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Abstract

The extension of Banach Lie–Poisson spaces is studied and linked to the extension of a

special class of Banach Lie algebras. The case of W �-algebras is given particular attention.

Semidirect products and the extension of the restricted Banach Lie–Poisson space by the

Banach Lie–Poisson space of compact operators are given as examples.
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1. Introduction

The dual of any finite dimensional Lie algebra carries a linear Poisson bracket,
called Lie–Poisson structure, which is pervasive in classical mechanics. Many
Hamiltonian systems, such as the free or heavy rigid body equations, the finite and
periodic Toda lattice, the geodesics on quadrics, or the Neumann and Rosochatius
system, have alternate non-canonical descriptions in Lie–Poisson formulation.
Formally, several evolutionary partial differential equations, such as the ideal non-
viscous fluid, ideal magnetohydrodynamics, the Poisson–Vlasov, Korteweg–de
Vries, Kadomtsev–Petviashvili, or the linear and non-linear wave and Schrödinger
equations also have Lie–Poisson formulations. Some of these have been given a
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rigorous functional analytic formulation. Examples of both formal and rigorous
functional analytic symplectic and Poisson structures can be found, for example, in
[4,6,10] and references therein. While these applications of this linear Poisson
structure emerged in the work of the past decades, the structure itself goes back to
Lie [9], who introduced it simultaneously with the concept of Lie algebra. The theory
of Lie–Poisson spaces in finite dimensions is complete and is part of Poisson
geometry (see, for example, [10,17–19]). In infinite dimensions, a general theory is
lacking. The first systematic attempt to lay the foundations of Banach symplectic
geometry is due to Chernoff and Marsden [4].
Motivated by our understanding of infinite dimensional Hamiltonian systems,

questions surrounding the notion of momentum map, and problems in quantum
mechanics including the theory of coherent states, in [12] we proposed a definition of
Banach Lie–Poisson spaces and linked it to classical and quantum reduction, the
theory of W �-algebras, and momentum maps in infinite dimensions. Banach Lie–
Poisson spaces naturally appear in this context as preduals of Banach Lie algebras.
For example, the spaces of compact and trace class operators on a complex separable
Hilbert space carry a natural Lie–Poisson bracket. The present work develops
further this point of view by addressing the fundamental question of construction of
new Banach Lie–Poisson spaces out of given ones. One such scheme is given by the
method of extensions.
The problem of extension in various categories plays a central role in the

understanding of its objects and morphisms. It gives a method to construct new
objects out of old ones whose properties are then well understood. The category of
Banach Lie–Poisson spaces is no exception. The goal of this paper is to present the
theory of extensions for Banach Lie–Poisson spaces and to give several
mathematically and physically relevant examples.
The paper is organized as follows. In Section 2, the minimal necessary information

on Banach Lie–Poisson spaces found in [12] is collected. Only some definitions and
theorems necessary for the subsequent development are given. With this back-
ground, the theory of exact sequences of Banach Lie–Poisson spaces is presented in
Section 3. It is shown that exactness in this category is equivalent to exactness of the
dual Banach Lie algebra sequence in the subcategory of Banach Lie algebras
admitting a predual. Special attention is devoted to the important case of the Banach
Lie–Poisson spaces that are preduals of W �-algebras. It is shown that if the the dual
sequence is exact in the category of W �-algebras, then the exact sequence is
necessarily that of a direct sum of Banach Lie–Poisson spaces. Extensions of Banach
Lie algebras are discussed in Section 4. All possible brackets on a Banach space
direct sum of Banach Lie algebras are characterized. With this preparation, Section 5
presents all extensions of Banach Lie–Poisson spaces underlying a Banach space
direct sum. Semidirect products of Banach Lie–Poisson spaces with cocycles are a
particular case of this theory. Even more special, the case of the predual of the
semidirect product of a W �-algebra with a representation is treated in detail.
The example of the extension of the restricted Banach Lie–Poisson space by the
space of compact operators, important in the theory of loop groups [13,20], is also
worked out.
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2. Banach Lie algebras and Lie–Poisson spaces

This section briefly reviews the minimal background from [12] necessary for the
rest of the paper. No proofs will be given here since they can be found in the
aforementioned paper.

Given a Banach space b; the notation b� will always be used for the Banach
space dual to b: For xAb� and bAb; the notation /x; bS means the value of

x on b: Thus /�; �S : b� � b-R will denote the natural bilinear continuous
duality pairing between b and its dual b�: The notation b� will be reserved
for a predual of b; that is, b� is a Banach space whose dual is b: The predual is not
unique, in general. Note also that b�+b� canonically and that b� is a closed

subspace of b�:
Recall that a Banach Lie algebra ðg; ½�; ��Þ is a Banach space that is also a Lie

algebra such that the Lie bracket is a bilinear continuous map g � g-g: Thus the
adjoint and coadjoint maps adx : g-g; adx y :¼ ½x; y�; and ad�x : g

�-g� are also

continuous for each xAg:
A Banach Poisson manifold is a pair ðP; f�; �gÞ consisting of a smooth (real

or complex) Banach manifold P and a bilinear operation f�; �g on the ring CNðPÞ;
such that:

* ðCNðPÞ; f�; �gÞ is Lie algebra,
* the Leibniz identity holds: f fg; hg ¼ f fg; hg þ f f ; hgg for all f ; g; hACNðPÞ;
* for each fACNðPÞ; the derivation Xf :¼ f�; f g which is, in general, a section of

T��P; is a vector field on P:

A Banach Lie–Poisson space ðb; f�; �gÞ is defined to be a (real or complex) Banach
space b that is also a Poisson manifold satisfying the additional condition that its

dual b�CCNðbÞ is a Banach Lie algebra under the Poisson bracket operation. The
following characterization is crucial throughout this paper.

Theorem 2.1. The Banach space b is a Banach Lie–Poisson space ðb; f�; �gÞ if and only

if its dual b� is a Banach Lie algebra ðb�; ½�; ��Þ satisfying ad�x bCbCb�� for all xAb�:
Moreover, the Poisson bracket of f ; gACNðbÞ is given by

f f ; ggðbÞ ¼ /½Df ðbÞ;DgðbÞ�; bS; ð1Þ

where bAb and D denotes the Fréchet derivative. If hACNðbÞ; the associated

Hamiltonian vector field is given by

XhðbÞ ¼ �ad�DhðbÞ b: ð2Þ

A morphism between two Banach Lie–Poisson spaces b1 and b2 is a continuous
linear map f : b1-b2 that preserves the Poisson bracket, that is,

f f 3 f; g 3 fg1 ¼ f f ; gg2 3 f
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for any f ; gACNðb2Þ: Such a map f is also called a linear Poisson map.
Define the category B of Banach Lie–Poisson spaces as the category whose
objects are the Banach Lie–Poisson spaces and whose morphisms are the linear
Poisson maps.
Let L denote the category of Banach Lie algebras; its objects are Banach Lie

algebras and its morphisms are continuous Lie algebra homomorphisms.
Denote by L0 the following subcategory of L: An object of L0 is a Banach Lie

algebra g admitting a predual g�; that is, ðg�Þ
� ¼ g; and satisfying ad�g g�Cg�

where ad� is the coadjoint representation of g on g�; recall that g� is a closed

subspace of g�: A morphism in the category L0 is a Banach Lie algebra
homomorphism c : g1-g2 such that the dual map c� : g�2-g�1 preserves at least

one choice of the corresponding preduals, that is, c� : ðg2Þ�-ðg1Þ�; where ðgiÞ� is one
possible predual of gi for i ¼ 1; 2: Let L0u be the subcategory of L0 whose objects

have a unique predual.

