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Abstract. Let p:P !M be an arbitrary principal G-bundle. We give a full proof of the
Euler^Poincare¤ reduction for a G-invariant Lagrangian L: J1P ! R as well as the study of
the second variation formula, the conservations laws, and study some of their properties.
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1. Introduction

In mechanics, the paradigm of Lagrangian reduction is the Euler^Poincare¤
reduction. This process can be summarized as follows. We begin with a Lie group
G and a Lagrangian L:TG ! R invariant under the natural action of G on its
tangent bundle. This naturally induces a function l:TG=G ’ g! R called the
reduced Lagrangian. Moreover, the Euler^Lagrange equations for L for curves
on G are equivalent to a new kind of equations for l for the reduced curves in
the Lie algebra g. These equations are known as the Euler^Poincare¤ equations ; see,
for example, [1] and [10] for an exposition of this topic.

The ¢rst attempt to extend these ideas to ¢eld theories has been done in [3]. In this
case, the analogue of the Euler^Poincare¤ reduction deals with a Lagrangian de¢ned
on the ¢rst jet bundle of a principal bundle L: J1P ! R, invariant under the natural
action induced by the structure group G on J1P. The reduced variational problem
now takes place on C :¼ ðJ1PÞ=G, the bundle of connections, and has a nice
geometrical interpretation in terms of connections. In [3], the authors studied
reduction and reconstruction only for matrix groups as well as some examples
in local coordinates. In this Letter we complete [3] with a proof for general Lie
groups and we add several facts that are important for a future general theory
of Lagrangian covariant reduction. Firstly, we show that the reduced problem is
a variational problem with constrains in the algebra of admissible variations, which

Letters in Mathematical Physics 58: 167^180, 2001. 167
# 2001 Kluwer Academic Publishers. Printed in the Netherlands.



turns out to be the gauge algebra. Secondly, we prove that the Euler^Poincare¤
equations are nothing but the Noether conservation law in terms of the reduced
space C. We also prove Noether’s theorem for reduced symmetries. Finally, we write
the second variation formula for the reduced problem and we study the example of
harmonic mappings in detail.

Although the covariant Euler^Poincare¤ equations represent an unavoidable ¢rst
step to a complete theory of Lagrangian reduction on ¢ber bundles, we would never-
theless like to emphasize its role in the framework of the variational calculus with
constrains. The admissible variations of the reduced problem as well as the com-
patibility condition given in Theorem 2 are typical restrictions in the theory of con-
strains. The deduction of the Euler^Poincare¤ equations for the reduced
Lagrangian l from the free variational principle for L can be used backwards as
sometimes the free variational problem is easier to handle with than the reduced
problem.

In this Letter the summation convention of repeated indices will be used. The
space of smooth sections of a bundle E !M will be denoted by C1ðEÞ.

2. Preliminaries

Let p:P !M denote an arbitrary right principal bundle with structure groupG. The
group G acts on the tangent bundle TP by lifts, that is, X � g :¼ TeRgX , for X 2 TP,
where Rg denotes the right action of the element g 2 G on P. The quotient space
ðTPÞ=G is a smooth vector bundle over M. The bundle of connections
p:C ¼ CðPÞ !M is by de¢nition the sub-bundle of HomðTM; ðTPÞ=GÞ de¢ned
by those elements Gx:TxM ! ððTPÞ=GÞx that satisfy p
 � Gx ¼ IdTxM (see, for
example, [4, 5]). As is well known, C is an af¢ne bundle modeled over the vector
bundle T
M � adP !M, where adP :¼ ðP 
 gÞ=G is the adjoint bundle, that is,
the associated bundle to P !M with respect to the adjoint representation of G
on g; the right G-action on P 
 g is given by g � ðz; xÞ ¼ ðz � g;Adg�1xÞ for z 2 P
and x 2 g. Each global section sG:M ! C corresponds bijectively to a principal con-
nection G on the bundle P.

Let J1P ! P be the bundle of jets of local sections of p. The group G acts naturally
on J1P by ðj1xsÞ � g ¼ j1xðRg � sÞ, for any j1xs 2 J1P and g 2 G. It is well known that the
quotient manifold ðJ1PÞ=G can be identi¢ed with the bundle C of connections of
P. The projection q: J1P ! C is a principal G-¢ber bundle isomorphic to the bundle
p
P (cf. [5]).

