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Abstract
This paper studies the destabilizing effects of dissipation on families of
relative equilibria in Hamiltonian systems which are non-extremal constraint
critical points in the energy–Casimir or the energy–momentum methods. The
dissipation is allowed to destroy the conservation law associated with the
symmetry group or Casimirs, as long as the family of relative equilibria stays on
an invariant manifold. This approach complements earlier work in the literature,
in which the dissipation did not affect the conservation law.

First, Chetaev’s instability theorem is extended to invariant manifolds and
this extended theorem is used to prove instability of families of relative equi-
libria for several examples. Second, it is shown that families of non-extremal
stationary solutions of the two-dimensional incompressible homogeneous Euler
equations are unstable for the corresponding viscous perturbations of this sys-
tem, i.e. for the two-dimensional Navier–Stokes equations. Also, the instability
of the sleeping top relative equilibria under friction can easily be proved in
this way, even before the Hamiltonian sleeping top becomes linearly unstable.
Finally, sufficient conditions are given for which friction destabilizes families
of non-extremal relative equilibria in simple mechanical systems with abelian
symmetry.

Mathematics Subject Classification: 58F30, 76D05, 70E50

1. Introduction

This paper considers destabilizing effects of dissipation on families of relative equilibria in
Hamiltonian systems, so-called dissipation-induced instability. Relative equilibria can be
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found in Hamiltonian systems which are invariant under the action of a continuous symmetry
group. In such systems, relative equilibria are solutions which move with constant speed
along the flow of the symmetry group. For example, in a system with rotational symmetry, the
relative equilibria are uniformly rotating states.

Noether’s theorem implies that continuous symmetries in Hamiltonian systems are related
to functionals which are constants of motion in a Hamiltonian system (e.g. the angular
momentum in case of a rotational symmetry). This observation leads to a variational description
for the relative equilibria. Relative equilibria can be described as constrained critical points
of the Hamiltonian on level sets of the constants of motion. Some Hamiltonian systems have
constants of motion which are not related to continuous symmetries, but which are due to
a degeneracy in the Poisson bracket. These constants of motion which generate the centre
of the Poisson algebra are called Casimirs and equilibrium solutions of Hamiltonian systems
which are constrained critical points of the Hamiltonian on level sets of the Casimirs are also
called relative equilibria. Usually, relative equilibria appear in families and the individual
relative equilibria in such a family can be parametrized by the value of the constants of the
motion.

The variational characterization of the relative equilibria can be used to get sufficient
criteria for non-linear (orbital) stability. This has been formalized in two related methods. The
first one is the energy–Casimir method (see Holm et al [13] for details and more references).
The second method is the energy–momentum method, which does not rely on the existence
of Casimir functions. For details and more references, see Simo et al [18, 19]. These
methods imply that if the relative equilibrium is a constrained extremum, then the relative
equilibrium will be non-linearly (orbitally) stable. However, no conclusions can be drawn if
the relative equilibrium is a non-extremal constrained critical point. With spectral methods
one can try to obtain some information about linear instability. However, it is hard to get
any information about the non-linear stability in case of a linearly stable (i.e. neutrally stable)
relative equilibrium, which is a non-extremal constrained critical point.

If dissipation is added to a Hamiltonian system, in general it cannot be expected that the
functionals related to the symmetry group or Casimirs (constants of motion for the Hamiltonian
case) remain invariant under the new dynamics. The dissipation will induce an evolution along
the level sets. In addition, it is very unlikely that the orbits of individual relative equilibria are
invariant under the dynamics of the dissipative system. However, since the manifold formed
by the orbits of the family of relative equilibria includes various level sets of these functionals,
it is possible that the full family of relative equilibria forms an invariant manifold under the
dynamics of the system defined by the sum of the original Hamiltonian system and a dissipative
vector field.

If the family of relative equilibria consists of extremal constrained equilibria, then
dissipation will induce attractor-like properties for the family and a rate of attraction can
be found. Under appropriate conditions, it can be shown that solutions starting near the family
of relative equilibria will continue to stay near this family and will be asymptotically attracted
to it. In Derks et al [6], the variational description of the relative equilibria and ideas from
the energy–momentum method are used to develop a general theory in the case of simple
mechanical systems with dissipation. An illustration is given for a rigid body with friction. In
Derks and van Groesen [7], a rate of attraction is found for the family of KdV cnoidal waves
when uniform damping is added to the KdV equation. Attractors and an attraction rate are
found for the two-dimensional Navier–Stokes and reduced magnetohydrodynamics in Derks
and Ratiu [8]. To derive the above mentioned stability results, it is not necessary that the
manifold of relative equilibria of the underlying Hamiltonian system is invariant under the
dissipative vector field.
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This paper focuses on families of relative equilibria which are non-extremal constrained
critical points and shows how dissipation can destabilize such families. Although the extremal
families did not have to be invariant to have attractive properties under the influence of
dissipation, the non-extremal cases turn out to be more delicate. It is often assumed that these
families remain invariant after the addition of dissipation. In Bloch et al [3, 4], dissipation-
induced instability is shown for relative equilibria in Hamiltonian systems with a dissipation
which does not destroy the conservation law associated with the symmetry group. In [3], the
influence of so-called internal dissipation on a relative equilibrium in a simple mechanical
system with symmetry is considered. The block-diagonalization version of the energy–
momentum method is used to strengthen results of Chetaev [5] and Hahn [12] and to prove both
Lyapunov and spectral instability for those relative equilibria. In [4], the influence of group (or
rotational) dissipation is studied in Euler–Poincaré equations with double bracket dissipation.
In both papers [3, 4] it is essential that the conservation law associated with the symmetry
group is not destroyed after the addition of dissipation. In this paper this assumption will be
relaxed to the hypothesis that the dissipation leaves the family invariant, but that the orbits of
the individual relative equilibria do not have to be themselves invariant. Thus, instability will
be shown for the invariant manifolds of relative equilibria, as opposed to that for individual
relative equilibria as in [3, 4].

The paper is structured in the following way. In section 2, Chetaev’s instability theorem
for equilibrium points is extended to invariant manifolds. For the relative equilibria, a
natural Lyapunov function is given by combining the Hamiltonian and Casimirs and/or other
functionals related to the symmetry group. With the extended version of Chetaev’s theorem,
the analysis of the influence of dissipation on this Lyapunov function gives sufficient conditions
for instability. These ideas are applied to various examples in the following sections.

In section 3, invariant manifolds in the two-dimensional Navier–Stokes equations with
small viscosity and no forcing are considered. Without viscosity, the Navier–Stokes equations
turn into the two-dimensional Euler equations. The two-dimensional Euler equations are
Hamiltonian and have a large family of Casimirs, the enstrophy being one of them. The
relative equilibria generated by combining the enstrophy and the Hamiltonian form manifolds
of stationary solutions. Although the solutions are not stationary anymore if viscosity is
turned on, the manifolds are still invariant. In section 3 it will be shown that the non-extremal
manifolds are unstable under the dynamics of the Navier equations. These observations
complement the work of Foias and Saut [10] where it is shown that every solution of the
Navier–Stokes equations will asymptotically converge to one of the manifolds of relative
equilibria; in addition, the first terms of the asymptotic expansion are derived. It is an open
question which manifold of relative equilibria will be selected and this paper shows that not
all solutions nearby a specific manifold will converge to it. Our work also refines observations
in van Groesen [11], where the instability of larger manifolds, which include the families of
relative equilibria, is shown.

