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Abstract 

We generalize the sufficient condition for the stability of relative periodic orbits in symmetric 
Hamiltonian systems presented in [J.-P. Ortega, T.S. Ratiu, J. Geom. Phys. 32 (1999) 131-1591 to 
the case in which these orbits have non-trivial symmetry. We also describe a block diagonalization, 
similar in philosophy to the one presented in [J.-P. Ortega, T.S. Ratiu, Nonlinearity 12 (1999) 693- 
7201 for relative equilibria, that facilitates the use of this result in particular examples and shows the 
relation between the stability of the relative periodic orbit and the orbital stability of the associated 
singular reduced periodic orbit. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Let (M, w, G, J : A4 + g*, h : M + R) be a Hamiltonian dynamical system with 

symmetry. We assume that the Lie group G with Lie algebra g acts properly on the smooth 

symplectic manifold (M, o) and that the G-action admits an equivariant momentum map 

J : M + g*; g* denotes the dual space of 8. Recall that a point m E M is called a relative 
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periodic point (RPP) of the Hamiltonian system if there is a t > 0 and an element g E G 
such that 

Ft+,(m) = g . F!(m) for any t E R, 

where Fr is the flow of the Hamiltonian vector field Xh . The set 

y(m) := {Ft(m> It > 01 

is called a relative periodic orbit @PO) through m. The constant t > 0 is its relative period 
and the group element g E G is its phase shift. 

As we already saw in [24], in a Hamiltonian system like the one we are dealing with, the 
existence of a symmetry gives rise to drift phenomena, making non-trivial the choice of a 
definition of stability, since the obvious option, orbital stability, becomes too restrictive. The 
most natural thing to do is to imitate the notion of stability relative to a subgroup introduced 
by Patrick [27] for relative equilibria. 

Definition 1.1. If G’ is a Lie subgroup of G, the RPP m is G/-stable, or stable module G’, 
if for any G’-invariant open neighborhood V of the set G’ . ( Ft (m)},,o, there is an open 
neighborhood U s V of m such that Fr (U) c V, for any t > 0. 

In [24], we described a sufficient condition to study the G,-stability of RPPs in some 
particular examples (the symmetric energy-integrals method). However, the hypothesis 
of this theorem required the regularity of CL and the freeness of the G-action. We will 
generalize this result to the case in which the RPP m has non-trivial symmetry. The 
main complications arising in this situation come from the impossibility to use sym- 
plectic reduction [19], and even though singular reduction tools [6,22,29] are available, 
many simplifying features of the regular case, as for instance the equivalence between 
the G,-stability of the RPO and the orbital stability of the reduced periodic orbit, are 
destroyed. 

Since singular reduction, slices, invariant Poincare sections, etc., will be key ingredients 
in our proofs we will dedicate two sections to briefly review the concepts and results that 
will be used later on. In Section 4, we present the statement and the proof of the sym- 
metric energy-integrals method in the singular case and, as a corollary, an improvement 
of the energy-momentum and the energy-Casimir methods. In Section 5 we construct a 
block diagonalization of the stability form based on the isotypic decomposition of a lin- 
ear representation of a compact Lie group that generalizes to the singular case the, link 
between the G,-stability of the RPO and the orbital stability of the singular reduced pe- 
riodic orbit. It should be emphasized that this block diagonalization is purely kinemati- 
cal and similar in philosophy to the one presented in [23] for relative equilibria, which 
should not be confused with the dynamical block diagonalization of Lewis and coworkers 
[ 16,281. 
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2. Singular reduction and relative periodic orbits 

Singular reduction is a topic that has been developed for the last 15 years. The first studies 
on the structure of the symplectic reduced spaces [ 191 in the singular case are in the works 
of Arms et al. [4], Otto [25], and Arms et al. [2]. The idea of using normal forms to describe 
these spaces as stratified spaces was first introduced by Sjamaar and Lerman [29] in the 
compact case, and by Bates and Lerman [6] in the case of proper actions. These and other 
reduction schemes are compared in [3]. The proofs of the results cited below can be found 
in these references or in [22], where the point of view of point reduction, mostly used in 
our discussion, is explained in detail. 

Let (M, o, G, J : M -+ g*, h : M -+ R) be a Hamiltonian dynamical system whose 
symmetry is given by the Lie group G acting properly on M. The Hamiltonian h E Cw (M) 
is G-invariant and J is assumed to be equivariant. Under these conditions, we say that 
M is a HumiEtonian G-space. If m E M is such that J(m) = p is a regular value of J 
whose coadjoint isotropy subgroup G, acts freely and properly on the manifold JJ’ (p), 
it is well known [19] that the space M, := JJ’(p)/GP is a symplectic manifold and that 
the dynamics induced by h reduces naturally to Hamiltonian dynamics on J-’ (p)/ G,. 
Below we present the manifolds that generalize M, when the given point m has non- 
trivial symmetry, that is, H := G, # {e}. Recall that the properness of the action im- 
plies that H is compact. The notation that we will use is standard in the theory of group 
actions. 

