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1. Introduction

In mechanics, the paradigm of Lagrangian reduction is the Euler—Poincaré
reduction. This process can be summarized as follows. We begin with a Lie group
G and a Lagrangian L: TG — R invariant under the natural action of G on its
tangent bundle. This naturally induces a function /: 7G/G >~ g — R called the
reduced Lagrangian. Moreover, the Euler-Lagrange equations for L for curves
on G are equivalent to a new kind of equations for / for the reduced curves in
the Lie algebra g. These equations are known as the Euler—Poincaré equations; see,
for example, [1] and [10] for an exposition of this topic.

The first attempt to extend these ideas to field theories has been done in [3]. In this
case, the analogue of the Euler—Poincaré reduction deals with a Lagrangian defined
on the first jet bundle of a principal bundle L: J' P — R, invariant under the natural
action induced by the structure group G on J'P. The reduced variational problem
now takes place on C :=(J'P)/G, the bundle of connections, and has a nice
geometrical interpretation in terms of connections. In [3], the authors studied
reduction and reconstruction only for matrix groups as well as some examples
in local coordinates. In this Letter we complete [3] with a proof for general Lie
groups and we add several facts that are important for a future general theory
of Lagrangian covariant reduction. Firstly, we show that the reduced problem is
a variational problem with constrains in the algebra of admissible variations, which
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turns out to be the gauge algebra. Secondly, we prove that the Euler—Poincaré
equations are nothing but the Noether conservation law in terms of the reduced
space C. We also prove Noether’s theorem for reduced symmetries. Finally, we write
the second variation formula for the reduced problem and we study the example of
harmonic mappings in detail.

Although the covariant Euler-Poincaré equations represent an unavoidable first
step to a complete theory of Lagrangian reduction on fiber bundles, we would never-
theless like to emphasize its role in the framework of the variational calculus with
constrains. The admissible variations of the reduced problem as well as the com-
patibility condition given in Theorem 2 are typical restrictions in the theory of con-
strains. The deduction of the Euler—Poincaré equations for the reduced
Lagrangian / from the free variational principle for L can be used backwards as
sometimes the free variational problem is easier to handle with than the reduced
problem.

In this Letter the summation convention of repeated indices will be used. The
space of smooth sections of a bundle £ — M will be denoted by C*(E).

2. Preliminaries

Let n: P — M denote an arbitrary right principal bundle with structure group G. The
group G acts on the tangent bundle TP by lifts, thatis, X - g := T, R, X, for X € TP,
where R, denotes the right action of the element g € G on P. The quotient space
(TP)/G is a smooth vector bundle over M. The bundle of connections
p:C=C(P)— M is by definition the sub-bundle of Hom(7TM, (TP)/G) defined
by those elements I'y: 7. M — ((TP)/G), that satisfy n, oIy =Idr s (see, for
example, [4, 5]). As is well known, C is an affine bundle modeled over the vector
bundle 7*M ® adP — M, where adP := (P x g)/G is the adjoint bundle, that is,
the associated bundle to P — M with respect to the adjoint representation of G
on g; the right G-action on P x g is given by g-(z,¢) = (z-g,Adg1¢) for ze P
and ¢ € g. Each global section o: M — C corresponds bijectively to a principal con-
nection I' on the bundle P.

Let J'P — P be the bundle of jets of local sections of 7. The group G acts naturally
on J!P by (jls) - g = jL(R; 0 s), for any jls € J'P and g € G. It is well known that the
quotient manifold (J'P)/G can be identified with the bundle C of connections of
P. The projection ¢: J'P — C is a principal G-fiber bundle isomorphic to the bundle
p*P (cf. [5]).

