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Abstract

We prove global existence and uniqueness for axisymmetric solutions without swirl for the three-dimensional second grade
fluid and theα-Euler equations. The domain considered is either a bounded domain (invariant with respect to rotations about
some axis) or the full spaceR3. For a certain class of stationary solutions of theα-Euler equations Lyapunov stability is
proved.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The constitutive laws of non-Newtonian fluids have been introduced in order to express some features that cannot
be found in the behavior of a standard Newtonian fluid. Some of these anomalous features are the ability to shear, to
thin or thicken, to creep, to relax stresses, and the presence of yield stress. Different equations can be used depending
on what unusual property must be modeled.

We consider in this paper the following second grade fluid equations

∂tv− ν�u+ u · ∇v+
∑
j

vj∇uj = −∇p, v = u− α�u, div u = 0, u = 0 on ∂Ω, (1)

whereν ≥ 0 is the viscosity,α > 0 is a material coefficient,Ω is an open set ofR3, and(u, p) represent the velocity
and the pressure of the fluid, the unknowns of the system.

This fluid model belongs to the particular class of non-Newtonian fluids given by the fluids of graden. The
constitutive laws of these fluids have been introduced by Rivlin and Ericksen[29] in 1955. Three of these models
are well-known, corresponding to the casesn = 1, 2 or 3. Ifn = 1 then we obtain the (Newtonian) Navier–Stokes
equations; we study in this paper the casen = 2.
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In the analysis of second grade fluids due to Dunn and Fosdick[9] (see also[13]), the following constitutive law
is considered:

T = −pI + νA+ α(Ȧ+ AL + LTA− A2), A = L+ LT , L = ∇u,

where the dot denotes the material derivative. As a consequence, it is shown that the velocity field must obey system
(1).

Concerning the original physical meaning of the second grade fluid equation, we mention that the coefficientα

represents the elastic response of the fluid. These fluids can also be interpreted as having short memory represented
by α. It is also interesting to note that at least two other completely different physical interpretations have been
found for this equation. Fokas and Fuchssteiner[12], and independently Camassa and Holm[5], proposed a shallow
water model obeying the following equation:

ut − uxxt + 2kux = −3uux + 2uxuxx + uuxxx. (2)

On the other hand, Camassa and Holm[5] and Kouranbaeva[21] showed that the casek = 0 of (2)has the interesting
geometrical interpretation of being the spatial representation of the geodesic spray on the diffeomorphism group
endowed with the right invariantH1 metric. Misiolek[26] treated the casek 	= 0 and showed that(2) is the spatial
representation of the geodesic spray of the right invariantH1 metric on the Bott–Virasoro group. This geometric point
of view was then used by Holm et al.[17,18]to generalize these equations to higher dimensions for incompressible
flows. The resulting equation is now known asα-Euler (orLAE− α) since the same authors show that a special
averaging procedure in the standard Euler equations yields the same equation. What is more astonishing is that these
equations correspond to the vanishing viscosity case of the second grade fluidequations (1).

In addition, Oliver and Shkoller[27] proved that theα-Euler model corresponds exactly to a regularization of the
point vortex algorithm for ideal bidimensional hydrodynamics, the Chorin vortex blob method, with a particular
choice of the cut-off function.

We conclude these comments on the physical importance of second grade fluids by noting that these equations
are connected to turbulence theory. A discussion on this subject can already be found in a paper by Rivlin[28].
Recently, starting from the existingα-models (α-Euler and second grade fluids), Foias et al.[10] and Holm[16],
proposed a new viscousα-model, calledα-Navier–Stokes, where the viscosity term−ν�u in (1) is replaced by
−ν�(u−α�u). As pointed out by these authors, theα-Navier–Stokes equations are related to large eddy simulation
turbulence modeling. From the mathematical point of view, this change in the viscosity term implies a stronger
dissipation compared to the second grade fluids and allows to prove global existence in 3D without any smallness
assumption.

Axisymmetric flows are physically relevant particular cases of three-dimensional flows for which the fluid velocity
is assumed to have cylindrical symmetry and is therefore of the form

u(x) = ur(r, x3)er + uθ(r, x3)eθ + u3(r, x3)e3,

whereer, eθ, ande3 denote the standard orthonormal cylindrical coordinate system

er =
(x1

r
,
x2

r
,0

)
, eθ =

(x2

r
,−x1

r
,0

)
, e3 = (0,0,1), r = (x2

1 + x2
2)

1/2,

and we assumed that the axis of rotation isR(0,0,1). If the swirl velocityuθ vanishes, then the flow is said to be
axisymmetric without swirl.