Proposition 2.1. Let H and K be closed subgroups of G such that H c K c G. The 
sets 

M(H) = (z E M ] G, is conjugate to H}, 

M&,={zEMIG; is conjugate to H in K}, 

MH={xMIHCGZ}, 

MH = {z E M ) H = G,} = MH n McH) 

are submanifolds of M. MH is an open submanifold of MH. M(H) is called the (H)-orbit 
type manifold. If M is symplectic, MH and MH are symplectic submanifolds of M. Also, 
foranym E MH, if@ : G x M + M d enotes the group action, the tangent space to MH 
is given by 

T,MH = {v, E T,M 1 Tm@h . urn = v,,Vh E H] = T,MH. 

Proof. See for example [6,7,13,26]. 0 

If V is a representation space of H then the H-fixed point space V H is a vector subspace 
of V. If, in addition, V is symplectic and H acts canonically, then V H is a symplectic 
subspace of V (see [ 131). Thus, the last claim of Proposition 2.1 can be written as T,,, MH = 
T, M H = (T, M) H, the last action being the linearized action on the tangent bundle. 
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Also, if H and K are closed subgroups of G such that H c K c G, we will denote 

by 

N(H) = (n E G 1 nHn-’ = H}, 

NK(H) = (n E K 1 nHn-’ = H) = N(H) n K, 

the normalizers of H in G and K, respectively. 
We now introduce the singular reduced spaces. 

Theorem 2.2. Let (M, u> be a Hamiltonian G-space with G acting properly on M. Let 
J : M + g* be the corresponding equivariant momentum map. For m E M let p := 
J(m) E a* and H := G, be the isotropy subgroup of m which, by the equivariance of J, is 
a subgroup of G,, the coadjoint isotropy subgroup of G at p E g*. Then: 

(i) The set J-l (p) n MH is a submanifold of MH, and hence of M. Analogously, J-’ (F) fl 
MCGH’) is a submanifold of MCGH’), and therefore of M. 

(H) (ii) The set M@ := (J-l (p) II MCGHU”,)/ G, has a unique quotient diflerentiable structure 
such that the canonical projection 

ncH) : J-‘(p) n MC?) --+ MhH’ @ 

is a surjective submersion. Endowed with this diflerentiable structure, MLH’ is diffeo- 

morphicto (J-‘(p) n MH)/(NG,(H)/H). 
W) (iii) There is a unique symplectic structure We on MLH) characterized by 

.(HI* 
1p 

w = nW)*WW) 
/* W ’ 

where ihH”’ : G, 
J-‘(P) n qH) of M is the natural inclusion. 

Proof. See [29,22]. 0 

The spaces introduced in Theorem 2.2 are suitable to reduce the dynamics induced by 
G-invariant Hamiltonians. For the proof see [22]. 

Theorem 2.3. Let (M, w) be a Hamiltonian G-space with G acting properly on M and 
admitting an equivariant momentum map J : M + g*. Let h : M + 1w be a G-invariant 
Hamiltonian, that is, h o @‘s = h for any g E G. Then, using the notation of Theorem 2.2: 

(i) The jaw Ft Of xh leaves the connected components of J- ’ (p) fl M$ invariant and 

commutes with the G,-action, so it induces a$ow F[’ on MhH’ that is characterized 

by 

xCH) o Fr = Fr’ o rrbHH’. I-L 
VU (ii) Thejow Ft’ is Hamiltonian on M, , with Hamiltonian function hiH’ : Mfi (H) -+ Iw 

de$ned by 

h(H) 
W o x(H) = h o ihH). @ 
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The vector fields Xh and Xh(~) are njHH)-related. We will call hLHLH) the reduced 
I[ 

Hamiltonian. 
(iii) Let k : M + 54 be another G-invariantfunction. Then {h, k} is also G-invariant and 

(h, kJhH) = {hLH), kiH)}M’H’r 
U 

where ( , }M(H) denotes the Poisson bracket induced by the symplectic structure in 
fi 

M(n) 
p . 