In section 4, the influence of friction on the sleeping top is considered. A full analysis
of the existence and stability of frictionless sleeping top relative equilibria can be found in
Lewis et al [15]. It turns out that the sleeping top has several families of relative equilibria,
which are non-extremal in the energy–momentum characterization but whose linearization is
neutrally stable. As is known from experiments, these relative equilibria become unstable if
friction acts on them. The analysis in this paper will show that the instability starts at values
of the angular velocity for which the Hamiltonian sleeping top is linearly stable.

In the last section of examples, a complement to the dissipation-induced instability of [3]
is given for simple mechanical systems with symmetry. We will give sufficient conditions
under which a dissipative perturbation leads to instability for families of non-extremal relative
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equilibria if the dissipation does not respect the conservation laws induced by the symmetries,
but leaves the families invariant. The paper finishes with some concluding remarks and further
problems.

2. Instability criteria for invariant manifolds

Consider the dynamical system

ut = f (u), t > 0, (1)

with u in some manifold H. Let M be an invariant manifold of (1). If H is a subset of a metric
space (X , d), then define the d distance between u ∈ H and M as

d(u,M) = inf
v∈M

d(u, v).

We will prove two lemmas which give sufficient conditions for the instability of the
manifold M. The lemmas are based on Chetaev’s theorems for instability of equilibria (see e.g.
Hahn [12, theorems 42.6, 42.7], Malkin [16, sections 13 and 15], and Zubov [21, section 1.13].
An overview can be found in Merkin [17].

For the first lemma we assume that (X1, d1) and (X2, d2) are two metric spaces, both of
which contain H (X1 = X2 and d1 = d2 is possible), i.e. d1 and d2 give two distances on H.

Lemma 1. Let L : H → R be a differentiable functional, which satisfies:

1. There is some δ0 such that for all 0 < δ < δ0 and for all û ∈ M, there is some u ∈ H such
that d1(u, û) < δ and L(u) < 0.

2. There is some ε0 > 0 and some C > 0 such that L(u) > −C, if d2(u,M) < ε0.
3. There is some ε1 > 0 and some α > 0 such that

〈DL(u), f (u)〉 � αL(u),

if d2(u,M) < ε1 and L(u) < 0.

Then M is an unstable manifold. To be explicit, there is some ε > 0 such that for all δ > 0
and for all û ∈ M there is some u0 ∈ H with d1(u0, û) < δ and some t0 > 0 such that the
solution u(t) of (1) with initial condition u(0) = u0 satisfies d2(u(t0),M) > ε.

Remark 1. We can replace condition 2 by the following (similar) condition: (2a). There is
some ε0 > 0 such that for any solution u(t)with d1(u(0),M) < ε0 or d2(u(0),M) < ε0, there
is some C > 0 such that L(u(t)) > −C for t � 0.

Proof. We will prove this lemma by a contradiction argument. Assume that the manifold M
is locally stable. Hence for all ε > 0 there is some δ(ε) > 0 and some û ∈ M such that for
all u0 ∈ H with d1(u0, û) < δ(ε), the solution u(t) of (1) with initial condition u(0) = u0

satisfies d2(u(t),M) < ε, for all t � 0.
Take some ε such that 0 < ε < min(ε0, ε1). Take some u0 ∈ H such that d1(u0, û) < δ(ε)

and L(u0) < 0. (We can do this because of condition 1.) Let u(t) be the solution of (1) with
initial condition u0. Because M is locally stable, we have d2(u(t),M) < ε < ε1 for all t � 0.

Assume that there is some T > 0 such thatL(u(t)) < 0, for 0 � t < T andL(u(T )) = 0.
Then we have

0 = L(u(T )) =
∫ T

0

d

dt
L(u(t)) dt + L(u(0)) < α

∫ T

0
L(u(t)) dt + 0 < 0.

However this is a contradiction, hence for all t � 0, L(u(t)) < 0.



Unstable manifolds of relative equilibria in Hamiltonian systems 5

With condition 3 this implies for all t � 0

d

dt
(L(u(t))e−αt ) � 0.

Therefore, L(u(t)) � eαtL(u0) for all t � 0. Since L(u0) < 0, there is some T > 0 such
that L(u(T )) < −C. But this contradicts condition 2 since d2(u(t),M) < ε < ε0. Hence the
manifold M is not locally stable. �

Condition 3 of lemma 1 implies that L(u) = 0 if u ∈ M. In the next lemma we will show
that this condition can be relaxed to 〈DL(u), f (u)〉 < 0 if some extra conditions regarding
completeness are satisfied. So we will restrict to finite-dimensional manifolds H.

Lemma 2. Let H be a manifold in a finite-dimensional vector space and d be a distance on
H. Let L : H → R be a differentiable function which satisfies:

1. For all u ∈ M one has L(u) = 0.
2. There is some δ0 > 0 such that for all 0 < δ < δ0 and for all û ∈ M, there is some u ∈ H

such that d(u, û) < δ and L(u) < 0.
3. There is some ε0 > 0 and some C > 0 such that d(u,M) < ε0 implies L(u) � −C.
4. For all u ∈ H with L(u) < 0, we have

〈DL(u), f (u)〉 < 0,

if 0 < d(u,M) < ε0.

If M is bounded or any solution near M is bounded (i.e. if û is an arbitrary element of M, then
for every u0 ∈ H with d(u0,M) < ε0 there is some C1(u0) such that d(u(t), û) < C1(u0), for
all t � 0), then M is an unstable manifold. To be explicit, there is some ε > 0 such that for
all δ > 0 and for all û ∈ M there is some u0 ∈ H with d(u0, û) < δ and some t0 > 0 such
that the solution u(t) of (1) with initial condition u(0) = u0 satisfies d(u(t0),M) > ε.

Remark 2. We can replace condition 3 by the following (similar) condition:

(3a) For any solution u(t) of (1), there is some C > 0 such that L(u(t)) � −C if t � 0.

Proof. We will prove this lemma by a contradiction argument. Assume that the manifold M is
locally stable. Hence for all ε > 0 there is some δ(ε) > 0 and û ∈ M such that for all u0 ∈ H
with d(u0, û) < δ and for all t > 0, the solution u(t) of (1) with initial condition u(0) = u0

satisfies d(u(t),M) < ε.
Take some ε such that 0 < ε < ε0. Take some u0 ∈ H such that d(u0, û) < δ(ε) and

L(u0) < 0. (We can do this because of condition 2.) Let u(t) be the solution of (1) with
initial condition u0. Because M is locally stable, we have d(u(t),M) < ε < ε0 for all t � 0.
Assume that there is some T > 0 such that L(u(t)) < 0, for 0 � t < T and L(u(T ) = 0.
With condition 4 it follows that

0 = L(u(T )) =
∫ T

0

d

dt
L(u(t)) dt + L(u(0)) < 0 + 0.