Several authors have considered this type of flow for the Euler and Navier–Stokes equations. Since the veloc-
ity depends only on two variables and both the Euler and Navier–Stokes equations are globally well-posed in
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dimension two, it is natural to expect global well-posedness for axisymmetric flows. However, for the Euler equa-
tions, global well-posedness is known only for the axisymmetric casewithout swirl, see[24,23,32,30,31]. For the
Navier–Stokes equations, the smoothing effect of the viscosity allows to estimate the swirl velocity, which implies
global well-posedness even in the case with swirl, see[8,14,15,20].

Our aim is to prove a similar global well-posedness result for axisymmetric second grade fluids. As far as
well-posedness results are concerned, these fluids bear a certain similarity with the Navier–Stokes equations: global
well-posedness holds in 2D for large data and in 3D for small data, see[3,6,7,22,25]. Nevertheless, we would like to
point out that, unlike the Navier–Stokes case, the viscosity term is not regularizing. Indeed, this term has the good
sign but is of the same order as the time-derivative term. Even though this allows to prove global existence for small
data, it does not seem to be very useful in the case of large data. Therefore, as far as axisymmetric large solutions are
concerned, the second grade fluid equations resemble more the Euler equations than the Navier–Stokes equations.
This paper shows global well-posedness only for axisymmetric solutionswithout swirl. The authors have tried to
consider the case with swirl, but ran into the same type of problem as encountered in the standard Euler equations.
Even though the swirl velocity verifies an equation from which the pressure is missing, the estimates on this equation
are not good enough to couple with the estimate on the remaining part of the velocity; one would need an estimate for
the uniform norm of the gradient of the swirl velocity and this could not be achieved from the swirl velocity’s equation.

We state two different theorems for the casesΩ bounded andΩ = R
3 as the hypothesis is different. The domain

Ω is assumed to be invariant with respect to rotations about theR(0,0,1)-axis. We prove the following theorem.

Theorem 1 (Ω bounded).LetΩ be a bounded smooth axisymmetric domain ofR
3. Suppose that the initial velocity

u0 is divergence free and axisymmetric without swirl,belongs toH3(Ω),vanishes on the boundary,andcurl(v0)/r ∈
L2(Ω). Then there exists a unique globalH3 solution of system(1).

Theorem 2 (Ω = R
3). ConsiderEq. (1)in R

3. Suppose that the initial velocity is divergence free and axisymmetric
without swirl, belongs toH3, that curl(v0)/r ∈ L2(R3), and thatcurl(v0) ∈ Lp(R3) for somep ∈ [1,2). Then
there exists a unique globalH3 solution of system(1) in R

3.

We complete these global well-posedness results by showing that certain stationary solutions of this system for
vanishing viscosity are Lyapunov stable. This is done in the same spirit as[1,2], see also[4,23]. We deliberately
toned down the geometric aspect of this method (as presented in[19]) and formulated everything directly in order
to match the analytic character of the previous sections. The precise statement of this stability result requires some
additional notations; for this reason we prefer to formulate it later inTheorem 3of Section 5.

The plan of the article is the following. We first give some calculations that will be used in the sequel. The next
two sections treat the caseΩ bounded andΩ = R

3, respectively. The next section proves the Lyapunov stability.
We conclude the paper with anAppendix Athat contains a regularity theorem whose direct application improves
some existing results in the literature.

2. Some calculations

It is an easy computation to show that system(1) is rotation invariant, i.e. for any rotation matrixQ and solution
(u, p), the couple(ũ, p̃), whereũ(t, x) = QTu(t,Qx) andp̃(t, x) = p(t,Qx) is again a solution. By uniqueness of
solutions we deduce that a solution with axisymmetric initial data stays axisymmetric, i.e. the solutionu must be
of the form

u = ur(r, x3, t)er + uθ(r, x3, t)eθ + u3(r, x3, t)e3.
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We therefore obtain a problem which is almost bidimensional with the usual known difficulties that appear in the
vicinity of the axis or whenr is large.

We will consider in the following the axisymmetric casewithout swirl, i.e. we will assume that the swirl velocity
uθ vanishes. Note that if the initial velocity is without swirl, it will stay like that; this follows from the fact that the
equation for the swirl velocity has no pressure term.

To simplify the writing, we redefine

u(x, t) = f(r, x3, t)er + g(r, x3, t)e3. (3)

We first consider the caseν = 0 and indicate afterwards how to adjust the proofs to the caseν > 0.
In the following, all vector fields are regarded as three-dimensional vector fields and the derivatives∂i = ∂/∂xi, ∇,

and� refer to the spatial variables(x1, x2, x3). All norms are considered to be taken with respect to these variables
unless otherwise specified.

A repeated use of the formula∂if(r, x3) = (xi/r)∂rf(r, x3), i = 1,2, shows that the vorticity ofu can be expressed
in the form

ω(u) = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1) = ω̃(r, x3)(x2,−x1,0), (4)

where

ω̃(r, x3) = ∂rg− ∂3f
r

.