For the sake of simplicity, in our next result we will require the normalizer N(H) of H 
in G to be compact. With this assumption, we can give a very useful characterization of the 
singular reduced spaces that will be used frequently later on. The following construction 
is based on the fact that the Lie group L := N(H)/H, whose Lie algebra we denote by I, 
acts freely and properly on MH and that J(MH) c (g*)H, where we are consistent with 
the notation introduced in Proposition 2.1, that is, (g*)H denotes the H-fixed vectors in g* 
under the coadjoint action. By compactness of N(H), we can find Ad,v(H)-invariant inner 
products on g and on g* relative to which we have the orthogonal decompositions 

Lie(N(H)) = 6 $ p and g* = h* @ r* (2.1) 

for some subspaces p C Lie(N(H)) c g and c* c g*. If h E I*, let i E p be such that 
h = Ten(h), where n : N(H) + N(H)/H is the canonical projection onto the quotient. 
Then the linear map h E 1 H il E p is well defined, L-equivariant, has range equal to 
[(h”)H]* (the vector subspace of H-fixed vectors in the annihilator 6” of h in g*), and is 
injective, so it defines an L-equivariant isomorphism A : I + [(ff)H]* whose dual map 

A* : (qy + I* 

is hence also an L-equivariant isomorphism. Let 

P : b3*lH - mH 

be the natural L-equivariant projection associated to the orthogonal decomposition (2.1). 
The L-action on MH is canonical and has an associated equivariant momentum map KL 
given by the expression 

KL(z) = (A* 0 P)(J I M"(Z)), z E MH. (2.2) 

If J(m) = CL, we will write p = pb* + pr* for the decomposition of h according to the 
splitting (2.1) and will define A0 := A*&*) = KL(m). 

Theorem 2.4. Zf N (H) is compact, the reduced symplectic space (MhH’, whH’) is naturally 
symplectomorphic to the usual symplectic reduced space (Ki’ (ho)/ LhO, oh,,), defined by 
the L-action on MH. 

Proof. See [22]. We will give here only the key ideas of the proof which will be used 
later on. One begins by showing that JIM, : Mn + g* is a subimmersion (a constant 
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rank map). Therefore, (Jl~~)-‘(p) = J-‘(p) fl MH is a smooth submanifold of the 
symplectic manifold MH. Next, one proves that ho E I* is a regular value for the L- 
momentum map KL : bfH + I*. Then one shows that K-‘r.(ho) = J-’ (KU) fl MH and 
that LA” = Ncr (H)/H to conclude that 

KL1 (Lo)/& = (J-‘(P) n MH)/(NG, (HI/H). 

The space on the right-hand side of this expression, as we pointed out before, is diffeomor- 
phic to MhH). 0 

Since ker ~“(J[M~) = ker T,J n T,Mn and T,(J-‘(E.L) rl MH) = T,(K,‘(ho)) = 
ker T, KL , we conclude from the proof above that 

ker T,J fI TmMn = T,(J-t(p) n MH) = T,(KL’(ko)) = ker T,KL. (2.3) 

Remark 2.5. If the condition on the compactness of N (H) is dropped, there are still global 
models for the singular reduced spaces of the kind introduced in Theorem 2.4; however 
the result is more complicated since the momentum map in (2.2) is not equivariant and the 
reduction has to be carried out by correcting the coadjoint action with the cocycle given by 
the non-equivariance of KL . 

Using these results on singular reduction we now see how the term relative periodic orbit 
is justified, that is, the projection of an RPO over the (singular) reduced space gives us a 
periodic orbit. We make these remarks more precise in the following theorem. 

Theorem 2.6. Let m E M such that J(m) = p, ana’ G, =: H. In the conditions of 
Theorem 2.2, the following statements are equivalent: 

(i) the point m is a RPP; 
(ii) there is a constant t > 0 and g E NG~ (H) such that 

Ft+, (m) = g . Ft (m) for any t E Iw, 

where Ft is theJEow of xh; 
(iii) there is a constant t > 0 and a unique element 1 E NC& (H)/H such that 

F,+,(m) = 1. Fr(m) for any t E R, 

where Ft is theJEow of xh; 
(iv) the point [m]u (H) := niHLH)(m) is a periodic point of (MLH), oLHLH’, hiH’). 

Proof. (i) =+ (ii). If m is a RPP, there is a t > 0 such that F,(m) = g . m. Applying J 
to both sides of this equality and recalling Noether’s theorem and the equivariance of J, 
one obtains that ,LL = g . p, that is, g E G,. Also, the G-invariance of the Hamiltonian h 
implies the G-equivariance of the flow Fi for any t and hence G, = G,c,(~) ; in particular, 
for t = t one has 

H := G, = GF,(,,,) = G,., = gGmg -1 = gHg-‘, 
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which implies that g E N(H), and hence g E NC,, (H). 
(ii) + (iii). Take 1 = gH. The uniqueness of 1 is a consequence of the freeness of the 

action of N(H)/H, and hence of NG,(H)/H on MH. 
(ii) =k (iv). If, with the notation of Theorem 2.2, we apply nhH) on both sides of the 

equality F,+,(m) = g . Ft (m) and recall that g E G,, we obtain that 

n(%+r (m)) = ncL w (H)(g . F,(m)) = np ‘H’(Fr(m)), 

or equivalently 

Ft$ ([wz]‘~‘) = Ffp([m]‘H’) fi P ’ 

where Ft’ is the flow of the Hamiltonian vector field on Mj;H) defined by the reduced Hamil- 

tonian function hhH’ . This shows that [m]LH’ is a periodic point of (MkH’, wiH’, hiHI). 
(iv) +- (i). By hypothesis, there is a t > 0 such that F$ ([mIlti’) = Fr’([m]$H)) for 

any t. Thus 

nr)(F,+,(m)) = ~~h~‘(F,(rn)) for any t. 

