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Abstract

We prove global existence and uniqueness for axisymmetric solutions without swirl for the three-dimensional second grade
fluid and thex-Euler equations. The domain considered is either a bounded domain (invariant with respect to rotations about
some axis) or the full spad®3. For a certain class of stationary solutions of thEuler equations Lyapunov stability is
proved.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The constitutive laws of non-Newtonian fluids have been introduced in order to express some features that canno
be found in the behavior of a standard Newtonian fluid. Some of these anomalous features are the ability to shear, tc
thin or thicken, to creep, to relax stresses, and the presence of yield stress. Different equations can be used dependir
on what unusual property must be modeled.

We consider in this paper the following second grade fluid equations

8,v—vAu+u~Vv+ZvjVuj=—Vp, v=u— aAu, divu =0, u =0 on as2, ()
J

wherev > 0 is the viscosityy > 0 is a material coefficient? is an open set dk3, and(u, p) represent the velocity
and the pressure of the fluid, the unknowns of the system.

This fluid model belongs to the particular class of non-Newtonian fluids given by the fluids of grdde
constitutive laws of these fluids have been introduced by Rivlin and EridR8gmn 1955. Three of these models
are well-known, corresponding to the cases 1, 2 or 3. Ifn = 1 then we obtain the (Newtonian) Navier—Stokes
equations; we study in this paper the case 2.
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In the analysis of second grade fluids due to Dunn and Fo$élickee als¢13]), the following constitutive law
is considered:

T=—pl+vA+a(A+AL+LTA— A%, A=L+L", L=Vu,

where the dot denotes the material derivative. As a consequence, it is shown that the velocity field must obey system
Q).

Concerning the original physical meaning of the second grade fluid equation, we mention that the coefficient
represents the elastic response of the fluid. These fluids can also be interpreted as having short memory represente
by «. It is also interesting to note that at least two other completely different physical interpretations have been
found for this equation. Fokas and Fuchsstejh2}, and independently Camassa and Hfin proposed a shallow
water model obeying the following equation:

U — Uxxt + 2KUy = —3UUc + 26 Uxx + Ulkxy. 2

On the other hand, Camassa and Hffrand Kouranbaevi2 1] showed that the cage= 0 of (2) has the interesting
geometrical interpretation of being the spatial representation of the geodesic spray on the diffeomorphism group
endowed with the right invariarfi > metric. Misiolek[26] treated the case+# 0 and showed thd®) is the spatial
representation of the geodesic spray of the right invafiéinhetric on the Bott—Virasoro group. This geometric point

of view was then used by Holm et §1.7,18]to generalize these equations to higher dimensions for incompressible
flows. The resulting equation is now known @fuler (orLAE — «) since the same authors show that a special
averaging procedure in the standard Euler equations yields the same equation. What is more astonishing is that these
equations correspond to the vanishing viscosity case of the second gradsfiatibns (1)

In addition, Oliver and Shkollg27] proved that the~-Euler model corresponds exactly to a regularization of the
point vortex algorithm for ideal bidimensional hydrodynamics, the Chorin vortex blob method, with a particular
choice of the cut-off function.

We conclude these comments on the physical importance of second grade fluids by noting that these equations
are connected to turbulence theory. A discussion on this subject can already be found in a paper §2&Rivlin
Recently, starting from the existingmodels &-Euler and second grade fluids), Foias e{HD] and Holm[16],
proposed a new viscousmodel, calledx-Navier—Stokes, where the viscosity teravAu in (1) is replaced by
—vA(u—aAu). As pointed out by these authors, thélavier—Stokes equations are related to large eddy simulation
turbulence modeling. From the mathematical point of view, this change in the viscosity term implies a stronger
dissipation compared to the second grade fluids and allows to prove global existence in 3D without any smallness
assumption.