More important is the curl ofv

ω(v) = ω(u)− α�ω(u) = (ω̃ − α�ω̃ − 2α

r
∂rω̃)(x2,−x1,0) = ω̌(r, x3)(x2,−x1,0), (5)

where

ω̌ = ω̃ − α�ω̃ − 2α

r
∂rω̃.

We now show thaťω verifies a transport equation. We start with the equation forω(v) which is well-known

∂tω(v) = ω(v) · ∇u− u · ∇ω(v). (6)

According to(5), the left-hand side is equal to

∂tω(v) = ∂tω̌(x2,−x1,0) = r∂tω̌eθ,

a multiple ofeθ. It is therefore sufficient to determine the coefficient ofeθ on the right-hand side of(6). First, the
termω(v) · ∇u can be written as

ω(v) · ∇u = (multiples ofer ande3)+ ω̌feθ. (7)

Some simple calculations also show that the last term of(6) can expressed as

u · ∇ω(v) = (ru · ∇ω̌ + ω̌f)eθ. (8)

We now deduce from(6)–(8)thatω̌ is transported by the velocityu:

∂tω̌ + u · ∇ω̌ = 0. (9)
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Remark 1. In the previous equation, the derivatives are with respect to the variablesx1, x2, andx3. It is possible
to obtain a transport equation in the variablesr andx3:

∂tω̌ + f∂rω̌ + g∂3ω̌ = 0,

but this equation is less interesting as the vector field(f, g) is not divergence free in the variables(r, x3), i.e.
∂rf + ∂3g 	= 0.

Remark 2. Asu is divergence free, the transportEq. (9)implies the conservation of allLp norms ofω̌ (and therefore
of ω(v)/r), p ∈ [1,∞].

Remark 3. The hypothesis made onu in the standard well-posedness theory of second grade fluids isu ∈ H3(Ω).
However, this may not be sufficient in our case, depending on the position of the domain with respect to the axis.
More precisely:

• if r → 0 (i.e. the domain intersects the axis), the sole hypothesisu0 ∈ H3(Ω) does not imply thatω(v0)/r ∈ Lp
for somep, soRemark 2is difficult to use;

• if r → ∞ (i.e. the domain is not bounded in the radial direction) we have thatω(v0)/r ∈ L2 which implies that
ω(v)/r ∈ L2, but we need instead the control of‖ω(v)‖L2.

Some additional hypotheses will be required in order to prove the global existence ofH3 solutions. The casesΩ
bounded andΩ = R

3 will be treated separately.

3. The case of a bounded domain

We prove in this sectionTheorem 1. Sinceu0 ∈ H3(Ω), we know by standard results (see, for instance,[6]) that
a localH3 solution exists such that ifT ∗ is the maximal time existence andT ∗ <∞ then

lim
t→T ∗ ‖u(t)‖H3(Ω) = +∞.

We prove that theH3 norm ofu cannot blow up in finite time. This will imply the global existence of the solution.
Let us start with the case of vanishing viscosity.

3.1. Caseν = 0

Since we know, by hypothesis, that|ω̌(0)| = |ω(v0)|/r ∈ L2(Ω), we deduce from the transportEq. (9) that

‖ω̌(t)‖L2(Ω) = ‖ω̌(0)‖L2(Ω) for all t. But ‖ω(v)‖L2 = ‖rω̌‖L2 ≤ M‖ω̌‖L2, whereM = supx∈Ω
√
x2

1 + x2
2 < ∞.

Since theH1 norm of the velocity is bounded in time, usingCorollary A.1and the fact thatω(v) is bounded in
L2(Ω) we get thatu stays bounded inH3(Ω). This completes the proof in the caseν = 0.

3.2. Caseν > 0

If ν 	= 0, thenEq. (6)for ω(v) is no longer valid since it contains the additional viscosity term

−ν�ω(u) = ν

α
(ω(v)− ω(u)) = ν

α
(ω̌ − ω̃)(x2,−x1,0)
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on the right-hand side (relations(4) and (5)were used). The transport equation forω̌ is modified accordingly and
becomes

∂tω̌ + ν

α
(ω̌ − ω̃)+ u · ∇xω̌ = 0.

Taking theL2 scalar product of this equation witȟω gives

0 = 1

2
∂t‖ω̌‖2

L2 + ν

α

∫
Ω

(ω̌ − ω̃)ω̌ dx = 1

2
∂t‖ω̌‖2

L2 + ν

2α

∫
Ω

(ω̌2 + (ω̃ − ω̌)2 − ω̃2)dx.