An automorphism of the bundle P is a diffeomorphism ®: P — P equivariant with
respect to the right action of G; i.e., such that ®(u - g) = ®(u) - g, for all u € P and
g € G. Automorphisms are necessarily fiber preserving maps, that is, every
automorphism ® naturally induces a diffeomorphism ¢: M — M satisfying
no® = ¢ on. Denote by AutP the infinite-dimensional Lie group of all auto-
morphisms of the principal bundle P and define the gauge group GauP to be the
Lie subgroup consisting of those automorphisms that cover the identity on M.
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The Lie algebra autP of the group AutP is the algebra of G-invariant vector fields on
P, that is, vector fields X € X(P) such that (Rg),X =X, for all g e G. Such
G-invariant vector fields are also called infinitesimal automorphisms. The subalgebra
gauP of vertical G-invariant vector fields is the Lie algebra of the gauge group GauP.
It is clear that autP can be seen as the space of sections of the bundle (7P)/G and
gauP as the space of sections of the bundle (VP)/G, where V' := ker T is the vertical
bundle of P. Since (VP)/G is bundle isomorphic to adP, one can identify
gauP = C*(adP).

Given a local trivialization U x G C P and an element B € g, we define the vector
field B as the infinitesimal generator of the flow ((x,g), 7)i— (x, exp(tB)g). If

{Bi,..., By}, m=dimG, is a basis of the Lie algebra g of G, the vector fields
{By, ..., B,} form a local basis of gauP as a C*°(U)-module. If in addition, U is
the coordinate domain of (x!,...,x"), n=dim M, the local expression of an

infinitesimal automorphism X eautP is given by X =f/3/0x + g"B, where
f7,&" € C*(U). Moreover, the chart () induces a coordinate system (¥, 47),
1<j<n 1<a<m onp ' (U)cC C by the condition

T.(3/0x) = 9/3x' + A}(T)B,, forall T.:T.M — ((TP)/G),.

where the right-hand side of the previous formula is understood as an element of
((TP)/G), since it is a G-invariant vector field along n~!(x), x € U.

Given an automorphism ® € AutP, its I-jet lift ®V:J'P — J'P is defined by
DV(jls) = jlo(@®oso@™). The automorphism @ also defines a unique
diffeomorphism ®¢: C — C such that for every section or: M — C of the bundle
of connections, we have ®¢ o o1 = o) 0 ¢, where I is the connection on P associ-
ated to or and ®(I') is the image of I by ® (cf. [9, p. 79]). The map ®1— D¢ (resp.
®1— ®Y) from AutP to Diff C (resp. Diff J'P) is a homomorphism of groups
which induces a Lie algebra homomorphism autP > Xi— X¢ € X(C) (resp.
autP s X 1i— X € X(J' P)).

Finally, we review some basic facts concerning the calculus of variations on fiber
bundles. A Lagrangian density is a fiber bundle morphism £:J'P — A" T*M (the
line bundle of n forms on M). We assume that M is oriented by a volume form
v, which shall be fixed throughout the paper. Then we can write £ = Lv, where
L:J'P — R is a function called the Lagrangian. Let U C M be an open set with
U compact. For a (local) section s:U C M — P of n the action is defined by
S(s) := [, L('s)v.

The section s is said to be critical if for every vertical variation s;, ¢ € R, with
so =5 and sl = Solyy, we have dS = d/ds|x=0$(s8) = 0. Vertical means that the
vector field d/de|,_qs; is m-vertical. Nonvertical variations can be also considered.
As is well known, s is critical if and only if it satisfies the Euler-Lagrange equations
EL(L)(s) = 0 (cf. [6]).

It is a basic fact that d/de|,_oS(s.) does not depend on the variation s, itself but
only on the vector field ds = d/de|,_ys. along s defined by it. For that reason, it
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is not necessary to check that s is critical with respect to all variations s,. It is enough
to check d/de|,_S(s;) = O for a suitable subclass of variations such that every ver-
tical vector field along s can be obtained as the derivative of a variation belonging
to this class.