However this is a contradiction, hence for all t � 0, L(u(t)) < 0. Again with condition 2 this
implies that for all t > 0,

L(u(t)) = L(u0) +
∫ t

0

d

dτ
L(u(τ)) dτ < L(u0). (2)

Define the set S1 by

S1 = {u ∈ H | L(u) < L(u0)}.
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This means that there is some C1 > 0 such that d(u,M) � C1, for u ∈ S̄1. Indeed, assume
that there is a sequence {un} ⊂ S1 such that d(un,M) → 0. Since L is continuous, this means
that L(un) → L(M) = 0. But this contradicts the fact that L(un) < L(u0) < 0.

Define −l = inf{〈DL(u(t)), f (u(t))〉 | t � 0}. We will show that −l < 0. Let tn be
a sequence such that 〈DL(u(tn)), f (u(tn))〉 → −l. If M is bounded, then d(u(tn),M) < ε0

implies that {u(tn)} is a bounded sequence. If M is not bounded, then by the assumption of the
lemma, we have that u(tn) is a bounded sequence.

Since u(tn) is a bounded sequence, there is some convergent subsequence u(tnk ), such
that u(tnk ) → û. Since u(t) ∈ S̄1 for all t � 0, we know that C1 � d(u(t),M) � ε. Hence,
0 < C1 � d(û,M) � ε < ε0. Using condition 2, we see that −l = 〈DL(û), f (û)〉 < 0.

This means that (d/dt)L(u(t)) � −l < 0 for all t � 0. Hence we can improve the
estimate (2):

L(u(t)) = L(u0) +
∫ t

0

d

dτ
L(u(τ)) dτ � L(u0)−

∫ t

0
l dτ = L(u0)− lt.

But this means thatL(u(t)) is unbounded from below, which contradicts condition 3. Therefore
M is unstable. �

In the following sections these lemmas will be used to show that dissipation induces
instability in non-extremal manifolds of relative equilibria.

3. Unstable manifolds in two-dimensional Navier–Stokes equations

Consider the two-dimensional Navier–Stokes equations without forcing

ω̇ = −v · ∇ω + ν�ω = {ψ,ω} + ν�ω in D;
ψ = 0 and ω = 0, on ∂D, (3)

where D is any compact, simply connected domain in the xy plane with smooth boundary ∂D,
and ψ is the stream function, i.e. −�ψ = ω.

If viscosity is absent, that is ν = 0 hence an ideal fluid is considered, then the Navier–
Stokes equations become the Euler equations. The Euler equations form a Hamiltonian system
relative to the total energy

H(ω) = 1

2

∫
D
|v|2 dx = 1

2

∫
D
ωψ dx.

The Poisson structure for these equations is highly degenerate and, as a consequence, the two-
dimensional Euler equations have many Casimirs. For example, each functional depending
on ω only is a Casimir. In particular, the enstrophy

W(ω) = 1

2

∫
D
ω2 dx

is a Casimir for the Euler equations. It is easily verified that the critical points of the enstrophyW
on level sets of the HamiltonianH are stationary solutions of the Euler equations which satisfy

−�ω = λω, implying ω = λψ,

where λ is a positive eigenvalue of (−�) with zero boundary conditions. These solutions are
a two–dimensional version of the Arnold–Beltrami–Childress (ABC) flows (cf Dombre et al
[9]). In particular, if D is a disc, then these solutions are necessarily axi-symmetric. In the
literature, sometimes the ABC flows are also called Stokes flows, since they are solutions of
the Stokes operator.
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Let 0 < λ0 < λ1 < · · · be the eigenvalues of (−�)with zero boundary conditions. Let Ek
be the eigenspace with the eigenvalue λk , let#k be the L2-orthogonal projection onto Ek , and
let#⊥

k be the projection on the orthogonal complement E⊥
k of Ek . Then for each eigenvalue λk ,

the Euler equations have a family of relative equilibria Ek . Each relative equilibrium in Ek is
a critical point of the functional Lk(ω) = W(ω)− λkH(ω) and for each relative equilibrium
ω̄ ∈ Ek , Lk(ω̄) = 0. The functional L0 is positive definite and vanishes on E0 only. Indeed,
for each vorticity ω with stream function ψ , one has

L0(ω) =
∫

D
ω(ω − λ0ψ) dx � λ1 − λ0

λ1
‖#⊥

0 ω‖2
L2 .

The energy–Casimir method shows that the manifold E0 is stable under the evolution of the
Euler equations. On the other hand, the functionalsLk are indefinite for k � 1, since if ω̄ ∈ E0,
then Lk(ω̄) = (λ0 − λk)H(ω̄) < 0 and if ω̄ ∈ Ek+1, then Lk(ω̄) = (λk+1 − λk)H(ω̄) > 0. So
the families Ek are non-extremal if k � 1 and nothing can be said about the stability of these
manifolds with methods like the energy–Casimir method.

Now we return to the full Navier–Stokes equations. The individual relative equilibria are
not invariant anymore. It is straightforward to verify that for any k ∈ N and any ωλk ∈ Ek,

ω̂(t) = e−νλkt ωλk , t � 0

determines a solution of the Navier–Stokes equations. By global existence and uniqueness of
the classical solutions for the two-dimensional Navier–Stokes equations (see [20, section 2.2]),
these are all the solutions of the Navier–Stokes equations which at some t0 (and hence for all t)
lie in Ek . Thus if ω̂(0) = ωλk is some ABC flow, at any other subsequent time according to
the dynamics of the Navier–Stokes equations, ω̂(t) is proportional to ωλk , the proportionality
constant e−νλkt depending on time. Thus the ABC flows in Ek form invariant families under
the dynamics of the Navier–Stokes equations.

Note also that by uniqueness of classical solutions, if ω0 �= 0, then the solution ω(t) of
the Navier–Stokes equations with initial condition ω(0) = ω0 satisfies also ω(t) �= 0 for all
t � 0 (as a map from [0,∞) to the space of functions on the domain D, not as a function of
(t, x)). In particular, H(ω(t)) �= 0 andW(ω(t)) �= 0.

In Derks and Ratiu [8], it is shown that the manifold E0 is an attractor for the Navier–
Stokes equations: If ω(t) is a solution of the Navier–Stokes equations with ω(0) = ω0 and
‖#⊥

0 ω0‖2 < λ2(λ1 − λ0)/λ0(λ2 − λ1) ‖#0ω0‖2, then

‖#⊥
0 ω(t)‖ � C(ω0)e

−ν(λ1−λ0)t‖#0ω(t)‖,
for all t � 0. In this section it will be shown that all the other manifolds Ek , k � 1, are unstable.

