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Abstract

We show that the category of Hamiltonian covering spaces of a given connected and paracompact
symplectic manifold (M, ω) acted canonically upon by a Lie algebra admits a universal covering and
covered space.

1 Introduction

Let (M,ω) be a connected symplectic manifold and g be a Lie algebra acting symplectically on it. A
Lie algebra action of g on M is a Lie algebra antihomomorphism ξ ∈ g 7→ ξM ∈ X(M) such that the
map (m, ξ) ∈ M × g∗ 7→ ξM (m) ∈ TM is smooth. The action is symplectic when £ξM

ω = 0, for any
ξ ∈ g and where £ξM

is the Lie derivative operator defined by the vector field ξM .

Definition 1.1 Let (M,ω) be a connected symplectic manifold and g be a Lie algebra acting symplec-
tically on it. We say that the map pN : N → M is a Hamiltonian covering map of (M,ω) when it
satisfies the following conditions:

(i) pN is a smooth covering map

(ii) (N,ωN ) is a connected symplectic manifold

(iii) pN is a symplectic map
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(iv) g acts symplectically on (N,ωN ) and admits a momentum map KN : N → g∗

(v) pN is g-equivariant, that is, ξM (pN (n)) = TnpN (ξN (n)), for any n ∈ N and any ξ ∈ g.

The connectedness hypothesis on N that we assumed in the previous definition implies that the
momentum map KN : N → g∗ is determined up to a constant element in g∗. We will denote by [KN ]
the equivalence class consisting of all the maps N → g∗ that differ from KN by a constant map.

Definition 1.2 Let (M,ω) be a connected symplectic manifold and g be a Lie algebra acting symplec-
tically on it. Let H be the category whose objects Ob(H) are the four-tuples (pN : N → M,ωN , g, [KN ])
with pN : N → M a Hamiltonian covering map of (M,ω) and whose morphisms Mor(H) are the smooth
maps q : (N1, ω1) → (N2, ω2) that satisfy the following properties:

(i) q is a symplectic covering map

(ii) q is g-equivariant

(iii) the diagram

N1 N2

M

g∗

@
@

@
@@R

�
�

�
��	

�
�

�
���

@
@

@
@@I

-

pN1 pN2

KN1 KN2

q

commutes for some KN1 ∈ [KN1 ] and KN2 ∈ [KN2 ].

We will refer to H as the category of Hamiltonian covering maps.

The main goal of this paper is to show that the category H admits universal covering and covered
spaces. More explicitly, we will show that there exist two objects (p̂ : M̂ → M,ωcM , g, [K̂]) (universal

Hamiltonian covering space) and (p̃ : M̃ → M,ωfM , g, [K̃]) (universal Hamiltonian covered
space) in H such that for any other object (pN : N → M,ωN , g, [KN ]) in H, there exist morphisms
(not necessarily unique) q̂ : M̂ → N and q̃ : N → M̃ in Mor(H). Even though the objects that satisfy
these properties are not necessarily unique, they are all isomorphic to (p̂ : M̂ → M,ωcM , g, [K̂]) and
(p̃ : M̃ → M,ωfM , g, [K̃]) in H, respectively, which justifies the adjective “universal” when we will refer
to the Hamiltonian covering and covered spaces.
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The universal Hamiltonian covering space will be easily obtained in Section 2 from the standard
simply connected universal covering manifold. The universal Hamiltonian covered space is constructed
in Section 3 using a connection introduced by Condevaux, Dazord, and Molino [CDM88], Section I.3.1,
and used by them in the definition of the so called “reduced momentum map”. The universality of the
Hamiltonian covered space is presented in Section 4.

