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Abstract

The extension of Banach Lie—Poisson spaces is studied and linked to the extension of a
special class of Banach Lie algebras. The case of W*-algebras is given particular attention.
Semidirect products and the extension of the restricted Banach Lie-Poisson space by the
Banach Lie—Poisson space of compact operators are given as examples.
© 2004 Elsevier Inc. All rights reserved.

MSC: 46L10; 46T0S; 46T20; 53D17; 53Z05

Keywords: Extension; Banach Lie algebra; Banach Lie-Poisson space; Cocycle; Predual; Von Neumann
algebra

1. Introduction

The dual of any finite dimensional Lie algebra carries a linear Poisson bracket,
called Lie—Poisson structure, which is pervasive in classical mechanics. Many
Hamiltonian systems, such as the free or heavy rigid body equations, the finite and
periodic Toda lattice, the geodesics on quadrics, or the Neumann and Rosochatius
system, have alternate non-canonical descriptions in Lie—Poisson formulation.
Formally, several evolutionary partial differential equations, such as the ideal non-
viscous fluid, ideal magnetohydrodynamics, the Poisson—Vlasov, Korteweg—de
Vries, Kadomtsev—Petviashvili, or the linear and non-linear wave and Schrédinger
equations also have Lie—Poisson formulations. Some of these have been given a
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rigorous functional analytic formulation. Examples of both formal and rigorous
functional analytic symplectic and Poisson structures can be found, for example, in
[4,6,10] and references therein. While these applications of this linear Poisson
structure emerged in the work of the past decades, the structure itself goes back to
Lie [9], who introduced it simultaneously with the concept of Lie algebra. The theory
of Lie—Poisson spaces in finite dimensions is complete and is part of Poisson
geometry (see, for example, [10,17-19]). In infinite dimensions, a general theory is
lacking. The first systematic attempt to lay the foundations of Banach symplectic
geometry is due to Chernoff and Marsden [4].

Motivated by our understanding of infinite dimensional Hamiltonian systems,
questions surrounding the notion of momentum map, and problems in quantum
mechanics including the theory of coherent states, in [12] we proposed a definition of
Banach Lie—Poisson spaces and linked it to classical and quantum reduction, the
theory of W*-algebras, and momentum maps in infinite dimensions. Banach Lie—
Poisson spaces naturally appear in this context as preduals of Banach Lie algebras.
For example, the spaces of compact and trace class operators on a complex separable
Hilbert space carry a natural Lie—Poisson bracket. The present work develops
further this point of view by addressing the fundamental question of construction of
new Banach Lie—Poisson spaces out of given ones. One such scheme is given by the
method of extensions.

The problem of extension in various categories plays a central role in the
understanding of its objects and morphisms. It gives a method to construct new
objects out of old ones whose properties are then well understood. The category of
Banach Lie—Poisson spaces is no exception. The goal of this paper is to present the
theory of extensions for Banach Lie—Poisson spaces and to give several
mathematically and physically relevant examples.

The paper is organized as follows. In Section 2, the minimal necessary information
on Banach Lie—Poisson spaces found in [12] is collected. Only some definitions and
theorems necessary for the subsequent development are given. With this back-
ground, the theory of exact sequences of Banach Lie—Poisson spaces is presented in
Section 3. It is shown that exactness in this category is equivalent to exactness of the
dual Banach Lie algebra sequence in the subcategory of Banach Lie algebras
admitting a predual. Special attention is devoted to the important case of the Banach
Lie—Poisson spaces that are preduals of W *-algebras. It is shown that if the the dual
sequence is exact in the category of W*-algebras, then the exact sequence is
necessarily that of a direct sum of Banach Lie—Poisson spaces. Extensions of Banach
Lie algebras are discussed in Section 4. All possible brackets on a Banach space
direct sum of Banach Lie algebras are characterized. With this preparation, Section 5
presents all extensions of Banach Lie—Poisson spaces underlying a Banach space
direct sum. Semidirect products of Banach Lie—Poisson spaces with cocycles are a
particular case of this theory. Even more special, the case of the predual of the
semidirect product of a W*-algebra with a representation is treated in detail.
The example of the extension of the restricted Banach Lie-Poisson space by the
space of compact operators, important in the theory of loop groups [13,20], is also
worked out.
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2. Banach Lie algebras and Lie—Poisson spaces

This section briefly reviews the minimal background from [12] necessary for the
rest of the paper. No proofs will be given here since they can be found in the
aforementioned paper.

Given a Banach space b, the notation b* will always be used for the Banach
space dual to b. For xeb” and beb, the notation {x,b)> means the value of
x on b. Thus <.->:b* xb—R will denote the natural bilinear continuous
duality pairing between b and its dual b*. The notation b, will be reserved
for a predual of b, that is, b, is a Banach space whose dual is b. The predual is not
unique, in general. Note also that b, < b* canonically and that b, is a closed
subspace of b*.

Recall that a Banach Lie algebra (g,[-,]) is a Banach space that is also a Lie
algebra such that the Lie bracket is a bilinear continuous map g x g—g. Thus the
adjoint and coadjoint maps ad,:g—g, ad,y = [x,y], and ad}:g"—g" are also
continuous for each xeg.

A Banach Poisson manifold is a pair (P,{-,-}) consisting of a smooth (real
or complex) Banach manifold P and a bilinear operation {-,-} on the ring C* (P),
such that:

® (C*(P),{,-}) is Lie algebra,

® the Leibniz identity holds: { fg,h} = f{g,h} + {f,h}g for all f,g,he C*(P),

® for each f'e C*(P), the derivation Xy := {-,f } which is, in general, a section of
T**P, is a vector field on P.

A Banach Lie—Poisson space (b,{-,-}) is defined to be a (real or complex) Banach
space b that is also a Poisson manifold satisfying the additional condition that its
dual b* = C®(b) is a Banach Lie algebra under the Poisson bracket operation. The
following characterization is crucial throughout this paper.

Theorem 2.1. The Banach space b is a Banach Lie—Poisson space (b,{-,-}) if and only
if its dual b is a Banach Lie algebra (b",[-,-]) satisfying ad, bcbcb™ for all xeb”".
Moreover, the Poisson bracket of f,ge C* () is given by

{f,9}(b) = <[Df (b), Dg(b)],b>, (1)

where beb and D denotes the Fréchet derivative. If he C*(b), the associated
Hamiltonian vector field is given by

Xi(b) = —adpy b (2)

A morphism between two Banach Lie-Poisson spaces b; and b, is a continuous
linear map ¢ : b; — b, that preserves the Poisson bracket, that is,

{f0¢,go¢}1 :{f7g}20¢
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for any f,geC*(b;). Such a map ¢ is also called a linear Poisson map.
Define the category B of Banach Lie—Poisson spaces as the category whose
objects are the Banach Lie—Poisson spaces and whose morphisms are the linear
Poisson maps.