We deduce that

∂t‖ω̌‖2
L2 + ν

α
‖ω̌‖2

L2 ≤ ν

α
‖ω̃‖2

L2. (10)

We know by standardH1 estimates that theH1 norm ofu is bounded in time, i.e. theL2 norm ofω(u) is bounded in
time. Unfortunately, the right-hand side of(10)is not equal to‖ω(u)‖L2 but to‖ω̃‖2

L2 = ‖ω(u)/r‖2
L2. Nevertheless,

it is possible to eliminate this annoyingr by adding a derivative that can be still controlled in terms of theH1 norm
and the left-hand side of(10). More precisely, a straightforward calculation shows that

∂1ω(u) = x1

r
∂rω̃[x2,−x1,0] + ω̃[0,−1,0], ∂2ω(u) = x2

r
∂rω̃[x2,−x1,0] + ω̃[1,0,0],

so that

x2∂1ω(u)− x1∂2ω(u) = ω̃[−x1,−x2,0].

We further deduce that

|ω̃| =
∣∣∣x2

r
∂1ω(u)− x1

r
∂2ω(u)

∣∣∣ .
This immediately shows that|ω̃| ≤ |∂1ω(u)| + |∂2ω(u)| so‖ω̃‖L2 ≤ C‖∇ω(u)‖L2 ≤ C‖u‖H2. Relation(10)now
becomes

∂t‖ω̌‖2
L2 + ν

α
‖ω̌‖2

L2 ≤ C‖u‖2
H2.

Gronwall’s lemma implies

‖ω̌(t)‖2
L2 ≤ ‖ω̌(0)‖2

L2 + C sup
[0,t]

‖u‖2
H2,

so

sup
[0,t]

‖ω̌(t)‖2
L2 ≤ C + C sup

[0,t]
‖u‖2

H2.

Since the domain is bounded, we can bound‖ω(v)‖L2 = ‖rω̌‖L2 ≤ C‖ω̌‖L2. Combining this withCorollary A.1
we deduce that

‖u‖2
H3 ≤ C‖u‖2

H1 + C‖ω̌‖2
L2.

As ‖u‖H1 is bounded in time, we get

sup
[0,t]

‖u‖2
H3 ≤ C + C sup

[0,t]
‖u‖2

H2,
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which implies by interpolation that

sup
[0,t]

‖u‖2
H3 ≤ C + C sup

[0,t]
‖u‖H1‖u‖H3 ≤ C + 1

2 sup
[0,t]

‖u‖2
H3 + C sup

[0,t]
‖u‖2

H1.

Using again that theH1 norm ofu is bounded in time we finally get that theH3 norm ofu is bounded. This completes
the proof ofTheorem 1.

4. The case of R
3

The aim of this section is to proveTheorem 2.
As in the case of a bounded domain, we first consider the vanishing viscosity case.

4.1. Caseν = 0

We can assume without loss of generality thatp > 3/2. Indeed, from the hypothesisu0 ∈ H3 we obtain that
ω(v0) ∈ L2 ∩ Lp, so, by interpolation,ω(v0) belongs to any intermediate spaceLr, r ∈ [p,2].

The same argument as in the bounded domain case shows that‖ω̌(t)‖L2 = ‖ω̌(0)‖L2, so that‖ω(v)/r‖L2 is
bounded. Next, we estimate theLp norm ofω(v), i.e. the norm ofrω̌. Multiplying the transportEq. (9)for ω̌ by
rpω̌|ω̌|p−2 and integrating gives∫

∂tω̌ω̌|ω̌|p−2rp dx+
∫
u · ∇ω̌ω̌|ω̌|p−2rp dx = 0,

that is

∂t

∫
|ω̌|prp dx= −

∫
u · ∇(|ω̌|p)rp dx =

∫
u · ∇(rp)|ω̌|p dx = p

∫
u · errp−1|ω̌|p dx

= p
∫

frp−1|ω̌|p dx, (11)

where we used that∇(rp) = prp−1er andu · er = f (according to(3)). We infer that

∂t

∫
|ω(v)|p dx = p

∫
f

r
|ω(v)|p dx. (12)

If f/r would be bounded then we would immediately get bounds on‖ω(v)‖Lp . We do not know thatf/r is bounded,
but we know thatf is bounded in a weightedH1 space and depends on two variables only. By Sobolev embeddings
we can therefore obtain estimates on weightedLq norms off for all q <∞. More precisely, we prove the following
lemma.

Lemma 1. For all q ∈ [2,+∞) there exists a constantC(q) such that

‖fr1/2−1/q‖Lq(R3) ≤ C(q), ∀t ≥ 0.

Proof of Lemma 1. Sinceu = fer + ge3 we deduce that|u| ≥ |f | so

‖u‖2
L2 =

∫
|u|2 dx ≥

∫
|f(r, x3)|2 dx = 2π

∫
r|f(r, x3)|2 dr dx3,
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that is,∫
r|f(r, x3)|2 dr dx3 ≤ C. (13)

On the other hand, we have by explicit computation that

∂1u = x1

r
∂rfer + f x2

r2
eθ + x1

r
∂rge3, ∂2u = x2

r
∂rfer − f x1

r2
eθ + x2

r
∂rge3, ∂3u = ∂3fer + ∂3ge3.