2 The standard universal covering as a Hamiltonian covering

Let (M,ω) be a connected symplectic manifold and g be a Lie algebra acting symplectically on it. Let
p̂ : M̂ → M be a simply connected universal covering of M . This can be made into a Hamiltonian
covering map in a straightforward manner. First, since p̂ is a local diffeomorphism, the two–form
ωcM := p̂∗ω is a symplectic form on M̂ . Thus, properties (i), (ii), and (iii) of Definition 1.1 hold.
Second, we can use the g-action on M to define a symplectic g-action on (M̂, ωcM ) by

ξcM (z) := (T(z)p̂)−1ξM (p̂(z)), for any ξ ∈ g and z ∈ M̂. (2.1)

This is a good definition since p̂ is a covering map and hence a local diffeomorphism. Moreover, the map
(z, ξ) ∈ M̂ × g 7→ ξcM (z) ∈ TM̂ is clearly smooth. Note that by definition, the vector fields ξcM and ξM

are p̂–related for all ξ ∈ g. This immediately shows that [ξ, η]cM = −[ξcM , ηcM ] for any ξ, η ∈ g and that
£ξ cM ωcM = £ξ cM p̂∗ω = p̂∗£ξM

ω = 0, for any ξ ∈ g. Thus, expression (2.1) defines a symplectic action
of g on (M̂, ωcM ) relative to which p̂ is equivariant by construction. Finally, the g-action on M̂ admits
a momentum map K̂ : M̂ → g∗ because M̂ is simply connected and therefore H1(M̂, R) = 0; we recall
from [We77] that the canonical action of a Lie algebra h on the symplectic manifold (S, ω) admits an
associated momentum map if and only if the linear map [ξ] ∈ h/[h, h] 7→ [iξS

ω] ∈ H1(S, R) is identically
zero. Thus, conditions (iv) and (v) also hold, which makes (p̂ : M̂ → M,ωcM , g, [K̂]) into an object of
H.

Proposition 2.1 Let (M,ω) be a connected symplectic manifold and g be a Lie algebra acting symplec-
tically on it. Let (p̂ : M̂ → M,ωcM , g, [K̂]) be the object in H constructed above using a simply connected
universal covering of M . Then for any other object (pN : N → M,ωN , g, [KN ]) of H, there exists a
morphism q : M̂ → N in Mor(H). Any other object in H that satisfies the same universality property is
isomorphic to (p̂ : M̂ → M,ωcM , g, [K̂]).

Proof. Since M̂ is the universal covering space of M , there exists a smooth covering map q : M̂ → M
(in general not unique) such that pN ◦ q = p̂. We shall prove that this is a morphism in H. Indeed, since
pN and p̂ are symplectic maps we have

ωcM = p̂∗ω = (pN ◦ q)∗ω = q∗p∗Nω = q∗ωN ,

so condition (i) in Definition 1.2 is satisfied. Additionally, since p̂ and pN are g-equivariant we have,
for any z ∈ M̂ and ξ ∈ g

Tq(z)pN

(
Tzq

(
ξcM (z)

))
= Tz p̂

(
ξcM (z)

)
= ξM (p̂(z)) = ξM (pN (q(z))) = Tq(z)pN (ξN (q(z))) .
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Since Tq(z)pN is an isomorphism it follows that Tzq
(
ξcM (z)

)
= ξN (q(z)) and so (ii) is satisfied. To verify

(iii) it suffices to note that KN ◦ q is a momentum map for the g-action on M̂ .
In order to prove the last sentence in the statement let (p̂′ : M̂ ′ → M,ωcM ′ , g, [K̂′]) be another object

in H satisfying the same universality property as (p̂ : M̂ → M,ωcM , g, [K̂]). Let q : M̂ → M̂ ′ and
q′ : M̂ ′ → M̂ be the corresponding morphisms. Since both q and q′ are symplectic covering maps their
composition q′ ◦ q : M̂ → M̂ is also a symplectic covering map (see Theorems 3, 5, 6 in Section 2.2
and Theorem 10 in Section 2.4 of [Sp66]). Thus q′ ◦ q is a local diffeomorphism. Since M̂ is simply
connected, this map is also injective [Sp66, Theorem 9, page 73]. Consequently, ϕ := q′ ◦ q is a bijective
local diffeomorphism, hence a diffeomorphism. Finally, this proves that both q and q′ are isomorphisms
in H with inverses ϕ−1 ◦ q′ and q ◦ ϕ−1, respectively. �

Remark 2.2 It should be noticed that the universality property for (p̂ : M̂ → M,ωcM , g, [K̂]) stated in
the previous proposition does not imply that this is an initial object in H due to the non-uniqueness of
the morphism q. This is in agreement with the situation encountered for general manifolds.