An automorphism of the bundle P is a diffeomorphism F:P ! P equivariant with
respect to the right action of G; i.e., such that Fðu � gÞ ¼ FðuÞ � g, for all u 2 P and
g 2 G. Automorphisms are necessarily ¢ber preserving maps, that is, every
automorphism F naturally induces a diffeomorphism j:M !M satisfying
p � F ¼ j � p. Denote by AutP the in¢nite-dimensional Lie group of all auto-
morphisms of the principal bundle P and de¢ne the gauge group GauP to be the
Lie subgroup consisting of those automorphisms that cover the identity on M.
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The Lie algebra autP of the groupAutP is the algebra of G-invariant vector ¢elds on
P, that is, vector ¢elds X 2 XðPÞ such that ðRgÞ
X ¼ X , for all g 2 G. Such
G-invariant vector ¢elds are also called in¢nitesimal automorphisms. The subalgebra
gauP of verticalG-invariant vector ¢elds is the Lie algebra of the gauge groupGauP.
It is clear that autP can be seen as the space of sections of the bundle ðTPÞ=G and
gauP as the space of sections of the bundle ðVPÞ=G, where V :¼ kerTp is the vertical
bundle of P. Since ðVPÞ=G is bundle isomorphic to adP, one can identify
gauP ffi C1ðadPÞ:

Given a local trivialization U 
 G � P and an element B 2 g, we de¢ne the vector
¢eld ~BB as the in¢nitesimal generator of the £ow ððx; gÞ; tÞ 7! ðx; expðtBÞgÞ. If
fB1; . . . ;Bmg, m ¼ dimG, is a basis of the Lie algebra g of G, the vector ¢elds
f ~BB1; . . . ; ~BBmg form a local basis of gauP as a C1ðUÞ-module. If in addition, U is
the coordinate domain of ðx1; . . . ; xnÞ, n ¼ dimM, the local expression of an
in¢nitesimal automorphism X 2autP is given by X ¼ f j@=@xj þ ga ~BBa where
f j; ga 2 C1ðUÞ. Moreover, the chart ðxjÞ induces a coordinate system ðxj;Aa

j Þ,
1W jW n, 1W aWm, on p�1ðUÞ � C by the condition

Gx @=@xj� �
¼ @=@xj þ Aa

j ðGxÞ ~BBa; for all Gx:TxM ! ððTPÞ=GÞx;

where the right-hand side of the previous formula is understood as an element of
ððTPÞ=GÞx since it is a G-invariant vector ¢eld along p�1ðxÞ, x 2 U .

Given an automorphism F 2 AutP, its 1-jet lift Fð1Þ: J1P ! J1P is de¢ned by
Fð1Þðj1xsÞ ¼ j1jðxÞðF � s � j�1Þ. The automorphism F also de¢nes a unique
diffeomorphism FC :C ! C such that for every section sG:M ! C of the bundle
of connections, we have FC � sG ¼ sFðGÞ � j, where G is the connection on P associ-
ated to sG and FðGÞ is the image of G by F (cf. [9, p. 79]). The map F 7!FC (resp.
F 7!Fð1Þ) from AutP to Diff C (resp. Diff J1P) is a homomorphism of groups
which induces a Lie algebra homomorphism autP 3 X 7!XC 2 XðCÞ (resp.
autP 3 X 7!X ð1Þ 2 XðJ1PÞ).

Finally, we review some basic facts concerning the calculus of variations on ¢ber
bundles. A Lagrangian density is a ¢ber bundle morphism L: J1P !

Vn T
M (the
line bundle of n forms on M). We assume that M is oriented by a volume form
u, which shall be ¢xed throughout the paper. Then we can write L ¼ Lu, where
L: J1P ! R is a function called the Lagrangian. Let U �M be an open set with
U compact. For a (local) section s:U �M ! P of p the action is de¢ned by
SðsÞ :¼

R
U Lðj1sÞu.

The section s is said to be critical if for every vertical variation se, e 2 R, with
s0 ¼ s and sj@U ¼ s0j@U , we have dS ¼ d=de

��
e¼0SðseÞ ¼ 0. Vertical means that the

vector ¢eld d=deje¼0se is p-vertical. Nonvertical variations can be also considered.
As is well known, s is critical if and only if it satis¢es the Euler^Lagrange equations
ELðLÞðsÞ ¼ 0 (cf. [6]).

It is a basic fact that d=deje¼0SðseÞ does not depend on the variation se itself but
only on the vector ¢eld ds ¼ d=deje¼0se along s de¢ned by it. For that reason, it
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is not necessary to check that s is critical with respect to all variations se. It is enough
to check d=deje¼0SðseÞ ¼ 0 for a suitable subclass of variations such that every ver-
tical vector ¢eld along s can be obtained as the derivative of a variation belonging
to this class.

3. Euler^Poincare¤ Reduction

Assume that the Lagrangian L: J1P ! R is G-invariant, that is, Lðj1xs � gÞ ¼ Lðj1xsÞ,
for all g 2 G. Let l: ðJ1PÞ=G ¼ C ! R be the function de¢ned by L on the quotient.
For a (local) section s:U � M ! P, de¢ne the section s:U ! C of the bundle
of connections by sðxÞ ¼ qðj1xsÞ, x 2 U , where q is the projection of the principal
bundle J1P ! ðJ1PÞ=G ¼ C.