Axisymmetric flows are physically relevant particular cases of three-dimensional flows for which the fluid velocity
is assumed to have cylindrical symmetry and is therefore of the form

u(x) = u"(r, x3)e, + u’(r, x3)ep + u3(r, x3)es,
wheree,, ey, andes denote the standard orthonormal cylindrical coordinate system

e = (E,E,O>, e = (E,—E,O), e3=(0,0,1), r:(xi—i—x%)l/z,
r r r r
and we assumed that the axis of rotatiolR(®, 0, 1). If the swirl velocity«? vanishes, then the flow is said to be
axisymmetric without swirl.
Several authors have considered this type of flow for the Euler and Navier—Stokes equations. Since the veloc-
ity depends only on two variables and both the Euler and Navier—Stokes equations are globally well-posed in
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dimension two, it is natural to expect global well-posedness for axisymmetric flows. However, for the Euler equa-
tions, global well-posedness is known only for the axisymmetric easeut swirl see[24,23,32,30,31]For the
Navier—Stokes equations, the smoothing effect of the viscosity allows to estimate the swirl velocity, which implies
global well-posedness even in the case with swirl,[8¢k4,15,20]

Our aim is to prove a similar global well-posedness result for axisymmetric second grade fluids. As far as
well-posedness results are concerned, these fluids bear a certain similarity with the Navier—Stokes equations: globe
well-posedness holds in 2D for large data and in 3D for small datd3g&&,22,25] Nevertheless, we would like to
point out that, unlike the Navier—Stokes case, the viscosity term is not regularizing. Indeed, this term has the good
sign but is of the same order as the time-derivative term. Even though this allows to prove global existence for small
data, it does not seem to be very useful in the case of large data. Therefore, as far as axisymmetric large solutions ar
concerned, the second grade fluid equations resemble more the Euler equations than the Navier—Stokes equatior
This paper shows global well-posedness only for axisymmetric soluithsut swirl The authors have tried to
consider the case with swirl, but ran into the same type of problem as encountered in the standard Euler equations
Even though the swirl velocity verifies an equation from which the pressure is missing, the estimates on this equation
are not good enough to couple with the estimate on the remaining part of the velocity; one would need an estimate for
the uniform norm of the gradient of the swirl velocity and this could not be achieved from the swirl velocity’s equation.

We state two different theorems for the casebounded and2 = R? as the hypothesis is different. The domain
£2 is assumed to be invariant with respect to rotations abouRtbe0, 1)-axis. We prove the following theorem.

Theorem 1 (£2 bounded).Let 2 be a bounded smooth axisymmetric domaiR®fSuppose that the initial velocity
uois divergence free and axisymmetric without sytidlongs taH3(£2), vanishes on the boundagndcurl(vo) /r €
L?(£2). Then there exists a unique globdP solution of systerfi).

Theorem 2 (2 = R3). ConsiderEq. (1)in R3. Suppose that the initial velocity is divergence free and axisymmetric
without swirl belongs toH?3, that curl(vg)/r € L2(R®), and thatcurl(vg) € L?(R3) for somep € [1,2). Then
there exists a unique global® solution of systerfil) in R3.

We complete these global well-posedness results by showing that certain stationary solutions of this system for
vanishing viscosity are Lyapunov stable. This is done in the same sp[fitZssee alsd4,23]. We deliberately
toned down the geometric aspect of this method (as presenfgél]jrand formulated everything directly in order
to match the analytic character of the previous sections. The precise statement of this stability result requires some
additional notations; for this reason we prefer to formulate it lat8ihieaorem 3of Section 5

The plan of the article is the following. We first give some calculations that will be used in the sequel. The next
two sections treat the casebounded and2 = RR3, respectively. The next section proves the Lyapunov stability.
We conclude the paper with gkppendix Athat contains a regularity theorem whose direct application improves
some existing results in the literature.