3. Euler—Poincaré Reduction

Assume that the Lagrangian L: J'P — R is G-invariant, that is, L(jls - g) = L(jls),
forall g € G. Let [: (J'P)/G = C — R be the function defined by L on the quotient.
For a (local) section s: U ¢ M — P, define the section o: U — C of the bundle
of connections by a(x) = ¢(jls), x € U, where g is the projection of the principal
bundle J'P — (J'P)/G = C.

The symmetries given by the group G can be used to reduce the Euler—Lagrange
equations of L. These reduced equations are called the Euler-Poincaré equations
of the reduced Lagrangian / on C. Before giving the precise statement of this result
we introduce some necessary notation

We fix a connection H on the bundle P. The section g3; of C — M associated to H
allows us to identify C with the vector bundle it is modeled over, that is, we obtain a
diffeomorphism Y": C — T*M @ adP, Y"(I',) =T\ —on(x), T'ye C.. Given
another section ¢ : M — C, we define ¢ :=Y"0: M — T*M ® adP.

Forevery g € I'(C), we define 6//d0: T*M ® adP — R as the vertical derivative of
[ along o, i.e., (8l/00)(Y) = d/de|,—ol(o(x)+¢Y), for Y € TiM @ (adP),. Con-
sequently, 6//dc can be seen as a section of the dual bundle TM ® (adP)*, that
is, a vector field with values in the dual bundle (adP)*.

Since (adP)* is an associated bundle to P with respect to the coadjoint action
of G on g¢*, the connection H induces a covariant differential
VH: Co(N T*M @ (adP)*) — C(N\"" T*M ® (adP)*), for all r. For every
X € C°(TM ® (adP)"), there exist a unique section div’* X of the bundle (ad P)* such
that

£ =vedivix, (1)

where the covariant Lie derivative is defined by £%v = Viy(v) + ix Vv = Viy(v),
and v is the fixed volume form on M. This operator verifies the following property
(cf- [3D): div((X, n)) = (div/' X, ) + (X, V), for any n € C*(adP); (,) is the natural
pairing between dual spaces and div stands for the usual divergence operator on M.

Given ¢’ € C®(T*M ® adP), define the operator ad’y: TM ® (adP)* — (adP)*
as the pairing of 7*M and TM and the natural coadjoint operator in the (ad P)* part.

THEOREM 1 (Reduction). Let n: P — M be a principal G-fiber bundle over a
manifold M with a volume form v and let L: J'P — R be a G-invariant Lagrangian.
Let I:C — R be the mapping defined by L on the quotient. For an open set
UcM with U compact and a section s:U — P of =, define o:U — C by
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a(x) = q(jls), where q:J'P — C = (J'P)/G is the canonical projection. Then, for
every principal connection H on P, the following are equivalent:

(1) thevariational principle 6 fU L(/'}Cs)v = 0holds, for vertical variations ds along s with
compact support,

(2) the local section s: U — P satisfies the Euler—Lagrange equations for L,

(3) the variational principle 6 |, v l(@(x)v = 0 holds, using variations of the form

da =V — o, 1], )

where n: U — adP is any section of the adjoint bundle with compact support,
(4) the Euler— Poincaré equations hold:

EP(I)(o) := div" ol + ad’, oAy (3)
oo 7" do

Proof. The equivalence (1) < (2) is a standard result of the calculus of variations.
For (1) & (3), it is enough to prove that for a given infinitesimal vertical variation
ds = d/de|,_ys,, the expression of the reduced variation do = d/de|,_yq(j's,) is given
by (2). Given Js along s, let X € gauP} y be the unique gauge vector field such that
0s = Xlyar)- By means of the identification gauP >~ C*°(adP), X determines a section
n of the adjoint bundle. To prove that, ¢ = V5 —[¢7, ], the problem being local,
we work in a local trivialization V' x G of the principal G-bundle P where
V c Uis open in M. In this trivialization one can write s(x) = (x, g(x)) for a certain
smooth mapping g: V' — G. This local trivialization induces an identification of
the restriction C|;, of the affine bundle C with the trivial vector bundle
T*V ® g. The section ¢ = ¢(j's) has therefore the expression (x) = Toy Ry 1(TxQ).
We can identify adP|, with V xg by means of the identification
{(x,8), B}g\— (x, AdyB), where {p, B}; represents the class of (p,B) in
adP = (P x g)/G. Then n € C*®(adP) can be written as n(x) = (x, £(x)) for certain
mapping &: V' — gand the infinitesimal variation os is thus obtained as the derivative
of the variation s,(x) = (x, exp(e£(x))g(x)). Indeed for ¢ = 0 we have 5o = s and the
derivative of s, with respect to ¢ is the gauge vector field X along the section s which