The symmetries given by the group G can be used to reduce the Euler^Lagrange
equations of L. These reduced equations are called the Euler^Poincare¤ equations
of the reduced Lagrangian l on C. Before giving the precise statement of this result
we introduce some necessary notation

We ¢x a connectionH on the bundle P. The section sH of C !M associated toH
allows us to identify C with the vector bundle it is modeled over, that is, we obtain a
diffeomorphism UH:C ! T
M � adP, UHðGxÞ ¼ Gx � sHðxÞ, Gx 2 Cx. Given
another section s : M ! C, we de¢ne sH :¼ UH � s:M ! T
M � adP.

For every s 2 GðCÞ, we de¢ne dl=ds:T
M � adP ! R as the vertical derivative of
l along s, i.e., ðdl=dsÞðY Þ :¼ d=deje¼0lðsðxÞ þ eY Þ, for Y 2 T


xM � ðadPÞx. Con-
sequently, dl=ds can be seen as a section of the dual bundle TM � ðadPÞ
, that
is, a vector ¢eld with values in the dual bundle ðadPÞ
.

Since ðadPÞ
 is an associated bundle to P with respect to the coadjoint action
of G on g
, the connection H induces a covariant differential
rH:C1ð

Vr T
M � ðadPÞ
Þ ! C1ð
Vrþ1 T
M � ðadPÞ
Þ, for all r. For every

X 2 C1ðTM � ðadPÞ
Þ, there exist a unique section divHX of the bundle ðadPÞ
 such
that

$H
X u ¼ u� divHX ; ð1Þ

where the covariant Lie derivative is de¢ned by $H
X u ¼ rHiX ðuÞ þ iXrHu ¼ rHiX ðuÞ,

and u is the ¢xed volume form on M. This operator veri¢es the following property
(cf. [3]): divð X ; Z

� �
Þ ¼ divHX ; Z

� �
þ X ;rHZ
� �

, for any Z 2 C1ðadPÞ; ;h i is the natural
pairing between dual spaces and div stands for the usual divergence operator on M.

Given sH 2 C1ðT
M � adPÞ, de¢ne the operator ad
sH :TM � ðadPÞ
 ! ðadPÞ


as the pairing of T
M and TM and the natural coadjoint operator in the ðadPÞ
 part.

THEOREM 1 (Reduction). Let p:P !M be a principal G-¢ber bundle over a
manifold M with a volume form u and let L: J1P ! R be a G-invariant Lagrangian.
Let l:C ! R be the mapping de¢ned by L on the quotient. For an open set
U �M with �UU compact and a section s: �UU ! P of p, de¢ne s:U ! C by
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sðxÞ ¼ qðj1xsÞ, where q: J1P ! C ¼ ðJ1PÞ=G is the canonical projection. Then, for
every principal connection H on P, the following are equivalent:

(1) the variational principle d
R
U Lðj1xsÞu ¼ 0holds, for vertical variations ds along swith

compact support,
(2) the local section s:U ! P satis¢es the Euler^Lagrange equations for L,
(3) the variational principle d

R
U lðsðxÞÞu ¼ 0 holds, using variations of the form

ds ¼ rHZ� ½sH; Z�; ð2Þ

where Z:U ! adP is any section of the adjoint bundle with compact support,
(4) the Euler^Poincare¤ equations hold:

EPðlÞðsÞ :¼ divH
dl
ds
þ ad
sH

dl
ds
¼ 0: ð3Þ

Proof. The equivalence ð1Þ , ð2Þ is a standard result of the calculus of variations.
For ð1Þ , ð3Þ, it is enough to prove that for a given in¢nitesimal vertical variation
ds ¼ d=deje¼0se, the expression of the reduced variation ds ¼ d=deje¼0qðj1seÞ is given
by (2). Given ds along s, let X 2 gauP

��
U be the unique gauge vector ¢eld such that

ds ¼ X jsðMÞ. By means of the identi¢cation gauP ’ C1ðadPÞ, X determines a section
Z of the adjoint bundle. To prove that, ds ¼ rHZ� ½sH; Z�, the problem being local,
we work in a local trivialization V 
 G of the principal G-bundle P where
V � U is open in M. In this trivialization one can write sðxÞ ¼ ðx; gðxÞÞ for a certain
smooth mapping g:V ! G. This local trivialization induces an identi¢cation of
the restriction CjV of the af¢ne bundle C with the trivial vector bundle
T
V � g. The section s ¼ qðj1sÞ has therefore the expression sðxÞ ¼ TgðxÞRgðxÞ�1ðTxgÞ.