3 The universal Hamiltonian covered space in H

In this section we will construct an object in the category H defined in the introduction using a principal
connection introduced by Condevaux, Dazord, and Molino in Section I.3.1 of [CDM88]. In the next
section we will prove that this object has the universality property stated in the introduction to define
the universal Hamiltonian covered space. The setup is identical to the one in the introduction, but from
now on we will assume that M is also paracompact.

The connection α. Let π : M × g∗ → M be the projection onto M . Consider π as the bundle
map of the trivial principal fiber bundle (M × g∗,M, π, g∗) that has (g∗,+) as Abelian structure group.
The group (g∗,+) acts on M × g∗ by ν · (m,µ) := (m,µ − ν), with m ∈ M and µ, ν ∈ g∗. Let
α ∈ Ω1(M × g∗, g∗) be the connection one-form defined by

〈α(m,µ)(vm, ν), ξ〉 := (iξM
ω)(m)(vm)− 〈ν, ξ〉, (3.1)

where (m,µ) ∈ M × g∗, (vm, ν) ∈ TmM × g∗, ξ ∈ g, and 〈·, ·〉 denotes the natural pairing between g∗

and g.
We briefly check that α is indeed a connection one-form on M × g∗. Notice that the infinitesimal

generator νM×g∗ associated to an element ν ∈ g∗ is given by νM×g∗(m,µ) = (0,−ν). Consequently, for
any ξ ∈ g, 〈α(m,µ)(νM×g∗(m,µ)), ξ〉 = 〈α(m,µ)(0,−ν), ξ〉 = 〈ν, ξ〉, that is, α(m,µ)(νM×g∗(m,µ)) = ν.
Also, it is obvious that for any ρ ∈ g∗ we have 〈α(m,µ − ρ)(vm, ν), ξ〉 = (iξM

ω)(m)(vm) − 〈ν, ξ〉 =
〈α(m,µ)(vm, ν), ξ〉, hence α is a well defined connection one–form on M × g∗.

The horizontal and vertical bundles of α. By definition, the horizontal subspace H(m,µ) at the
point (m,µ) determined by α is given by

H(m,µ) = {(vm, ν) ∈ T(m,µ)(M × g∗) | (iξM
ω)(m)(vm)− 〈ν, ξ〉 = 0,∀ξ ∈ g}. (3.2)
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Consequently, given any vector (vm, ν) ∈ T(m,µ)(M × g∗), its horizontal (vm, ν)H and vertical (vm, ν)V

parts are such that
(vm, ν)H = (vm, ρ) and (vm, ν)V = (0, ρ′),

where ρ, ρ′ ∈ g∗ are uniquely determined by the relations

〈ρ, ξ〉 = (iξM
ω)(m)(vm) and ρ′ = ν − ρ, for any ξ ∈ g.

α is a flat connection. We compute the curvature form Ω associated to α. Let (m,µ) ∈ M × g∗,
vm, um ∈ TmM , ξ ∈ g, and ν, ρ ∈ g∗ arbitrary. By definition,

〈Ω(m,µ)((vm, ν), (um, ρ)), ξ〉 = 〈dα(m,µ)((vm, ν)H , (um, ρ)H), ξ〉. (3.3)

Let now (X1, Y1) and (X2, Y2) be vector fields on M × g∗ such that (X1(m), Y1(µ)) = (vm, ν) and
(X2(m), Y2(µ)) = (um, ρ). Using these vector fields, the right hand side of (3.3) can be rewritten as

〈(X1, Y1)[α(X2, Y2)](m,µ), ξ〉 − 〈(X2, Y2)[α(X1, Y1)](m,µ), ξ〉 − 〈α([X1, X2], 0)(m,µ), ξ〉. (3.4)

Let (m1
t , µ

1
t ) and (m2

t , µ
2
t ) be the flows of (X1, Y1) and (X2, Y2), respectively. We choose Y1 and Y2 such

that their flows are given by µ1
t (µ) = µ + tν and µ2

t (µ) = µ + tρ. We can use these flows to compute

〈(X1, Y1)[α(X2, Y2)](m,µ), ξ〉 = d
dt

∣∣
t=0

〈
α(m1

t (m), µ1
t (µ))

(
X2(m1

t (m)), Y2(µ1
t (µ))

)
, ξ

〉
= d

dt

∣∣
t=0

(
(iξM

ω)(m1
t )

(
X2(m1

t (m)
)
− 〈Y2(µ1

t (µ)), ξ〉
)

= X1[iξM
ω(X2)](m)− d

dt

∣∣
t=0

d
ds

∣∣
s=0

〈µ + tν + sρ, ξ〉

= X1[iξM
ω(X2)](m).