Theorem 2.2. There is a contravariant functor F :B-L0 defined by FðbÞ ¼ b� and

FðfÞ ¼ f�: On the subcategory F�1ðL0uÞCB this functor is invertible. The inverse of

F is given by F�1ðgÞ ¼ g� and F�1ðcÞ ¼ c� jðg2Þ� ; where c : g1-g2:

The internal structure of morphisms in B is given by the following results.

Proposition 2.3. Let f : b1-b2 be a linear Poisson map between Banach Lie–Poisson

spaces and assume that im f is closed in b2: Then the Banach space b1=ker f is

predual to b�2=ker f
�; that is, ðb1=ker fÞ�Db�2=ker f

�: In addition, b�2=ker f
� is a

Banach Lie algebra satisfying the condition ad�½x� ðb1=ker fÞCb1=ker f for all

½x�Ab�2=ker f
� and b1=ker f is a Banach Lie–Poisson space. Moreover, the following

properties hold:

(i) the quotient map p : b1-b1=ker f is a surjective linear Poisson map;
(ii) the map i : b1=ker f-b2 defined by ið½b�Þ :¼ fðbÞ; where bAb1 and ½b�Ab1=ker f

is an injective linear Poisson map;
(iii) the decomposition f ¼ i 3 p into a surjective and an injective linear Poisson map is

valid.

Proposition 2.3 reduces the study of linear Poisson maps with closed range
between Banach Lie–Poisson spaces to the study of surjective and injective linear
Poisson maps, which is carried out in the next propositions.

Proposition 2.4. Let ðb1; f�; �gÞ be a Banach Lie–Poisson space and let p : b1-b2 be a

continuous linear surjective map onto the Banach space b2: Then b2 carries a Banach

Lie–Poisson structure such that p is a linear Poisson map if and only if im p�Cb�1 is

closed under the Lie bracket ½�; ��1 of b�1: This Banach Lie–Poisson structure on b2
is unique and it is called the coinduced structure by the mapping p: The map p� : b�2-b�1
is a Banach Lie algebra morphism whose dual p�� : b��1 -b��2 maps b1 into b2:
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Proposition 2.5. Let b1 be a Banach space, ðb2; f�; �g2Þ be a Banach Lie–Poisson

space, and i : b1-b2 be an injective continuous linear map with closed range.

Then b1 carries a unique Banach Lie–Poisson structure such that i is a linear

Poisson map if and only if ker i� is an ideal in the Banach Lie algebra b�2: This Banach

Lie–Poisson structure on b1 is unique and it is called the structure induced by

the mapping i: The map i� : b�2-b�1 is a Banach Lie algebra morphism whose

dual i�� : b��1 -b��2 maps b1 into b2:

For later applications we shall also need the notion of the product of Banach
Poisson manifolds.

Theorem 2.6. Given the Banach Poisson manifolds ðP1; f ; g1Þ and ðP2; f ; g2Þ
there is a unique Banach Poisson structure f ; g12 on the product manifold P1 � P2

such that:

(i) the canonical projections p1 : P1 � P2-P1 and p2 :P1 � P2-P2 are Poisson

maps;
(ii) p�1ðCNðP1ÞÞ and p�2ðCNðP2ÞÞ are Poisson commuting subalgebras of

CNðP1 � P2Þ:

This unique Poisson structure on P1 � P2 is called the product Poisson structure and its

bracket is given by the formula

f f ; gg12ðp1; p2Þ ¼ f fp2 ; gp2g1ðp1Þ þ f fp1 ; gp1g2ðp2Þ; ð3Þ

where fp1 ; gp1ACNðP2Þ and fp2 ; gp2ACNðP1Þ are the partial functions given by

fp1ðp2Þ ¼ fp2ðp1Þ ¼ f ðp1; p2Þ and similarly for g:

3. Exact sequences of Banach Lie–Poisson spaces

In this section we will study exact sequences in the categories presented in the
previous section. Exactness in the categories L; L0; L0u; and B is defined in the
following way.

Definition 3.1. A sequence of Banach Lie algebras

0-n !i g !p h-0 ð4Þ

is exact if it is exact as a sequence in the category of Banach spaces and all maps
are Banach Lie algebra homomorphisms. The Lie algebra g is said to be an extension

of h by n:

Definition 3.2. In the categories L0 (respectively L0u) the sequence (3.1) is exact if it is
exact in the category L and the duals of the maps in the sequence preserve at least
one choice of (respectively the uniquely associated) predual spaces, that is i�ðg�ÞCn�
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and p�ðh�ÞCg�; where n�; g�; h� are preduals of n; g; h respectively, and the upper star
on a linear map denotes its dual. Like in the previous case, g is said to be an extension

of h by n in these two categories.

Definition 3.3. A sequence of Banach Lie–Poisson spaces

0-a !j
b !p c-0 ð5Þ

is exact if it is exact as a sequence in the category of Banach spaces and all maps
are linear Poisson maps. The Banach Lie–Poisson space b is said to be an extension

of c by a:

The goal of this section is to study under what conditions the functor F preserves

exactness. The answer is given by the following theorem.

Theorem 3.4. The Banach spaces a; b; c form an exact sequence (5) of Banach

Lie–Poisson spaces if and only if their duals n :¼ c�; g :¼ b�; h :¼ a� form an

exact sequence of Banach Lie algebras (4) in the category L0; where i :¼ p�

and p :¼ j�: In particular, if g is the direct sum gDn"h of Banach Lie algebras

with i and p the inclusion of the first component and p the projection on the second

component, then b can be chosen as the direct sum a"c of the Banach Lie–Poisson

spaces a and c with j the inclusion on the first component and p the projection on the

second component.

For the proof we shall need a few preparatory lemmas.

Lemma 3.5. Let U and W be Banach spaces. Then one has the canonical isomorphism

U"Wð Þ�DU�"W �:

Proof. To fA U"Wð Þ� associate the pair ð f jU ; f jW ÞAU�"W �: This map is clearly
linear and continuous if on the direct sum one takes the norm given by the sum of the
norms in each component. The map that associates to ðg; aÞAU�"W � the functional
gþ aA U"Wð Þ�; defined by ðgþ aÞðc; aÞ :¼ gðcÞ þ aðaÞ; is also linear and contin-
uous. The two maps are clearly inverses of each other. &

Lemma 3.6. If one has the exact sequence of Banach spaces

0-U !i V !p W-0 ð6Þ

then the dual sequence

0-W � !p
�

V� !i
�

U�-0 ð7Þ

is also exact.
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Proof. The linear continuous map p� is injective. Indeed, if gAker p�CW �;
then ðg 3 pÞðvÞ ¼ 0 for all vAV : Surjectivity of p implies then that gðwÞ ¼ 0 for all
wAW so g ¼ 0:
The linear continuous map i� is surjective. Indeed, since iðUÞ ¼ ker p is a

closed subspace of V and i is injective, i :U-iðUÞ is a Banach space isomorphism.
Then, if aAU�; the linear functional a 3 i�1 : iðUÞ-C is continuous. Extend this
functional to bAV � by the Hahn–Banach Theorem. Thus, for any uAU ; we have

i�ðbÞðuÞ ¼ bðiðuÞÞ ¼ ða 3 i�1ÞðiðuÞÞ ¼ aðuÞ; which shows that i�ðbÞ ¼ a; that is,
i� is onto.
Since i� 3 p� ¼ ðp 3 iÞ� ¼ 0 by exactness of sequence (6), it follows that

p�ðW �ÞCker i�: To prove the opposite inclusion, let bAV� be such that i�ðbÞ ¼ 0:

Define *b :W-C by *bðwÞ ¼ bðvÞ; if w ¼ pðvÞ; thus *b 3 p ¼ b: Since b jiðUÞ ¼ 0 by

hypothesis and iðUÞ ¼ ker p by exactness of (6), it follows that *b is well defined. It is
straightforward to verify that *b is linear and continuous using the Banach space

isomorphism V=iðUÞDW : Finally, b ¼ *b 3 p ¼ p�ð *bÞAp�ðW �Þ: &

Lemma 3.7. Assume that all Banach spaces in the exact sequence (6) admit preduals,

that is, there are Banach spaces U�; V�; and W� such that U ¼ ðU�Þ�; V ¼ ðV�Þ�; and

W ¼ ðW�Þ�; respectively. Assume, in addition, that the dual maps p� and i� preserve

the predual spaces, that is, p�ðW�ÞCV� and i�ðV�ÞCU�: Then one has the following

commutative diagram of exact sequences

where all vertical arrows are inclusions and the maps in the second line are defined by

restriction, that is, p� :¼ p� jW�
and i� :¼ i� jV�

:

In particular, if VDU"W ; U ¼ ðU�Þ�; W ¼ ðW�Þ�; and the maps i and p in the

sequence

0-U !i U"W !p W-0

are defined by iðuÞ :¼ ðu; 0Þ; pðu;wÞ :¼ w; for uAU ; wAW ; then the commutative

diagram above is valid for V� ¼ U�"W�:
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Proof. Since p�ðW�ÞCV� and i�ðV�ÞCU�; the maps in the second line are well
defined. The map p� is injective because it is the restriction of the injective map p� to
the Banach subspace W�CW �:
The relation p 3 i ¼ 0 implies that i� 3 p� ¼ ði� 3 p�Þ jW�

¼ ðp 3 iÞ� jW�
¼ 0 which

shows that

im p�Cker i�: ð8Þ

Let us assume that there is some element bAker i� such that beim p�CV�: Then, by
the Hahn–Banach Theorem, there exists an element vAV such that vðbÞa0 and
v j

im p�
� 0: The exactness of sequence (6) and bAker i�CV�CV � implies that

b jker p ¼ 0: ð9Þ

However, one concludes from v j
im p�

� 0 that

0 ¼ vðp�ðgÞÞ ¼ p�ðgÞðvÞ ¼ gðpðvÞÞ

for any gAW�; which implies that pðvÞ ¼ 0; that is, vAker p: By (9) we have vðbÞ ¼ 0;
which contradicts the choice of v: Thus we have proved that

im p� ¼ ker i�:

Thus, for any bAker i� there is a sequence fangNn¼1CW� such that p�ðanÞ ¼ p�ðanÞ-b

as n-N and, since im p� ¼ ker i�; there is some element aAW � such that p�ðaÞ ¼ b:
One obtains from the above p�ðan � aÞ-0 as n-N: Now, because
p� :W �-p�ðW �Þ ¼ ker i� is a continuous isomorphism between Banach spaces,
the Banach Isomorphism theorem guarantees that its inverse is also continuous and
thus we have an-a as n-N: Since W� is closed in W �; this implies that aAW� and
therefore bAim p�: This shows that

im p� ¼ ker i�: ð10Þ

The last step of the proof is to show that im i� ¼ U�: If im i�aU�; then there are

elements ceim i� and uAU such that uðcÞa0 and u j
im i�

� 0: Thus one has 0 ¼
uði�ðbÞÞ ¼ bðiðuÞÞ for any bAV�; which means that iðuÞ ¼ 0: Injectivity of i implies
then that u ¼ 0; which contradicts the choice uðcÞa0: Thus we showed that

im i� ¼ U�:

Therefore, for any cAU� there is a sequence fbngNn¼1CV� and an element bAV� such
that i�ðbnÞ-c ¼ i�ðbÞ as n-N: Thus i�ðbn � bÞ-0 as n-N and, using the
isomorphism V�=p�ðW �ÞDU�; we conclude from the Banach Isomorphism theorem
that ½bn � b�-0 as n-N in V �=p�ðW �Þ; where ½a� denotes the equivalence class of
aAV � in the quotient Banach space V�=p�ðW �Þ: This means that there is a

subsequence fbnk
gNk¼1CV� and an element dAW � such that bnk

� b-p�ðdÞ as
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k-N: Therefore, since V� is closed in V �; we have that limk-N bnk
AV� and one has

c ¼ i�ðbÞ ¼ i� lim
k-N

bnk
� p�ðdÞ

� �
¼ i� lim

k-N

bnk

� �

since i� 3 p� ¼ 0: This shows that cAim i� which proves that im i� ¼ U�:
To prove the last statement, notice that by Lemma 3.5 we have

ðU�"W�Þ�DðU�Þ�"ðW�Þ�DU"WDV ; that is, U�"W� is a predual of V : In
addition, it is easy to see that if fAW�CW � and ðg1; g2ÞAU�"W�CU�"W �; then
p�ð f Þ ¼ ð0; f ÞAU�"W� and i�ðg1; g2Þ ¼ g1AU� and thus the hypotheses in the first
part of the lemma are verified. &

We have now the necessary background to prove the main theorem of this section.

Proof of Theorem 3.4. Let us assume that a; b; and c form an exact sequence of
Banach Lie–Poisson spaces in the sense of Definition 3.3. Lemma 3.6 guarantees that
their duals also form an exact sequence

0-c� !p
�

b� !j
�

a�-0

of Banach spaces. From Propositions 2.4 and 2.5 it follows that this sequence is an
exact sequence of Banach Lie algebras in the category L0:
Conversely, assume that n; g; and h form an exact sequence of Banach Lie algebras

in the category L0 (see Definition 3.2). Thus they have preduals n�; g�; and h� which,
by Lemma 3.7, form an exact sequence

0-h� !p� g� !i� n�-0

of Banach spaces. Now, again by Propositions 2.4, 2.5, and Theorem 2.1, the
preduals n�; g�; and h� are Banach Lie Poisson spaces and the maps p� and i� are
linear Poisson maps.
The last statement of the theorem is proved in the following way. By the second

part of Lemma 3.7, a"c can be taken as the predual space to h"n: By the first part
of the theorem, the natural maps j and p are linear Poisson maps. The desired
conclusion now immediately follows from Theorem 2.6, if we show that the spaces
p�aðCNðaÞÞ and p�c ðCNðcÞÞ are Poisson commuting subalgebras of CNða"cÞ; where
pa : a"c-a and pc : a"c-c are the natural projections. If fACNðaÞ and gACNðcÞ;
then Df ðaÞAa� ¼ h and DgðcÞAc� ¼ n; so that ½Dðp�a f Þða; cÞ;Dðp�c gÞða; cÞ� ¼
½ðDf ðaÞ; 0Þ; ð0;DgðcÞÞ� ¼ 0; since h"n is a direct sum of Lie algebras. Formula (1)
of the Lie–Poisson bracket insures then that fp�a f ; p�c gg ¼ 0 as required. &

Therefore, one concludes from Theorem 3.4 that the problem of extensions in the
category of Banach Lie–Poisson spaces is equivalent to that in the category L0:
It was shown in [12] that on the predual Banach space of a W �-algebra (von