We can identify adPjV with V 
 g by means of the identi¢cation
fðx; gÞ;BgG 7! ðx;AdgBÞ, where fp;BgG represents the class of ðp;BÞ in
adP ¼ ðP 
 gÞ=G. Then Z 2 C1ðadPÞ can be written as ZðxÞ ¼ ðx; xðxÞÞ for certain
mapping x:V ! g and the in¢nitesimal variation ds is thus obtained as the derivative
of the variation seðxÞ ¼ ðx; expðexðxÞÞgðxÞÞ. Indeed for e ¼ 0 we have s0 ¼ s and the
derivative of se with respect to e is the gauge vector ¢eld X along the section s which
coincides, by construction, to ds. Therefore

dsðxÞ ¼
d

de

����
e¼0

seðxÞ ¼
d

de

����
e¼0

TexpðexðxÞÞgðxÞRgðxÞ�1 expð�exðxÞÞTxðexpðexÞgÞ

¼
d

de

����
e¼0

TexpðexðxÞÞgðxÞRgðxÞ�1 expð�exðxÞÞðTexpðexðxÞÞRgðxÞTxðexpðexÞÞþ

þ TgðxÞLexpðexðxÞÞTxgÞ

¼
d

de

����
e¼0

TexpðexðxÞÞRexpð�exðxÞÞTxðexpðexÞÞþ

þ
d

de

����
e¼0

AdexpðexiðxÞÞTgðxÞRgðxÞ�1Txg:
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Using the formula for the exponential map at exðxÞ (see, for example [13]), it follows
that the ¢rst summand equals Txx.

The second summand equals ½xðxÞ; sðxÞ�. Thus we get

dsðxÞ ¼ Txx� ½sðxÞ; xðxÞ� ¼ Txx� ½oH � Txs; xðxÞ� � ½sðxÞ � oH � Txs; xðxÞ�

¼ rHxðxÞ � ½sHðxÞ; xðxÞ�;

where oH is the connection one-form ofH. This is equivalent to ds ¼ rHZ� ½sH; Z�.
For the equivalence ð3Þ , ð4Þ, we have

d
Z
M

lðsðxÞÞu ¼
Z
M

dl
ds

; ds
	 


u ¼
Z
M

dl
ds

;rHZ� ½sH; Z�
	 


u

¼

Z
M

div
dl
ds

; Z
	 


� divH
dl
ds

; Z
	 


� ad
sH
dl
ds

; Z
	 
� �

u

¼ �

Z
M

divH
dl
ds
þ ad
sH

dl
ds

; Z
	 


u;

where we used of the properties of the divergence operator divH, and, for the last
step, we have

R
M div dl=ds; Z

� �
u ¼ 0 by the Stokes Theorem. Hence, Z being arbitrary,

d
R
M lðsðxÞÞu ¼ 0 if and only if (3) holds. &

THEOREM 2 (Reconstruction). Let p:P !M be a principal G-¢ber bundle over a
simply connected manifold M with a volume form u and let L: J1P ! R be a
G-invariant Lagrangian. A solution s of the Euler^Poincare¤ equations (3) comes
from a solution s of the original variational problem de¢ned by L if and only if s
is a £at connection with trivial holonomy. If s satis¢es this compatibility condition,
we can reconstruct a family of sections sg, g 2 G, as the integral leaves of s.

As the holonomy of any £at connection is locally trivial, we always have the local
equivalence

ELðLÞðsÞ ¼ 0,
EPðlÞðsÞ ¼ 0;
CurvðsÞ ¼ 0:




Proof. If s is the composition of j1s with the projection q: J1P ! C, for a certain
section s of p, then s is a £at connection. This follows from the geometrical meaning
of q. Indeed, given j1xs, the element qðj1xsÞ 2 C is the G-distribution H � TP whose
¢ber Hp at p 2 P is the vector space complementary to the vertical space
VpP � TpP; for p 2 p�1ðxÞ � P, such that HsðxÞ ¼ TxsðTxMÞ. Then it is clear that
s is £at and its integral leaves are the sections Rg � s, g 2 G. For the converse, every
£at connection with trivial holonomy de¢nes a foliation of P such that every leaf
is a section s of p. It is obvious that s ¼ qðj1sÞ and from Theorem 1, s is a solution
of ELðLÞðsÞ ¼ 0 if and only if EPðlÞðsÞ ¼ 0. &
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PROPOSITION 3. Let s:U ! P be a local section of p and let ds an arbitrary vari-
ation of s (not necessarily vertical). Let X 2 autPjU be the unique G-invariant vector
¢eld on p�1ðUÞ such that X jsðUÞ¼ ds. Then we have ds ¼ ðXCÞjsðUÞ.