Let £ denote the category of Banach Lie algebras; its objects are Banach Lie
algebras and its morphisms are continuous Lie algebra homomorphisms.

Denote by £y the following subcategory of L. An object of £ is a Banach Lie
algebra g admitting a predual g,, that is, (g,)" =g, and satisfying ad; g,<=g,
where ad” is the coadjoint representation of g on g*; recall that g, is a closed
subspace of g*. A morphism in the category &, is a Banach Lie algebra
homomorphism  : g, >g, such that the dual map Y :g;—gj preserves at least
one choice of the corresponding preduals, that is, " : (g,), — (g,),, where (g;), is one
possible predual of g; for i = 1,2. Let £, be the subcategory of £, whose objects
have a unique predual.

Theorem 2.2. There is a contravariant functor & :B— L defined by §(b) =b* and
F(P) = ¢*. On the subcategory F~"'(Lo,) =B this functor is invertible. The inverse of

& is given by F'(g) = g, and F'(Y) =" |y, » where g, — g,
The internal structure of morphisms in B is given by the following results.

Proposition 2.3. Let ¢ :b; — b, be a linear Poisson map between Banach Lie—Poisson
spaces and assume that im ¢ is closed in by. Then the Banach space by /ker ¢ is
predual to b3 /ker ¢*, that is, (b;/ker ¢)"=Db;/ker ¢*. In addition, b;/ker ¢ is a
Banach Lie algebra satisfying the condition adi‘x] (by/ker ¢p)=b; /ker ¢ for all
[x]eb3/ker ¢* and by /ker ¢ is a Banach Lie—Poisson space. Moreover, the following
properties hold:

(1) the quotient map n:by; — Dby /ker ¢ is a surjective linear Poisson map;
(i) the map 1:b;/ker ¢ — by defined by 1([b]) = ¢(b), where beb; and [b]eb, /ker ¢
is an injective linear Poisson map;
(iii) the decomposition ¢ = 1 7 into a surjective and an injective linear Poisson map is
valid.

Proposition 2.3 reduces the study of linear Poisson maps with closed range
between Banach Lie—Poisson spaces to the study of surjective and injective linear
Poisson maps, which is carried out in the next propositions.

Proposition 2.4. Let (b, {-,-}) be a Banach Lie—Poisson space and let n: by —b, be a
continuous linear surjective map onto the Banach space by. Then by carries a Banach
Lie—Poisson structure such that n is a linear Poisson map if and only if im n* <bj is
closed under the Lie bracket [-,-], of b]. This Banach Lie-Poisson structure on b,
is unique and it is called the coinduced structure by the mapping n. The map 1* : b5 —b]
is a Banach Lie algebra morphism whose dual 7 : b7" - 03" maps b, into b,.
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Proposition 2.5. Let b, be a Banach space, (b, {-,-},) be a Banach Lie—Poisson
space, and 1:b;—by be an injective continuous linear map with closed range.
Then by carries a unique Banach Lie—Poisson structure such that 1 is a linear
Poisson map if and only if ker 1* is an ideal in the Banach Lie algebra b5. This Banach
Lie—Poisson structure on by is unique and it is called the structure induced by
the mapping 1. The map 1*:05—-b] is a Banach Lie algebra morphism whose
dual 1 : b7" > b3" maps by into b,.

For later applications we shall also need the notion of the product of Banach
Poisson manifolds.

Theorem 2.6. Given the Banach Poisson manifolds (P1,{,},) and (P2,{,},)
there is a unique Banach Poisson structure {,},, on the product manifold P; x P,
such that:

(1) the canonical projections my: Py X Py—> Py and my: Py X Py— P, are Poisson
maps;,

(i) ©{(C*(P1)) and w5(C*(Py)) are Poisson commuting subalgebras of
Cc* (P1 X Pz).

This unique Poisson structure on Py x P, is called the product Poisson structure and its
bracket is given by the formula

{f’g}u(pl»pZ) = {fpzvg])z}l(pl) + {fpwgm}z(PZ)v (3)

where f,,,gp, € C*(P2) and fy,,g,, € C*(Py) are the partial functions given by
fl’l (pz) :f})z(pl) :f(Pl,Pz) and Similarlyfor g-

3. Exact sequences of Banach Lie—Poisson spaces

In this section we will study exact sequences in the categories presented in the
previous section. Exactness in the categories £, ¥y, ¥(,, and B is defined in the
following way.

Definition 3.1. A sequence of Banach Lie algebras

0-1n—>g->ho0 4)
is exact if it is exact as a sequence in the category of Banach spaces and all maps
are Banach Lie algebra homomorphisms. The Lie algebra g is said to be an extension
of ) by n.
Definition 3.2. In the categories £ (respectively Ly, ) the sequence (3.1) is exact if it is

exact in the category £ and the duals of the maps in the sequence preserve at least
one choice of (respectively the uniquely associated) predual spaces, that is 1*(g,) < n.
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and 7*(},) =g,, where n,, g,, b, are preduals of n, g, I respectively, and the upper star
on a linear map denotes its dual. Like in the previous case, g is said to be an extension
of h by 1 in these two categories.

Definition 3.3. A sequence of Banach Lie—Poisson spaces

0-aLbleso (5)

is exact if it is exact as a sequence in the category of Banach spaces and all maps
are linear Poisson maps. The Banach Lie—Poisson space b is said to be an extension
of ¢ by a.

The goal of this section is to study under what conditions the functor & preserves
exactness. The answer is given by the following theorem.

Theorem 3.4. The Banach spaces a, b, ¢ form an exact sequence (5) of Banach
Lie—Poisson spaces if and only if their duals n:=c¢*, g:=b", ):=a* form an
exact sequence of Banach Lie algebras (4) in the category Ly, where 1:= p*
and w = j*. In particular, if g is the direct sum g=n@®l of Banach Lie algebras
with 1 and w the inclusion of the first component and w the projection on the second
component, then b can be chosen as the direct sum a@ ¢ of the Banach Lie—Poisson
spaces a and ¢ with j the inclusion on the first component and p the projection on the
second component.