Analogously, we have
〈(X2, Y2)[α(X1, Y1)](m,µ), ξ〉 = X2[iξM

ω(X1)](m).

Consequently, the expression (3.4) equals

X1[iξM
ω(X2)](m)−X2[iξM

ω(X1)](m)− iξM
ω(m)([X1, X2](m)) = d(iξM

ω)(m)(X1(m), X2(m))
= (£ξM

ω)(m)(X1(m), X2(m))− (iξM
dω)(m)(X1(m), X2(m)) = 0,

which guarantees the flatness of α.

The holonomy bundles of α. The flatness of α implies that the associated horizontal distribution is
integrable and that its maximal integral leaves coincide with the holonomy bundles (p̃ : M̃ → M,H) of
α, where H is the holonomy group of α based at any point of M̃ (the paracompactness of M is used at
this point in the proof [KN63, Theorem 7.1, page 83] that (p̃ : M̃ → M,H) is a reduction of the bundle
(π : M × g∗ → M, g∗)). Notice that since (g∗,+) is Abelian, any two holonomy bundles M̃1 and M̃2 are
isomorphic as principal bundles with the same structure group H, via the map Rτ : M̃2 → M̃1 defined
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by Rτ (m,µ) := (m,µ+ τ), for some fixed τ ∈ g∗ and for any (m,µ) ∈ M̃2. The group H will be referred
to as the holonomy group of the g-action. It is easy to prove that the g-action on (M,ω) admits a
standard momentum map if and only if the holonomy group of the action H is trivial.

A fact that will be important later on is that the holonomy bundles M̃ are initial submanifolds of
M × g∗, that is, they satisfy the following universality property: the inclusion i : M̃ ↪→ M × g∗ is a
smooth immersion such that for any manifold Z, a given mapping f : Z → M̃ is smooth if and only if
i ◦ f : Z → M × g∗ is smooth. The initial submanifold property is satisfied by the maximal integral
leaves of any smooth integrable distribution, such as the horizontal distribution in our case.

The holonomy bundles of α are Hamiltonian coverings of (M,ω, g). We now prove the following
proposition.

Proposition 3.1 Let (M,ω) be a connected paracompact symplectic manifold and let g be a Lie algebra
acting symplectically on it. Let α be the connection on the trivial bundle (π : M×g∗ → M, g∗) introduced
in (3.1) and (p̃ : M̃ → M,H) be one of its holonomy bundles. If we define ωfM := p̃∗ω, then the pair
(M̃, ωfM ) is a symplectic manifold acted symplectically upon by the Lie algebra g via the expression

ξfM (m,µ) := (ξM (m),−Ψ(m)(ξ, ·)), for any ξ ∈ g and (m,µ) ∈ M̃. (3.5)

The symbol Ψ denotes the Chu map [Ch75] Ψ : M → Z2(g), defined by Ψ(m)(ξ, η) := ω(m)(ξM (m), ηM (m)),
for any ξ, η ∈ g. Finally, the projection K̃ : M̃ → g∗ of M̃ onto g∗ is a momentum map for this ac-
tion. Moreover, the four tuple (p̃ : M̃ → M,ωfM , g, [K̃]) is an object in the category H introduced in
Definition 1.2.

Proof. We start by noticing that the projection p̃ : M̃ → M is a smooth covering projection as a
consequence of the flatness of α. Indeed, since the connection is flat, the Ambrose-Singer Theorem [AS53]
implies that the Lie algebra Lie(H) of the holonomy group is trivial and hence H is a discrete (possibly
not closed) subgroup of (g∗,+). As (p̃ : M̃ → M,H) is a locally trivial bundle, any point m ∈ M has
an open neighborhood U such that p̃−1(U) is diffeomorphic to U ×H. Since H is discrete, each subset
U × {µ}, µ ∈ H, is an open subset diffeomorphic to U . Hence, p̃ is a covering map.