coincides, by construction, to ds. Therefore

d d
00(x) = de Oas(x) = de OTexp(sé(x))g(x)Rg(x)*l exp(—e&(x)) T\ (exp(ed)g)
e= =
d

= Texp(ec(x)g(0) Ry exp(—azony Texpecx) Re(x) Tx(exp(e€))+

&=

T de

+ Tgtn Lexpeeoy Tx8)
_ d
" de

Texp(sf(x)) Rexp(fsg”(x)) Tr(exp(éé))_i_
0

&=l
d
+ de ,-—oAdexp(EXi(X)) Tg(x)Rg(x)*l T.g.
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Using the formula for the exponential map at e£(x) (see, for example [13]), it follows
that the first summand equals 7'¢.
The second summand equals [E(x), o(x)]. Thus we get

90(x) = Ti& = [0(x), E)] = Ti€ — [0 o Tes, E(x)] = [0(x) — " o Ts, E(¥)]
= V() — [07(x), €L,

where ! is the connection one-form of H. This is equivalent to do = V' — [¢7%, ].
For the equivalence (3) < (4), we have

5 f Ho () = / <‘5—1,50>v= f <ﬂ,v”n—[oﬂ,n]>v
M M 50’ M 50'
(ol 0 . ol
= [ (o )=o) o5
ol ol
_ L, el * 0
= /M<d1v 5G+adgn 56,11>u,

where we used of the properties of the divergence operator div’, and, for the last
step, we have [, div(él/éa, 11)0 = 0 by the Stokes Theorem. Hence, 7 being arbitrary,
5fM I(o(x))v = 0 if and only if (3) holds. O

THEOREM 2 (Reconstruction). Let n: P — M be a principal G-fiber bundle over a
simply connected manifold M with a volume form v and let L:J'P — R be a
G-invariant Lagrangian. A solution o of the Euler—Poincaré equations (3) comes
from a solution s of the original variational problem defined by L if and only if
is a flat connection with trivial holonomy. If ¢ satisfies this compatibility condition,
we can reconstruct a family of sections s%, g € G, as the integral leaves of o.

As the holonomy of any flat connection is locally trivial, we always have the local
equivalence

EP()(e) =0,

o =0 | o) 2o
Proof. If ¢ is the composition of j's with the projection ¢: J'P — C, for a certain
section s of =, then ¢ is a flat connection. This follows from the geometrical meaning
of g. Indeed, given jls, the element ¢(jls) € C is the G-distribution H C TP whose
fiber H, at pe P is the vector space complementary to the vertical space
V,P C T,P, for p e n~'(x) C P, such that Hyy = Tes(TM). Then it is clear that
o is flat and its integral leaves are the sections R, o 5, g € G. For the converse, every
flat connection with trivial holonomy defines a foliation of P such that every leaf

is a section s of 7. It is obvious that ¢ = ¢(j's) and from Theorem 1, s is a solution
of EL(L)(s) = 0 if and only if EP(/)(s) = 0. 0



EULER -POINCARE REDUCTION ON PRINCIPAL BUNDLES 173

PROPOSITION 3. Let s: U — P be a local section of © and let ds an arbitrary vari-
ation of s (not necessarily vertical). Let X € autP|y be the unique G-invariant vector
field on n='(U) such that Xlyuvy= 0s. Then we have 66 = (Xc)|gw)-