Proof. We prove that if X 2 autP, then the vector ¢eld X ð1Þ is an in¢nitesimal
automorphism of the principal ¢ber bundle q: J1P ! C which projects onto the
vector ¢eld XC 2 XðCÞ. This is equivalent to prove that, for any F 2 AutP, Fð1Þ

is an automorphism of q: J1P ! C projecting onto the diffeomorphism FC . The
G-equivariance of Fð1Þ with respect to the action of G on J1P is easily obtained from
the de¢nition of Fð1Þ. As for the projection of Fð1Þ, given an element j1xs 2 J1P,
we can de¢ne the horizontal subspace HsðxÞ :¼ TxsðTxMÞ � TsðxÞP complementary
to the vertical subspace VsðxÞP. We have that Fð1Þðj1xsÞ ¼ j1jðxÞðF � s � j�1Þ de¢nes
the horizontal subspace TjðxÞðF � s � j�1ÞðTjðxÞMÞ ¼ TsðxÞFðHsðxÞÞ. If we denote by
Gx 2 C the projection of j1xs by q, then it is clear that Fð1Þðj1xsÞ de¢nes the element
FCðGxÞ, that is, FC � q ¼ q � Fð1Þ, thus ¢nishing the proof. &

Remark 4. In Theorem 1, point 3, a particular expression of the reduced variation
ds is shown. In a coordinate system ðxj;Aa

j Þ on C as de¢ned in Section 2, taking H
to be the trivial connection with Aa

j ðHÞ ¼ 0, for all a; j, we can thus deduce the
local expression of the vector ¢eld XC . If X ¼ ga ~BBa, we have
XC ¼ ð@ga=@xj þ cabgg

bAg
j Þ@=@A

a
j , where cabg are the structure constants of the

Lie algebra g. This is the classical expression of XC given in the literature (cf.
[5, 7]).

By Theorem 1 and Proposition 3 we can characterize the reduced problem in a
geometric way. Namely, the reduced problem is a zero order variational problem
on the space of connections de¢ned by the Lagrangian l:C ! R with constraints
on the space of possible variations. The allowed in¢nitesimal variations along a sec-
tion s of C !M are the gauge vector ¢elds XC , X 2 gauP, on C.

The set of permitted variations form a Lie algebra with respect to the Lie bracket.
We now show that this Lie algebra can be enlarged up to autP, but always dealing
with sections s satisfying the local compatibility condition CurvðsÞ ¼ 0 stated in
Theorem 2. More precisely:

PROPOSITION 5. Let U �M be an open set with �UU compact, let s: �UU ! P be a
(local) section of p, and let s:U ! C, sðxÞ ¼ qðj1xsÞ, be the induced section on
the bundle of connections (that is, s is a connection with CurvðsÞ ¼ 0 by
Theorem 2). The following are equivalent:

(1) s is a critical section of the variational problem de¢ned by L
(2) the variational principle d

R
U lðsðxÞÞu ¼ 0 holds, using variations of the form

ds ¼ ðXCÞjsðUÞ, X 2 autP.

Proof. It is a well-known fact of the calculus of variations that a critical section s
for vertical variations is also critical for arbitrary variations and vice-versa. For
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ð1Þ ) ð2Þ, given an arbitrary variation ds along s, let X be the vector ¢eld in autP
such that X jsðUÞ ¼ ds. From Proposition 3, ds ¼ ðXCÞjsðUÞ, thus obtaining ð2Þ.
For the converse, if s is critical for X 2 autP, then X is necessarily critical for
X 2 gauP. Thus, s satis¢es the condition of Theorem 1, point 3, and hence s must
be also critical. &

4. Conservation Laws

4.1. THE EULER^POINCARE¤ EQUATION AS A CONSERVATION LAW

A vector ¢eld X 2 XðPÞ is said to be an in¢nitesimal symmetry of a Lagrangian
density L ¼ Lu if $X ð1Þ ðLuÞ ¼ 0, or equivalently, if $X ð1ÞYL ¼ 0, where $ stands
for the Lie derivative and YL is Poincare¤ ^Cartan form de¢ned by L (see, for
example, [6]). Along a critical section s, Noether’s Theorem yields a conservation
law dððj1sÞ
iX ð1ÞYLÞ ¼ 0 on M, for every such in¢nitesimal symmetry X ð1Þ.

We now consider a G-invariant Lagrangian. Hence, the in¢nitesimal generator
B
 2 XðPÞ of the action de¢ned by any B 2 g is a in¢nitesimal symmetry of L.
We can thus de¢ne a g
-valued ðn� 1Þ-form J on J1P by JðBÞ ¼ i B
ð Þ

ð1ÞYL, B 2 g

which is called the Noether current. It satis¢es the following condition: for every
critical section s we have dððj1sÞ
JÞ ¼ 0 on M.