Now, as p̃ is a local diffeomorphism, the equality ωfM := p̃∗ω defines a symplectic form on M̃ with
respect to which p̃ is a symplectomorphism. We have hence shown that p̃ : M̃ → M satisfies properties
(i), (ii), and (iii) in Definition 1.1.

We now define a g-action on M̃ by

ξfM (m,µ) := (T(m,µ)p̃)−1ξM (m), for any ξ ∈ g and (m,µ) ∈ M̃. (3.6)

This is a good definition since p̃ is a covering map and hence a local diffeomorphism. Moreover, the map
((m,µ), ξ) ∈ M̃ × g 7→ ξfM (m,µ) ∈ TM̃ is clearly smooth. Note that, by definition, the vector fields ξfM
and ξM are p̃-related for all ξ ∈ g. This immediately shows that [ξ, η]fM = −[ξfM , ηfM ] for any ξ, η ∈ g
and that £ξ fM ωfM = £ξ fM p̃∗ω = p̃∗£ξM

ω = 0, for any ξ ∈ g. Thus, expression (3.6) defines a symplectic
action of g on (M̃, ωfM ). We now show that (3.6) can be rewritten as (3.5), that is,

ξfM (m,µ) := (ξM (m),−Ψ(m)(ξ, ·)), for any ξ ∈ g and (m,µ) ∈ M̃. (3.7)
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We start by checking that the right hand side of this expression is a horizontal vector with respect to
α and thereby tangent to M̃ , which means that

〈
α(m,µ)

(
ξfM (m,µ)

)
, η

〉
= 0, for any η ∈ g. By the

definition of α we have that〈
α(m,µ)

(
ξfM (m,µ)

)
, η

〉
= (iηM

ω)(m) (ξM (m)) + 〈Ψ(m)(ξ, ·), η〉
= ω(m)(ηM (m), ξM (m)) + ω(m)(ξM (m), ηM (m)) = 0.

Consequently (ξM (m),−Ψ(m)(ξ, ·)) is horizontal and therefore it suffices to notice that p̃ is the projection
onto M to prove the equivalence between (3.6) and (3.7). The same remark proves the g-equivariance
of p̃ : M̃ → M .

We conclude by showing that the projection K̃ : M̃ → g∗ of M̃ onto g∗ is a momentum map
for the g-action on M̃ defined in (3.5). Let ξ ∈ g be arbitrary and K̃ξ := 〈K̃, ξ〉. On one hand we
have that dK̃ξ(m,µ)(vm, ν) = 〈ν, ξ〉, for any (m,µ) ∈ M̃ and any (vm, ν) ∈ T(m,µ)M̃ = H(m,µ).
On the other hand, iξ fM ωfM (m,µ)(vm, ν) = iξ fM (p̃∗ω)(m,µ)(vm, ν) = (p̃∗ω)(m,µ)(ξfM (m,µ), (vm, ν)) =
(p̃∗ω)(m,µ)((ξM (m),−Ψ(m)(ξ, ·)), (vm, ν)) = ω(m)(ξM (m), vm) = 〈ν, ξ〉, which proves the claim. �

Remark 3.2 The momentum map K̃ is not equivariant in general. Indeed, its infinitesimal non-
equivariance cocycle is given by

Σ(ξ, η) := K̃[ξ,η](m,µ)− {K̃ξ, K̃η}(m,µ) = 〈µ, [ξ, η]〉 − (p̃∗ω)(m,µ)(ξfM (m,µ), ηfM (m,µ))
= 〈µ, [ξ, η]〉 − ω(m)(ξM (m), ηM (m)) = 〈µ, [ξ, η]〉 −Ψ(m)(ξ, η), (3.8)

for any ξ, η ∈ g. The value of Σ does not depend on the point (m,µ) ∈ M̃ used to define it because for
any (vm, ν) ∈ T(m,µ)M̃ the function f(m,µ) := 〈µ, [ξ, η]〉 −Ψ(m)(ξ, η) is such that

df(m,µ)(vm, µ) = 〈ν, [ξ, η]〉 − TmΨ(vm)(ξ, η) = 〈ν, [ξ, η]〉 − ω(m)([ξ, η]M (m), vm) = 0,

where we used the horizontality of (vm, ν) in the last equality. The connectedness of M̃ concludes the
argument.