2. Some calculations

It is an easy computation to show that sysidmis rotation invariant, i.e. for any rotation matrg and solution
(u, p), the coupleg(it, p), whereii(r, x) = QTu(r, Qx) andp(z, x) = p(r, QX) is again a solution. By uniqueness of
solutions we deduce that a solution with axisymmetric initial data stays axisymmetric, i.e. the solaotist be
of the form

u=u"(r, x3, e, +u’ (r, x3, ey + u(r, x3, nea.
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We therefore obtain a problem which is almost bidimensional with the usual known difficulties that appear in the
vicinity of the axis or whem is large.

We will consider in the following the axisymmetric casghout swirl i.e. we will assume that the swirl velocity
u? vanishes. Note that if the initial velocity is without swirl, it will stay like that; this follows from the fact that the
equation for the swirl velocity has no pressure term.

To simplify the writing, we redefine

M(x, t) = f(rs x3v t)er + g(rv .X3, t)é's (3)

We first consider the case= 0 and indicate afterwards how to adjust the proofs to the cas®.
In the following, all vector fields are regarded as three-dimensional vector fields and the deriyativé®x;, V,
andA refer to the spatial variablés1, x2, x3). All norms are considered to be taken with respect to these variables
unless otherwise specified.
Arepeated use of the formudaf(r, x3) = (x;/r)9, f(r, x3),i = 1, 2, shows that the vorticity of can be expressed
in the form

w(u) = (duz — 03u2, d3u1 — 01u3, d1up — d2u1) = @(r, x3)(x2, —x1, 0), 4)
where
- 0rg —03f
o, x3) = ———.
p

More important is the curl of
2
0(v) = o) — aAoW) = (@ — aAd — —0,0) (x2, —x1, 0) = @1, x3)(x2, —x1, 0), ®)
r

where
20

0=0—aAd— 73,&).
We now show thab verifies a transport equation. We start with the equatiomf@) which is well-known
orw(v) = w(®) - Vu —u - Vo (v). (6)
According to(5), the left-hand side is equal to
0w (v) = d;w(x2, —x1, 0) = ro;wey,

a multiple ofeg. It is therefore sufficient to determine the coefficienkgbn the right-hand side db). First, the
termw(v) - Vu can be written as

w(v) - Vu = (multiples ofe, ande3) + wfey. @)
Some simple calculations also show that the last ter(®)ofan expressed as

u-Vo@) = @u- Vo + o fey. (8)
We now deduce froni6)—(8)thatw is transported by the velocity:

Qo+ u-Vr = 0. 9)
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Remark 1. In the previous equation, the derivatives are with respect to the variaples, andxs. It is possible
to obtain a transport equation in the variablesdxs:

& + fo,@ + gdzw = 0,
but this equation is less interesting as the vector figld) is not divergence free in the variablés x3), i.e.

o f + d3g # 0.

Remark 2. Asu is divergence free, the transpé&id. (9)implies the conservation of all” norms ofo (and therefore
of w(v)/r), p € [1, <]

Remark 3. The hypothesis made onin the standard well-posedness theory of second grade fluids i&3(£2).
However, this may not be sufficient in our case, depending on the position of the domain with respect to the axis.
More precisely:

e if r — 0 (i.e. the domain intersects the axis), the sole hypothgsis H3(£2) does not imply thaw (vg)/r € L?
for somep, soRemark 2Zs difficult to use;

e if r — oo (i.e. the domain is not bounded in the radial direction) we havedkias) /r € L? which implies that
w(v)/r € L?, but we need instead the control @6 (v) | 2.

Some additional hypotheses will be required in order to prove the global existeficesofutions. The caseS
bounded and2 = R3 will be treated separately.

3. Thecase of a bounded domain

We prove in this sectioftheorem 1Sinceuo € H3(52), we know by standard results (see, for instafg},that
a local H3 solution exists such that if* is the maximal time existence aftt < oo then

lim t = +00.
., lull g32) = +

We prove that theéZ3 norm ofu cannot blow up in finite time. This will imply the global existence of the solution.
Let us start with the case of vanishing viscosity.