Theorem 3. For all k � 1, the manifolds Ek are unstable under the flow of the Navier–Stokes
equations. This means that there is some ε > 0 such that for all δ > 0 and all ω̂ ∈ Ek , there
is some ω0 with ‖ω0 − ω̂‖ < δ ‖ψ0‖ and some t0 > 0 such that the solution ω(t) with initial
condition ω(0) = ω0 satisfies ‖#⊥

k ω(t0)‖ > ε ‖∇ψ(t0)‖. Recall that ψ denotes the stream
function.

Note that the stability and instability criteria are expressed in relative terms
(‖#⊥

0 ω(t)‖/‖#0ω(t)‖ and ‖#⊥
k ω(t0)‖/‖∇ψ(t0)‖, respectively). This is due to the fact that

the zero state is in each manifold Ek , k � 0, and the zero state is a global attractor for the
Navier–Stokes equations. In figure 1, there is a sketch to visualize the basin of attraction and
the instability region.

In [10, 11] it is shown that for any solution ω(t) of the Navier–Stokes equation, the limit
limt→∞W(ω(t))/H(ω(t)) exists and equals some eigenvalue of (−�). From [10] it follows
that the asymptotic expansion of ω(t) will start with an element of the set Ek corresponding
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E0

Ek

Figure 1. Sketch of the attracting manifold E0 with its basin of attraction and an unstable manifold
Ek , k � 1 with its region of instability.

to the asymptotic eigenvalue. Theorem 3 shows that this does not imply that the sets Ek are
stable. There exist states, arbitrarily close to Ek , which do not converge to Ek . Furthermore,
in [11] it is shown that the sets

Ik =
{
ω(0)

∣∣∣∣ lim
t→∞

W(ω(t))

H(ω(t))
= λk

}
are not attracting if k � 1. It is shown that for each ω(0) ∈ Ik , there are (arbitrary small)
perturbations ξ and some T > 0 such that ω(T ) + ξ �∈ Ik . However, the sets Ik are much
larger and much more complicated than the manifolds Ek . Also, no results about distances to
Ik are shown in [11].

Theorem 3 will be proved by using lemma 1. Define the scaled Lyapunov function

L̂k(ω) = Lk(ω)

H(ω)
= W(ω)− λkH(ω)

H(ω)
.

Letω(t) be a solution of the Navier–Stokes equation. Using the boundary conditionω|∂D = 0,
the time derivatives of the Hamiltonian and the enstrophy functional are given by

d

dt
H(ω(t)) = −ν

∫
D
ω2 dx − ν

∫
∂D

ω
∂ψ

∂n
= −2νW(ω(t)),

d

dt
W(ω(t)) = −ν

∫
D
ω(−�ω) dx = −ν

∫
D
|∇ω|2 dx − ν

∫
∂D

ω
∂ω

∂n
= −ν

∫
D
|∇ω|2 dx.

(4)

From this, we get

d

dt
Lk(ω(t)) = −ν

∫
D
|∇ω|2 dx + λkν

∫
D
ω2 dx = −ν

∫
D
ω(−�− λk)ω dx (5)

and
d

dt
L̂k(ω(t)) = 2νL̂2

k(ω) + 2νλkL̂k(ω)− ν

H(ω)

∫
D
ω(−�− λk)ω dx =: Gk(ω); (6)

see also Derks and Ratiu [8] for these computations.
We can estimate the integral in both expressions by using Lk .
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Lemma 4. For any λ with λk−1 � λ � λk+1, one has∫
D
ω(−�− λk)ω dx � 2λLk(ω).

Proof. Let Pk denote the L2-orthogonal projection onto the first k eigenspaces of (−�), i.e.
onto E0 ⊕ · · · ⊕ Ek−1. Then we can write∫

D
ω(−�− λk)ω dx =

∫
D
Pkω(−�− λk)Pkω dx +

∫
D
P⊥
k ω(−�− λk)P⊥

k ω dx. (7)

A Poincaré-like inequality gives∫
D
P⊥
k ω(−�− λk)P⊥

k ω dx � λk+1

∫
D
P⊥
k ω(−�− λk)P⊥

k ψ dx (8)

and ∫
D
Pkω(λk − (−�))Pkω dx � λk−1

∫
D
Pkω(λk − (−�))Pkψ dx

� λ

∫
D
Pkω(λk − (−�))Pkψ dx,

for any λ � λk−1, since the integrals involved are non-negative. So for any λ � λk−1, we can
conclude∫

D
Pkω(−�− λk)Pkω dx � λ

∫
D
ω(−�− λk)ψ dx − λ

∫
D
P⊥
k ω(−�− λk)P⊥

k ψ dx.

Substitution of this inequality and (8) into (7) gives∫
D
ω(−�− λk)ω dx � λ

∫
D
ω(−�− λk)ψ dx + (λk+1 − λ)

∫
D
P⊥
k ω(−�− λk)P⊥

k ψ dx

� 2λLk(ω),

if λ � λk+1, since
∫

DP⊥
k ω(−�− λk)P⊥

k ω dx � 0, by definition of the operator P⊥
k . �

Remark 3. The estimate in this lemma is sharp. To see this, consider the solution
ω(t) = e−νλk−1t ω̂k−1, where ω̂k−1∈Ek−1. Then Lk(ω(t)) = e−2νλk−1tLk(ωk−1), hence
(d/dt)Lk(ω(t)) = −2νλk−1Lk(ω(t)). Similarly, for ω̂k+1 ∈ Ek+1 and ω(t) = e−νλk−1t ω̂k−1, it
follows that Lk(ω(t)) = e−2νλk+1tLk(ωk+1), hence (d/dt)Lk(ω(t)) = −2νλk+1Lk(ω(t)).

Note that this also implies that the functional Lk cannot be used to apply lemma 1. Indeed
since Lk(ω̂k−1) = (1 − λk/λk−1)W(ω̂k−1) < 0, this implies that there is no α > 0 such that
(d/dt)Lk(ω(t)) � αLk(ω(t)). Moreover, (d/dt)Lk(ω(t)) > 0!

Using lemma 4 with λ = λk−1 in the expression for (d/dt)L̂k(ω) = Gk(ω), equality (6)
gives

Gk(ω) � 2νL̂k(ω)(L̂k(ω) + λk − λk−1). (9)

It will be shown that this implies that if ω is near Ek and Lk(ω) < 0, then there is some α > 0
such that Gk(ω) � 2ναL̂k(ω).

First define a ‘scaled distance’ to Ek as

d(ω, Ek)2 = min
υ∈Ek

W(ω − υ)
H(ω)

= min
υ∈Ek

‖ω − υ‖2

‖∇ψ‖2
,

with ‖ · ‖ the L2 norm and ω = −�ψ . Writing ω = #kω +#⊥
k ω, we see that

H(ω) d(ω, Ek)2 = min
υ∈Ek

1
2

(‖#kω − υ‖2 + ‖#⊥
k ω‖2

) = 1
2‖ω −#kω‖2,
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and

‖ω −#kω‖2 = ‖ω‖2 + ‖#kω‖2 − 2〈(#kω +#⊥
k ω) , #kω〉L2 = ‖ω‖2 − ‖#kω‖2.