As {er, eθ, e3} form an orthonormal basis, we infer that

|∇u|2 = |∂rf |2 + |f |2
r2

+ |∂3f |2 + |∂rg|2 + |∂3g|2, (14)

so that∫
|∇u|2 dx ≥

∫ (
|∇r,x3f |2 + |f |2

r2

)
dx = 2π

∫ (
r|∇r,x3f |2 + |f |2

r

)
dr dx3.

Using that theH1 norm ofu is bounded in time as well as relation(13), we deduce that∫ (
r|∇r,x3f |2 + r|f |2 + |f |2

r

)
dr dx3 ≤ C. (15)

Since∇r,x3(f
√
r) = √

r∇r,x3f + f [1/2
√
r,0], relation(15) implies that

‖f√
r‖H1(R2) ≤ C.

By the (bidimensional) Sobolev embeddingH1 ↪→ Lq for all q ∈ [2,∞), we deduce that‖f√
r‖Lq(R2) ≤ C(q) for

all q ∈ [2,∞). Going back tox coordinates implies the conclusion ofLemma 1:

‖fr1/2−1/q‖q
Lq(R3)

=
∫

|f |qrq/2−1 dx = 2π
∫

|f |qrq/2 dr dx3 = ‖f√
r‖q
Lq(R2)

≤ C(q).

�

We now go back to relation(12), we fix q > 2, we write

f

r
|ω(v)|p = fr1/2−1/q

( |ω(v)|
r

)3/2−1/q

|ω(v)|p+1/q−3/2,

and we use Hölder’s estimate with the triple(q,4q/(3q− 2),4q/(q− 2)) to deduce that

∂t‖ω(v)‖pLp ≤ C‖fr1/2−1/q‖Lq
∥∥∥∥ω(v)r

∥∥∥∥
3/2−1/q

L2
‖ω(v)‖p+1/q−3/2

L(4pq+4−6q)/(q−2) .

On the right-hand side, the first term is bounded according toLemma 1. The second term is also bounded according
to the observations at the beginning of the proof. As for the last term, we simply chooseq such that(4pq+ 4 −
6q)/(q− 2) = p, i.e.q = 2(2 + p)/3(2 − p). With this choice we get

∂t‖ω(v)‖pLp ≤ C‖ω(v)‖p+1/q−3/2
Lp . (16)

After integration

‖ω(v(t))‖3/2−1/q
Lp ≤ ‖ω(v0)‖3/2−1/q

Lp + Ct.

Therefore,‖ω(v)‖Lp is controlled.
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Sincep < 3 we can apply the Hardy–Littlewood–Sobolev inequality:

‖v‖Lp∗ ≤ C‖ω(v)‖Lp,
wherep∗ = 3p/(3 − p). This implies that‖v‖Lp∗ is also controlled. Standard elliptic regularity results for the
operator 1−α� implies that‖u‖W2,p∗ ≤ C‖v‖Lp∗ is also controlled. Finally, from the relationp∗ > 3 (that follows
from the assumptionp > 3/2) we have the embeddingW1,p∗

↪→ L∞ so we obtain that‖∇u‖L∞ is controlled.
Recalling relation(14)we further infer that‖f/r‖L∞ is controlled.

Now, relation(12)holds also forp = 2. Therefore

∂t‖ω(v)‖2
L2 ≤ 2

∥∥∥∥fr
∥∥∥∥
L∞

‖ω(v)‖2
L2 ≤ C(t)‖ω(v)‖2

L2,

where the dependence ofC(t) on t can be made explicit. Gronwall’s lemma now gives

‖ω(v(t))‖2
L2 ≤ ‖ω(v0)‖2

L2 exp
∫ t

0 C(τ)dτ .

This is the control of‖ω(v)‖L2 and suffices to complete the proof ofTheorem 2in the caseν = 0.

4.2. Caseν 	= 0

We first show that‖ω(v)/r‖L2 is still bounded by proving that the viscosity term can be ignored. Recall the
equation forω̌:

∂tω̌ + ν

α
(ω̌ − ω̃)+ u · ∇xω̌ = 0, (17)

where

ω̌ = ω̃ − α�xω̃ − 2α

r
∂rω̃.

Multiplying (17)by ω̌, the viscosity term yields
∫
ν

α
(ω̌ − ω̃)ω̌ dx= ν

α

∫
(ω̌ − ω̃)2 dx+ ν

α

∫
(ω̌ − ω̃)ω̃ dx = ν

α
‖ω̌ − ω̃‖2

L2 − ν
∫
ω̃

(
�xω̃ + 2

r
∂rω̃

)
dx

= ν

α
‖ω̌ − ω̃‖2

L2 − ν
∫
ω̃�xω̃ dx− 2ν

∫
ω̃∂rω̃

r
dx.

A trivial integration by parts shows that

−ν
∫
ω̃�xω̃ dx = ν‖∇ω̃‖2

L2 ≥ 0.