For the proof we shall need a few preparatory lemmas.
Lemma 3.5. Let U and W be Banach spaces. Then one has the canonical isomorphism
(UeW) =U@W"
Proof. To fe(U@ W)" associate the pair (f |,/ |,/) € U* @ W*. This map is clearly
linear and continuous if on the direct sum one takes the norm given by the sum of the
norms in each component. The map that associates to (y,a) e U* @ W* the functional
y+ae(U@®W)", defined by (y+ a)(c,a) := y(c) + «(a), is also linear and contin-

uous. The two maps are clearly inverses of each other. [J

Lemma 3.6. If one has the exact sequence of Banach spaces

0-U SV IS W0 (6)
then the dual sequence
0w 5 e LU0 (7)

is also exact.
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Proof. The linear continuous map =* is injective. Indeed, if yekern* < W™,
then (yom)(v) =0 for all ve V. Surjectivity of n implies then that y(w) = 0 for all
we W soy=0.

The linear continuous map 1* is surjective. Indeed, since 1(U)=kern is a
closed subspace of V" and 1 is injective, 1 : U—1(U) is a Banach space isomorphism.
Then, if «e U*, the linear functional oo17':1(U)—C is continuous. Extend this
functional to feV* by the Hahn—Banach Theorem. Thus, for any ue U, we have
*(B)(u) = B1(u)) = (o171 (1(u)) = a(u), which shows that 1*(f) =a, that is,
1* is onto.

Since 1*orm* = (no1)" =0 by exactness of sequence (6), it follows that
n*(W*)cker 1*. To prove the opposite inclusion, let fe V* be such that *(f8) = 0.
Define f: W—C by f(w) = p(v), if w=n(v); thus fon = . Since f lvy =0 by
hypothesis and 1(U) = ker & by exactness of (6), it follows that f is well defined. Tt is
straightforward to verify that f is linear and continuous using the Banach space
isomorphism V' /1(U)=W. Finally, f = fon = n*(f)en*(W*). O

Lemma 3.7. Assume that all Banach spaces in the exact sequence (6) admit preduals,
that is, there are Banach spaces U., V., and W, such that U = (U,)", V = (V.)", and
W = (W.)", respectively. Assume, in addition, that the dual maps ©* and 1* preserve
the predual spaces, that is, 7*(W,)< V. and 1*(V.) < U,. Then one has the following
commutative diagram of exact sequences

where all vertical arrows are inclusions and the maps in the second line are defined by
restriction, that is, w. := 1" |y, and 1, ;= 1" |}, .

In particular, if V=U®W, U = (U,)", W = (W.)", and the maps 1 and = in the
sequence

0-U S UeWwW 5 wW-0

are defined by 1(u) := (u,0), n(u,w) :=w, for ueU, we W, then the commutative
diagram above is valid for V, = U, ® W,.
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Proof. Since n*(W,)<V, and 1*(V.)< U,, the maps in the second line are well
defined. The map =, is injective because it is the restriction of the injective map n* to
the Banach subspace W, W*.

The relation mo1 =0 implies that 1, om, = (1o 7*) |, = (n°1)" |, =0 which
shows that

im 7, < ker 1,. (8)

Let us assume that there is some element b eker 1, such that b¢im n, = V,. Then, by
the Hahn-Banach Theorem, there exists an element ve V' such that v(h)#0 and

vl — = 0. The exactness of sequence (6) and beker 1.< V.= V" implies that
b |ker T 0. (9)
However, one concludes from v |[— = 0 that

0 =o(m(y)) = 7" () (v) = »(n(v))

for any y e W,, which implies that n(v) = 0, that is, ve ker n. By (9) we have v(b) = 0,
which contradicts the choice of v. Thus we have proved that

im 7, = ker 1.

Thus, for any beker 1, there is a sequence {a, },-, = W, such that n*(a,) = n.(a,) >b
as n— oo and, since im * = ker 1*, there is some element a€ W* such that n*(a) = b.
One obtains from the above n*(a, —a)—>0 as n—oo. Now, because
" W a*(W*) = ker1* is a continuous isomorphism between Banach spaces,
the Banach Isomorphism theorem guarantees that its inverse is also continuous and
thus we have a,, > a as n— c0. Since W, is closed in W*, this implies that ae W, and
therefore beim n,. This shows that

imn, = keri,. (10)

The last step of the proof is to show that im 1, = U,. If im 1, # U,, then there are
elements c¢im i, and ue U such that u(c)#0 and u [ = 0. Thus one has 0 =
u(1.(b)) = b(1(u)) for any be V,, which means that 1(x) = 0. Injectivity of 1 implies
then that u = 0, which contradicts the choice u(c)#0. Thus we showed that

mi, = U,.

Therefore, for any ce U, there is a sequence {b,,}f:‘ , <V, and an element be V'* such
that 1.(b,)>c=1"(b) as n—oco. Thus 1*(h, —b)—>0 as n— oo and, using the
isomorphism V*/n*(W*) =~ U*, we conclude from the Banach Isomorphism theorem
that [b, — b] >0 as n— oo in V*/n*(W*), where [a] denotes the equivalence class of
aeV* in the quotient Banach space V*/n*(W*). This means that there is a
subsequence {b,, },-,=V. and an element de W* such that b, —b—n*(d) as
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k— oo. Therefore, since V. is closed in V*, we have that limy_, ., b, € V', and one has

c=1"(b)=1" ( lim b, — n*(d)) = ( lim bnk>
k— k— o0
since 1* o t* = 0. This shows that ceim 1, which proves that im 1, = U,.

To prove the last statement, notice that by Lemma 3.5 we have
(U.eW.) =(U.) ®W.)"=U® W=V, that is, U.® W, is a predual of V. In
addition, it is easy to see that if fe W, W* and (g1,¢2)e U, ® W, < U* @ W*, then
n(f) = (0,f)eU.® W, and 1*(g1,92) = g1 € U, and thus the hypotheses in the first
part of the lemma are verified. [

We have now the necessary background to prove the main theorem of this section.

Proof of Theorem 3.4. Let us assume that a,b, and ¢ form an exact sequence of
Banach Lie—Poisson spaces in the sense of Definition 3.3. Lemma 3.6 guarantees that
their duals also form an exact sequence

0 5p* L a =0

of Banach spaces. From Propositions 2.4 and 2.5 it follows that this sequence is an
exact sequence of Banach Lie algebras in the category £.