So altogether we get

d(ω, Ek)2 = ‖ω −#kω‖2

2H(ω)
= W(ω)−W(#kω)

H(ω)
.

Next we derive an upper and a lower bound on L̂k(ω) in terms of the distance d(ω, Ek).
Write

Lk(ω) = W(ω)− λkH(ω) = W(ω)− λkH(#kω) + λkH(#kω)− λkH(ω)
= W(ω)−W(#kω) + λk(H(#kω)−H(ω))
= d(ω, Ek)2H(ω)− λk(H(ω)−H(#kω)).

Clearly (H(ω)−H(#kω)) � 0, hence

Lk(ω) � d(ω, Ek)2H(ω) and L̂k(ω) � d(ω, Ek)2.
Furthermore, since

∫
DP

⊥
k ω(−�− λk)P⊥

k ψ dx � 0, and a Poincaré inequality gives that∫
D
(Pkω)(Pkψ) dx � 1

λ0

∫
D
(Pkω)

2 dx,

we have

Lk(ω) = 1

2

∫
D
ω(−�− λk)ψ dx

= 1

2

∫
D
Pkω(−�− λk)Pkψ dx +

1

2

∫
D
P⊥
k ω(−�− λk)P⊥

k ψ dx

� − 1

2

∫
D
Pkω(λk − (−�))Pkψ dx � −λk − λ0

2λ0

∫
D
(Pkω)

2 dx

� − λk − λ0

λ0
(W(ω)−W(#kω)) = −λk − λ0

λ0
d(ω, Ek)2H(ω).

Summarizing, the following lemma is proved.

Lemma 5. For all ω one has

−λk − λ0

λ0
d(ω, Ek)2 � L̂k(ω) � d(ω, Ek)2. (10)

Now we are ready to prove an estimate on Gk . Define β = λ0(λk − λk−1)/(λk − λ0).

Lemma 6. For all 0 < ε < 1, all ω, such that d(ω, Ek)2 < β(1 − ε) and L̂k(ω) < 0, satisfy

Gk(ω) � 2νε(λk − λk−1)L̂k(ω).

Proof. Let 0 < ε < 1. Let ω be such that d(ω, Ek)2 < β(1 − ε). From (10) it follows

L̂k(ω) � −λk − λ0

λ0
β(1 − ε) = −(λk − λk−1)(1 − ε).

If L̂k(ω) < 0, then we get by substitution of this equality into (9)

Gk(ω) � 2νL̂k(ω)(λk − λk−1)(1 − (1 − ε)) = 2νε(λk − λk−1)L̂k(ω). �

So now lemma 1 can be applied with L = L̂k to prove theorem 3.
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Proof of theorem 3. It will be shown that L̂k satisfies the conditions of lemma 1.

1. Let ω̂0 ∈ E0, ‖ω̂0‖ = 1. For all η ∈ R and ω̂ ∈ Ek , one has L̂k(ω̂ + ηω0‖ω̂‖) =
η2(λ0 − λk)λk/(λ0 + η2λk) < 0.

2. SinceW(ω) � λ0H(ω), it follows that L̂k(ω) � (λ0 − λk) for all ω.
3. Since Gk(ω) = (d/dt)L̂k(ω(t)) = 〈DL̂k(ω), f (ω)〉, lemma 4 shows that for all
ε1 < λ0(λk − λk−1)/(λk − λ0) there is some α such that all ω with L̂k(ω) < 0 and
d(ω, Ek) < ε1 satisfy 〈DL̂k(ω), f (ω)〉 � αL̂k(ω).

Hence the conditions of lemma 1 are satisfied and we can conclude that the manifolds Ek
are unstable, i.e. there is some ε > 0 such that for all δ > 0 and all ω̂ ∈ Ek there
is some ω0 with d(ω0, ω̂) < δ and some t0 > 0 such that the solution ω(t) with initial
condition ω(0) = ω0 satisfies d(ω(t0), Ek) > ε. By observing that 2H(ω) = ‖∇ψ‖2, we
get d(ω0, ω̂) = ‖ω0 − ω̂‖/‖∇ψ0‖ and d(ω, Ek) = ‖ω −#kω‖/‖∇ψ‖, which leads to the
formulation as presented in the theorem.

4. The sleeping top

In this section the influence of friction on the motion of a sleeping asymmetric top will
be investigated. A sleeping top is a rigid body with a fixed point in a gravitational field,
rotating about the axis through the centre of mass and the fixed point. An asymmetric top
is a top which is not axially symmetric (e.g. a Lagrange top is a rigid body which is axially
symmetric). A detailed geometric description of the stability of sleeping tops without friction
and bifurcations from sleeping tops can be found in Lewis et al [15].

First we derive a suitable phase space to describe the motion of the rigid body. Since
the rigid body has a fixed shape and a fixed point, the configuration space Q is the set of all
permissible orientations of the body. Choosing a reference orientation B, the configuration B(t)
at time t can be described as

B(t) = +(t)B,
where+(t) is a uniquely determined element of the rotation group SO(3). Let ˆ denote the map
from R3 to the space of skew-symmetric matrices such that for any ξ ∈ R3, the skew-symmetric
matrix ξ̂ is determined by

ξ̂x = ξ × x, for all x ∈ R3.

The tangent space TQ can be identified with SO(3)× R3 in the following way. Let (+, δ+)
be a pair in TQ, then there is a unique δΘ ∈ R3 such that

δ+ = + δ̂Θ.

This is the so-called left trivialization of TQ and the variables (+, δ̂Θ) are called body
variables. Similarly, the canonical phase space T ∗Q can be identified with SO(3) × R3.
If (+, δ#+) is a pair in T ∗Q, then there is a unique Π ∈ R3 such that

δ#+ = +Π̂.

Furthermore, the covector–vector pairing in body coordinates becomes

〈δ#+, δ+〉 = 1
2 tr((+ Π̂)T (+δ̂Θ)) = Π · δΘ.

As usual, the (reference/body) inertia tensor is defined by

I =
∫

B
ρ(X) (|X|2)13 − X ⊗ X) d3X,
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where 13 denotes the identity 3 × 3 matrix and ρ is the mass density function of the rigid
body. It is always possible to choose body coordinates, centred at the fixed point, such that the
inertia tensor I = diag(I1, I2, I3). The three-axis will be taken to be the line connecting the
fixed point and the centre of mass, and without loss of generality we can choose the one- and
two-axis such that I1 � I2. Furthermore, if

m =
∫

B
ρ(X) d3X

is the total mass and

M =
∫

B
ρ(X)X d3X,

then M/m is the centre of mass. We will denote the length of the vector M/m by l.
The kinetic energy of the rigid body is K(Π) = 1

2 Π · I−1Π and the potential energy is
U(+) = g+M · e3, where e3 is taken as the negative direction of the gravitational field and g
denotes the gravitational constant. So the Hamiltonian of the rigid body is

H(+,Π) = 1
2 Π · I−1Π + g+M · e3.