3.1. Casev =0

Since we know, by hypothesis, thigi(0)| = |w(vo)|/r € L2(52), we deduce from the transpdEg. (9) that
oMl 22 = 10012 for all . But o)z = llrall 2 < M@l 2, whereM = sup,/xf +x3 < oo.
Since theH! norm of the velocity is bounded in time, usi@prollary A.1and the fact that (v) is bounded in
L2(£2) we get thau, stays bounded i#3(£2). This completes the proof in the case- 0.

3.2. Casev >0
If v # 0, thenEq. (6)for w(v) is no longer valid since it contains the additional viscosity term

—VAwu) = g(w(v) —w) = 5(‘7’ — @) (x2, —x1,0)
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on the right-hand side (relatiorf4) and (5)were used). The transport equation é&is modified accordingly and
becomes

P .
0w+ —(w— @) +u-Vew=0.
o
Taking theL? scalar product of this equation withgives
1, .. v v 1 . v . - -
0=Salol7. + /Q(w —D)bdr = ol + 5 /Q(wz +(@— »)® — &%) dx.

We deduce that

V2 Viv2 Vo~2
Illoli2 + allwIILz < allwlle- (10)

We know by standard ! estimates that th&#* norm ofu is bounded in time, i.e. the2 norm ofw (1) is bounded in

time. Unfortunately, the right-hand side(d@0)is not equal td|w (u)|| ; 2 but to||&)||%2 = ||w(u)/r||iz. Nevertheless,

itis possible to eliminate this annoyimdy adding a derivative that can be still controlled in terms ofaHenorm
and the left-hand side ¢.0). More precisely, a straightforward calculation shows that
o (u) = %8,5)[)62, —x1, 0]+ @[0, 1,0, oW = %3,5)[)(2, —x1,0] + @[1,0, 0],
so that
x201w (1) — x102w(u) = &[—x1, —x2, O].
We further deduce that

~ X2 X1
|lo| = 7810)(14) — 782@(14) .

This immediately shows thad| < |91 u)| + |20 (u)| SO||@],2 < C||Vo(u)|; 2 < C|lull 2. Relation(10) now
becomes

. Vo,

ol + &nwuiz < Clull?,.
Gronwall’'s lemma implies

@17, < 1012, + Csup flullZ,,

[0.1]

so

sup o012, < € + Csup ul?,.

0,1 0,1
Since the domain is bounded, we can boyiadv)||;2 = |ro|l; 2 < Clloll;2. Combining this withCorollary A.1
we deduce that

lul?s < Cllull?: + Clal?,.
AS |lu|l i1 is bounded in time, we get

sup flullds < C + Csup lull?,,
og og
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which implies by interpolation that

supllull3s < C+ Csupllull gallullys < C+ 3supull?s + Csup fullZ,.
[0,7] [0,7] [0,7] [0,1]

Using again that th&™ norm ofu is bounded in time we finally get that ti#* norm ofu is bounded. This completes
the proof ofTheorem 1

4. Thecaseof R3

The aim of this section is to proveheorem 2
As in the case of a bounded domain, we first consider the vanishing viscosity case.

41. Caseo =0

We can assume without loss of generality tpat 3/2. Indeed, from the hypothesig € H we obtain that
w(vg) € L?N L7, so, by interpolationy (vg) belongs to any intermediate spakg r < [p, 2].

The same argument as in the bounded domain case showdtiat; 2 = [[@(0)||; 2, SO that|w(v)/r||; 2 is
bounded. Next, we estimate tti¢ norm ofw(v), i.e. the norm of-®. Multiplying the transpor€&q. (9)for o by
rP&||P~2 and integrating gives

f dod| 0| PP dx + f u - Vodo|oP %P dx = 0,
that is

8,/ |o|PrP dx = — / u-V(o|P)rPdx = /u -V (rP)|o|P dx = p/u - e,rP7 )P dx

=pffr”‘1lcb|”dx, (11)

where we used that (r?) = pr’—le, andu - ¢, = f (according ta3)). We infer that

o [t dc=p [ Lowrar 12)
If f/r would be bounded then we would immediately get boundggm)||.». We do not know thaf/r is bounded,
but we know thatf is bounded in a weighteH! space and depends on two variables only. By Sobolev embeddings
we can therefore obtain estimates on weightédorms off for all ¢ < co. More precisely, we prove the following

lemma.