Proof. We prove that if X € autP, then the vector field X( is an infinitesimal
automorphism of the principal fiber bundle ¢:J'P — C which projects onto the
vector field X¢ € X(C). This is equivalent to prove that, for any ® € AutP, ®1
is an automorphism of ¢:J'P — C projecting onto the diffeomorphism ®¢. The
G-equivariance of ®V with respect to the action of G on J' P is easily obtained from
the definition of ®". As for the projection of ®1), given an element jls € J'P,
we can define the horizontal subspace Hyy := Tys(TM) C Ty P complementary
to the vertical subspace Vi, P. We have that ®V(jls) = Jpe(@oso ") defines
the horizontal subspace Ty (P oso (p“)(Tq,(x)M) = Ty P(Hyy). If we denote by
I, € C the projection of jls by ¢, then it is clear that (D“)(]')lcs) defines the element
®(Ty), that is, ¢ o g = g o @Y, thus finishing the proof. O

Remark 4. In Theorem 1, point 3, a particular expression of the reduced variation
do is shown. In a coordinate system (/, A7) on C as defined in Section 2, taking H
to be the trivial connection with A7(H) =0, for all «,j, we can t~hus deduce the
local expression of the vector field Xe. If X =g*B,, we have
Xc = (3g*/ox¥ +c}§},gﬁA}')8/8A;?‘, where ¢} are the structure constants of the
Lie algebra g. This is the classical expression of X¢ given in the literature (cf.

[5, 7D).

By Theorem 1 and Proposition 3 we can characterize the reduced problem in a
geometric way. Namely, the reduced problem is a zero order variational problem
on the space of connections defined by the Lagrangian /: C — R with constraints
on the space of possible variations. The allowed infinitesimal variations along a sec-
tion ¢ of C — M are the gauge vector fields X¢, X € gauP, on C.

The set of permitted variations form a Lie algebra with respect to the Lie bracket.
We now show that this Lie algebra can be enlarged up to autP, but always dealing
with sections ¢ satisfying the local compatibility condition Curv(s) = 0 stated in
Theorem 2. More precisely:

PROPOSITION 5. Let U C M be an open set with U compact, let s:U — P be a
(local) section of m, and let 6:U — C, a(x) = q(jls), be the induced section on
the bundle of connections (that is, ¢ is a connection with Curv(c) =0 by
Theorem 2). The following are equivalent:

(1) s is a critical section of the variational problem defined by L
(2) the variational principle & [, 1(a(x))v =0 holds, using variations of the form
00 = (XC)|0'(U)’ X € autP.

Proof. 1t is a well-known fact of the calculus of variations that a critical section s
for vertical variations is also critical for arbitrary variations and vice-versa. For
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(1) = (2), given an arbitrary variation os along s, let X be the vector field in autP
such that X[ ) = ds. From Proposition 3, d6 = (X¢)|sr), thus obtaining (2).
For the converse, if ¢ is critical for X € autP, then X is necessarily critical for
X € gauP. Thus, o satisfies the condition of Theorem 1, point 3, and hence s must
be also critical. O

4. Conservation Laws
4.1. THE EULER-POINCARE EQUATION AS A CONSERVATION LAW

A vector field X € X(P) is said to be an infinitesimal symmetry of a Lagrangian
density £ = Lv if £ya(Lv) =0, or equivalently, if £yn®, =0, where £ stands
for the Lie derivative and ®, is Poincaré—Cartan form defined by £ (see, for
example, [6]). Along a critical section s, Noether’s Theorem yields a conservation
law d((j's)*iy®,) = 0 on M, for every such infinitesimal symmetry X,

We now consider a G-invariant Lagrangian. Hence, the infinitesimal generator
B* € X(P) of the action defined by any B € g is a infinitesimal symmetry of L.
We can thus define a g*-valued (n — 1)-form J on J'P by J(B) = i(B*)u)@L, Beg
which is called the Noether current. 1t satisfies the following condition: for every
critical section s we have d((j's)*J) =0 on M.

