr be as in Propositiors.13,[v,, | € U, ands := Exp, oc. Then there
is an ¢ > 0 such thatdVg ,,(a([tv,])) = O if and only if d(Vg ) o @) ([tvg]) = 0
and d(Vg, © Exp,, ) (o([tvg, Dltyq, =0 for 0 <7 <.
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5.7. The study of two auxiliary functions

In this technical subsection we shall blow up the amended potential in order to be
able to extend it also at the value= 0. This will be done by introducing two auxiliary
functions whose properties we shall investigate below.

Let | be an open interval containing zero. Recall that dim g, = dim mo. Let 91
be an element of a basfg, >, ..., 9,} for mg and definef : (I\ 0) x (M1 Pny) —

g* by
B, 1) = Map+ tlop + 01,

whereIl; : g* — my = l(¢g.)t and Il : g* — m2 = t°. Notice that this function is a
particular case of

Bz, ) = Map+ < (0 + 26 (),

by choosing f'(n) = Ilou and p’(n) = 91. Recall thatl(g.) = my & my by
Lemma5.5 and thatl; (g- g.) = [(ge)g from the definition ofJ; .

Theorem 5.15. The smooth functioy : I x U x Jr(g-q.) — R defined by

Fi(t, [vg ], ) == (Vg © 0)(tlvg, 1)

can be extended to a smooth function bix U x J;.(g - g.), also denoted byF;. In
addition

Fi(t, [vg,], ) = Fo(p) + T2 F (z, [vg, ], 1),

where Fp, F are defined onl;(g-¢.) and onl x U x J1.(g - g.) respectively.

Proof. Denotev,, := d([vy,]) € BN (T, Q) \ 2. One can easily see that

(Ve.w © 0 (tlvg 1) = V(EXp,, (tvg,))

+3 (B, 1. 1Exp,, Gog ) B ).

By Remark 5.11, the second term is smooth even in a neighborhood ef O.
Since the first term is obviously smooth, it follows theg , o @ is smooth also
in a neighborhood oft = 0. This is the smooth extension df; in the statement.
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Let {¢1,....¢,} be a basis forg,, Ct. Then, again by Remar§.11, we have

1(Exp,, (tvg,) Bz, 1)

14 )4
=3 0T, g ) + 11 <T, Vgl D %a(T, Vg, u)@) :

a=1 a=1

whereay, ..., oy, n are smooth real functions of all their arguments. In what follows
we will denote

P
n <r, Vg, > M, Z %a (T, Vg, , y)§a> =1(T, Vg, 1, 22(T, Vg, W), ..., 0p(T, Vg, , W)).
a=1

Let p € Jp(g-ge) = my @ mp and vy, € B N (T, Q))\Z. Since, in the compu-
tations that follow, the arguments,, and u play the role of parameters, we shall
denote temporarilyx,(t) = o,(t,vq,, ), a € {1,...,p}, and n(z,0,...,%y) =
n(t, vg,, W, 01(T, Vg, 1), - .., 0p(T, Vg, 1)). Then by 6.11) we get

p

. . ~
G_Z 0, 01,...,0p) = — Z oy (U(qe)l o Ty, ﬂ(vqe)> ¢,

a=1

— (g™ 0 7, T(wg,) 0 Uge) ™) Mgt +Tge) Mgt

Formula (5.3) shows that

an
E(O,OC]_,...,OCP)ZO.

Note that

1 -
Ve EXP, (@0, o = V(@) + 5 (Map. Tigo) ™ Map)

is independent of,,. This shows tha#1 (0, [v,, ], ©) = Fo(u) for some smooth function
on my @ np. Using Remarks.11, we get

d

dt

V. (Eque (Tvg,))
=0

T=!

1 P
= dV(go)(vg) + 5 <qu, > %@ + 10,0, ..., ocp)>

a=1

P

1 Joy on on
+§ <H1,u, Z % 0 <§a + @ ©,a1,..., ocp)> + P (0, o, ...,ocp)>.

a=1
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The first termdV(g.) = 0 by Proposition5.1 (i). Since (0, vy, u, &) = 1, =
’[I\(qe)*ll'llu € t by Proposition 5.6, we get

p p

3 00 (O)E, + 00,01, .. ) = Y #a(0)E, + U(ge) Map e t.
a=1 a=1
Thus the second term vanishes because= t°. As dn/dx,(0, a1, ...,%,) = 0 and

my annihilatesg, , the third term becomes

p

0 (. ~
<H1ﬂa 6_1‘;] 0, 0a,..., O‘p)> = - Z Oa <H1,u, (H(Qe)l o qu ”(qu)> £a>

a=1
~ (M (Tgo™ 0 7, Twy,) 0 Ttgo) ™) Mapy)
+ <H1M,/|]\(qe)_1nzﬂ> .