Conversely, assume that n, g, and I) form an exact sequence of Banach Lie algebras
in the category £ (see Definition 3.2). Thus they have preduals n,, g,, and ), which,
by Lemma 3.7, form an exact sequence

0-h, i g, 2 n,—0

of Banach spaces. Now, again by Propositions 2.4, 2.5, and Theorem 2.1, the
preduals n,,g,, and b, are Banach Lie Poisson spaces and the maps =, and 1, are
linear Poisson maps.

The last statement of the theorem is proved in the following way. By the second
part of Lemma 3.7, a@® ¢ can be taken as the predual space to h @ n. By the first part
of the theorem, the natural maps j and p are linear Poisson maps. The desired
conclusion now immediately follows from Theorem 2.6, if we show that the spaces
7 (C% (a)) and 7} (C*(c)) are Poisson commuting subalgebras of C* (a@«¢), where
7o a@®c—aand 7, : a@® ¢— ¢ are the natural projections. If f'e C* (a) and ge C* (¢),
then Df(a)ea* =D and Dg(c)ec* =mn, so that [D(xnlf)(a,c),D(nig)(a,c)] =
[(Df(a),0),(0,Dg(c))] =0, since h@n is a direct sum of Lie algebras. Formula (1)
of the Lie-Poisson bracket insures then that {z} f, nig} = 0 as required. [

Therefore, one concludes from Theorem 3.4 that the problem of extensions in the
category of Banach Lie—Poisson spaces is equivalent to that in the category £y.

It was shown in [12] that on the predual Banach space of a W*-algebra (von
Neumann algebra) there is a canonically defined Banach Lie—Poisson structure.
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Since the theory of von Neumann algebras is closely related to crucial problems of
quantum physics (see, e.g. [2,3,7]) we shall apply Theorem 3.4 to this subcase.

Recall that a W*-algebra is a C*-algebra m which possess a predual Banach space
m,, i.e. m= (m,)"; this predual is unique (see [14,16]). Since m* = (m.)™, the
predual Banach space m, canonically embeds into the Banach space m* dual to m.
Thus we shall always think of m, as a Banach subspace of m*. The existence of m,
allows the introduction of the o(m,m,)-topology on the W*-algebra m; for
simplicity we shall call it the g-topology in the sequel. Recall that a net {x,},. ,=m
converges to xem in the o-topology if, by definition, lim,c 4 {x,,0)> = {x,b) for
all bem,. The predual space m, is characterized as the subspace of m* consisting of
all g-continuous linear functionals on m (see [14,16]).

A homomorphism of W?*-algebras ¢ :m;—>m;, is a o-continuous x-algebra
homomorphism (and is hence automatically norm continuous; see [14,16]). Note
that ¢ (my.) =my,, where ni, is the unique predual of m;, for i = 1,2. Indeed, since
any element b€ my, is o-continuous on nt, and ¢ is also g-continuous, it follows that
¢*(b) = bo ¢ is o-continuous on m; and hence is an element of 1y,.

Conversely, assume that m; and m, are W *-algebras and that ¢ : m; —>m; is a *-
homomorphism satisfying ¢*(my,)=my,. Then ¢ is og-continuous. Indeed, if
{Xa},ey=my is a net o-converging to xemy, then for any b;emy, we have
limye g {xy4,b1> = <{x,b1>. We have for any byemy,, lim,ey {P(x,),b2) =
limyeq {Xy,b20¢> = {x,by0¢ ), since, by hypothesis, by o p = ¢*(by) emy,. This
shows that limye 4 {¢(xy),b2> = {Pp(x), by ) for any b, emy,, that is, ¢ : nm; >y is
g-continuous. These arguments prove the following.

Proposition 3.8. Let my and my be W*-algebras and ¢ : my —>my a x-homomorphism.
Then ¢ is a W*-algebra homomorphism if and only if ¢™ preserves the preduals, that is,
¢" (mae) =My

Denote by 2B the category of W*-algebras. Since any W*-algebra is a Banach Lie
algebra relative to the commutator bracket and possesses a unique predual, this
proposition plus the condition ad), m, cm,cm* for any aem, shows that W is a
subcategory of £y, (see Theorem 2.1). The condition ad) m, cm, for all aem, is
always satisfied. Indeed, left and right multiplication by aem define uniformly and
o-continuous maps L, : msx—axemand R,: max—xaem [14]. Let L} : m* -»m*
and R} : m*—m* denote the dual maps of L, and R,, respectively. If vem,, then
L!(v) and R}(v) are o-continuous functionals and therefore, by the characterization
of the predual m, as the subspace of g-continuous functionals in m*, it follows that
L:(v), Ri(v)em,. Since ad, = [a,"] = L, — R, it follows that ad’ = L — R} and
hence for any vem,, we have that ad, (v) = L}(v) — R} (v) em,.

This shows that ni, is a Banach Lie-Poisson space with the Poisson bracket { 1, g}
of f,ge C*(m,) given by (1). The Hamiltonian vector field X, defined by the smooth
function f'e C* (m,) is given by (2).

An exact sequence of W*-algebras is an exact sequence of algebras in which all
maps are W*-homomorphisms.
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Let us analyze exact sequences of Banach Lie—Poisson spaces that are preduals of
W*-algebras. So assume that (5) is an exact sequence of Banach Lie—Poisson spaces
such that their duals n:=¢*, g:=b", I := a* are W*-algebras. By Theorem 3.4,
sequence (4), where 1 := p* and 7 :=j*, is an exact sequence of Banach Lie algebras
in the category ¥, but all objects in the sequence are W *-algebras. This means that
the maps 1 and n are Banach Lie algebra homomorphisms and that 1*(b)cc,
7*(a)=b. What is not guaranteed, and is not true in general, is that the linear
continuous maps 1 := p* and n := j* are homomorphisms of the associative product
structures of the W*-algebras n, g,l). An example of a Lie algebra homomorphism
between W *-algebras that is not a homomorphism for the associative product is
given by ¢ : gl(n) - gl(n), ¢(a) := tr(a)l, where gl(n) is the algebra of n x n matrices
and [ the identity matrix.