4 The universality theorem

In this section we state and prove the main result of the paper.

Theorem 4.1 Let (M,ω) be a connected paracompact symplectic manifold and g a Lie algebra acting
symplectically on it. The Hamiltonian covering (p̃ : M̃ → M,ωfM , g, [K̃]) constructed in Proposition 3.1
is a universal Hamiltonian covered space in the category H of Hamiltonian covering maps, that is, given
any other object (pN : N → M,ωN , g, [KN ]) in H, there exists a (not necessarily unique) morphism
q : N → M̃ in Mor(H). Any other object of H that satisfies this universality property is isomorphic to
(p̃ : M̃ → M,ωfM , g, [K̃]).
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Proof. Let (pN : N → M,ωN , g, [KN ]) ∈ H and n0 ∈ N . Define m̃0 := (pN (n0),KN (n0)) ∈ M × g∗.
Since M×g∗ is foliated by the holonomy bundles of the connection α in (3.1), the point m̃0 lies in one of
them, say M̃ ′. Let τ ∈ g∗ be such that M̃ ′ = Rτ (M̃) and define KN := KN −τ . The map KN : N → g∗

is also a momentum map for the g-action on N , [KN ] = [KN ], and moreover (pN (n0),KN (n0)) ∈
M̃ . Hence, we can assume without loss of generality that (pN : N → M,ωN , g, [KN ]) is such that
(pN (n0),KN (n0)) ∈ M̃ . Using this choice we define the map g : N → M ×g∗ by n 7−→ (pN (n),KN (n)),
n ∈ N .

We will now show that g(N) ⊂ M̃ . We start by proving that Tng(vn) ∈ H(pN (n),KN (n)) for all
n ∈ N and vn ∈ TnN . Indeed, since Tng(vn) = (TnpN (vn), TnKN (vn)) we have for any ξ ∈ g

〈α(g(n)) (Tng(vn)) , ξ〉 = ω(pN (n))(ξM (pN (n)), TnpN (vn))− 〈TnKN (vn), ξ〉
= ω(pN (n))(TnpN (ξN (n)), TnpN (vn))− dKξ

N (n)(vn)

= ωN (n)(ξN (n), vn)− dKξ
N (n)(vn) = 0,

where we used the g-equivariance and the symplectic character of pN . Let now n ∈ N be arbitrary. As
N is connected, there exists a smooth curve c : [0, 1] → N such that c(0) = n0 and c(1) = n. Since
the derivative Tg of g maps into the horizontal bundle of α, the chain rule implies that g(c(t)) is a
horizontal curve starting at g(c(0)) = g(n0) ∈ M̃ . Hence, by the definition of the holonomy bundle,
g(c(1)) = g(n) ∈ M̃ . This argument and the arbitrary character of n ∈ N show that g(N) ⊂ M̃ .

Let q : N → M̃ be the map obtained from g by restriction of the range. We will show that q is the
morphism needed to prove the statement of the theorem. First, the map q is smooth since g is smooth
and M̃ is an initial submanifold of M × g∗. Second, we verify that q satisfies the three conditions in
Definition 1.2 that characterize an element in Mor(H).

(i) q is a symplectic covering projection: Since pN : N → M and p̃ : M̃ → M are covering projections
and p̃◦q = pN it follows that q : N → M̃ is a covering projection [Sp66, Lemma 1, page 79]. Since
pN and p̃ are symplectic so is q.

(ii) q is g-equivariant: Let ξ ∈ g, n ∈ N be arbitrary. On one hand

ξfM (q(n)) = ξfM (pN (n),KN (n)) = (ξM (pN (n)),−Ψ(pN (n))(ξ, ·)).

On the other hand

Tnq(ξN (n)) = (TnpN (ξN (n)), TnKN (ξN (n))) = (ξM (pN (n)), TnKN (ξN (n))).