We will prove that each summand in this expression vanishes.

e Since (myg, f1) = 0, we get
<Hlu, (T(qerl o Ty, ﬂ(vq)) éa>
= <qu ﬂ(vqe)éaa ’l]\(‘Ze)_lnllu>

= (T 00)¢0 g™ MIap) = d(16)E, 1) (@) (0g,) = O

by (5.7) becaus€, € g,, andy, € t. Thus the first summand vanishes.
e The second summand equals

(s, (g0~ 0 7,004, 0 Tg) ™) Thap) = (T3 Bwg 0 1) = (T g 11,

becauseg(ig, f1) = 0. We shall prove that this term vanishes in the following way.
Recall thatn, € 1 C t. For any{ € t, hypothesis i) states that{,(q.) is a
relative equilibrium and thus, by the augmented potential -criterion (see
Proposition3.3), dV;(¢.) = 0. Since

dVé(qe)(qu) = dV(‘h)(uqe) - %(quﬂ(uqe)gv C)

for anyu,, € T,, 0 anddV(q.) = 0 by Propositiorb.1 (i), it follows that(quI](uqe)C,
§) = 0. Thus the second summand vanishes.
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e The third summand is
(M2, Tgo) ™ MMape) = (Tape. ) = 0

becausan, = t°.
So, we finally conclude that

Ve (EXDy, (tvg,)) = 0

d
dt =0

and hence, by Taylor's theorem, we have
Fi(3, [vg, ], 1) = Fo() + ©°F (z, [vg, 1, )
for some smooth functiofr. [
Theorem 5.16. The smooth functio1 : (1 \ {0}) x U x J.(g - ¢.) — T defined by
(G1(z, [vg, 1, ), ¢) = d(Vg(e y © Exp, ) (a(tlvg, D) (So(ge)) . ¢ € Ta,

can be smoothly extended to a function br U x J;(g-¢.), also denoted byG1. In
addition,

Gi(z, [vg ], ) = 1G (1, [vg, ], W
whereG : I x U x J.(g-g.) — T is a smooth function

Proof. We will show thatG; is a smooth function at = 0 and thatG1(0, [v,,], ) = 0.
Let vy, = o([vg]). Then

<G1(T7 [Uqg]a ,u)7 g)
= dVpee (Eque (tvg,)) (vaqe Exp,, (co))
= dV(Exp,, (tvg,)) (Tww,, EXP,, (S0 (qe)))

+3 (B 0. T, 000 1O ™) (T, EXD, (50(0))) Bz, )
= AV (Exp, (10y,) (T, EXP, (50(00)) = 3 Bz .
[1EXp,, (104 ) ™ 0 Texp, cuy)V (T, EXRy, (50(00))

oIEXP,, (ru, )Y Bz, )
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= dV (Exp,, (1vg,)) (Trw, EXPy, (S0(40)))

1
) <C(T’ Vg, s )5 TEquL, (w,,{,)U (Trvqe Eque (QQ(‘Ze))) {(z, Vq,>» ,U)> )

where (1, vg,, 1) := 17 ((Exp,, (tvg,))B(z, ). Sincel(t, vq,, p) is smooth in all vari-
ables also atr = 0 by Remark5.11, it follows that(Gi(z, [v4,], 1), c) iS a smooth
function of all its variables. Its expression at= 0 equals

(G1(0, [vg, 1, W, )
=dV(qe)(c0(ge) — 5 (L0, vg, ), Ty 1 (50(ge)) (O, vy, , )
= dV(ge)(So(ge)) — 3 ((1(g)IL(0, vy, ), 1. L(O, vy, W)
—3(1(g) (0, vy, . ). [0, vg,., ). <)

=dV(9.)(Go(qe)) — (1(ge)C(0, vy, 1), [£(0, vy, ), ¢l)

by (2.3). SinceV is G-invariant it follows thatdV (g.) (s (¢g.)) = 0. Since((0, vy, , 1) =

£(0, vg, W+, € g, ®h = t (see Remark 5.11) it follows th&f (0, v,,, w), <1 € [t, gl.