PROPOSITION 6. The g-valued ðn� 1Þ-form J is a tensorial form of the coadjoint
type on J1P (see [9, II.5]). Therefore, it de¢nes a ðn� 1Þ-form J on C taking values
in the coadjoint bundle p
ðadPÞ
.

Using the isomorphism between TM and
Vn�1 T
M given by the volume form u, J

can be interpreted as a section �JJ of the bundle p
ðTM � ðadPÞ
Þ. Then �JJ coincides
with the vertical derivative dl :¼ dvl of the reduced Lagrangian l:C ! R.

Proof. First we remark that, given B 2 g, the in¢nitesimal generator B# of the
action on the principal ¢ber bundle q: J1P ! C coincides with the lift ðB
Þð1Þ. On
the other hand, we have

$
ðA
Þð1ÞJðBÞ ¼ $

ðA
Þ
ð1Þ i
ðB
Þð1ÞYL ¼ i

ð½A;B�
Þð1ÞYL þ i
ðB
Þð1Þ$ðA
Þ

ð1ÞYL ¼ Jð½A;B�Þ;

or shortly, $A#J ¼ ad
A � J, that is, J is of the coadjoint type.
We work now in a trivialization of P given by U 
 V , U open in M, V open in G,

whose coordinates shall be denoted by ðxi; yaÞ. Taking the local expression of
the Poincare¤ ^Cartan form (see, for example, [6])

YL ¼
@L
@yai

ðdya � yaj dx
jÞ ^ ui þ Lu;

where ui ¼ i@=@xiu, we see that J is horizontal with respect to the projection
p1: J1P !M and, in particular, with respect to q: J1P ! C. Then J is a tensorial
form of the coadjoint type and, consequently, it de¢nes a ðn� 1Þ-form J on C taking
values in the coadjoint bundle associated to the principal bundle q: J1P ! C [9, II.5].
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This coadjoint bundle is isomorphic to p
ðadPÞ
. Let nowV be a neighborhood of the
identity e in G and denote by ðyaÞ, 1W aWm, the normal coordinate system induced
by the exponential on G and the given basis fB1; . . . ;Bmg of g. Then, along the section
j1s0, with s0ðxÞ ¼ ðx; eÞ, it is easy to check that J, seen as a g
-valued ðn� 1Þ-form, has
the expression J ¼ ð@L=@yai Þvi � Ba. The identi¢cation between TM and

Vn�1 T
M
given by the volume form u gives the expression of the associated g
-valued vector
¢eld on J1P

�JJ ¼
@L
@yai

@

@xi � Ba:

which naturally induces the section �JJ of p
ðTM � ðadP
Þ. A standard computation
shows that this section has the expression ð@l=@Aa

i Þð@=@x
iÞ � ~BBa which coincides with

the vertical derivative of l. (In the previous expression ~BBa is the dual basis of sections
of ðadPÞ
 induced by the basis of sections ~BBa of ðadPÞ.) &

Once we have projected the Noether current to C and identi¢ed it with dl, we are
going to study the conservation law de¢ned by it.

PROPOSITION 7. TheNoether conservation law for the in¢nitesimal symmetries B
,
B 2 g, along a critical section s is equivalent to the equation divsdðl=dsÞ ¼ 0, where
s ¼ qðj1sÞ, and divs is the covariant divergence operator de¢ned by the connection
s (see formula (1)). That is, we have the Euler^Poincare¤ equation of l for H ¼ s.

Proof. For any critical section s, we have dððj1sÞ
JÞ ¼ 0 which is easily seen to be
equivalent to

ds s
ðJÞð Þ ¼ 0; ð4Þ

where ds ¼ rs denotes the covariant differential de¢ned by the connection s. With
the identi¢cation between TM and

Vn�1 T
M given by the volume form u and
the de¢nition of divs, (see formula (1)), the expression (4) is equivalent to
divsðs
ð �JJÞÞ ¼ 0. The proof is completed by recalling that �JJ ¼ dl and that
s
ðdlÞ ¼ dl=ds. &

COROLLARY 8. The Euler^Lagrange equations of a G-invariant Lagrangian are
equivalent to the Noether conservation law of the G-symmetry plus the compatibility
condition Curvs ¼ 0.

4.2. THE SYMMETRIES OF THE REDUCED LAGRANGIAN l

We say that a vector ¢eld on C is an in¢nitesimal symmetry of the reduced
Lagrangian l if

(1) it is of the form XC with X 2 autP, and
(2) $XC ðluÞ ¼ 0.
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Condition (1) says that the in¢nitesimal symmetry must belong to the algebra of
admissible variations of the variational problem, which is, by virtue of
Proposition 5, the algebra of all vector ¢elds of the form XC , with X 2 autP. Con-
dition 2) can be written as XC ½l� þ ldivðX 0Þ ¼ 0, where X 0 is the projection of X onto
M and XC ½l� ¼ $XC l ¼ hdl;XCi is the derivative of l in the direction XC .