Lemmal. Forall g € [2, +00) there exists a constaKi(g) such that

Ifrt/2 Y9 g gsy < Clg), Vi = 0.
Proof of Lemma 1. Sinceu = fe. + ges we deduce thau| > | f| so

||u||iz=/|u|2dxz/|f(r,x3>|2dx=2nfr|f<r, x3)|? dr dxs,
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that is,
/rlf(r, x3)|?drdxz < C. (13)
On the other hand, we have by explicit computation that
ou = %a,fe, + fjf—:e@ + %arg@, dou = %arfer - fjf—;eg + %arg@, d3u = d3fe, + d3ges.

As {e,, eg, e3} form an orthonormal basis, we infer that

|f|
IVul? = 19, f1* + = + 133 f1° + 13,8|* + |93g|°, (14)

so that

2 2
/|Vu|2dxz / <|V,,x3f|2+%> dx:2nf <r|v,,x3f|2 /1 ) dr dxs.

Using that theH! norm ofu is bounded in time as well as relati¢h3), we deduce that
If 2
Vs fIP 47l 12+ = | drdxs < C. (15)

SinceV, ., (f/1) = 1V f + f[1/2/r, 0], relation(15)implies that
I VTl ey < C.

By the (bidimensional) Sobolev embeddifg — L4 for all g € [2, 00), we deduce thatfﬁ||Lq(Rz) < C(g) for
all g € [2, 00). Going back tor coordinates implies the conclusionlofmma 1

2 e = / | £19r4/%  dx = Zn/ | F19r92 dr dvs = | f V71 oy < C(@)-

We now go back to relatio(iL2), we fixg > 2, we write
3/2-1/q
Lro)|? = fri/2-va (""(_”)'> ()P Ya-32,
r r

and we use Holder's estimate with the trigle 4/ (3q — 2), 4q/(g — 2)) to deduce that

p 1/2—-1
llowlF, < Clfrt/2=2) 4 T DA/ (-2

On the right-hand side, the first term is bounded accordihgtoma 1 The second term is also bounded according
to the observations at the beginning of the proof. As for the last term, we simply chausdh that(4pg+ 4 —
6q)/(q—2) = p,i.e.q =22+ p)/3(2 — p). With this choice we get

1 3 2
dllwW)?, < Clo@] P (16)
After integration
3/2-1 3/2—-1
o) 177 < Jowo) 17 + Ct.

Therefore,|w(v)||Lr is controlled.
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Sincep < 3 we can apply the Hardy—Littlewood—Sobolev inequality:
vl L+ = Cllo@)llzr,

where p* = 3p/(3 — p). This implies that|v|, ,~ is also controlled. Standard elliptic regularity results for the
operator - a A implies thatl|u || 2, < Cllv|;,+ is also controlled. Finally, from the relatigrt > 3 (that follows
from the assumptiop > 3/2) we have the embedding>?" < L> so we obtain thal| Vu|| .~ is controlled.
Recalling relatior(14) we further infer that| f/r| .~ is controlled.

Now, relation(12) holds also forp = 2. Therefore

lo@)[2, < COllw®)?

f
Ullo®)2, <2 H— < 22
r Lo

where the dependence 6fr) onr can be made explicit. Gronwall's lemma now gives

t
lo )12, < llw(vo)|2, explo €@,

This is the control of|w (v)||; 2 and suffices to complete the proof Dfieorem 2n the case = 0.
42. Casev #0

We first show that|w(v)/r|| 2 is still bounded by proving that the viscosity term can be ignored. Recall the
equation for:

3o+ Lo — @) +u- Vi =0, 17)
o
where
. - . 2
w=0w—oAw— —0o

Multiplying (17) by o, the viscosity term yields
2
/ Yo-ayodi="2 /((1) —®)2de+ 2 /(d) —@ady =~ o — |2, - v/ & <Ax&)+ —8,&)) dx
o o o o r

o
:K||&)—&)||%2—v/&)Ax&)dx—2vf 27 dr,
o

r

A trivial integration by parts shows that
—v/cZ)Axcbdx =v|Va|?; > 0.