Writing U = (+,Π), the equations of motion of the rigid body with friction are

U̇ ≡ J∇H(U)− εP (U),
where

J =
(

03 13

−13 Π̂

)
and P(U) =

(
0
Π

)
.

Here 13 is the identity 3×3 matrix, 03 is the zero 3×3 matrix, and ε is the friction coefficient.

Note that we have identified I−1Π with +Î−1Π. For a derivation of these equations, see, for
example, Arnold [1].

Next we consider the symmetries of the system. The Hamiltonian is invariant under
rotations about the vector e3 acting on the left of +. (Compared to the free rigid body, the
gravity potential has broken the symmetry for the left rotations about the other axes.) Friction
acts on the body angular momenta Π only, so the system with dissipation is equivariant under
these left rotations too. Since the rigid body is asymmetric, the maximal symmetry group is
G = S1. (If the rigid body is a Lagrange top, then there is also the symmetry of a rotation of the
rigid body about its symmetry axis, hence in this case the symmetry group is G = S1 × S1.)
The infinitesimal generator for a left rotation about the e3-axis with angular velocity ξ is
Xξ : T ∗Q → T (T ∗Q).

Xξ(+,Π) = (+,Π; ξ ê3+, 0) ≡ (+,Π; ξ+T e3, 0).

So the momentum map (angular momentum) J : T ∗Q → g∗ ≡ R is given by

J(+,Π) = +T e3 · Π.
Ignoring friction (i.e. taking ε = 0), relative equilibria are the rigid body rotating with

constant angular velocity about the e3-axis. In a moving frame, these solutions can be described
as critical points of the Hamiltonian on level sets of the momentum map. The Euler–Lagrange
equation for these critical points is

DH(U)− ξDJ(U) = 0, (11a)

i.e.

( ̂gM − ξΠ)+Te3 = 0,
I−1Π − ξ+T e3 = 0.

(11b)
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Figure 2. An example of an upright sleeping top is on the left and of and hanging sleeping top is
on the right.

The Lagrange multiplier is the angular velocity ξ of the rigid body. One solution of these
equations is the asymmetric rigid body spinning about the axis passing through both the fixed
point and M (the body three-axis), where this axis also coincides with the spatial e3 axis. This
is the so-called sleeping top motion (see figure 2 for an illustration of this motion). If we
denote the rotation by an angle θ about the e3-axis by R3,θ , then a relative equilibrium can be
written as

Ū = (+̄, Π̄) = (R3,ξ t+θ0 , ξI3e3). (12)

The value of the momentum map at a relative equilibrium is J(Ū) = ξI3.
For the asymmetric top, the symmetry group consists of rotations about e3 and this group

acts freely. A stability analysis for the sleeping top without friction can be found in [15]. The
non-linear stability analysis via the energy–momentum method gives that

• the upright sleeping top is non-linearly stable if I3 > I1(�I2) and its angular velocity ξ
satisfies ξ 2 > mgl/(I3 − I1);

• the hanging sleeping top is always non-linearly stable if I3 > I1(�I2);
• the hanging sleeping top is non-linearly stable if I3 < I1 and its angular velocity ξ satisfies
ξ 2 < mgl/(I1 − I3).

These results are found by analysing the second variation D2Hξ(Ū), where Hξ(U) =
H(U)− ξJ(U) is the so-called augmented Hamiltonian or energy–momentum function and Ū
is a solution of (11). If D2Hξ(Ū) is positive definite, then the relative equilibrium associated
with Ū is non-linearly stable.

A linear stability analysis of the sleeping top can be found in [15] too. This analysis gives
neutral stability for some sleeping tops which have an indefinite second variation D2Hξ(Ū).
The parameter values of these sleeping tops are listed in table 1.

We will show that for I3 > I1 � I2, friction destabilizes the sleeping top relative equilibria
which are linearly stable with an indefinite augmented Hamiltonian. First we analyse the effect
of the friction on the behaviour of the momentum map J. Differentiation of the momentum
map with respect to time gives
d

dt
J(U) = DJ(U) · U̇ = DJ(U) · JDH(U)− εDJ(U) · P(U) = −ε+T e3 · Π = −εJ(U).

Hence for any solution U(t), the value of the momentum map is exponentially decaying:
J(U(t)) = J(U(0)) e−εt . The full family of sleeping top relative equilibria as described in (12)



14 G Derks and T Ratiu

Table 1. Parameter values for Ii and ξ for which a sleeping top with an indefinite augmented
Hamiltonian is linearly stable.

Upright Hanging

I1 � I2 � I3 ξ2 > τ+
s–f

mgl

I2 − I3 < ξ
2

I1 > I3 > I2
mgl

I3 − I2 > ξ
2 > τ+

s–f

I3 > I1 � I2
mgl

I3 − I2 > ξ
2 > τ+

s–f

with τ+
s–f = mgl(4I1I2 − I3(I1 + I2) + 2

√
I1I2(2I1 − I3)(2I2 − I3))

I 2
3 (I1 + I2 − I3)

is invariant under fraction, although an individual sleeping top relative equilibrium is clearly not
invariant. To be explicit, if one starts on the family of sleeping tops at the state (R3,θ0 , ξ0I3e3),
then the motion of the rigid body will be described by

(+(t),Π(t)) = (R3,f (t), ξ0e−εt I3e3),

with

f (t) = ξ0
1 − e−εt

ε
+ θ0.

To analyse the stability of this type of motion on the family of sleeping tops, we define
the Lyapunov function

L(U) = H(U)−H(Ū),
with Ū a sleeping top such that

J(Ū) = J(U).

Note that the Lyapunov function and the augmented Hamiltonian are closely related. Indeed,
L(U) = Hξ(U) − Hξ(Ū), where ξ = J(U)/I3. If U(t) is a solution of the equation with
friction, then

d

dt
L(U(t)) = DHξ(U) · U̇ −DHξ(Ū) · ˙̄U = DHξ(U) · [JDH(U)− εP (U)] − 0

= − εDHξ(U) · P(U) = −ε[I−1Π − ξ+T e3] · Π
= − εΠ · I−1Π + εξ+T e3 · Π = −εΠ · I−1Π + εξJ(U)

= − εΠ · I−1Π + εξ 2I3 = −εΠ · I−1Π + ε
(J(U))2

I3
.

Nearby a sleeping top we can write + = R3,θ + �+. There is some �Θ ∈ R3 and some
symmetric matrix �S, such that �+ = R3,θ (�̂Θ +�S). The rotation angle θ will be chosen
such that �Θ · e3 = 0. Using that + = R3,θ +�+ and R3,θ are orthogonal matrices, we get

13 = (R3,θ +�+)T(R3,θ +�+) = 13 + (�+)T+ ++T(�+) + (�+)T(�+)

= 13 + (−�̂Θ +�S) + (�̂Θ +�S) + (−�̂Θ +�S)(�̂Θ +�S)

= 13 + 2�S − (�̂Θ)2 − �̂Θ�S +�S�̂Θ + (�S)2.