By Proposition 5.1 (ii), we havé(g.)t C [g, t]° and hence the second term above also
vanishes. Thus we ge&G1(0, [v,, 1, w), ¢) = 0 for anyc € Iy, that is,G1(0, [v,,], w) =0
which proves the theorem.O

5.8. Bifurcating branches of relative equilibria with trivial symmetry

With all the technical results obtained so far, we return now to the original bifurcation
problem and look for families of branches along which the symmetry is trivial.

Let (Q, (-, o, V,G) be a simple mechanicab-system, withG a compact Lie
group with the Lie algebra. Let ¢, € Q be a symmetric point whose isotropy group
Gy, is contained in a maximal torug of G. Denote byt C g the Lie algebra of
T. Let B C (g-g.)" be aG,,-invariant open neighborhood of,0¢ (g - ¢.)* such
that the exponential map is injective @and for anyg € G - Exp, (B) the isotropy
subgroupG, is conjugate to a (not necessarily proper) subgroupgsgf. Define the
closed G, -invariant subsetZ,0 =: {v,, € B N (T,, Q)i | detA = 0}, where 10 e
my @ my is arbitrarily chosen and the entries of the matiare given in (5.12). Let
U CI[BN(Ty,Q)iey \ 2,01/ Gy, be open and consider the functioRsand G given in

Theorems 5.15 and 5.16. Defi® : I x U x (m; @ mp) — R by

G'(t, [vg, ] g + Hp) 1= (G (z, [vg, 1. g + H2). Gi),
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where{c; | i =1,...,dimf} is a basis forifo. Choose([vg, 1, 11+ o) € U x (my@np)
such that

OF
E o, [vg ], g + o) = 0

where the partial derivative is taken relative to the variabke U. Define the matrix

2 2
A | O, [vg, ], g + 1) e e (0, [vg, 1, g + o)
(Tvge L. 12) = 0 i ! ’
O, [vg ], g + 1) = (0, [vg, ], 1y + o)
Ju 8 Ho

where the partial derivatives are evaluatedrat 0, [vy,], 4 = uy + pp. Here 0/0u,
denotes the partial derivative with respect to thg-componentu, of . In the frame-
work and the notations introduced above we will state and prove the main result of
this section. Letr : TQ — (TQ)/G be the canonical projection ard, := n(t - g.).

Theorem 5.17. Assume the following
(H) everyy,, e t-q,. is a relative equilibrium

If there is a pomt([v 1 :“1 + 1y 9 € U x (m1 ® mo) such that

(1) & O[] u1+u2)
(2) G'(0.[v2 1. ul + 1) = 0
3) A([vge])ﬂ%”g) is non-degenerate

then there exists a family of continuous curv,t%‘é : [0,1] — (TQ/G pa-

higag)
rameterized byu, in a small neighborhood)o of #1 conS|sting of classes of relative
equilibria with trivial isotropy ony< 9.8) (0, 1) satisfying

|m«/ﬂ10 0 O)HR = {Vﬂl 0 0)(0)}

([vq(,],ul-uz (["qL INC)

and yulo 00 0) = [CQ(QE)]: where { Z’H\(qe)_l:ul €t.
(109, 1.18-49)

For uy, iy € Vo with g # p, where)y is as abovethese branches do not intersect
that is

/

re[O,l]}ﬂ{ ’(l[q vy 2)(1)

{ i (™

([ Ve 111 “2)

TE[O,l]} = .
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Suppose that[v) 1, 19, 19) # (v 1, 13, 113).
@) If Mcl) # H% then the families of relative equilibria do not intersetitat is

{ P, (0| (z, up) €10, 1] x Vo}
(109, 1.9-19)

N @] G e 0. 031} =2,

where)y and V; are two small neighborhoods qul‘l’ and M% respectively such that
VoNV =

(i) If ud = pi=mand[vQ]# [v] ] then )" 0) =" | (0) and fort > 0
([vqg] 8 112) (1vg,1713)
we have
{y” (1) re(O,l]}m{/ (1) re(O,l]}z@.
(1 1.7.09) (10 713)