Also

ALNA .~ ~
/a) wdx:2n/w8,wdrdX3:n/Br(a))zdrdX3=0,
,
SO

Voo o Vv ~2 ~ 12

&(a)— w)odx = &Ha) — |72 +VIIVall7, > 0.

This means that the viscosity term may be ignored and showstisdtounded in.2.
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It remains to prove that we still have” estimates o (v) (i.e. the analogue of relatiqi6)). Relation(11) now
contains the additional term

szf@—@ﬂmmﬁwm
o
We estimatd in the following way:

1l = gf(lc?)l +l@hrP ot dx = g f(lw(u)l +lo))w @)~ dx

= 2 <||w(v)||€p - f |w<u>||w<v)|f’—1> dx.

Next, we use Hélder’s inequality
v v 1
1] < allw(v)llfp + allw(u)llullw(v)llfp ,

the trivial estimate|wu)|r < |lw(u)|lw2,, and theL? regularity result for the operator4 oA that says that
lo@)|lw2r < Cllw()]Lr, to finally deduce that

1] < Clo)7,.
With this additional term, the analogue of relatidm) is now
oI, < ClowI, + lo@I7; 1),
Since one can easily check that+ 1/q — 3/2 € (0, 1), an application of Young's inequality yields
oWy, < C+ CloWI,.
so, by Gronwall's lemma
lo@@I], < (lo@o)llLr + Ct) exp(CH).

This is the control of|w(v) ||’L’,, and starting from here the proof is similar to the vanishing viscosity case.

5. Lyapunov stability of some stationary solutions

We are concerned in this section with the vanishing viscosity case of the second grade fluids, also known as the
a-Euler equation:

8,v+u~Vv+ZvjVuj=—Vp, v=u—aAu, dvu=0, u=0 on d52. (18)
J

We assume in this section that the axisymmetric dorfizis obtained by rotation fromsimply connectedomain
§2" in the (, x3) variables. The domaif?’ is also supposed to be bounded and not intersecting th§raxti®}.
Recall that
0,g — 03f

u="fe +ge, curlu=adw(x2, —x1,0, o&=—"——,
.

y . . . 05— daf
v= fe,+ ge3, curlv=w(2, —x1,0), o= rg—sf,
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and that is transported by in the (r, x3) variables:
310+ [0, + gdzw = 0. (19)

It is also easy to check that the vector figtfl rg) is divergence free in thé, x3) coordinates. Since we assumed
§2' simply connected, there exists a stream funciion x3) vanishing on the boundary such tlieft rg) = Vr%x31p.

From (19) we see that:, is a stationary solution if and only ¥, ;. andV, ..o, are proportional. In fact, a
stationary solution verifies

Vr,xgl/fe = _h(&)e)vr,ngj)e (20)
for some functiori. In the following theorem we study the stability of such stationary solutions.
Theorem 3 (Lyapunov stability). Letu, be a stationary solution @fl8)such that there exists(@ontinuougfunction
h and positive constan® < C; < C2 such thatC; < & < C, and(20)is valid. Then the solution, is Lyapunov
stable in theH3 norm with respect to axisymmetric perturbations
Proof. Let¢ be such thap” = k. Note that we have some freedom in the choice;afamelye’ is defined up to a

constant. For two axisymmetric (swirl free) vector fieldsandu? we use the corresponding superscripts to denote
the related quantities and we introduce the bilinear functional

1
Hut, u?) = 5/ ut - v?dx.
2

We will also use the functional
Cu) = / ¢ () dx.
2
The properties of these functionals are summarized in the following lemma.