Neumann algebra) there is a canonically defined Banach Lie–Poisson structure.
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Since the theory of von Neumann algebras is closely related to crucial problems of
quantum physics (see, e.g. [2,3,7]) we shall apply Theorem 3.4 to this subcase.
Recall that a W �-algebra is a C�-algebra m which possess a predual Banach space

m�; i.e. m ¼ ðm�Þ�; this predual is unique (see [14,16]). Since m� ¼ ðm�Þ��; the
predual Banach space m� canonically embeds into the Banach space m� dual to m:
Thus we shall always think of m� as a Banach subspace of m�: The existence of m�
allows the introduction of the sðm;m�Þ-topology on the W �-algebra m; for
simplicity we shall call it the s-topology in the sequel. Recall that a net fxagaAACm

converges to xAm in the s-topology if, by definition, limaAA /xa; bS ¼ /x; bS for
all bAm�: The predual space m� is characterized as the subspace of m� consisting of
all s-continuous linear functionals on m (see [14,16]).
A homomorphism of W �-algebras f :m1-m2 is a s-continuous �-algebra

homomorphism (and is hence automatically norm continuous; see [14,16]). Note
that f�ðm2�ÞCm1�; where mi� is the unique predual of mi; for i ¼ 1; 2: Indeed, since
any element bAm2� is s-continuous on m2 and f is also s-continuous, it follows that
f�ðbÞ ¼ b 3 f is s-continuous on m1 and hence is an element of m1�:
Conversely, assume that m1 and m2 are W �-algebras and that f :m1-m2 is a �-

homomorphism satisfying f�ðm2�ÞCm1�: Then f is s-continuous. Indeed, if
fxagaAACm1 is a net s-converging to xAm1; then for any b1Am1� we have

limaAA /xa; b1S ¼ /x; b1S: We have for any b2Am2�; limaAA /fðxaÞ; b2S ¼
limaAA /xa; b2 3 fS ¼ /x; b2 3 fS; since, by hypothesis, b2 3 f ¼ f�ðb2ÞAm1�: This
shows that limaAA /fðxaÞ; b2S ¼ /fðxÞ; b2S for any b2Am2�; that is, f :m1-m2 is
s-continuous. These arguments prove the following.

Proposition 3.8. Let m1 and m2 be W �-algebras and f :m1-m2 a �-homomorphism.

Then f is a W �-algebra homomorphism if and only if f� preserves the preduals, that is,
f�ðm2�ÞCm1�:

Denote by W the category of W �-algebras. Since any W �-algebra is a Banach Lie
algebra relative to the commutator bracket and possesses a unique predual, this
proposition plus the condition ad�a m�Cm�Cm� for any aAm; shows that W is a

subcategory of L0u (see Theorem 2.1). The condition ad�a m�Cm� for all aAm� is
always satisfied. Indeed, left and right multiplication by aAm define uniformly and
s-continuous maps La :m{x/axAm and Ra :m{x/xaAm [14]. Let L�

a :m
�-m�

and R�
a :m

�-m� denote the dual maps of La and Ra; respectively. If vAm�; then
L�

aðvÞ and R�
aðvÞ are s-continuous functionals and therefore, by the characterization

of the predual m� as the subspace of s-continuous functionals in m�; it follows that
L�

aðvÞ;R�
aðvÞAm�: Since ada ¼ ½a; �� ¼ La � Ra it follows that ad�a ¼ L�

a � R�
a and

hence for any vAm�; we have that ad
�
a ðvÞ ¼ L�

aðvÞ � R�
aðvÞAm�:

This shows that m� is a Banach Lie–Poisson space with the Poisson bracket f f ; gg
of f ; gACNðm�Þ given by (1). The Hamiltonian vector field Xf defined by the smooth

function fACNðm�Þ is given by (2).
An exact sequence of W �-algebras is an exact sequence of algebras in which all

maps are W �-homomorphisms.
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Let us analyze exact sequences of Banach Lie–Poisson spaces that are preduals of
W �-algebras. So assume that (5) is an exact sequence of Banach Lie–Poisson spaces
such that their duals n :¼ c�; g :¼ b�; h :¼ a� are W �-algebras. By Theorem 3.4,
sequence (4), where i :¼ p� and p :¼ j�; is an exact sequence of Banach Lie algebras
in the category L0 but all objects in the sequence are W �-algebras. This means that
the maps i and p are Banach Lie algebra homomorphisms and that i�ðbÞCc;
p�ðaÞCb: What is not guaranteed, and is not true in general, is that the linear
continuous maps i :¼ p� and p :¼ j� are homomorphisms of the associative product
structures of the W �-algebras n; g; h: An example of a Lie algebra homomorphism
between W �-algebras that is not a homomorphism for the associative product is
given by f : glðnÞ-glðnÞ; fðaÞ :¼ trðaÞI; where glðnÞ is the algebra of n � n matrices
and I the identity matrix.
We shall assume now that i and p are �-homomorphisms for the associative

product structure. Then, since they preserve the preduals, Proposition 3.8 insures
that they are W �-homomorphisms. Conversely, assume that (4) is an exact sequence
of W �-algebras. Then the maps j and p are homomorphisms of Banach Lie algebras
and, by Proposition 3.8, their duals preserve the predual spaces, that is, this is an
exact sequence in the category L0u:
Thus we are lead to consider exact sequences (4) of W �-algebras. Then ker p ¼

im i is a s-closed ideal in g and thus there exists a central projector zAg such that
im i ¼ zg [14, Proposition 1.10.5]. The projector 1� z is also central so that denoting

ðim iÞ> :¼ ð1� zÞg; one has the direct sum splitting

g ¼ im i"ðim iÞ>

into two s-closed ideals of g: It is easy to see that for any xAim i and yAðim iÞ> we
have xy ¼ 0: Thus the W �-algebra g is the direct sum of two commuting s-closed
ideals. In addition, the map p jðim iÞ> : ðim iÞ>-h is an isomorphism of W �-algebras.

This proves the following.

Proposition 3.9. Any extension

0-n !i g !p h-0

of the W �-algebra h by the W �-algebra n (where i and p are �-homomorphisms of the

associative product structure) is isomorphic to the extension

0-n !i n"h !p h-0;

where iðnÞ :¼ ðn; 0Þ and pðn; hÞ :¼ h; for nAn and hAh:

This proposition together with Theorems 3.4 and 2.6 immediately yields the
following result.

Proposition 3.10. Any extension

0-a !j
b !p c-0
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of the Banach Lie–Poisson space c by the Banach Lie–Poisson space a such that the

dual sequence is an exact sequence of W �-algebras, is isomorphic to the extension

0-a !j
a"c !p c-0;

where jðaÞ :¼ ða; 0Þ and pða; cÞ ¼ c; for aAa and cAc: This means that b is Poisson

isomorphic to the product of the Banach Lie–Poisson spaces a and c in the sense of

Theorem 2.6.