Proof. Let ([v L1 ,u1 +M2) € U x (my @ myp) be such that the conditions 1-3 hold.
BecauseA([ 0 140+ 0) is non-degenerate, we can apply the implicit function theorem
My

for the system(0F /du, G')(x, [vg,]. tg + p2) = O around the point0, [vge], ﬂ(1) + ,ug)
and so we can find an open neighborhabc Vg of the point (0, Hg) in I x my and
two functionsu : J x Vo — U and u, : J x Vo — my such thatu(0, #1) = [vqﬂ]

11200, 49) = puJ and

. OF
() " (t, u(t, pg), tq + po(t, 1)) =0
(i) G'(z,u(r, 1), fg + to(t, 7)) =0

Therefore, from TheoremS.15 and 5.16 it follows that the relative equilibrium con-
ditions of Corollary 5.14 are both satisfied. Thus we obtain the following family of
branches of relative equilibrig(c(t - u(z, q)), f(t, tq + Ux(t, u)))1c parameterized

by 11 € Vo. For t > 0 the isotropy subgroup is trivial and far= 0 the correspond-
ing points on the branches afé ([0, 1), 1116 = [¢e, 1l Which have the isotropy
subgroup equal td>,,. This shows that there are points ®, from which there are
emerging branches of relative equilibria with broken trivial symmetry. Using now the
correspondence given by Proposition 5.3 and a rescaling W& obtain the desired
family of continuous curvesy( 118.9) : [0,1] — (TQ)/G parameterized by, in a

small nelghborhooovo of ,ul consisting of classes of relative equilibria with trivial
isotropy ony( 148.9) (0,1) and such that

Im "”(ﬁge],ug,,,g)ﬂR _{V’(‘lo )

(v 1.19.43)
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and 7' 0) = [{p(ge)], where { = T(qe)*lpl. Equivalently, using the identi-

(19,142.49)
fication given by $.16) and by Proposition 5.3 we obtain that the branches of rela-
tive equilibria y’(l[to 12.2) (1) € (TQ)/G are identified with[o(t - u(z, up)), f(t, py +

ge 11112
to(t, 1))lg,, - It is easy to see that fon; # uy we have thatf(z, iy + uy(t, py)) #
B, 1y + pp(z, 1y)) for every t, v’ € [0, 1]. Using now the fact thaG,, acts trivially
on my we obtain

2

{”/#1 . 0) ()| T €0, 1]} m {Vzlugg]‘“(l)’%o) ()| T €0, 1]} = .

(0914843

In an analogous way, using the same argument we can prove (i). For (ii) we start with
two branches of relative equilibriggi(z, ) := [a(t - u(z, ), Bz, 1t + wo(z, W)lG,,

and ba(<', ) = [o(7' - u' (7, W), BT, 1 + pp(z, W)lG,,- For t = 7 = 0 we have
b1(0, ) = [0, flg,, = b2(0,10). We also haveu (0, n) = [Uz?e] + [Uz}e] =u'(0, ) and

so, from the implicit function theorem, we obtaitit, 1) # v’ (7', ;) for 7, 7 > 0 small
enough. Suppose that there exist’ > 0 such thathi(t, ) = b2(7’, ). Then using

the triviality of the G,,-action onmg we obtain thatr?vy = 7%y and consequently

t = 7. The conclusion of (ii) follows now by rescaling ]

Remark 5.18. We can have two particular forms for the rescalifigaccording to
special choices of the grougs and G,,, respectively. (a) IfG is a torus, then from
the splittingg = fo @ I1 @ f2, wherefp = g, fod i1 =1, andf; = [g, t], we conclude
that f; = {0} (since g = t) and consequentlyn, = {0}. In this case we will obtain
the special form for the rescaling: 7 x my — g*, B(z, W) = u+ t2vo. (b) If is G,

a maximal torus inG, so g,, = t, then the same splitting implies th&t = {0} and
consequentlytiy = {0}. In this case we will obtain the special form for the rescaling
Bl xmy— g% B, ) =t + t2vo.

6. Stability of the bifurcating branches of relative equilibria
In this section we shall study the stability of the branches of relative equilibria
found in the previous section. We will do this by applying a result of Patji&q on

G -stability to our situation. First we shortly review this result.

Definition 6.1. Let z, be a relative equilibvrium with velocity, and J(z.) = . We
say thatz, is formally stableif d?(H — Jg“)(zeﬂTZeJ*l(ue) is a positive or negative

definite quadratic form on some (and hence any) complemegl/;(tqe in TZ(,Jfl(ue).
We have the following criteria for formal stability.