Lemma2. Letu! andu? be two divergence free axisymmefsirl fre€) vector fields vanishing on the boundary.
The following holds

1 1
Hh,u?) = Ho?, ut) = 5 / plotde and Ha' uh) = S(lut|f; + ol Vet 7).
2
Moreover if u is an axisymmetric solution ¢18) then H(u)=%€"H(u, u) and C(«) are constant in time

Proof of Lemma 2. The relationsH(u!, u?) = H(u?, u®) and Hu!, u®) = (1/2)(|ul||?, + | Vul|?,) follow
from the definition after applying a trivial integration by parts that we will not detail. Next

/ ut v dx = / (fLgh - (2 8% de =2 / ft rgh - (% &%) drdxs
2 2 2
—2n [ (VY- P drdn=2r [ ytour (2 ) drdis
(o 2
=27 | vYro?drdxs = / vlo? dx.
(o4 2

The fact that, for a solutiom, H(x) is constant in time simply follows from th&?* estimates foEq. (18) the norm
||u||i2 + 0{||Vu||iz is constant in time. It remains to prove th@&) is also constant in time. This follows from the
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following sequence of calculations:
3,C(u) = / ¢ ()30 dx = —/ ¢ (@)u - Vaordx = —/ u-Vo(w)dx = / ¢(w)divudx = 0. O
Q Q2 Q Q2

Let nowu, be a stationary solution as theorem 3and letu an arbitrary axisymmetric solution. Consider the
following quantity

E@®)=H+Ow) — (H+O)(u,) — /;2[1//6 + (b/(d)e)](d) — o) dx.

We claim thatE is in fact constant in time. IndeedH + C)(«) is constant in time as a consequencé@inma 2
Also, from (20) we get thatV (v, + ¢'(@.)) = 0 which implies thaty, + ¢'(v.) = Const. This constant can be
made equal to 0 by adding a suitable constant’tdrhis means that the last term K(7) vanishes and this now
implies thatF is constant in time.

On the other hand, we can also writeunder the form

E = Cw) — Cluy) — / & (00 (@ — do) dx + H(u) — Hug) — / Veld> — o) dx.
2 2

Eq Ej
From the definition of the functiondl we see that
v v ], v v 1 v v
E1 = / P(@) — Pp(@e) — ¢ () (@ — ) dx = > / ¢ (&) — de|? dx
2 2

for someé betweeno and .. From the hypothesis we know that = & is of the order of a constant, so we
deduce thaFs ~ [l& — @12, = [[(1/r) (@) — w(v.))]|?,. The assumptions made on the domaiimply thatr
is bounded from below and above by two positive constants. Theréfore ||w(v) — w(v,) ||%2.

As for E5, we use the definition, the symmetry and the bilinearitydatfo write

Ep = H(u, u) — Hute, ) — 2H(e, u — o) = H(t — tte, u — ue) = |lu — uel|;.
UsingCorollary A.1this finally implies that
E=E1+E22 |[u—ucll5: + llo®) — 0@)|12, = llu — uells.

Since we know thak is constant in time, we obtain thgt (1) — ue||§{3 >~ ||u(0) — u, ||§{3. This completes the proof
of Theorem 3
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Appendix A

The aim of this appendix is to prove the following regularity result.
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Proposition A.1. Lets2 be abounded smooth doméimot necessarily simply connecjeu is a H2(£2) divergence
free vector field vanishing on the boundary such that(u — aAu) € L?(£2), thenu € H3($2).

Proof. In order to show the ideas, we first consider the case of a domain with flat boustlaryxz > 0}. The
Dirichlet boundary conditions implies thaiu|y; = du|s = 0, and the divergence free condition shows that
dguzlae = —(B1u1 + du2)lse = 0, SOVuglag = 0, i.e.uz € HG(£2).