We shall assume now that 1 and n are x-homomorphisms for the associative
product structure. Then, since they preserve the preduals, Proposition 3.8 insures
that they are W*-homomorphisms. Conversely, assume that (4) is an exact sequence
of W*-algebras. Then the maps j and p are homomorphisms of Banach Lie algebras
and, by Proposition 3.8, their duals preserve the predual spaces, that is, this is an
exact sequence in the category Lg,.

Thus we are lead to consider exact sequences (4) of W*-algebras. Then kern =
im is a o-closed ideal in g and thus there exists a central projector zeg such that
im 1 = zg [14, Proposition 1.10.5]. The projector 1 — z is also central so that denoting

(im1)* = (1 — z)g, one has the direct sum splitting

g=im:®(im:)"

into two o-closed ideals of g. It is easy to see that for any xeim 1 and y e (im z)l we
have xy = 0. Thus the W*-algebra g is the direct sum of two commuting o-closed

ideals. In addition, the map © |< 1o (im l)L — 1 is an isomorphism of W *-algebras.

im 1)

This proves the following.

Proposition 3.9. Any extension
0->n - g R h—-0

of the W*-algebra by by the W*-algebra n (where 1 and n are x-homomorphisms of the
associative product structure) is isomorphic to the extension

0->n 5 n@h S h—0,
where 1(n) := (n,0) and n(n,h) := h, for nen and hely.

This proposition together with Theorems 3.4 and 2.6 immediately yields the
following result.

Proposition 3.10. Any extension

O—)C(Lbi[—)o
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of the Banach Lie—Poisson space ¢ by the Banach Lie—Poisson space a such that the
dual sequence is an exact sequence of W*-algebras, is isomorphic to the extension

J P
0-a>a®c — c—0,

where j(a) = (a,0) and n(a,c) = c, for aca and cec. This means that b is Poisson
isomorphic to the product of the Banach Lie—Poisson spaces a and ¢ in the sense of
Theorem 2.6.

4. Extensions of Banach Lie algebras

As we showed in the previous section, the problem of extension of Banach Lie—
Poisson spaces reduces to the problem of extensions of Banach Lie algebras in the
subcategory L. We begin with some general considerations in the category of
Banach Lie algebras.

Let aut(n) = {D:n—-n|D derivation of n} be the Banach Lie algebra of all
continuous linear derivations of n. Recall that D:n—mn is a derivation if D[y, (] =
[Dn, ] + [n, D{] for all #,{en. Denote by int(n) := {ad, | yen} the subalgebra of
aut(n) consisting of inner derivations. In general, this is not a closed subspace of
aut(n). In this section we shall assume that int(n) is closed in aut(n) and hence int(n) is
then a Banach Lie ideal of aut(n). Denote by out(n) := aut(n)/int(n), the Banach
Lie algebra of outer derivations of n. The norm on int(n) and aut(n) is the usual
operator norm induced from the space gl(n) of all linear continuous maps of n into
itself. The norm on out(n) is the quotient norm.

Let Cy(n) = {éeg] [, (] =0 for all {en} be the centralizer of nin g and C(n) =
{nen|[n,{] =0 for all {en} = Cyq(n) nn be the center of n; C(n) is a closed ideal in
Cy(n) which is itself a Banach Lie subalgebra of g. Consider the following
commutative diagram of exact sequences:

0 0 0

0 C(n) Cyq(n) Con)/C(n) — 0
l T
0 n g h 0
ad ad |n %
0 int(n) aut(n)——— out(n) ——— 0
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All maps that are not labeled are natural: they are inclusions or projections on
quotients. In particular, by is isomorphic as a Banach Lie algebra with the quotient
g/n endowed with the quotient norm. The map ad : n—int(n) is given by n—ad, :=
[11,], for yen. The map ad |, : g—aut(n) is given by £—ad¢ |, for éeg.

Finally, the map o:bh—out(n) is defined in the following way. Let neb
and ¢en!'(n)=g. Define a(n) := [ad:|,]eout(h), where [ad:|,] denotes the
equivalence class of the operator ad: |, €aut(g) with respect to the ideal int(n).
The map o is well defined for if ¢, en!(n), then exactness of (4) implies that
& — & en and thus adg, ¢, |, €int(n). Therefore, [ade, |,] = [ade, |,]. The map o is
clearly a Lie algebra homomorphism. The defining equality for o, that is, (6 o n)(¢) =
[ad¢ |,] for every Ceg, proves that the lower right square of the diagram is
commutative. Continuity of ¢ is proved in the following way. Since g is a Banach Lie
algebra, there is a constant C>0 such that ||[¢, {]||<C||¢]|[¢]], for all & (eg.
Therefore, ||ad; || < C||€|], for all Eeg. Thus, for neb and Een~!(y) arbitrary, we
have [lo(n)|| = [[[ade |]II<[ad: ||| <[lad; [[< C||<][, which shows, using the iso-
morphism g/n=l and the definition of the norm on the quotient, that o is
continuous.

Note that ad |, : g—aut(n) and o : h— out(n) are not surjective, in general.

Consider now a linear continuous section s:h—g, mos=1idy, and assume that
g = n®s(h), that is, s(b) is closed and has as split complement the space n. Define
the isomorphism of Banach spaces i : g=n@®b by (&) = (¢ — s(n(&)), n(£)), whose
inverse is given by ¥ '({,n) ={+s(y), for neh, {en, and feg. Note that
Y'(0,n) = s(n) for any neb and ¥ '((,0)=( for any (en. Conversely, an
isomorphism of Banach spaces i : g—n@®b such that ' is the identity on m,
determines a linear continuous section s:h—g by s(n) := ' (0,5) whose image
s(h) = yo! (h) is a closed split subspace of g admitting n as a complement. Thus there
is a bijective correspondence between the Banach space isomorphisms - g—>n @b such
that =" is the identity on v and the linear continuous sections s : ) — g with closed split
range admitting n as a complement.

From this point on we shall assume that g is isomorphic to n@l as a Banach
space. Let us stress that this sum is not taken, in general, as a direct sum of Banach
Lie algebras. The isomorphism y induces a Lie bracket on n@} by

(&), o)) =w (™ o)™ (o n)])
=&, T+ o)) = o(m")(Q) + (1), [n,1']), (11)

where w: ) x h—n and ¢ :h—aut(n) are defined by

(') == [s(n),s(n")] = s([n,1']) (12)

for any (,{’en and u,%’ €.
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Let us pose the inverse question. Given are two Banach Lie algebras
n and }. Endow the direct sum Banach space n@®l with the continuous
bilinear skew symmetric operation given by (11), where w:hxh-on
is a given continuous bilinear skew symmetric map and ¢:h—aut(n)
is a given continuous linear map. What are the conditions on w and ¢ so
that this operation [({,n),({’,n")] defined by the right-hand side of (11)
is a Lie bracket on n@? The answer to this question is given by the following
proposition.