Theorem 6.2 (Patrick, 1995. Letz, € T*Q be a relative equilibrium with momentum
value p, € g* and base poing. € Q. Assume thai, = {0}. Thenz, is formally
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stable if and only ifszue (g.) i1s positive definite on ongand hence arjycomplement
9y, * e in T,,0.

To apply this theorem to our case in order to obtain the formal stability of the
relative equilibria on a bifurcating branch we proceed as follows. First notice that if
we fix p € my@®my and[v,,] € U as in Theorenb.17, we obtain locally a branch of
relative equilibria with trivial isotropy bifurcating from our initial set. More precisely,
this branch starts at the point

(Vg0 Thase) | (qo).

The momentum values along this branch #ie, u), and fort # 0 the velocities
have the expressioﬁ‘(Eque (o(tu(r, ul))_lﬁ(r, w). The base points of this branch are
Exp,, (a(tu(t, uy)). Recall from Corollary5.14 that we introduced the notati@h:=
Expg. o o that will be used below. By the definition ¢f(z, ) we havegg, ,, =t for
all 7, even fort = 0. The base points for the entire branch have no symmetry foi0
so we can characterize the formal stability (in our case Thetability) of the whole
branch (locally) in terms of Theorem 6.2. We begin by giving sufficient conditions that
guarantee thel-stability of the branch, sinc& g, = T. To do this, one needs to
find conditions that insure that far# O (where the amended potential exists)

2 —
d Vﬁ(‘[”u) (U(TM (T’ 'ul)) I T[‘cu(‘r.ul)JE(T[w(r,;ll)J U)@(To‘([m(r‘yl)J) EXer )(f2'qe)

is positive definite. We do not know how to control the cross terms of this quadratic
form. This is why we shall work only with Abelian grougs since in that case the
subspacd; = {0} and the second summand in the direct sum thus vanishes. Note that
this implies thatmy = {0}.

From now on we assume thaG is a torus T. By Proposition 5.13 and
Theorem 5.15, the second variation

dzvﬂ(r,u) (E(Tu (T7 iul)) | T[m(r,;&l)]g(T[w(r.}ll)]U)
coincides fort # 0, with the second variation
df Fa(t, (T, 10)s 1) | Tioyie (6.1)

of the auxiliary functionF;, where d%, denotes the second variation relative to the
second variable inF1. But, unlike Vg ), the function 1 is defined even at = 0.

The amended potential evaluated on the bifurcating branch of relative equilibria has,
by Theorem5.15, the expression

Fi(t, u(t, ), fy) = Fo(py) + 12F (3, u(z, fiy), fi1),
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where Fp is smooth ond; (g - q.) = [(¢.)g, F and F; are both smooth functions on
I xU xJr(g-q.), even around = 0, and we have used the fact thap = {0}. So, if
the second variation of at (O, [vf}g], ,ug) is positive definite, then the quadratic form
(6.1) will remain positive definite along the branch for> 0 small. So we get the
following result.

Theorem 6.3. Let ﬂ(l) € my and [USB] € U be as in the Theorer.17 and assume that
dZUF(O, [v,?e],ug) is positive definite. Then the branch of relative equilibria with no

symmetry which bifurcates forr(ﬁ(qe)—lu‘l))g (g.) is T-stable fort > 0 small

A direct application of this criterion to the double spherical pendulum recovers the
stability result on the bifurcating branches proved directly in [13].

7. Bifurcating branches of relative equilibria with non-trivial isotropy

This section treats the case when the principal stratum of the action has non-trivial
symmetry, that is, each point on this stratum has symmetry conjugate to a non-trivial
subgroup ofG. In this case, the amended potential criterion along the emanating
branches is not applicable, because each point on such a branch will have non-trivial
isotropy. Thus, the final result will be weaker in the sense that only the existence of
bifurcating branches of relative equilibria with principal symmetry, as opposed to whole
multi-parameter families, will be proved.

7.1. Modifications in the Lyapunov—Schmidt procedure

As in the trivial case we begin by constructingGainvariant tubular neighborhood
of the orbitG - g, such that the isotropy group of every point in this neighborhood is a
subgroup ofG,, . This follows from the Tube Theorem 4.2. Indeed, Bt (g-g.)* be
a G, -invariant open neighborhood of, Oc (g-¢g.)* such that on the opeG-invariant
neighborhoocG-Eque(B) of G-q., we have(G,,) < (G,) for everyq e G-Exp,, (B).