Also∫
ω̃∂rω̃

r
dx = 2π

∫
ω̃∂rω̃ dr dx3 = π

∫
∂r(ω̃)

2 dr dx3 = 0,

so ∫
ν

α
(ω̌ − ω̃)ω̃ dx = ν

α
‖ω̌ − ω̃‖2

L2 + ν‖∇ω̃‖2
L2 ≥ 0.

This means that the viscosity term may be ignored and shows thatω̌ is bounded inL2.
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It remains to prove that we still haveLp estimates onω(v) (i.e. the analogue of relation(16)). Relation(11)now
contains the additional term

I = ν

α

∫
(ω̌ − ω̃)rpω̌|ω̌|p−2 dx.

We estimateI in the following way:

|I| ≤ ν

α

∫
(|ω̌| + |ω̃|)rp|ω̌|p−1 dx= ν

α

∫
(|ω(u)| + |ω(v)|)|ω(v)|p−1 dx

= ν

α

(
‖ω(v)‖pLp +

∫
|ω(u)||ω(v)|p−1

)
dx.

Next, we use Hölder’s inequality

|I| ≤ ν

α
‖ω(v)‖pLp + ν

α
‖ω(u)‖Lp‖ω(v)‖p−1

Lp ,

the trivial estimate‖ω(u)‖Lp ≤ ‖ω(u)‖W2,p , and theLp regularity result for the operator 1− α� that says that
‖ω(u)‖W2,p ≤ C‖ω(v)‖Lp , to finally deduce that

|I| ≤ C‖ω(v)‖pLp.
With this additional term, the analogue of relation(16) is now

∂t‖ω(v)‖pLp ≤ C(‖ω(v)‖pLp + ‖ω(v)‖p+1/q−3/2
Lp ).

Since one can easily check thatp+ 1/q− 3/2 ∈ (0,1), an application of Young’s inequality yields

∂t‖ω(v)‖pLp ≤ C + C‖ω(v)‖pLp,
so, by Gronwall’s lemma

‖ω(v(t))‖pLp ≤ (‖ω(v0)‖Lp + Ct)exp(Ct).

This is the control of‖ω(v)‖pLp and starting from here the proof is similar to the vanishing viscosity case.

5. Lyapunov stability of some stationary solutions

We are concerned in this section with the vanishing viscosity case of the second grade fluids, also known as the
α-Euler equation:

∂tv+ u · ∇v+
∑
j

vj∇uj = −∇p, v = u− α�u, div u = 0, u = 0 on ∂Ω. (18)

We assume in this section that the axisymmetric domainΩ is obtained by rotation from asimply connecteddomain
Ω′ in the(r, x3) variables. The domainΩ′ is also supposed to be bounded and not intersecting the axis{r = 0}.

Recall that

u = fer + ge3, curlu = ω̃(x2,−x1,0), ω̃ = ∂rg− ∂3f
r

,

v = f̌ er + ǧe3, curlv = ω̌(x2,−x1,0), ω̌ = ∂rǧ− ∂3f̌
r

,
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and thatω̌ is transported byu in the(r, x3) variables:

∂tω̌ + f∂rω̌ + g∂3ω̌ = 0. (19)

It is also easy to check that the vector field(rf, rg) is divergence free in the(r, x3) coordinates. Since we assumed
Ω′ simply connected, there exists a stream functionψ(r, x3) vanishing on the boundary such that(rf, rg) = ∇⊥

r,x3
ψ.

From(19) we see thatue is a stationary solution if and only if∇r,x3ψe and∇r,x3ω̌e are proportional. In fact, a
stationary solution verifies

∇r,x3ψe = −h(ω̌e)∇r,x3ω̌e (20)

for some functionh. In the following theorem we study the stability of such stationary solutions.

Theorem 3 (Lyapunov stability).Letue be a stationary solution of(18)such that there exists a(continuous) function
h and positive constants0 < C1 < C2 such thatC1 ≤ h ≤ C2 and(20) is valid. Then the solutionue is Lyapunov
stable in theH3 norm with respect to axisymmetric perturbations.

Proof. Letφ be such thatφ′′ = h. Note that we have some freedom in the choice ofφ; namelyφ′ is defined up to a
constant. For two axisymmetric (swirl free) vector fieldsu1 andu2 we use the corresponding superscripts to denote
the related quantities and we introduce the bilinear functional

H(u1, u2) = 1

2

∫
Ω

u1 · v2 dx.

We will also use the functional

C(u) =
∫
Ω

φ(ω̌)dx.

The properties of these functionals are summarized in the following lemma.

Lemma 2. Letu1 andu2 be two divergence free axisymmetric(swirl free) vector fields vanishing on the boundary.
The following holds

H(u1, u2) = H(u2, u1) = 1

2

∫
Ω

ψ1ω̌2 dx and H(u1, u1) = 1

2
(‖u1‖2

L2 + α‖∇u1‖2
L2).