4. Extensions of Banach Lie algebras

As we showed in the previous section, the problem of extension of Banach Lie–
Poisson spaces reduces to the problem of extensions of Banach Lie algebras in the
subcategory L0: We begin with some general considerations in the category of
Banach Lie algebras.
Let autðnÞ :¼ fD : n-n j D derivation of ng be the Banach Lie algebra of all

continuous linear derivations of n: Recall that D : n-n is a derivation if D½Z; z� ¼
½DZ; z� þ ½Z;Dz� for all Z; zAn: Denote by intðnÞ :¼ fadZ j ZAng the subalgebra of

autðnÞ consisting of inner derivations. In general, this is not a closed subspace of
autðnÞ: In this section we shall assume that intðnÞ is closed in autðnÞ and hence intðnÞ is
then a Banach Lie ideal of autðnÞ: Denote by outðnÞ :¼ autðnÞ=intðnÞ; the Banach
Lie algebra of outer derivations of n: The norm on intðnÞ and autðnÞ is the usual
operator norm induced from the space glðnÞ of all linear continuous maps of n into
itself. The norm on outðnÞ is the quotient norm.
Let CgðnÞ :¼ fxAg j ½x; z� ¼ 0 for all zAng be the centralizer of n in g and CðnÞ :¼

fZAn j ½Z; z� ¼ 0 for all zAng ¼ CgðnÞ-n be the center of n; CðnÞ is a closed ideal in
CgðnÞ which is itself a Banach Lie subalgebra of g: Consider the following

commutative diagram of exact sequences:
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All maps that are not labeled are natural: they are inclusions or projections on
quotients. In particular, h is isomorphic as a Banach Lie algebra with the quotient
g=n endowed with the quotient norm. The map ad : n-intðnÞ is given by Z/adZ :¼
½Z; ��; for ZAn: The map ad jn : g-autðnÞ is given by x/adx jn for xAg:
Finally, the map s : h-outðnÞ is defined in the following way. Let ZAh

and xAp�1ðZÞCg: Define sðZÞ :¼ ½adx jn�AoutðhÞ; where ½adx jn� denotes the

equivalence class of the operator adx jnAautðgÞ with respect to the ideal intðnÞ:
The map s is well defined for if x1; x2Ap�1ðZÞ; then exactness of (4) implies that
x1 � x2An and thus adx1�x2 jnAintðnÞ: Therefore, ½adx1 jn� ¼ ½adx2 jn�: The map s is

clearly a Lie algebra homomorphism. The defining equality for s; that is, ðs 3 pÞðxÞ ¼
½adx jn� for every xAg; proves that the lower right square of the diagram is

commutative. Continuity of s is proved in the following way. Since g is a Banach Lie
algebra, there is a constant C40 such that jj½x; z�jjpCjjxjj jjzjj; for all x; zAg:

Therefore, jjadx jjpCjjxjj; for all xAg: Thus, for ZAh and xAp�1ðZÞ arbitrary, we
have jjsðZÞjj ¼ jj½adx jn�jjpjjadx jnjjpjjadx jjpCjjxjj; which shows, using the iso-

morphism g=nDh and the definition of the norm on the quotient, that s is
continuous.
Note that ad jn : g-autðnÞ and s : h-outðnÞ are not surjective, in general.
Consider now a linear continuous section s : h-g; p 3 s ¼ idh; and assume that

g ¼ n"sðhÞ; that is, sðhÞ is closed and has as split complement the space n: Define
the isomorphism of Banach spaces c : g-n"h by cðxÞ ¼ ðx� sðpðxÞÞ; pðxÞÞ; whose
inverse is given by c�1ðz; ZÞ :¼ zþ sðZÞ; for ZAh; zAn; and xAg: Note that

c�1ð0; ZÞ ¼ sðZÞ for any ZAh and c�1ðz; 0Þ ¼ z for any zAn: Conversely, an

isomorphism of Banach spaces c : g-n"h such that c�1 is the identity on n;

determines a linear continuous section s : h-g by sðZÞ :¼ c�1ð0; ZÞ whose image

sðhÞ ¼ c�1ðhÞ is a closed split subspace of g admitting n as a complement. Thus there

is a bijective correspondence between the Banach space isomorphisms c : g-n"h such

that c�1 is the identity on n and the linear continuous sections s : h-g with closed split

range admitting n as a complement.
From this point on we shall assume that g is isomorphic to n"h as a Banach

space. Let us stress that this sum is not taken, in general, as a direct sum of Banach
Lie algebras. The isomorphism c induces a Lie bracket on n"h by

½ðz; ZÞ; ðz0; Z0Þ� :¼cð½c�1ðz; ZÞ;c�1ðz0; Z0Þ�Þ

¼ ð½z; z0� þ jðZÞðz0Þ � jðZ0ÞðzÞ þ oðZ; Z0Þ; ½Z; Z0�Þ; ð11Þ

where o : h � h-n and j : h-autðnÞ are defined by

oðZ; Z0Þ :¼ ½sðZÞ; sðZ0Þ� � sð½Z; Z0�Þ ð12Þ

jðZÞ :¼ ½sðZÞ; �� ð13Þ

for any z; z0An and Z; Z0Ah:
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Let us pose the inverse question. Given are two Banach Lie algebras
n and h: Endow the direct sum Banach space n"h with the continuous
bilinear skew symmetric operation given by (11), where o : h � h-n

is a given continuous bilinear skew symmetric map and j : h-autðnÞ
is a given continuous linear map. What are the conditions on o and j so
that this operation ½ðz; ZÞ; ðz0; Z0Þ� defined by the right-hand side of (11)
is a Lie bracket on n"h? The answer to this question is given by the following
proposition.

Proposition 4.1. Let n and h be two Banach Lie algebras, o : h � h-n a

continuous bilinear skew symmetric map, and j : h-autðnÞ a continuous linear

map. Then

½ðz; ZÞ; ðz0; Z0Þ� ¼ ½z; z0� þ jðZÞðz0Þ � jðZ0ÞðzÞ þ oðZ; Z0Þ; ½Z; Z0�ð Þ ð14Þ

for zAn and ZAh endows the Banach space direct sum g :¼ n"h with a Banach Lie

algebra structure if and only if

oð½Z; Z0�; Z00Þ þ oð½Z0; Z00�; ZÞ þ oð½Z00; Z0�; Z0Þ

� jðZÞðoðZ0; Z00ÞÞ � jðZ0ÞðoðZ00; ZÞÞ � jðZ00ÞðoðZ; Z0ÞÞ ¼ 0 ð15Þ

and

adoðZ;Z0Þ þ jð½Z; Z0�Þ � ½jðZÞ;jðZ0Þ� ¼ 0 ð16Þ

for any Z; Z0; Z00Ah: Consequently, the Banach Lie algebra n"h is an extension of the

Banach Lie algebra n by the Banach Lie algebra h:

Proof. Since j is linear continuous and o is bilinear continuous, the bilinear skew
symmetric operation defined in (14) is also continuous. So it is enough to show that
(15) and (16) are equivalent to the Jacobi identity.
From the expression of the second component in (14), it follows that the Jacobi

identity gives no conditions on it since h is a Lie algebra. Thus only the first
components need to be calculated. A direct computation shows that the first

component of ½½ðz; ZÞ; ðz0; Z0Þ�; ðz00; Z00Þ� equals

½½z; z0�; z00� þ ½jðZÞðz0Þ; z00� � ½jðZ0ÞðzÞ; z00� þ ½oðZ; Z0Þ; z00�

þ jð½Z; Z0�Þðz00Þ � jðZ00Þð½z; z0�Þ � jðZ00ÞjðZÞðz0Þ

þ jðZ00ÞjðZ0ÞðzÞ � jðZ00ÞðoðZ; Z0ÞÞ þ oð½Z; Z0�; Z00Þ: ð17Þ
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For z ¼ z0 ¼ z00 ¼ 0 this expression becomes oð½Z; Z0�; Z00Þ � jðZ00ÞðoðZ; Z0ÞÞ: Taking
the circular permutations of (17) and then setting z ¼ z0 ¼ z00 ¼ 0 yields

oð½Z; Z0�; Z00Þ þ oð½Z0; Z00�; ZÞ þ oð½Z00; Z0�; Z0Þ

� jðZÞðoðZ0; Z00ÞÞ � jðZ0ÞðoðZ00; ZÞÞ � jðZ00ÞðoðZ; Z0ÞÞ ¼ 0

for any Z; Z0; Z00Ah: This proves (15).
In the sum of (17) with the two terms obtained from it by circular permutations,

there are expressions that add up to zero. The sum of the first term in (17) with its
circular permutations is zero since it is the Jacobi identity in the Lie algebra n: By
(15), the sum of the ninth and the tenth term in (17) plus their circular permutations
also add up to zero. Thus, the sum of (17) with its circular permutations equals