Setv = u — aAu. Sincev is divergence free, we have thatv = —curlcurlv € H~1(£2); in particular
Avs € H71(£2). We infer thatA2us = (1/a)(Auz — Av3) € H-1(£2). But we saw thatz as well as its first
order derivatives vanish on the boundary, so it satisfies boundary conditions compatible with the bi-Laplacian. The
standard regularity theory for the bi-Laplacian now implies thae H3($2). This means thatz € H($2) and
by trace theoremss|yo € HY/2(352), thatis,v - n|ye € HY?(92). Furthermore, we also have that div= 0 and
curlv € L?(£2). Standard regularity results for the curl operator (see, for instghtB,imply thatv € H(£2).
Finally, the regularity theory for the Laplacian implies that H3(£2) which is the desired conclusion in this
particular case.

We now indicate how to modify this proof in the general case./id be the normal vector to the boundary and
{1, T2} be an orthonormal basis of the tangent space. We extend these vectors smoothlRinsgdabove, we
have thatAv € H~1(£2) and thereforeA2(u - n) € H~1(£2). Now, if we denote by Colfi, 12, n], respectively
Rowlr1, 12, n], the matrices with columns, respectively rows, equal (in this ordet) tep, n, then we obviously
have that

Oz 01
dr, | = Row[ry, 72, n] | 92
O 03

Since the basiér1, 12, n} is orthonormal, the inverse of Rowy[, T2, ] is Col[z1, T2, n]. Therefore, at the boundary

8l arl
92 | = Col[ty, 12, n] 0z,
83 an

We deduce that the divergence free condition may be expressed at the boundary in tke, basis} under the
form

81:1 ui
Col[r1, 12, n] O, |- | u2 | =0.
Oy ugz

Expanding the above expression and taking into account that the tangential derivativesah at the boundary,
we end up with the following relatiom: - 3,u = 0. This can also be expressed under the faym - n) = u - 9,n at
the boundary. Az € H?(52), we deduce thal, (u - n) € H¥?(352). But we also have tha, (u - n)|32 = 0 and
3o, (1) | = 0S0V(u-n) € H¥?(352). This last relation plus the facts thatn|ye = 0 andA?(u-n) € H1(£2),
implies by the regularity theory for the bi-Laplacian thatn € H3($2). Taking the Laplacian of this quantity and
noting thatA(u - n) — Au - n can be expressed in terms mfand first order derivatives af, we deduce that
Au-n € HY(£2). Thismeans that - n € H1(2) sov - n|yo € HY2(352). With this information we can conclude,
as in the flat boundary case, that H3(£2). O

We get the following corollary.
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Corollary A.1. Lets2 be a bounded smooth domdirot necessarily simply connecjexthd u aH3($2) divergence
free vector field vanishing on the boundary. The following quantities are equivalent

llull g3 = llull g + lleurl(u — o A w)l| ;2.
Proof. The bound

llull g1 + lleurl(u — o A w)|| ;2 < Const|lul 43

is obvious. In order to prove the converse inequality, first note that the préubpibsition A.lactually shows that

lull g3 < Constllu|| g2 + Const|curl(u — o A u)||;2. (22)
We now use the standard interpolation inequdlityl ;2 < Const||u||%12||u||z§ and estimate in the usual manner
||u||Z12||u||g32 < e|lull g3 + C(e)|lu|l y1. Choosings small enough and plugging this estimate into rela{@h) we
get

lull g3 < llull ys + Constllull z1 + Constlicurlu — a A w)]| 2.
This completes the proof. O

Corollary A.1lallows to extend the well-posedness result$6¢7] to domains that are not necessarily simply
connected. Indeed, the hypothesis of simple connectedness was used in those articles to prove the equivalence o
the norms

lull g3 = lleurl(u — o A w)|| 2.

If the domain is not simply connected, we get the same relation but with an additiona|#é¢gmn. However, this

term is not a problem as it is trivially bounded from tHé estimates that are always true. We also refé4}avhere

this kind of estimate was used to get well-posedness for second grade fluids equations for not necessarily simply
connected domains but with other boundary conditions.
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