Moreover, if u is an axisymmetric solution of(18) thenH(u)=defH(u, u) andC(u) are constant in time.

Proof of Lemma 2. The relationsH(u1, u2) = H(u2, u1) andH(u1, u1) = (1/2)(‖u1‖2
L2 + α‖∇u1‖2

L2) follow
from the definition after applying a trivial integration by parts that we will not detail. Next∫

Ω

u1 · v2 dx=
∫
Ω

(f 1, g1) · (f̌ 2, ǧ2)dx = 2π
∫
Ω′
(rf1, rg1) · (f̌ 2, ǧ2)dr dx3

= 2π
∫
Ω′
(∇⊥
r,x3
ψ1) · (f̌ 2, ǧ2)dr dx3 = 2π

∫
Ω′
ψ1 curlr,x3(f̌

2, ǧ2)dr dx3

= 2π
∫
Ω′
ψ1rω̌2 dr dx3 =

∫
Ω

ψ1ω̌2 dx.

The fact that, for a solutionu,H(u) is constant in time simply follows from theH1 estimates forEq. (18): the norm
‖u‖2

L2 + α‖∇u‖2
L2 is constant in time. It remains to prove thatC(u) is also constant in time. This follows from the
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following sequence of calculations:

∂tC(u) =
∫
Ω

φ′(ω̌)∂tω̌ dx = −
∫
Ω

φ′(ω̌)u · ∇ω̌ dx = −
∫
Ω

u · ∇φ(ω̌)dx =
∫
Ω

φ(ω̌)div udx = 0. �

Let nowue be a stationary solution as inTheorem 3and letu an arbitrary axisymmetric solution. Consider the
following quantity

E(t) = (H + C)(u)− (H + C)(ue)−
∫
Ω

[ψe + φ′(ω̌e)](ω̌ − ω̌e)dx.

We claim thatE is in fact constant in time. Indeed,(H + C)(u) is constant in time as a consequence ofLemma 2.
Also, from (20) we get that∇(ψe + φ′(ω̌e)) = 0 which implies thatψe + φ′(ω̌e) = Const. This constant can be
made equal to 0 by adding a suitable constant toφ′. This means that the last term inE(t) vanishes and this now
implies thatE is constant in time.

On the other hand, we can also writeE under the form

E = C(u)− C(ue)−
∫
Ω

φ′(ω̌e)(ω̌ − ω̌e)dx︸ ︷︷ ︸
E1

+H(u)−H(ue)−
∫
Ω

ψe(ω̌ − ω̌e)dx︸ ︷︷ ︸
E2

.

From the definition of the functionalC we see that

E1 =
∫
Ω

φ(ω̌)− φ(ω̌e)− φ′(ω̌e)(ω̌ − ω̌e)dx = 1

2

∫
Ω

φ′′(ξ)|ω̌ − ω̌e|2 dx

for someξ betweenω̌ and ω̌e. From the hypothesis we know thatφ′′ = h is of the order of a constant, so we
deduce thatE1 � ‖ω̌ − ω̌e‖2

L2 = ‖(1/r)(ω(v)− ω(ve))‖2
L2. The assumptions made on the domainΩ imply thatr

is bounded from below and above by two positive constants. ThereforeE1 � ‖ω(v)− ω(ve)‖2
L2.

As forE2, we use the definition, the symmetry and the bilinearity ofH to write

E2 = H(u, u)−H(ue, ue)− 2H(ue, u− ue) = H(u− ue, u− ue) � ‖u− ue‖2
H1.

UsingCorollary A.1this finally implies that

E = E1 + E2 � ‖u− ue‖2
H1 + ‖ω(v)− ω(ve)‖2

L2 � ‖u− ue‖2
H3.

Since we know thatE is constant in time, we obtain that‖u(t)−ue‖2
H3 � ‖u(0)−ue‖2

H3. This completes the proof
of Theorem 3.
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Appendix A

The aim of this appendix is to prove the following regularity result.
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Proposition A.1. LetΩ be a bounded smooth domain(not necessarily simply connected). If u is aH2(Ω)divergence
free vector field vanishing on the boundary such thatcurl(u− α�u) ∈ L2(Ω), thenu ∈ H3(Ω).