½oðZ; Z0Þ; z00� þ ½oðZ0; Z00Þ; z� þ ½oðZ00; ZÞ; z0�

þ jð½Z; Z0�Þðz00Þ þ jð½Z0; Z00�ÞðzÞ þ jð½Z00; Z�Þðz0Þ

� ½jðZÞ;jðZ0Þ�ðz00Þ � ½jðZ0Þ;jðZ00Þ�ðzÞ � ½jðZ00Þ;jðZÞ�ðz0Þ

þ ½jðZÞðz0Þ; z00� � ½jðZÞðz00Þ; z0� � jðZÞð½z0; z00�Þ

þ ½jðZ0Þðz00Þ; z� � ½jðZ0ÞðzÞ; z00� � jðZ0Þð½z00; z�Þ

þ ½jðZ00ÞðzÞ; z0� � ½jðZ00Þðz0Þ; z� � jðZ00Þð½z; z0�Þ:

Each of the last three lines vanishes because jðZÞ; jðZ0Þ; and jðZ00Þ are derivations on
n: Since z; z0; and z00 are arbitrary, from the remaining three top lines we conclude
that

adoðZ;Z0Þ þ jð½Z; Z0�Þ � ½jðZÞ;jðZ0Þ� ¼ 0

for any Z; Z0; Z00Ah; which proves (16).
Conversely, suppose that o : h � h-n is a continuous bilinear skew symmetric

map and j : h-autðnÞ is a continuous linear map satisfying (15) and (16). A direct
verification using (15) and (16) shows that the Jacobi identity holds. Thus (14)
endows g"h with a Banach Lie algebra structure. &

If n is Abelian, then adoðZ;Z0Þ ¼ 0 and autðnÞ ¼ glðnÞ; the Banach space of all linear
continuous maps from n to n: Thus the second condition becomes jð½Z; Z0�Þ ¼
½jðZÞ;jðZ0Þ� for all ZAn; that is, j : h-glðnÞ is a representation. The first condition
asserts that o is a h-cocycle relative to the representation j:
We want to mention that such extensions of Lie algebras were considered in the

purely algebraic context in [11,15], and, more recently, in [1]. For a presentation of
group extensions in algebraic context in the spirit of the previous discussion see [5,
Chap. 4].
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5. Extensions of Banach Lie–Poisson spaces

Let us take Banach Lie–Poisson spaces a and c and construct the extension b of c

by a in the sense of the category B of Banach Lie–Poisson spaces. We restrict our
considerations to the case when b equals the direct sum c"a of Banach spaces. Thus
one has the Banach space exact sequence

0-a !j
c"a !p c-0; ð18Þ

where jðaÞ :¼ ð0; aÞ and pðc; aÞ :¼ c: The dual of this sequence is

0-n !p
�

n"h !j
�

h-0; ð19Þ

where h :¼ a�; n ¼ c�; p�ðzÞ :¼ ðz; 0Þ and j�ðz; ZÞ ¼ Z: Since a and c are Banach Lie–
Poisson spaces we have

ad�h aCa and ad�n cCc: ð20Þ

By Theorem 3.4, the question whether (18) is an exact sequence of
Banach Lie–Poisson spaces is equivalent to the question whether (19) is
an exact sequence in the subcategory L0CL: Proposition 4.1 gives a necessary and
sufficient condition for (19) to be an exact sequence in the category L: Sequence (19)
is exact in the subcategory L0 if and only if ad

�
n"h ðc"aÞCc"a: In order to see what

this means we use formula (14) to compute the coadjoint representation on n�"h�

and get

ad�ðz;ZÞ ðc; aÞ ¼ ðad�z c þ jðZÞ�c;oðZ; �Þ�c � ðjð�ÞzÞ�c þ ad�Z aÞ ð21Þ

for cAn�; aAh�; zAn; and ZAh: The requirement that this action preserve the

preduals, together with properties (20) implies that jðZÞ�ðcÞCc and that

oðZ; �Þ� � ðjð�ÞzÞ�ð ÞðcÞCa for all ZAh and all zAn: Taking here alternatively Z ¼ 0

and z ¼ 0; the second condition becomes oðZ; �Þ�ðcÞCa and ðjð�ÞzÞ�ðcÞCa: We have
proved the following theorem.

Theorem 5.1. Given are two Banach Lie–Poisson spaces a and c whose duals are the

Banach Lie algebras h :¼ a� and n :¼ c�; respectively, a continuous bilinear skew

symmetric map o : h � h-n; and a continuous linear map j : h-autðnÞ satisfying (15)
and (16). The Banach space c"a is an extension of c by a as a Banach Lie–Poisson

space if and only if

jðZÞ�ðcÞCc; ðjð�ÞzÞ�ðcÞCa; oðZ; �Þ�ðcÞCa ð22Þ

for all ZAh ¼ a� and zAn ¼ c�:
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Given fACNðc"aÞ; define the partial functional derivatives df =dcAc� and
df =daAa� by

Dc f ðc; aÞðc0Þ ¼ c0;
df

dc

� �
and Da f ðc; aÞða0Þ ¼ a0;

df

da

� �

for all c0Ac and all a0Aa; where Dc f ðc; aÞ and Da f ðc; aÞ denote the partial Fréchet
derivatives of f at ðc; aÞAc"a; respectively.
Theorem 2.1, (14), and (21) thus immediately yield the following theorem.

Theorem 5.2. With the notations and hypotheses of Theorem 5.1, the Lie–Poisson

bracket of f ; gACNðc"aÞ is given by

f f ; ggðc; aÞ ¼ a;
df

da
;
dg

da

� �� �
þ c;

df

dc
;
dg

dc

� �
� j

dg

da

� �
df

dc

�

þj
df

da

� �
dg

dc
þ o

df

da
;
dg

da

� ��
ð23Þ

for cAc and aAa: The Hamiltonian vector field of hACNðc"aÞ is given by

Xhðc; aÞ ¼ � ad�dh
dc

c þ j
dh

da

� ��
c; o

dh

da
; �

� ��
c � jð�Þ dh

dc

� ��
c þ ad�dh

da

a

� �
: ð24Þ

Example 1 (Semidirect products of Banach Lie–Poisson spaces). Let us apply
Theorem 5.1 to the case o ¼ 0: Condition (15) is in now vacuous and condition (16)
asserts that j : h-autðnÞ is a Lie algebra homomorphism. One can define the
semidirect product of h with n as the Banach Lie algebra with underlying Banach
space n"h and bracket (14) with o ¼ 0:
Denote, as before, by a and c the predual spaces of h and n; respectively,

that is, h :¼ a� and n :¼ c�: In this case, only two conditions in Theorem 5.1 survive,
namely,

jðZÞ�ðcÞCc and ðjð�ÞzÞ�ðcÞCa ð25Þ

for all ZAh ¼ a� and zAn ¼ c�: The Banach space c"a is predual to n"h:
It is a Banach Lie–Poisson space relative to the Poisson bracket (23) and
Hamiltonian vector field formula (24) with o ¼ 0: This is the semidirect product