Hence �S = 1
2 (�̂Θ)2 + O(|�Θ|4) and �+ = R3,θ (�̂Θ + 1

2 (�̂Θ)2) + O(|�Θ|4).



Unstable manifolds of relative equilibria in Hamiltonian systems 15

Similarly, near a sleeping top we can write Π = ξI3e3 + δΠ, for some δΠ ∈ R3 and
ξ = J(u)/I3. Using the definition J(u) = +T e3 · Π and δU = (�Θ, δΠ), this gives

ξ = 1

I3
(R3,θ (13 + �̂Θ +�S))T e3 · (ξI3e3 + δΠ)

= ξ +
1

I3
e3 · δΠ − ξ�̂Θe3 · e3 − 1

I3
�̂Θe3 · δΠ + ξ�Se3 · e3 + O(|δU|3)

= ξ +
1

I3
e3 · δΠ − 1

I3
�̂Θe3 · δΠ +

ξ

2
(�̂Θ)2e3 · e3 + O(|δU|3).

Hence

e3 · δΠ = �̂Θe3 · δΠ − ξ

2I3
(�̂Θ)2e3 · e3 + O(|δU|3) = O(|δU|2).

Altogether, near the family of sleeping top relative equilibria, the expression for
(d/dt)L(U(t)) can be written as

−εΠ · I−1Π + ε
(J(U))2

I3

= −ε(ξI3e3 + δΠ) · I−1(ξI3e3 + δΠ) +
ε

I3
((R3,θ +�+)T e3 · (ξI3e3 + δΠ))2

= −εξ 2I3 + εξ 2I3 − 2εξe3 · δΠ + 2εξe3 · δΠ + 2εξ 2I3(�+)
T e3 · e3

−εδΠ · I−1δΠ +
ε

I3
(e3 · δΠ)2 + εξ 2I3((�+)

T e3 · e3)
2

+2εξ(�+)T e3 · δΠ + 2εξ(e3 · δΠ)((�+)T e3 · e3) + O(|δU|3).
Since �+ = R3,θ (�̂Θ + 1

2 (�̂Θ)2) + O(|�Θ|4), it follows that

(�+)T e3 · e3 = −�̂Θe3 · e3 − 1

2
|�̂Θe3|2 + O(|�Θ|4) = 0 − 1

2
|�̂Θe3|2 + O(|�Θ|4).

Thus, near the family of sleeping top relative equilibria, for I3 > I1(� I2) we have

d

dt
L(U(t)) = −εξ 2I3|�̂Θe3|2 − εδΠ · I−1δΠ − 2εξ �̂Θe3 · δΠ + O(|δU|3)

= − ε

I3
|I3ξ�̂Θe3 + δΠ|2 − εδΠ ·

(
I−1 − 1

I3
13

)
δΠ + O(|δU|3)

< 0, (13)

if |δU| is small, but unequal to zero, since �Θ · e3 = 0 by the choice of θ in R3,θ and
e3 · δΠ = O(|δU|2). By applying lemma 2, we can conclude that friction destabilizes the
neutrally stable upright sleeping tops with angular velocity mgl/(I3 − I2) > ξ

2 > τ +
s–f.

Theorem 7. Consider an asymmetric top with its moments of inertia I3 > I1 � I2. The
upright sleeping top motion with angular velocity ξ < mgl/(I3 − I1) is unstable if friction
acts on the top.

Proof. Let M be the manifold of upright sleeping tops with angular velocity ξ < mgl/(I3 − I1).
It will be shown that L(U) satisfies the conditions of lemma 2.

1. By definition of L and M, L(U) = 0 if U ∈ M.
2. In [15] it is shown that L(U) is indefinite near the sleeping top relative equilibria if
ξ < mgl/(I3 − I1).

3. Since M is bounded, H(U) is bounded for U near M and we can conclude that L(u) is
bounded near M.
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4. From (13) it follows that 〈DL(U), f (U)〉 < 0 near the family of sleeping tops.

Since ξ < mgl/(I3 − I1), the manifold M is bounded, hence with lemma 2 it follows that M
is unstable if friction is added. �

Since (d/dt)L(U(t)) < 0 if U(t) is near the family of sleeping top relative equilibria,
also if ξ 2 > mgl/(I3 − I1), it is easy to show that friction stabilizes the motion of the
sleeping top if ξ 2 > mgl/(I3 − I1). However, we have seen that friction causes the angular
momentum to decay, hence the angular velocity ξ will decay. Therefore, at some moment,
ξ 2 < mgl/(I3 − I1) and friction will start to destabilize the motion, causing the usually
observed collapse of the motion of an upright sleeping top.

5. Instability caused by friction

In this section we will give a first step towards a general approach to the stability and instability
of relative equilibria in a symmetric classical mechanical system with friction. An overview of
the stability analysis of an equilibrium in such system can be found in chapter 6 of Merkin [17].
The Thomson–Tait–Chetaev theorems are at the basis of this analysis. In Bloch et al [3, 4],
a general approach to the stability of a relative equilibrium is given as long as the dissipation
respects the invariance of the extra constant of motion that gave rise to the relative equilibrium.
An important consequence of this assumption is that the relative equilibrium is a solution of
the dissipative system too. In this section a more general type of dissipation is considered,
which does not respect the invariance of the extra constant of motion that gave rise to the
relative equilibria. However, it will be assumed that the family of relative equilibria (as a
family, NOT as individual relative equilibria) is invariant. Then, with the use of lemma 2, a
dissipation-induced instability theorem can be proved.

Consider a simple mechanical system with symmetry (see Bloch et al [3], or Simo et al
[18], or references in these papers). The Hamiltonian of such a system is given by

H̃ (q̃, p̃) = 1
2‖p̃‖2

q̃ + V (q̃),

where q̃ is in some configuration manifold Q and p̃ ∈ T ∗
q̃
Q is the conjugate momentum. It

is assumed that the Hamiltonian H is invariant under the action of a symmetry group G. For
simplicity, we will assume that G is abelian. Let J : T ∗Q → g∗ be the momentum map.
Assume that there is a manifold of relative equilibria, which can be parametrized by the value
of the momentum map:

M̃ = {(q̃e(µ), p̃e(µ)) | µ ∈ g∗}.
As shown in [3,18], the linearization around the manifold M̃, using coordinates based on

the energy–momentum method, leads to a gyroscopic system. Friction acts on the momenta
only, so adding friction to such a system gives

ϕ̇ = −ω′
0(µ)−

1

2

[(
d

dt
µM−1(µ)p, p

)
+ (+′(µ)q, q)

]
,

µ̇ = −εf (µ),
q̇ = M−1(µ)p,
ṗ = −+(µ)q − SM−1(µ)p − εR(µ)M−1(µ)p.