Consequently, the map q is g-equivariant if and only if TnK(ξN (n)) = −Ψ(pN (n))(ξ, ·). This
identity holds because for any η ∈ g we have

〈TnKN (ξN (n)), η〉 = dKη
N (n)(ξN (n)) = ωN (n)(ηN (n), ξN (n))

= (p∗Nω)(n)(ηN (n), ξN (n)) = ω(pN (n))(TnpN (ηN (n)), TnpN (ξN (n)))
= ω(pN (n))(ηM (pN (n)), ξM (pN (n))) = −Ψ(pN (n))(ξ, η).
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(iii) The diagram in Definition 1.2 commutes since p̃ ◦ q = pN and K̃ ◦ q = KN by the definition of q.

We conclude by showing that any other object (p̃′ : M̃ ′ → M,ωfM ′ , g, [K̃′]) that satisfies the just proved
universality property of (p̃ : M̃ → M,ωfM , g, [K̃]) is necessarily isomorphic to it. Indeed, the universality
property satisfied by (p̃ : M̃ → M,ωfM , g, [K̃]) and (p̃′ : M̃ ′ → M,ωfM ′ , g, [K̃′]) implies the existence
of two morphisms q : M̃ ′ → M̃ and q′ : M̃ → M̃ ′ in Mor(H) and of an element τ ∈ g∗ such that the
following diagram commutes

M̃ M̃M̃ ′

M

g∗

HHH
HHH

HHHHj

���
���

�����?

��
���

���
��*

HH
HHH

HHH
HHY6

- -

p̃ p̃p̃′

K̃ + τ K̃K̃′

q′ q

Since q and q′ are covering maps so is the composition q ◦ q′ : M̃ → M̃ (see Theorems 3, 5, 6 in Section
2.2 and Theorem 10 in Section 2.4 of [Sp66]). Thus q ◦ q′ is a local surjective diffeomorphism. We now
show that it is also injective. If (m,µ) ∈ M̃ , the definition of q and the commutativity of the diagram
above yield

(q ◦ q′)(m,µ) = (p̃′(q′(m,µ)), K̃′(q′(m,µ))) = (p̃(m,µ), K̃(m,µ) + τ) = (m,µ + τ). (4.1)

Hence if (m,µ), (m′, µ′) ∈ M̃ satisfy (q ◦ q′)(m,µ) = (q ◦ q′)(m′, µ′), then (4.1) implies that (m,µ) =
(m′, µ′). Consequently, ϕ := q ◦ q′ is a bijective local diffeomorphism and hence a diffeomorphism. This
proves that both q and q′ are isomorphisms is H. �

Remark 4.2 It should be noticed that the universality property for (p̃ : M̃ → M,ωfM , g, [K̃]) stated in
the theorem does not imply that it is a final object in H due to the non-uniqueness of the morphism q.

Remark 4.3 One could consider larger categories than H in which case the universality result in The-
orem 4.1 would be weaker. For example, if we drop the condition that pN : N → M is a covering map
in the definition of the objects of H then the morphism q : N → M̃ is not necessarily a covering map.

Example 4.4 We shall illustrate the difference between the universal Hamiltonian covering and cov-
ered spaces by considering the following elementary example. Let T2 = {(eiθ1 , eiθ2)} be the two-torus
considered as a symplectic manifold with its area form ω := dθ1 ∧ dθ2 and the circle S1 = {eiφ} acting
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canonically on it by eiφ · (eiθ1 , eiθ2) := (ei(θ1+φ), eiθ2). Proposition 2.1 guarantees that the universal cov-
ering space R2 of T2 can be endowed with the necessary structure to make it the universal Hamiltonian
covering space of (T2, ω).

On the other hand, a straightforward computation shows that, in this case, the horizontal vectors in
T (T2×R) with respect to the connection α defined in (3.1) are of the form ((a, b), b), with a, b ∈ R. Since
any surface T̃2

τ := {((eiθ1 , eiθ2), τ + θ2) ∈ T2 × R | θ1, θ2 ∈ R} integrates the horizontal distribution,
it is immediately clear that the universal Hamiltonian covered space is given in this example by any of
the cylinders T̃2

τ .
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