We outline now the strategy to prove the existence of a bifurcating branch of relative
equilibria with symmetryH corresponding to the principal stratum of the isotropy
representation oty,, on 7,,Q from the set of relative equilibrid - g.. Note that we
do not know a priori which relative equilibrium it - ¢, will bifurcate. We search
for a local bifurcating branch of relative equilibria in the following manner. Take a
vector v,, € BN (T,,Q)y and note that Exp(vg,) € Q is a point with symmetry
exactly H, that is, Gexp, (v,) = H. Thenty,, € BN (T, Q)n, for v € I, wherel is
an open interval containingp, 1]. Also, Exp, (tvg,) is @ smooth path connecting,
the base point of the relative equilibrium tn g, containing the branch of bifurcating
relative equilibria, to Exp (v,,) € Q. In addition, we shall impose that the entire
path Exp, (tvg,) be formed by base points of relative equilibria. We still need the
vector part of these relative equilibria which will be a solution of the momentum
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equation

I(EXP,, (tug )L = B(D),

where (1) is a smooth path im* with $(0) € [(¢.)t. Now we shall use the charac-
terization of relative equilibria involving the augmented potential to require that each
point on the pathl, (Exp,, (tvg,)) is a relative equilibrium. As we shall see below,
we shall search fop(r) of a certain form and then the characterization of relative
equilibria via the augmented potential will impose conditions on kit and v, .

We begin by specifying the form of(r). Consider the following rescaling:

vg, € BN (T4, Q) = tvy, € BN (T, Q)1

peg = B, eg

where, 7 € I, | is an open interval containing), 1], and f : I x g* — g* is chosen
such thatB(0, w) = Il1p. So, for (vg,, w) fixed, (tvy,, f(z, ) converges ta0,,, IT1p)
ast — 0. Define

B, ) = Map+of () + " (W)
for some arbitrary smooth function®, g’ : g* — g*. Define
Q:1x(BN(T;,Qn) x g* xg, xt—g*
D(1, vg,., 1, &, 1) == WEXP,, (Tvg,))(E +n) — Bz, ). (7.1)

Now we search for the velocity + n of relative equilibria among the solutions of
D(7, vg,, 1, &, n) = 0. We shall prove below thaf and# are smooth functions of,
Vg, i, in @ neighborhood ot = 0 andv,,, p arbitrary.

Following the same Lyapunov—Schmidt procedure as in the trivial isotropy case shows
that the equation5;2) has a unique smooth solution fér+ 1 in a neighborhood of
the point (0, v2 , 1% € I x (BN (T, Q) u \ Z) x g* namely

C(Ta Uq(»? ‘Ll) = E(T’ vqg’ ,Ll) + "I(Ta Uq(n .uv é(rv vqea ,u))’

where the function, respectively¢, is the solution in the first, respectively the second
step of the Lyapunov—Schmidt procedure. Comparing with the trivial isotropy case,
note that here we have only the existence of the smooth funétioife also do not
have an explicit expression fdr whent £ O. R

Note that fort = 0 the solution iso(v ) , 1°) + 1(g.) "+ (IT1O) € t.
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7.2. Bifurcating branches of relative equilibria with non-trivial symmetry

At this point we have a candidate for a bifurcating branch from the set of relative
equilibriat-g.. This branch will start af(0, v,, 1) o(ge) € t-g. C T,, Q. By Lemma5.2,
the isotropy subgroup aof(0, vg,, ,u)Q(qe) equalsGy,, for anyv,, € BN (T, 0)n \ 2
around vo and u € g* around . The isotropy groups of the points on the curve
{(z, vg,, N)Q(Eque(wqe)) for t© #£ 0, are all subgroups dfi, by construction. Hence
{(z, vg,, W o (Exp,, (tvg,)) is a curve that has the properties of the bifurcating branch
of relative equilibria with broken symmetry that we are looking for. Later will see
that the isotropies of all the points on the branch will be exaktlyfor © > 0. We
do not know yet that all points on this curve are in fact relative equilibria. Thus, we
shall search for conditions ong and i° that guarantee that each point on the curve
T+ (1, Vg.» W 0 (EXP,, (Tvg,)) is a relative equilibrium. This will be done by using
the augmented potential criterion (see Proposition 3.4).