PROPOSITION 6. The g-valued (n — 1)-form J is a tensorial form of the coadjoint
type on J'P (see [9, 11.5]). Therefore, it defines a (n — 1)-form J on C taking values
in the coadjoint bundle p*(adP)*.

Using the isomorphism between TM and /\"_1 T*M given by the volume form v, J
can be interpreted as a section J of the bundle p*(TM ® (adP)*). Then J coincides
with the vertical derivative 6l .= d'l of the reduced Lagrangian [. C — R.

Proof. First we remark that, given B € g, the infinitesimal generator B°® of the
action on the principal fiber bundle ¢: J'P — C coincides with the lift (B*)". On
the other hand, we have

.f(A*)u)J(B) = £(A*)(l)l.(B*)(l)®£ = i([A,B]*)(”@C + l.(B*)(])aE(A*)(l)®[, = J([A, B]),

or shortly, £4.J =ad} oJ, that is, J is of the coadjoint type.

We work now in a trivialization of P given by U x V, U openin M, V open in G,
whose coordinates shall be denoted by (x/,y%). Taking the local expression of
the Poincaré—Cartan form (see, for example, [6])

O, =

oL :

a7 (dy* — yf d¥') A v + Lo,

where v; = iy/5i0, we see that J is horizontal with respect to the projection
p1:J'P — M and, in particular, with respect to ¢: J!P — C. Then J is a tensorial
form of the coadjoint type and, consequently, it defines a (n — 1)-form J on C taking
values in the coadjoint bundle associated to the principal bundle ¢: J' P — C[9, 11.5].
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This coadjoint bundle is isomorphic to p*(ad P)*. Let now V be a neighborhood of the
identity e in G and denote by (3*), 1 < o < m, the normal coordinate system induced
by the exponential on G and the given basis {By, ..., B,,} of g. Then, along the section
Jjlso, with so(x) = (x, e), it is easy to check that J, seen as a g*-valued (n — 1)-form, has
the expression J = (dL/dy?)v; ® B*. The identification between 7'M and /\”71 M
given by the volume form v gives the expression of the associated g*-valued vector
field on J!P

j:— —.®Ba.

which naturally induces the section J of p*(TM ® (adP*). A standard computation
shows that this section has the expression (3//0A4%)(3/0x") ® B* which coincides with
the vertical derivative of /. (In the previous expression B* is the dual basis of sections
of (adP)* induced by the basis of sections B, of (adP).) O

Once we have projected the Noether current to C and identified it with 6/, we are
going to study the conservation law defined by it.

PROPOSITION 7. The Noether conservation law for the infinitesimal symmetries B,
B € g, along a critical section s is equivalent to the equation div’é(l/dc) = 0, where
o = q(j's), and div’ is the covariant divergence operator defined by the connection
o (see formula (1)). That is, we have the Euler—Poincaré equation of | for H = o.

Proof. For any critical section s, we have d((j's)*J) = 0 which is easily seen to be
equivalent to

d’(a*(J)) =0, 4)

where d° = V7 denotes the covariant differential defined by the connection ¢. With
the identification between TM and /\”71 T*M given by the volume form v and
the definition of div’, (see formula (1)), the expression (4) is equivalent to
div’(¢*(J)) =0. The proof is completed by recalling that J =5/ and that
a*(0l) = dl/do. ]

COROLLARY 8. The Euler—Lagrange equations of a G-invariant Lagrangian are
equivalent to the Noether conservation law of the G-symmetry plus the compatibility
condition Curve = 0.

4.2. THE SYMMETRIES OF THE REDUCED LAGRANGIAN /

We say that a vector field on C is an infinitesimal symmetry of the reduced
Lagrangian [ if

(1) it is of the form X¢ with X € autP, and
() £x.(lv) =0.
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Condition (1) says that the infinitesimal symmetry must belong to the algebra of
admissible variations of the variational problem, which is, by virtue of
Proposition 5, the algebra of all vector fields of the form X, with X € autP. Con-
dition 2) can be written as X¢[/] + I/div(X’) = 0, where X’ is the projection of X onto
M and Xc[l] = £x.01 = (dl, X¢) is the derivative of / in the direction Xc.