(14)

Here µ is the value of the momentum map and (q, p) are the so-called internal variables, i.e.
they describe the non-group dynamics within the J−1(µ) level set. Finally ϕ represent the
coordinates of the group action, their dynamics does not influence the analysis of the stability
of the manifold M̃.
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Also, M , +, and R are symmetric and S is skew-symmetric. Furthermore, M and R are
strictly positive definite and + is assumed to be invertible. (This last assumption is probably
not essential, but there is not straightforward extension of the ideas in [3], since we need a
µ-dependent transformation to obtain the split of + in an invertible part and a part which is
zero.) For ε = 0, the system is Hamiltonian with Hamiltonian H and Poisson operator =
given by

H(µ, q, p) = ω0(µ) + 1
2 [(M−1(µ)p, p) + (+(µ)q, q)]

and

= =




0 I

−I 0
∅

∅
0 I

−I −S


 .

In the new coordinates, the invariant manifold of relative equilibria is written as

M = {(µ, ϕ, 0, 0) | µ ∈ g∗, ϕ ∈ G}.
The system (16) is similar to a system analysed by Chetaev [5], but with the extra feature

of cyclic coordinates. A functional similar to the one in Chetaev’s analysis can be used to
prove stability or instability. Indeed, define

L(µ, q, p) = H(µ, q, p)−H(µ, 0, 0) + εδ(+(µ)q, p),

for δ > 0 small. Then for δ small and (q, p) �= (0, 0),

2
d

dt
L(µ(t), q(t), p(t))

= −ε([2R − δ(2M+ + S2 − εR2 − ε2MDµ+ · f (µ)M)]M−1p, M−1p)

−εδ(1 − ε)‖+q‖2 − εδ ‖+q + SM−1p‖2 − ε2δ ‖+q + RM−1p‖2

−ε [ (DµM
−1(µ) · f (µ) p, p) + (Dµ+(µ) · f (µ) (q + εδp), (q + εδp)) ]

< 0,

if Dµ+(µ) · f (µ) and DµM−1(µ) · f (µ) are positive semi-definite.
By using lemma 2 we get the following theorem.

Theorem 8. Consider the system (16). The manifold of relative equilibria is given by
M = {(µ, ϕ, 0, 0)} and is invariant under the dynamics. Assume that the matrices
DµM

−1(µ) · f (µ) � 0, Dµ+(µ) · f (µ) � 0 and that there is some λ̄0 > 0 such that
for all t � 0 the eigenvalues of +(µ(t)) are larger than or equal to −λ̄0.

• The manifold M is asymptotically stable if + > 0.
• The manifold M is unstable if + has negative eigenvalues.

Proof. The Lyapunov function can be written as

2L(µ, q, p) = ([M−1 − ε2δ2+]p, p) + (+[q + εδp], [q + εδp]).

• The first observation in the theorem is an application of Lyapunov’s stability theorem.
Since+ is strictly positive definite, L(µ, q, p)measures the distance from (µ, q, p) to M.
The estimate on the time derivative of L shows that this distance is decreasing.

• To verify the second observation, we check the conditions of lemma 2 for the functional
L(µ, q, p) with δ small.

∗ Clearly L(M) = 0.
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∗ Since + is indefinite, there is some v such that (+v, v) < 0. Hence L(µ, v, 0) =
(+v, v) < 0 and L has negative directions near M.

∗ Define −λ0(µ) to be the smallest eigenvalue of+(µ). Since+ is indefinite, −λ0 < 0.
If d((µ, q, p),M) <

√
ε0, then |p|2 + |q|2 < ε0. Hence for δ > 0 small,

L(µ, q, p) = 1
2 [([M−1 − ε2δ2+]p, p) + (+[q + εδp], [q + εδp])]

� − λ0(µ)

2
‖q + εδp‖2 � − λ̄0

2
‖q + εδp‖2(1 + εδ)2ε0.

Hence L(µ, q, p) is bounded below if (µ, q, p) is close to M.
∗ We have seen that the conditions guarantee that (d/dt)L < 0.

So we can conclude that the manifold M is unstable. �
The conditions on the matrices DµM−1(µ) · f (µ) and Dµ+(µ) · f (µ) are related to the
curvature of the manifold M. In theory, it would be possible for the curvature to counteract
the destabilizing effects of the friction and the conditions on the matrices DµM−1(µ) · f (µ)
and Dµ+(µ) · f (µ) avoid this possibility.

6. Concluding remarks

In the examples in this paper, the dissipation is always such that the manifold of relative
equilibria is invariant. In [6–8], the influence of dissipation on stable manifolds of relative
equilibria is studied and in those papers there is no need for the manifolds to be invariant under
the dissipation. It would be nice if one could extend the instability results to non-invariant
manifolds too. The first issue is how to define instability of a non-invariant manifold. A natural
extension of the definition of instability of invariant manifolds is the following.

Definition 1. Consider the dynamical system u̇ = f (u, ε). Let M0 be an invariant manifold
of the system for ε = 0. We say that M0 is unstable for ε �= 0 if for all K > 0 there is some
ε > 0 such that for all δ > 0 there is some u0 in a δ neighbourhood of M such that the solution
of u̇ = f (u, ε) with u(0) = u0 leaves a Kε neighbourhood of M.

This definition is the negation of the definition of stability of non-invariant manifolds. There
are two differences with the definition of instability of invariant manifolds: the parameter ε
occurs both in the perturbation and the size of the ‘attracting neighbourhood’. This leads to
an extra factor K in the definition of the ‘attracting neighbourhood’.

The simplest example of an invariant manifold is a fixed point. A start in understanding
the instability of non-invariant manifolds is the understanding of the instability of a non-
invariant fixed point. If one has a fixed point of a non-degenerate Hamiltonian system and one
adds a perturbation, then the implicit function theorem can be used to find a new fixed point.
Furthermore, a modified Hamiltonian and a modified perturbation can be found, such that the
new fixed point is invariant under the new perturbation. Chetaev’s instability theorem will give
the instability of this new fixed point if the perturbation is dissipative and this will lead to the
instability of the original fixed point if the dissipation is sufficiently small.

However, it is not obvious how to extend this approach to manifolds of relative equilibria
if the dissipation destroys the conservation laws. If the conservation law is destroyed, it is not
possible to find families of relative equilibria in the dissipative system anymore. This makes it
hard to get an appropriate definition for a new invariant manifold. Any set of solution curves
will form an invariant manifold, but this does not seem to give a useful definition of the new
invariant manifold.

In [3] and MacKay [14], explicit expressions for the movement of the simple eigenvalues
of a Hamiltonian equilibrium under dissipation can be found. From these expressions, it can
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be seen that the negative energy modes, i.e. the modes with negative Krein signature, will give
rise to unstable eigenvalues. It is expected that a similar analysis can be done for the Lyapunov
exponents of the invariant manifolds.
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