Theorem 7.1. Let (Q, (-, )¢, V, G) be a simple mechanical G-systewith G a com-
pact Lie group with the Lie algebrg. Letg, € Q be a symmetric point whose isotropy
group G, is contained in a maximal torug of G. Denote byt C g the Lie algebra
of T. Let (H) be the principal orbit type of th&,,-action on7,, Q. Let B C (§-ge)*

be aG,,-invariant open neighborhood @, € (g-¢.)* such that the exponential map
is injective on B and for any € G - Exp,, (B) the isotropy subgroufd;, is conjugate
to a (not necessarily propgrsubgroup ofG,,. Define the closeds,, -invariant subset
Z =:{vy, € BN (T, Q) | detA = 0}, where the entries of the matrix A are given in
(5.12).Let J x vag xWo CIxBN (T, Q) \Zxmy@mg be a open neighborhood

of (0, v, u°), where u® € my is chosen such thafy(, ,, =t for € J and u e Wo.
Define F : J x Vig x Wyo — T*Q by

F(z, Vg, W = dVC(‘L’,vqe,/1)(Eque (‘que)).

If 6F/a(vqe,u)(0 Vg ,,uo) is non-degenerate then there exists a continuous curve
Tag 40 1 [0.1] — TQ which starts at the pointl(g,)~ M) p(ge) € t-ge at
T= O and consists of relative equilibria all having broken symmetry Hor 0.

Proof. Because each point ing, is a relative equilibrium, it follows thag, is a critical
point of the augmented potential and 8&'/0(vg,, 1)(0, vge, 1%) can be expressed in

terms of the Hessian of the augmented potential. The matfixo(v,,, 11)(0, v 10)
is a square matrix of dimensiom = dim Q because dinV, o =n-— dim (g - qe) as

H is the symmetry of the principal stratum of th&, —representatlon of,, 0 and
hence(7,,Q)n is open in7,Q, B C (g- ge)*, and d|mW 0 = d|m(ml®mz) =
dim g —dim mg = dim g —dim g,,, .

The non-degeneracy ofF/d(vg,, 1)(0, vy ,,uo) implies the existence of an open
neighborhoodlU1 x Uz x Uz C J x vae X W o around the point0, vqg, ,uo) and of a



322 P. Birtea et al. / J. Differential Equations 216 (2005) 282-323

smooth mapr € Uy > (vy, (1), u(v)) € Uz x Uz such that(vy, (0). u(0)) = 2, 1%
and for anyt € Uy

F(t,vg,(7), u(1)) = 0.

This identity shows that the branch of vectors

1€ Ur > ({(t, vg, (1), (1) 0 (EXP,, (tvg, (1)) € TQ

consists of relative equilibria. It is clear that this branch intersects the initial set of
relative equilibriat-g, only in ([I(qe)*l(Hluo))Q(qe). By construction, all these vectors
have symmetry included iRl for t # 0. We know that all of them are relative equilibria
with velocities {(z, vy, (1), u(1)) € 8B(z, u(v)) which, by hypothesis, equals

To show that all points on these branches have isotropy subgroup exX#cile
recall that for anyg € Q and¢ < g the isotropy of the vectof,(¢) € T, Q equals

Gepig) ={8€Gg IAdgE—C g} (7.2)

Indeed, sinc&Ad, &)p(g) = g-fQ(gfl-q) and Geyg) C Gy the conditiong &, (q) =
¢o(q) is equivalent to(Adg ) p(g) = Cp(g), that is, (Ad, ¢ — O p(g) = 0, which is
equivalent to Ad ¢ — ¢ € g, which proves T.2). Therefore,

G ({204, (1,1(0)) 0 (EXP, (20, (1))

= {g € H | Adg {(7, vg, (1), p(7)) = C(T, vg, (D), (D) € 8Exp,, (ruy, (2)) = D}

by (7.2). SinceH, as a subgroup off, acts trivially by the adjoint representation 6n
and the elemenf(z, vg, (1), u(v))€t, this shows thaG (v, (1)) o Exp,, (v, ) =H-

Now, using a rescaling, we can suppose that the curie defined on the interval
[0, 1] and hence the conclusion of the theorem follows]
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