PROPOSITION 9. If s is a solution of the Euler^Poincare¤ equations satisfying the
compatibility condition CurvðsÞ ¼ 0 and XC, X 2 autP, is an in¢nitesimal symmetry
of l, the following conservation holds

div
dl
ds

;Y
	 


uþ$X 0 ððl � sÞuÞ ¼ 0;

where X 0 is the projection of X onto M and Y 2 GðadPÞ ¼ gauP is the vertical part of
X with respect to the connection Hs de¢ned by s.

Proof.We decompose the vector ¢eld X 2 autP as X ¼ Y þ Z, where Y is vertical
and Z horizontal with respect to Hs. We note that Y 2 gauP and Z 2 autP. Along
the section s, we have

0 ¼ s
$XC ðluÞjs ¼ s
$YC ðluÞ þ s
$ZC ðluÞ

¼
dl
ds

;rHY � ½sH;Y �
	 


þ s
$ZC ðluÞ

¼ div
dl
ds

;Y
	 


� EPðlÞðsÞ;Y
� �

þ s � ZCðlÞ þ ðl � sÞdivðX 0Þ

� �
u;

whereY 2 gauP is seen as a section of adP. Since s is a critical section, it follows that
EPðlÞðsÞ ¼ 0. Because CurvðsÞ ¼ 0, there locally exists a section s of the bundle
P !M such that s ¼ q � j1s. It is clear s � ZCðlÞ ¼ j1s � Zð1ÞðLÞ. As Z is horizontal
with respect to Hs and s is an integral leaf, we have Z � s ¼ Ts � X 0 and then
Zð1Þ � j1s ¼ T ðj1sÞ � X 0 thus implying that j1s � ðZð1Þ½L�Þ ¼ X 0½L � j1s� ¼ X 0½l � s�.
Then ðs � ðZC ½l�Þ þ ðl � sÞdivðX 0ÞÞu ¼ $X 0 ððl � sÞuÞ thus ¢nishing the proof. &

5. The Second Variation

We now discuss the second variation formula (the Hessian) along a critical section s
of the Euler^Poincare¤ equations. As the variational problem de¢ned by l is not free,
the expression of the Hessian does not take its usual form (see, for example, [8]).
For a complete description of the Hessian, one has to deal only with admissible
variations and take into account their special structure. More precisely, given
two admissible vertical variations ds1 and ds2 along a solution s of (3), we de¢ne

Hesslsðds1; ds2Þ ¼
d

dt

����
t¼0

d

ds

����
s¼0

Z
U
lðsþ tds1 þ sds2Þu:

By Proposition 3, we know that ds1 ¼ XC jsðUÞ and ds2 ¼ YC jsðUÞ for certain
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X ;Y 2 gauP. Then the previous formula easily yields

HesslsðXC;YCÞ ¼

Z
U
YCðXCðlÞÞu ¼

Z
U

d
ds

XC ½l�;YC

	 

u; ð5Þ

where ;h i stands for the natural pairing between TM � ðadPÞ
 and its dual.

PROPOSITION 10. If s is a solution of the Euler^Poincare¤ equations, then

HesslsðXC;YCÞ ¼ HesslsðYC;XCÞ;

that is, Hessls is a symmetric bilinear operator de¢ned on the space of admissible
vector ¢elds along s.

Proof. As s is a critical section, we have that
R
U dl=ds;ZC
� �

u ¼ 0, where
Z ¼ ½X ;Y �. The proof is complete by taking into account that
½XC;YC � ¼ ½X ;Y �C . &

The expression given in formula (5) is not very convenient. For example, the
Jacobi ¢elds, that is, the variations ds belonging to the kernel (or null-space) of
the bilinear form Hessls, are not characterized by the condition ðd=dsÞXC ½l� ¼ 0
as the variations ds2 ¼ YC are not arbitrary but gauge ¢elds on C. The true
characterization of the Jacobi ¢elds is as follows.

PROPOSITION 11. The Hessian has the following expression

HesslsðXC;YCÞ ¼

Z
U
EPðXC ½l�Þ;Y
� �

u;

where Y 2 gauP is seen as a section of adP with compact support in U.
Accordingly, the Jacobi operator J :C1ðadPÞ ! C1ððadPÞ
Þ of the reduced

Lagrangian l is de¢ned by J ðXCÞ ¼ EPðXC ½l�Þ, X 2 gauP. Hence a gauge vector ¢eld
XC on C belongs to the kernel of Hessls if and only if J ðXCÞ ¼ 0.