Banach Lie–Poisson space of a with c:
An important particular case of this situation occurs when n is an

Abelian Lie algebra, that is, j : h-LNðnÞ is a Lie algebra representation;
LNðnÞ denotes the Banach algebra of all bounded linear operators on n: In this
case one obtains the semidirect product of h with the Banach space n whose bracket
is given by

½ðz; ZÞ; ðz0; Z0Þ� ¼ ðjðZÞðz0Þ � jðZ0ÞðzÞ; ½Z; Z0�Þ
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for any z; z0An and Z; Z0Ah: If conditions (25) hold, one obtains the semidirect
product Banach Lie–Poisson space c"a: The formula for the Poisson bracket is (23)
with o ¼ 0 and the first summand of the second term is also set to equal zero. The
formula for the Hamiltonian vector field is (24) with o ¼ 0 and the first term in the
first component set equal to zero. These formulas coincide with the ones found, for
example, in [8].
As a further special case, let us assume that h is a W �-algebra m and that n is a

Hilbert space H: Additionally, let us fix a W �-representation j :m-LNðHÞ of m

on the Hilbert space H: In this case, c ¼ H and a ¼ m�; where HDH�DH� is
equipped with the trivial Poisson structure, since we consider H as an Abelian
Banach Lie algebra. Conditions (22) of Theorem 5.1 reduce in this case to the single
requirement

ðjð�ÞvÞ�HCm� for all vAH:

This condition can be expressed as follows: for any v;wAH; there exists an element
bAm� such that

/jðxÞv j wS ¼ /x; bS

for any xAm; where / � j �S denotes the inner product on H: But this condition is
satisfied since the representation j is s-continuous (by definition) and thus the linear
functional x//jðxÞv j wS is s-continuous too. This shows that it is represented by
an element bAm� (see [14]). Therefore we have constructed the semidirect product
Banach Lie–Poisson space H"m�:

Let us further specialize this situation for the case m ¼ LNðHÞ: The predual space
m� is in this case the Banach space of trace class operators L1ðHÞ and the duality
pairing between LNðHÞ and L1ðHÞ is given by trðrXÞ for rAL1ðHÞ and

XALNðHÞ: Formula (23) for f ; gACNðH"L1ðHÞÞ becomes

f f ; ggðv; rÞ ¼ tr r
df

dr
;
dg

dr

� �� �
þ v

df

dr

���� dg

dv
� dg

dr
df

dv

� �
;

where rAL1ðHÞ and vAH: Hamilton’s equation ’f ¼ f f ; hg for the Hamiltonian

hACNðL1ðHÞÞ can be equivalently written as the system of equations

j’vS ¼ � dh

dr

� ��
j vS; ’r ¼ dh

dr
; r

� �
þ dh

dv

����
�
/vj:

Example 2 (An extension of the restricted Banach Lie–Poisson space). Let H
be a complex separable Hilbert space endowed with a polarization [13,20],
that is, a direct sum decomposition H ¼ Hþ"H� into two closed
orthogonal subspaces. Denote by P7 :H-H7 the orthogonal projectors on
H7; hence Pþ þ P� ¼ id and PþP� ¼ P�Pþ ¼ 0: Denote by LNðHÞ and LNðH7Þ
the Banach Lie algebra of bounded linear operators on H and H7; respectively,
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relative to the commutator bracket. Let L2ðHÞ be the Banach Lie algebra of linear
Hilbert–Schmidt operators onH; also relative to the commutator bracket. Similarly, let

L2ðHþ;H�Þ and L2ðH�;HþÞ be the Banach spaces of Hilbert–Schmidt operators
fromHþ toH� andH� toHþ; respectively. Following Pressley and Segal [13] we call

h :¼ LNðH;HþÞ :¼fXALNðHÞ j P7XP7ALNðH7Þ;

PþXP�AL2ðH�;HþÞ;P�XPþAL2ðHþ;H�Þg ð26Þ

the restricted Banach Lie algebra. In this definition we write, for example, PþXP� for
PþXP� jH�

and similarly for the other terms. The vector space h is a Banach space

relative to the norm

jjX jj :¼ jjPþXPþ jj
N

þ jjP�XP� jj
N

þ jjPþXP� jj2 þ jjP�XPþ jj2; ð27Þ

where jj � jj
N
and jj � jj2 denote the operator norm and the Hilbert–Schmidt norm in

the various spaces. It is easy to show that relative to the commutator bracket
½X ;X 0� :¼ XX 0 � X 0X ; the space h is a Banach Lie algebra. It also convenient to
think of elements of h as block operators of the form

Xþ Xþ�

X�þ X�

� �
; ð28Þ

where X7 :¼ P7XP7ALNðH7Þ; Xþ� :¼ PþXP�AL2ðH�;HþÞ; and X�þ :¼
P�XPþAL2ðHþ;H�Þ:

The Banach space n :¼ L1ðHÞ of trace class operators on Hþ endowed with the
trace norm jj � jj1 and the negative of the commutator bracket ½r; r0� :¼ �rr0 þ r0r is
also a Banach Lie algebra. Define g :¼ n"h and

j :XAh/½PþXPþ; ��AautðnÞ; ð29Þ

o : ðX ;X 0ÞAh � h/PþXP�X 0Pþ � PþX 0P�XPþAn: ð30Þ

The map j is linear and continuous and the map o is bilinear and continuous. These
maps also satisfy identities (15) and (16). Indeed, to verify (16), for arbitrary

sAL1ðHþÞ and X ; X 0ALNðH;HþÞ; taking into account that the bracket operation
on n is the negative of the commutator bracket, we have

adoðX ;X 0Þ sþ jð½X ;X 0�Þs� ½jðX Þ;jðX 0Þ�s

¼ �½oðX ;X 0Þ; s� þ ½Pþ½X ;X 0�Pþ; s� � ½½PþXPþ; ��; ½PþX 0Pþ; ���s

¼ �½PþXP�X 0Pþ � PþX 0P�XPþ; s�

þ ½PþX ðPþ þ P�ÞX 0Pþ � PþX 0ðPþ þ P�ÞXP�; s�

� ½PþXPþ; ½PþX 0Pþ; s�� þ ½PþX 0Pþ; ½PþXPþ; s��
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¼ ½PþXPþX 0Pþ � PþX 0PþXPþ; s� þ ½PþXPþ; ½s;PþX 0Pþ��

þ ½PþX 0Pþ; ½PþXPþ; s��

¼ ½s; ½PþX 0Pþ;PþXPþ�� þ ½PþXPþ; ½s;PþX 0Pþ�� þ ½PþX 0Pþ; ½PþXPþ; s�� ¼ 0

by the Jacobi identity.
To verify (15) we compute separately the first pair of terms for X ;X 0;X 00Ah ¼