PROPOSITION 9. If ¢ is a solution of the Euler—Poincaré equations satisfying the
compatibility condition Curv(c) = 0 and X¢, X € autP, is an infinitesimal symmetry
of I, the following conservation holds

div<ﬂ, Y>u + £x(({oo)) =0,
oo

where X' is the projection of X onto M and Y € T'(adP) = gauP is the vertical part of
X with respect to the connection H° defined by o.

Proof. We decompose the vector field X € autPas X = Y + Z, where Y is vertical
and Z horizontal with respect to H°. We note that Y € gauP and Z € autP. Along
the section g, we have

0=0"Lx.(I)lg =*£y.(IV) + " £2.(Iv)

= <§—l, vy — [, Y]> + 0" £z.(lv)
o

- <div<%, Y> —(EPU)0), Y)+ 00 Ze() + (Lo a)div(X/))v,

where Y € gauP is seen as a section of ad P. Since ¢ is a critical section, it follows that
EP(D(o) = 0. Because Curv(s) =0, there locally exists a section s of the bundle
P — M such that ¢ = g oj's. It is clear 6 o Z¢(l) = j's o ZW(L). As Z is horizontal
with respect to H° and s is an integral leaf, we have Zos= Tso X’ and then
ZW o jls = T(j's)o X’ thus implying that j'so (ZW[L]) = X'[Loj's] = X'[l o a].
Then (¢ o (Zc[1]) + (I 0 6)div(X"))o = £x((/ o o)v) thus finishing the proof. O

5. The Second Variation

We now discuss the second variation formula (the Hessian) along a critical section
of the Euler—Poincaré equations. As the variational problem defined by / is not free,
the expression of the Hessian does not take its usual form (see, for example, [8]).
For a complete description of the Hessian, one has to deal only with admissible
variations and take into account their special structure. More precisely, given
two admissible vertical variations dg; and do, along a solution ¢ of (3), we define

d

Hess{,(aal,aaz)zi 5
=0 dS

d¢

/ l(o + tdéo| + sday)v.
s=0 JU

By Proposition 3, we know that do; = Xclyy) and 60y = Yc|qp) for certain
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X, Y € gauP. Then the previous formula easily yields

Hess! (Xc, Ye) = fU Ye(Xe(h = fU % Xelll, Yc>u, s)

where (,) stands for the natural pairing between TM ® (adP)* and its dual.

PROPOSITION 10. If ¢ is a solution of the Euler—Poincaré equations, then
Hessf,(Xc, Yo) = Hess’a(YC, Xo),

that is, Hessla is a symmetric bilinear operator defined on the space of admissible
vector fields along o.

Proof. As o is a critical section, we have that fU<5l/(3a, Zc)v:0, where
Z=[X,Y]. The proof 1is complete by taking into account that
[Xc, Y]l =[X, Y]c. O

The expression given in formula (5) is not very convenient. For example, the
Jacobi fields, that is, the variations dg belonging to the kernel (or null-space) of
the bilinear form Hessf,, are not characterized by the condition (5/00)X¢[/] =0
as the variations dg, = Y are not arbitrary but gauge fields on C. The true
characterization of the Jacobi fields is as follows.