Proof. We have

HesslsðXC;YCÞ ¼

Z
U

d
ds

XC ½l�;rY � ½sH;Y �
	 


v

¼

Z
U

divH
d
ds

XC ½l�
� �

þ ad
sH
d
ds

XC ½l�
� �

;Y
	 
�

þ

þ div
d
ds

XC ½l�;Y
	 
�

v

¼

Z
U
hEPðXC ½l�Þ;Y iv;

since Y has compact support. As the section Y 2 C1ðadPÞ is arbitrary, the funda-
mental lemma of the calculus of variations gives the condition for the Jacobi vector
¢elds. &
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6. Example: Harmonic Mappings

Let ðM; gÞ be a compact oriented Riemannian manifold, and let ðG; hÞ be a Lie group
equipped with a right invariant Riemannian metric. We identify the mappings
f:M ! G with the global sections of the trivial principal bundle P ¼ M 
 G
endowed with the trivial connection. For each f 2 C1ðM;GÞ, we de¢ne the energy
E on C1ðM;GÞ by EðfÞ ¼

R
M Lð j1fÞu, where Lðj1fÞ ¼ 1

2 Tf;Tf
� �

g;h, and �; �h ig;h

is the induced metric on T
M � TG by g and h. The Euler^Lagrange equations
for this Lagrangian are given by Trrf ¼ 0, where r is the induced Riemannian
covariant derivative on C1ðT
M � TGÞ and Tr is the trace de¢ned by g. The sol-
utions of this equation are called harmonic mappings. The reduced Lagrangian
l:T
M � g! R is lðsÞ ¼ 1

2 s; sh ig;h where h is thought of as a metric on g. The
Euler^Poincare¤ equations are

d
s; �
� �

hþad


s s; �h ih¼ 0;

where d
 ¼ 
d
 is the codifferential. For the Jacobi operator, ¢rst we compute
dXC ½l�=ds with XC ¼ ds ¼ dZþ ½Z; s�, and obtain

d=dsXC ½l� ¼ ds; �h ig;hþad


Z s; �h ig;h:

Hence the Jacobi operator reads

d
ds; �
� �

hþad


Z d


s; �
� �

hþad


s ds; �h ihþad



sad



Z s; �h ih:

Taking into account that s is a critical section we have

hd
ds; �ih þ ad
shds; �ih þ ad
sad


Zhs; �ih � ad
Zad



shs; �ih

¼ hd
ds; �ih þ ad
sh½Z; s�; �ih þ ad
½Z;s�hs; �ih þ ad
shdZ; �ih:

As Z has compact support, we ¢nally obtain HesslsðXC; �Þ ¼
R
M J ðXCÞ; �
� �

hu with

J ðXCÞ; �
� �

h¼ d
ds; �
� �

hþad


s ½Z; s�; �
� �

hþad


½Z;s� s; �h ih�ad



d
s Z; �

� �
h:

If the metric h is also left invariant, we have ad
A B; �h ihþad


B A; �h ih¼ 0, for all

A;B 2 g, and the Euler^Poincare¤ equation and the Jacobi operator can be
simpli¢ed to d
s ¼ 0 and J ðXCÞ ¼ d
ds respectively. Both equations, for this
particular case of harmonic mappings into a Lie group with a bi-invariant
metric, were obtained for the ¢rst time in [11], not from reduction techniques
but by direct computation.

Assume now that G is Abelian. In this case, any right invariant metric is also left
invariant. The Euler^Poincare¤ equation and the compatibility condition read
d
s ¼ 0 and ds ¼ 0 respectively, that is, s is a g-valued harmonic 1-form on M.
The Jacobi operator is J ðXCÞ ¼ d
ds ¼ d
dZ ¼ DZ, where D is the Laplace^Beltrami
operator. Note that J does not depend on the section s. Then, the Jacobi ¢elds are
the vector valued harmonic maps Z:M ! g. Moreover, the quadratic form of
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the Hessian reads

HesslsðXC;XCÞ ¼

Z
M
J ðXCÞ;X
� �

u ¼
Z
M

DZ; Z
� �

hu ¼
Z
M

dZ; dZ
� �

g;huX 0;

that is, Hessls is semi-positive. Hence, every harmonic map is stable.
Similarly, for G arbitrary and h bi-invariant, the solution s ¼ 0, corresponding to

a constant map, also yields

HesslsðXC;XCÞ ¼

Z
M
J ðXCÞ;X
� �

u ¼
Z
M

DZ; Z
� �

hu ¼
Z
M

dZ; dZ
� �

g;huX 0;

thus obtaining the stability of this solution. We refer the reader, for example, to [12,
‰ 5] for a classical proof of these results.
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