LNðH;HþÞ to get

oð½X ;X 0�;X 00Þ � jðX ÞðoðX 0;X 00ÞÞ

¼ Pþ½X ;X 0�P�X 00Pþ � PþX 00P�½X ;X 0�Pþ

� ½PþXPþ;PþX 0P�X 00Pþ � PþX 00P�X 0Pþ�

¼ PþXðPþ þ P�ÞX 0P�X 00Pþ � PþX 0ðPþ þ P�ÞXP�X 00Pþ

� PþX 00P�X ðPþ þ P�ÞX 0Pþ þ PþX 00P�X 0ðPþ þ P�ÞXPþ

� PþXPþX 0P�X 00Pþ þ PþXPþX 00P�X 0Pþ

þ PþX 0P�X 00PþXPþ � PþX 00P�X 0PþXPþ

¼ PþXP�X 0P�X 00Pþ � PþX 0PþXP�X 00Pþ � PþX 0P�XP�X 00Pþ

� PþX 00P�XPþX 0Pþ � PþX 00P�XP�X 0Pþ þ PþX 00P�X 0P�XPþ

þ PþXPþX 00P�X 0Pþ þ PþX 0P�X 00PþXPþ:

Rearrange the terms in the following manner:

oð½X ;X 0�;X 00Þ � jðX ÞðoðX 0;X 00ÞÞ

¼ PþXP�X 0P�X 00Pþ þ PþX 00P�X 0P�XPþ � PþX 0P�XP�X 00Pþ

� PþX 00P�XP�X 0Pþ þ PþXPþX 00P�X 0Pþ � PþX 0PþXP�X 00Pþ

þ PþX 0P�X 00PþXPþ � PþX 00P�XPþX 0Pþ

¼ PþðXP�X 0P�X 00 þ X 00P�X 0P�X � X 0P�XP�X 00 � X 00P�XP�X 0ÞPþ

þ PþðXPþX 00P�X 0 � X 0PþXP�X 00ÞPþ

þ PþðX 0P�X 00PþX � X 00P�XPþX 0ÞPþ:

Adding the other two terms obtained by circular permutations gives zero; the
summands cancel separately in the three groups emphasized above. Thus
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Proposition 4.1 can be applied thereby showing that g is an extension of h ¼
LNðH;HþÞ by n ¼ L1ðHþÞ: The Lie bracket on n"h is given by (14) which in this
case becomes

½ðX ; rÞ; ðX 0; r0Þ� ¼ ð�½r; r0� þ jðX Þðr0Þ � jðX 0ÞðrÞ þ oðX ;X 0Þ; ½X ;X 0�Þ

¼ ð�½r; r0� þ ½PþXPþ; r0� � ½PþX 0Pþ; r�

þ PþXP�X 0Pþ � PþX 0P�XPþ; ½X ;X 0�Þ: ð31Þ

The predual of h is the Banach Lie–Poisson space

a :¼ L1ðH;HþÞ :¼ fsALNðHÞ j P7sP7AL1ðH7Þ;

PþsP�AL2ðH�;HþÞ;P�sPþAL2ðHþ;H�Þg ð32Þ

relative to the pairing

/s;XS :¼ traceðsþXþ þ s�X� þ sþ�X�þ þ s�þXþ�Þ ð33Þ

for XAh: The predual of n is c :¼ KðHþÞ; the Banach Lie–Poisson space
of compact operators on Hþ: We shall verify now the hypotheses of
Theorem 5.1, that is,

(i) jðXÞ�ðcÞCc; where jðXÞ : L1ðHþÞ-L1ðHþÞ; so jðXÞ� : LNðHþÞ-LNðHþÞ
and one needs to show jðXÞ�ðKðHþÞÞCKðHþÞ;
(ii) ðjð�ÞrÞ�ðcÞCa; where jð�Þr : LNðH;HþÞ-L1ðHþÞ; so ðjð�ÞrÞ� : LNðHþÞ-

ðLNðH;HþÞÞ� and one needs to show ðjð�ÞrÞ�ðKðHþÞÞCL1ðH;HþÞ;
(iii) oðX ; �Þ�ðcÞCa; where oðX ; �Þ : LNðH;HþÞ-L1ðHþÞ; so oðX ; �Þ� : LNðHþÞ

-ðLNðH;HþÞÞ� and one needs to show oðX ; �Þ�ðKðHþÞÞCL1ðH;HþÞ
for all XAh ¼ LNðH;HþÞ and rAn ¼ L1ðHþÞ:
To verify (i) use the trace pairing, let XAh; YALNðHþÞ; and rAL1ðHþÞ to get

/jðXÞ�Y ; rS ¼ /Y ;jðXÞrS ¼ traceðY ½PþXPþ; r�Þ ¼ traceð½Y ;PþXPþ�rÞ

which shows that jðXÞ�Y ¼ ½Y ;PþXPþ�ALNðHþÞ; that is, jðXÞ� ¼ �½PþXPþ; ��:
Therefore, if KAKðHþÞ; we have jðXÞ�K ¼ �½PþXPþ; K�AKðHþÞ; since KðHþÞ
is an ideal in LNðHþÞ: This shows that jðX Þ�ðcÞCc:
To show (ii), use the same notations as before to get

/ðjð�ÞrÞ�Y ;XS ¼ /Y ;jðXÞrS ¼ traceðY ½PþXPþ; r�S ¼ traceð½r;Y �PþXPþÞ:

Thus, if KAKðHþÞ we have

/ðjð�ÞrÞ�K;XS ¼ traceð½r; K�PþXPþÞ
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so, taking for X operators of the form X�; Xþ�; and X�þ; the right-hand side of this
relation vanishes. Therefore

ðjð�ÞrÞ�K ¼
½r; K� 0

0 0

� �
AL1ðH;HþÞ

since ½r; K�AL1ðHþÞ:
Finally, to verify (iii), use the same notations as above, let X 0ALNðH;HþÞ to get

/oðX ; �Þ�Y ;X 0S ¼/Y ;oðX ;X 0ÞS ¼ traceðYðPþXP�X 0Pþ � PþX 0P�XPþÞÞ

¼ traceðYXþ�X 0
�þ � X�þYX 0

þ�Þ:

Thus if KAKðHþÞ; we have

/oðX ; �Þ�K;X 0S ¼ traceðKXþ�X 0
�þ � X�þKX 0

þ�Þ

which shows that

oðX ; �Þ�K ¼
0 KXþ�

�X�þK 0

� �
AL1ðH;HþÞ

because KXþ�AL2ðH�;HþÞ; X�þKAL2ðHþ;H�Þ since Xþ�AL2ðH�;HþÞ;
X�þAL2ðHþ;H�Þ and the L2 operators are an ideal in the algebra of bounded
operators.

In view of Theorems 5.1 and 5.2 the direct sum c"a ¼ KðHþÞ"L1ðH;HþÞ is a
Banach Lie–Poisson space relative to the bracket

f f ; ggðK; sÞ ¼ trace s
df

ds
;
dg

ds

� �� �
þ trace K

df

dK
;
dg

dK

� �
� Pþ

dg

ds
Pþ;

df

dK

� ���

þ Pþ
df

ds
Pþ;

dg

dK

� �
þ Pþ

df

ds
P�

dg

ds
Pþ � Pþ

dg

ds
P�

df

ds
Pþ

��
ð34Þ

for f ; gACNðKðHþÞ"L1ðH;HþÞÞ and KAKðHþÞ; sAL1ðH;HþÞ: The Hamil-
tonian vector field of hACNðKðHþÞ"L1ðH;HþÞÞ is given by

XhðK; sÞ ¼ � K;
dh

dK

� �
þ K;Pþ

dh

ds
Pþ

� �
;

�

0 Kðdh=dsÞþ�
�ðdh=dsÞ�þK 0

� �
�

½dh=dK; K� 0

0 0

� �
þ s;

dh

ds

� ��
: ð35Þ
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