PROPOSITION 11. The Hessian has the following expression
HCSSIJ(Xc, Yc) = f (gP(Xc[l]), Y)l),
U

where Y € gauP is seen as a section of adP with compact support in U.
Accordingly, the Jacobi operator [J:C*(adP) — C*®((adP)*) of the reduced
Lagrangian [ is defined by J(X¢) = EP(X[I]), X € gauP. Hence a gauge vector field
Xc on C belongs to the kernel of Hessf; if and only if J(X¢) = 0.
Proof. We have

Hess! (Xc, Y¢) = / <£XC[I],VY—[0H, Y]>v
U 50'

= f div’ iXc[l] +ad*, i)(C[l] LY )+
U oa 7\ oo
+ diV<i Xcll], Y>)v
oo
= [ €pcxeim. v
U
since Y has compact support. As the section Y € C*(adP) is arbitrary, the funda-

mental lemma of the calculus of variations gives the condition for the Jacobi vector
fields. H
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6. Example: Harmonic Mappings

Let (M, g) be a compact oriented Riemannian manifold, and let (G, /) be a Lie group
equipped with a right invariant Riemannian metric. We identify the mappings
¢: M — G with the global sections of the trivial principal bundle P =M x G
endowed with the trivial connection. For each ¢ € C*(M, G), we define the energy
E on C®(M,G) by E(¢) = fM L(j'¢)v, where L(j'¢p) :%(Tq’), Tqb)g,h, and (-, )¢5
is the induced metric on 7*M ® TG by g and h. The Euler-Lagrange equations
for this Lagrangian are given by TrV¢ = 0, where V is the induced Riemannian
covariant derivative on C*°(7*M ® TG) and Tr is the trace defined by g. The sol-
utions of this equation are called harmonic mappings. The reduced Lagrangian
I T*M ®g— R is /(o) :%(a, o), , Where h is thought of as a metric on g. The
Euler-Poincaré equations are

g.h

(d*a, o),l—i—ad:(a, 3p=0,

where d* = xdx is the codifferential. For the Jacobi operator, first we compute
0Xc[l]/dc with X¢ = do = dn + [1, o], and obtain

0/0cXcl[l] = (do, -)g!h+ad;(a, Ve
Hence the Jacobi operator reads

(d*d0, ), +ad;(d*a, -),+ad} (00, ), +adyad; (o, ).
Taking into account that ¢ is a critical section we have

(d*oa, -}, + ad} (oo, -), + ad:ad;(a, Iy — ad;adj(a, I
= (d*éav ')h + adz([n’ O-]v ')h + ad?nﬁ](O', ')h + adj<d7” '>h‘

As 1 has compact support, we finally obtain Hess,(Xc, ) = [,,(J(Xc). )0 with
(7(Xc). -),= (d*00., -}, +ady{ln, ol -),+adf, (0, -)s—adg,(n. ),

If the metric % is also left invariant, we have ad’(B, -),+ad}(4, -),= 0, for all
A,Be€g, and the Euler-Poincaré equation and the Jacobi operator can be
simplified to d*¢ =0 and J(X¢) = d*6c respectively. Both equations, for this
particular case of harmonic mappings into a Lie group with a bi-invariant
metric, were obtained for the first time in [11], not from reduction techniques
but by direct computation.

Assume now that G is Abelian. In this case, any right invariant metric is also left
invariant. The Euler-Poincaré equation and the compatibility condition read
d*e = 0 and do = 0 respectively, that is, ¢ is a g-valued harmonic 1-form on M.
The Jacobi operator is J(X¢) = d*dc = d*dy = An, where A is the Laplace-Beltrami
operator. Note that 7 does not depend on the section ¢. Then, the Jacobi fields are
the vector valued harmonic maps #: M — g. Moreover, the quadratic form of



EULER -POINCARE REDUCTION ON PRINCIPAL BUNDLES 179

the Hessian reads

Hessf,(Xc,Xc):/(J(Xd,X)v:/(An,n)hu:/<d11, dn)g’hUZO,
M M M

that is, HesslJ is semi-positive. Hence, every harmonic map is stable.

Similarly, for G arbitrary and / bi-invariant, the solution ¢ = 0, corresponding to

a constant map, also yields

Hess,(Xc, X¢) = / (T(X0), X = / {An,m)v = / (dn, dn), v =0,
M M M

thus obtaining the stability of this solution. We refer the reader, for example, to [12,
§ 5] for a classical proof of these results.
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