Proposition 4.1. Let n and Yy be two Banach Lie algebras, w:hxbh-n a

continuous bilinear skew symmetric map, and ¢ :h—aut(n) a continuous linear
map. Then

(&), ()] = (T + o) () = o)) + ('), [,1]) (14)

for {en and nely endows the Banach space direct sum g .= n@l) with a Banach Lie
algebra structure if and only if

o([nn'l,n") + o', 0", n) + o(n",n'l,1")

—om(o(',n") =o' )" 1) = eu")(wm,n)) =0 (15)
and

adw(nﬁn’) =+ @([7/7 ’7/]) - [90(77)3 90(’7/)] =0 (16)

for any n,n', " €. Consequently, the Banach Lie algebra n@Y) is an extension of the
Banach Lie algebra w by the Banach Lie algebra }y.

Proof. Since ¢ is linear continuous and w is bilinear continuous, the bilinear skew
symmetric operation defined in (14) is also continuous. So it is enough to show that
(15) and (16) are equivalent to the Jacobi identity.

From the expression of the second component in (14), it follows that the Jacobi
identity gives no conditions on it since b is a Lie algebra. Thus only the first
components need to be calculated. A direct computation shows that the first

component of [[({,n), ({',n)], ({",n")] equals

(6L + lom)(€), 8" = [e(')(0), "] + [w(n, 1), "]

+ (1N = ") (&) — o) e(n)()

+ oo )() — ") (@, ") + ol n'l,n"). (17)
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") = o(n")(w(n,n')). Taking

For { = {' = {" = 0 this expression becomes w([n,n'],n
=0={=0 ylelds

the circular permutations of (17) and then setting {

o([n,n'l,n") + o', 0" n) + o(n”,n'l,n")
—om)((',n") = o)W n) = eM") (1)) =0

for any n,n’,n" €l. This proves (15).

In the sum of (17) with the two terms obtained from it by circular permutations,
there are expressions that add up to zero. The sum of the first term in (17) with its
circular permutations is zero since it is the Jacobi identity in the Lie algebra n. By
(15), the sum of the ninth and the tenth term in (17) plus their circular permutations
also add up to zero. Thus, the sum of (17) with its circular permutations equals

(1), "] + (', n"), (] + [o",n). ]
+o(fn,n) ") + o (', 0" () + o, n)(L)
— o), eIL") = [o(n"), (")) — [0(n"), e(m)](L')
+ o). " = lom(L"), I = ([, ")
+ o) ("), = o)), "] = o()([".C)
+ lo(")(0), T = lo")(E), I = o(n")(IL,L]).

Each of the last three lines vanishes because ¢(17), @(1'), and ¢(”) are derivations on
n. Since ¢, ¢, and {” are arbitrary, from the remaining three top lines we conclude
that

dw(n n') + <P([71 n ]) [@(”)7 (P(']/)] =0

for any n,n’,n" €h, which proves (16).

Conversely, suppose that w:) x h—n is a continuous bilinear skew symmetric
map and ¢ :h—aut(n) is a continuous linear map satisfying (15) and (16). A direct
verification using (15) and (16) shows that the Jacobi identity holds. Thus (14)
endows g@h with a Banach Lie algebra structure. [

If wis Abelian, then ad,,(,,) = 0 and aut(n) = gl(n), the Banach space of all linear
continuous maps from n to n. Thus the second condition becomes ¢([y,7']) =
[(n), ()] for all nen, that is, ¢ : h— gl(n) is a representation. The first condition
asserts that w is a h-cocycle relative to the representation ¢.

We want to mention that such extensions of Lie algebras were considered in the
purely algebraic context in [11,15], and, more recently, in [1]. For a presentation of
group extensions in algebraic context in the spirit of the previous discussion see [3,
Chap. 4].
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5. Extensions of Banach Lie—Poisson spaces

Let us take Banach Lie—Poisson spaces a and ¢ and construct the extension b of ¢
by a in the sense of the category B of Banach Lie—Poisson spaces. We restrict our
considerations to the case when b equals the direct sum ¢@® a of Banach spaces. Thus
one has the Banach space exact sequence

0—>(1i>c6—)c(£>c_>07 (18)
where j(a) := (0,a) and p(c,a) := c¢. The dual of this sequence is
Oanin@bibao, (19)

where ) = a*, n = ¢*, p*({) := ({,0) and j*({,) = n. Since a and ¢ are Banach Lie—
Poisson spaces we have

adjaca and adjccc (20)

By Theorem 3.4, the question whether (18) is an exact sequence of
Banach Lie-Poisson spaces is equivalent to the question whether (19) is
an exact sequence in the subcategory £y < &. Proposition 4.1 gives a necessary and
sufficient condition for (19) to be an exact sequence in the category £. Sequence (19)
is exact in the subcategory & if and only if ad;, op (c@a)cc@a. In order to see what
this means we use formula (14) to compute the coadjoint representation on n*@5*
and get

adiz,) (¢,a) = (ad; ¢+ @(n)"¢, 0(n,-)"c = (¢()) ¢ + ad, a) (21)

for cen*, aeh”, {en, and nel. The requirement that this action preserve the
preduals, together with properties (20) implies that ¢(17)"(¢)=c¢ and that
(0(n,)" = (p()0)")(¢c) =a for all nel and all {en. Taking here alternatively n =0
and { = 0, the second condition becomes w(n,-)"(¢)=a and (¢(-)¢)"(¢) = a. We have
proved the following theorem.

Theorem 5.1. Given are two Banach Lie—Poisson spaces a and ¢ whose duals are the
Banach Lie algebras by = o* and n = ¢*, respectively, a continuous bilinear skew
symmetric map o : b X h—n, and a continuous linear map ¢ : h— aut(n) satisfying (15)
and (16). The Banach space ¢@® a is an extension of ¢ by a as a Banach Lie—Poisson
space if and only if

e (9=c, (e()) ()=a, ofy,-)()=a (22)

for all el = a* and {en = ¢*.
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Given feC™(¢@a), define the partial functional derivatives 0f/dcec* and
of [daea* by

D.f(c,a)(d) = <c’,(;—£> and D, f(c,a)(d) = <al>%>

for all ¢ ec and all @' ea, where D, f(c,a) and D, f(c,a) denote the partial Fréchet
derivatives of f at (¢, a) € c@® a, respectively.
Theorem 2.1, (14), and (21) thus immediately yield the following theorem.