Proof. In order to show the ideas, we first consider the case of a domain with flat boundary,Ω = {x3 > 0}. The
Dirichlet boundary conditions implies that∂1u|∂Ω = ∂2u|∂Ω = 0, and the divergence free condition shows that
∂3u3|∂Ω = −(∂1u1 + ∂2u2)|∂Ω = 0, so∇u3|∂Ω = 0, i.e.u3 ∈ H2

0(Ω).
Set v = u − α�u. Sincev is divergence free, we have that�v = −curl curlv ∈ H−1(Ω); in particular

�v3 ∈ H−1(Ω). We infer that�2u3 = (1/α)(�u3 − �v3) ∈ H−1(Ω). But we saw thatu3 as well as its first
order derivatives vanish on the boundary, so it satisfies boundary conditions compatible with the bi-Laplacian. The
standard regularity theory for the bi-Laplacian now implies thatu3 ∈ H3(Ω). This means thatv3 ∈ H1(Ω) and
by trace theoremsv3|∂Ω ∈ H1/2(∂Ω), that is,v · n|∂Ω ∈ H1/2(∂Ω). Furthermore, we also have that divv = 0 and
curlv ∈ L2(Ω). Standard regularity results for the curl operator (see, for instance,[11]) imply thatv ∈ H1(Ω).
Finally, the regularity theory for the Laplacian implies thatu ∈ H3(Ω) which is the desired conclusion in this
particular case.

We now indicate how to modify this proof in the general case. Letn be the normal vector to the boundary and
{τ1, τ2} be an orthonormal basis of the tangent space. We extend these vectors smoothly insideΩ. As above, we
have that�v ∈ H−1(Ω) and therefore�2(u · n) ∈ H−1(Ω). Now, if we denote by Col[τ1, τ2, n], respectively
Row[τ1, τ2, n], the matrices with columns, respectively rows, equal (in this order) toτ1, τ2, n, then we obviously
have that


∂τ1

∂τ2

∂n


 = Row[τ1, τ2, n]



∂1

∂2

∂3


 .

Since the basis{τ1, τ2, n} is orthonormal, the inverse of Row[τ1, τ2, n] is Col[τ1, τ2, n]. Therefore, at the boundary

∂1

∂2

∂3


 = Col[τ1, τ2, n]



∂τ1

∂τ2

∂n


 .

We deduce that the divergence free condition may be expressed at the boundary in the basis{n, τ1, τ2} under the
form

Col[τ1, τ2, n]



∂τ1

∂τ2

∂n


 ·



u1

u2

u3


 = 0.

Expanding the above expression and taking into account that the tangential derivatives ofu vanish at the boundary,
we end up with the following relation:n · ∂nu = 0. This can also be expressed under the form∂n(u · n) = u · ∂nn at
the boundary. Asu ∈ H2(Ω), we deduce that∂n(u · n) ∈ H3/2(∂Ω). But we also have that∂τ1(u · n)|∂Ω = 0 and
∂τ2(u ·n)|∂Ω = 0 so∇(u ·n) ∈ H3/2(∂Ω). This last relation plus the facts thatu ·n|∂Ω = 0 and�2(u ·n) ∈ H−1(Ω),
implies by the regularity theory for the bi-Laplacian thatu · n ∈ H3(Ω). Taking the Laplacian of this quantity and
noting that�(u · n) − �u · n can be expressed in terms ofu and first order derivatives ofu, we deduce that
�u · n ∈ H1(Ω). This means thatv · n ∈ H1(Ω) sov · n|∂Ω ∈ H1/2(∂Ω). With this information we can conclude,
as in the flat boundary case, thatu ∈ H3(Ω). �

We get the following corollary.
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Corollary A.1. LetΩ be a bounded smooth domain(not necessarily simply connected) and u aH3(Ω) divergence
free vector field vanishing on the boundary. The following quantities are equivalent:

‖u‖H3 � ‖u‖H1 + ‖curl(u− α� u)‖L2.

Proof. The bound

‖u‖H1 + ‖curl(u− α� u)‖L2 ≤ Const.‖u‖H3

is obvious. In order to prove the converse inequality, first note that the proof ofProposition A.1actually shows that

‖u‖H3 ≤ Const.‖u‖H2 + Const.‖curl(u− α� u)‖L2. (21)

We now use the standard interpolation inequality‖u‖H2 ≤ Const.‖u‖1/2
H1 ‖u‖1/2

H3 and estimate in the usual manner

‖u‖1/2
H1 ‖u‖1/2

H3 ≤ ε‖u‖H3 + C(ε)‖u‖H1. Choosingε small enough and plugging this estimate into relation(21) we
get

‖u‖H3 ≤ 1
2‖u‖H3 + Const.‖u‖H1 + Const.‖curl(u− α� u)‖L2.

This completes the proof. �

Corollary A.1allows to extend the well-posedness results of[6,7] to domains that are not necessarily simply
connected. Indeed, the hypothesis of simple connectedness was used in those articles to prove the equivalence of
the norms

‖u‖H3 � ‖curl(u− α� u)‖L2.

If the domain is not simply connected, we get the same relation but with an additional term‖u‖H1. However, this
term is not a problem as it is trivially bounded from theH1 estimates that are always true. We also refer to[4] where
this kind of estimate was used to get well-posedness for second grade fluids equations for not necessarily simply
connected domains but with other boundary conditions.
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