Theorem 5.2. With the notations and hypotheses of Theorem 5.1, the Lie—Poisson
bracket of f,ge C* (¢@a) is given by

of o SF S Sa\ SF

R IR R
of\ 99 3f dg

ro(5) 5o (5a5e)) (23)

for cec and aea. The Hamiltonian vector field of he C* (¢c@ a) is given by

. Sh\ ™ Sh \* Sh\ ™ .
Xi(c,a) = —<adg,;c+q)<%> c, w(%, > c— ((p()$> c+adgza>. (24)

Example 1 (Semidirect products of Banach Lie—Poisson spaces). Let us apply
Theorem 5.1 to the case w = 0. Condition (15) is in now vacuous and condition (16)
asserts that ¢:bh—aut(n) is a Lie algebra homomorphism. One can define the
semidirect product of by with n as the Banach Lie algebra with underlying Banach
space n@®l and bracket (14) with w = 0.

Denote, as before, by a and ¢ the predual spaces of ) and n, respectively,
that is, ) := a* and n := ¢*. In this case, only two conditions in Theorem 5.1 survive,
namely,

e ()=c and (¢()0)(c)=a (25)

for all yeh=a* and {en = ¢*. The Banach space ¢@a is predual to n@b.
It is a Banach Lie-Poisson space relative to the Poisson bracket (23) and
Hamiltonian vector field formula (24) with w = 0. This is the semidirect product
Banach Lie—Poisson space of a with c.

An important particular case of this situation occurs when n is an
Abelian Lie algebra, that is, ¢:h—>L*(n) is a Lie algebra representation;
L™ (n) denotes the Banach algebra of all bounded linear operators on n. In this
case one obtains the semidirect product of I with the Banach space n whose bracket
is given by

[(&m), ()] = (@) () = o) (L), [n,1'])
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for any {,{’en and 5,5’ €b. If conditions (25) hold, one obtains the semidirect
product Banach Lie—Poisson space ¢@® a. The formula for the Poisson bracket is (23)
with @ = 0 and the first summand of the second term is also set to equal zero. The
formula for the Hamiltonian vector field is (24) with w = 0 and the first term in the
first component set equal to zero. These formulas coincide with the ones found, for
example, in [8].

As a further special case, let us assume that [) is a #*-algebra m and that nis a
Hilbert space #. Additionally, let us fix a W*-representation ¢ : m— L® () of m
on the Hilbert space . In this case, ¢ = # and a = m,, where # = A, = A" is
equipped with the trivial Poisson structure, since we consider # as an Abelian
Banach Lie algebra. Conditions (22) of Theorem 5.1 reduce in this case to the single
requirement

(p()v)"# =m, for all ve #.

This condition can be expressed as follows: for any v, we J#, there exists an element
bem, such that

Co(x)olw) = <x, b5

for any xem, where < - |- > denotes the inner product on . But this condition is
satisfied since the representation ¢ is o-continuous (by definition) and thus the linear
functional x— {¢(x)v|w) is o-continuous too. This shows that it is represented by
an element bem, (see [14]). Therefore we have constructed the semidirect product
Banach Lie—Poisson space # @ m,.

Let us further specialize this situation for the case m = L® (). The predual space
m, is in this case the Banach space of trace class operators L'(#) and the duality
pairing between L*(#) and L'(#) is given by tr(pX) for pelL'(#) and
XeL* (). Formula (23) for f, ge C* (# @ L' (#)) becomes

_ of dg of og ogof
(raho) = (o[ L)) (ofL 202097

where peL'(#) and ve #. Hamilton’s equation f= {f,h} for the Hamiltonian
he C*(L'(#)) can be equivalently written as the system of equations

L fon\  [oh oh

Example 2 (An extension of the restricted Banach Lie—Poisson space). Let #
be a complex separable Hilbert space endowed with a polarization [13,20],
that is, a direct sum decomposition # =H# . @A _ into two closed
orthogonal subspaces. Denote by Py :# —# 4, the orthogonal projectors on
H i hence P + P_ =idand P, P_ = P_P, =0. Denote by L* () and L* (# )
the Banach Lie algebra of bounded linear operators on # and J# ., respectively,
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relative to the commutator bracket. Let L?(#) be the Banach Lie algebra of linear
Hilbert—Schmidt operators on 2, also relative to the commutator bracket. Similarly, let
L* (A, #_) and L*(# _, # ) be the Banach spaces of Hilbert-Schmidt operators
from s, to # _ and # _ to # ., respectively. Following Pressley and Segal [13] we call

b= L7 (A A ) ={XeL™ (H)| P XPy e L™ (A +),
P.XP_ el*(H_, H ), P XP . el>(H,, #_ )} (26)

the restricted Banach Lie algebra. In this definition we write, for example, P, XP_ for
P.XP_|, and similarly for the other terms. The vector space h) is a Banach space
relative to the norm

X1 = 1P XP, ||, +|[P-XP-

o FIPLXP [, +[[P-XPy ||, (27)

where || - ||, and || - ||, denote the operator norm and the Hilbert-Schmidt norm in
the various spaces. It is easy to show that relative to the commutator bracket
[X,X'] .= XX' — X'X, the space D) is a Banach Lie algebra. It also convenient to
think of elements of ) as block operators of the form

(v, %) &

where Xy =P, XP.elL*(#.), X, =P . XP el>(#_,#,), and X_, =
P_XP,eLX(H ., H_).

The Banach space n := L' (#) of trace class operators on #, endowed with the
trace norm || - ||; and the negative of the commutator bracket [p, p'| .= —pp’ + pp is
also a Banach Lie algebra. Define g .= n@®J and

¢@:Xeh— [P, XP,, |eaut(n), (29)

o: (X, X)ehxh—>P, XP_X'P, — P, X'P_XP,en. (30)

The map ¢ is linear and continuous and the map w is bilinear and continuous. These
maps also satisfy identities (15) and (16). Indeed, to verify (16), for arbitrary
cel'(#,)and X, X' e L* (A, #,), taking into account that the bracket operation
on 1 is the negative of the commutator bracket, we have

ady(x x) 0 + ([X, X'])o — [p(X), p(X')]o
= —[o(X,X'), 0] + [P [X,X'|Py,0] = [Py XPy, |, [Py X'Py, JJo
— —[P,XP_X'P, — P,X'P_XP, 0|
+[P.X(P, +P_)X'P, — P.X'(P, +P_)XP_, 0]

— [Py XP,,[P.X'P, o] + [P .X'P, [P.XP, o]
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= [P.XP.X'P, — P.X'P.XP. 0|+ [P.XP., [0, P.XP.]|
+ [PLX'P, [P XP. o]
= [0, [P+ X'P,, P, XP.]| + [PLXP,, [0, P, X'P.]] + [P X'P,, [P XP, 0] = 0
by the Jacobi identity.
To verify (15) we compute separately the first pair of terms for X, X', X" el =
L™ (A#, # ) to get
(X, X', X") = p(X) (@ (X', X"))
= P.[X,X'|P_X"P, — P,X"P_[X,X'|P,
— [P, XP,,P.X'P_X"P, — P, X"P_X'P,]
=P.X(P,+P)X'P.X"P, —P,X'(P. + P_)XP_X"P,
— P . X"P_X(P, +P_)X'P, +P.X"P_X'(P, + P_)XP,
— P.XP.X'P_X"P, + P, XP.X"P_X'P,
+P.X'P.X"P.XP, — P, X"P_X'P,XP,
—P.XP.X'P_X"P, — P, X'P,XP_X"P. — P,X'P_XP_X"P,
—P.X"P_XP.X'P, —P.X"P_XP_X'P, + P.X"P_X'P_XP,
+ P, XP.X"P_X'P, +P,X'P_X"P.XP,.
Rearrange the terms in the following manner:
o([X, X'], X") — o(X)((X', X"))
=P.XP_X'P_X"P, +P,X"P_X'P_XP. — P, X'P_XP_X"P,
_P.X"P_XP_X'P, +P.XP,X"P_X'P, — P,X'P,XP_X"P,
+P.X'P_X"P.XP, — P.X"P_XP.X'P.
=P, (XP.XP.X"+X'"PXP X—-XP XP X"-X"P_XP_X')P,
+P.(XP.X"P_X — X'P,XP_X")P,
+P.(X'P_X"P.X — X"P_XP,X')P,.

Adding the other two terms obtained by circular permutations gives zero; the
summands cancel separately in the three groups emphasized above. Thus
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Proposition 4.1 can be applied thereby showing that g is an extension of [)=
L*(A#,#,) by n= L' (A#,). The Lie bracket on n@} is given by (14) which in this
case becomes

(X, ), (X", )] = (=P, Pl + @ (X)(p') = 9(X')(p) + (X, X'), [X, X])
= (_[pap/] + [P+XP+7p,] - [P+X/P+7p}

+P.XP_X'P, — P.X'P_XP_ [X,X)). (31)

The predual of Iy is the Banach Lie—Poisson space
= L'(#, H ) = {cel™(H)|ProPieL (),

P.oP_el*(H_,# ), PcP el>(H,,# )} (32
relative to the pairing
<O'7X> = tl‘ace(0'+X++O',X,+0+,X,++6,+X+,) (33)

for Xel. The predual of n is ¢:= #(A#,), the Banach Lie-Poisson space
of compact operators on .. We shall verify now the hypotheses of
Theorem 5.1, that is,

() o(X)" () =c, where (X): L' (#1) — LI(#+), 50 ¢(X)" : L* (#' ) > L (#)
and one needs to show ¢(X) (A (A})) A (A ),

(ii) (¢(-)p)"(c) =a, where @(-)p: L™ (#, H ) > L' (A1), 50 (¢()p)" : L™ (A# 1)~
(L* (A, #))" and one needs to show (¢()p) (A (A L)) =L (A, H ),

(i) w(X, )*(¢c)=a, where (X, ) : L% (A, H ) > LY (H ), s0 o(X,-) : L% (H)
— (L™ (A, #.))" and one needs to show w (X, ) (A (H )= L (A, H )
forall Xebh=L*(#,# ) and pen= L' (#,).

To verify (i) use the trace pairing, let X eb, YeL* (A, ), and pe L' (# ) to get

Co(X)'Y,p)> =<Y,0(X)p) = trace(Y [P, XP,, p]) = trace([Y, P. XP,]p)

which shows that ¢(X)"Y = [Y, P, XP,]eL*(A,), thatis, p(X)" = —[P.XP,"].
Therefore, if we # (A ,), we have ¢p(X)n = —[P, XP,,x]e A (A), since A (A )
is an ideal in L™ (# ). This shows that ¢(X)"(¢c)=c.

To show (ii), use the same notations as before to get

L@()p) Y, XY = (Y, p(X)p) = trace(Y[P, XP., p]> = trace([p, Y|P, XP.).
Thus, if e ' (H# ) we have

{(p()p)n, Xy = trace([p, w] P+ XPy)
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so, taking for X operators of the form X_, X, _, and X_, the right-hand side of this
relation vanishes. Therefore

lp,%] 0

0 0> el n,)

since [p,x]e L' (A ).
Finally, to verify (iii), use the same notations as above, let X’ e L* (#, #.) to get

Co(X, )Y, X'y ={Y,0(X,X")) = trace(Y(P, XP_X'P, — P.X'P_XP,))

=trace(YX, X', —X_ YX' ).
Thus if xe #' (A ), we have
Co(X, ), X"y =trace(x X, X", — X_ nX' )
which shows that

0 nX

o(X, )%= eL\(#, #
on= (T )eronn
because xX, el*(H _,H.), X_ wel*(H , H_) since X, el*(H_,H,),
X el?(#.,#_) and the L? operators are an ideal in the algebra of bounded
operators.

In view of Theorems 5.1 and 5.2 the direct sum c®@a = 4 (# )@ L (A, # ,)isa

Banach Lie—Poisson space relative to the bracket

p p 5
[}u 5f1>+,(5 ] P, 5fP, 5913+ P, 5911 5f )) (34)

for f,ge C (A (A )DL (A, H ) and ve A (H), ce L' (A, # ). The Hamil-
tonian vector field of he C* (A (A# ) ® LY (A, H#,)) is given by

oh oh
Xi(n,0) = — ([%75} + [%7P+%P+}>

<—(5h/(;a)_+x %((Wo(S 0)+_) - ([5;1/2%,%] 8) + {G%D (35)
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