In particular, for t = 0, (nLH) o F,)(m) = nLH)(m), hence there exists an element g E G, 
such that F,(m) = g . m. Thus, if t is arbitrary, 

F,+,(m) = (fi 0 F,)(m) = Ft(g. m> = g. &Cm), 

as required. 0 

3. Slices, tubes, and Poincark maps 

In this section we introduce the local tools that we will utilize in the handling of RPOs 
and G-spaces in general. We begin with some standard definitions and results in Lie theory, 
whose proofs can be found for example in [7,26]. 

Definition 3.1. Let M be a manifold and G a Lie group acting properly on M. Let m E M 

and denote G, := H. A tube about the orbit G . m is a G-invariant diffeomorphism 

with U a G-invariant neighborhood of G . m and A some manifold in which H acts. The 
twist-product G x HA is defined as the orbit space corresponding to the free and proper 
action of H on G x A (Theorem 3.4 guarantees the compactness of H) by h . (g, a) = 
(gh, h-’ . a). The manifold G x HA is naturally a G-space relative to the left action 

g’ . [g, al = [g’g, al. 

Definition 3.2. Let m E M be as in Definition 3.1. Let S be a submanifold of M such that 
m ~SandH.S=S.WesaythatSisasliceatmifthemap 
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is a tube about G . m for some G-invariant open neighborhood of G . m. 

Theorem 3.3. Let m E M be as in Definition 3.1 and S be a submanifold of M such that 
m E S. Then the following statements are equivalent: 

(i) There is a tube p : G x H A + U about G . m such that p[e, A] = S. 
(ii) S is a slice at m. 

(iii) G ’ S is an open neighborhood of G . m and there is an equivariant retraction 

r:G.S+G.m 

such that r-‘(m) = S. 

Theorem 3.4 (Slice theorem). In the conditions of Dejmition 3.1, there is a slice for the 
G-action at m. The isotropy group G, =: H is compact and M/G is HausdolfJ: 

Remark 3.5. One way to construct the slice (see [7,26]) consists roughly (we omit here 
some technical details) of taking a H-invariant Riemannian metric g on M (always available 
by the compactness of H) and letting A = T, (G . m)‘, where _L denotes orthogonality 
with respect to g. The G-equivariant map 

(~:GxHA+U, 

[h,a]++heexpga 

is a tube around the orbit G . m. 

The Slice theorem, just quoted, and the Tube lemma in point set topology ([21], Lemma 
5.8, p. 169) imply the following corollary that we state for future reference. 

Corollary 3.6. Let G be a compact Lie group that acts on the manifold M and let m E M. 
Any open neighborhood V of the orbit G . m contains a G-invariant open neighborhood of 
G . m. 

We now introduce some local tools for the study of RPOs. Proofs for these results and 
additional information can be found in [[9,10]]. 

Definition 3.7. Let X E E(M) be a G-equivariant vector field on the G-manifold M. A 
G-invariant local transversal section of X at m E M is a G-invariant submanifold S of 
codimension 1 with m E S such that for all z E S, X(z) is not contained in T,S. 

If m E M is a RPP with relative period t > 0, phase shift g E G, and S is a G-invariant 
local transversal section at m, then a G-equivariant Poincare map of the RPP m is a mapping 
0 : Wo + WI satisfying: 
(RPMl) Wo, WI c S are open G-invariant neighborhoods of m in S and 0 is a G- 

equivariant diffeomorphism; 
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(RPM2) there is a continuous G-invariant function, called theperiodfunction, such that for 
all z E Wo, (2, t -S(z)) E Dx, and O(z) = F(z, t -6(z)). The open set Dx c M x R 
isthedomainoftheflowF:Dx~MxR+MofX; 

(RPM3) if t E (0, t - 6(z)), then F(z, t) 4 Wo. 

Theorem 3.8 (Existence and uniqueness of G-equivariant Poincare maps). Letm, M, and 
X be as in De$nition 3.7. 

6) 

(ii) 

There exists a G-invariant local transversal section S and a G-equivariant Poincare 
map 0 : Wo + WI form E M. 
If 0 : Wo += W1 is a G-equivariant Poincare’ map for m in the G-invariant local 
transversal section S and similarly 0’ : Wh -+ W; for m’ := F,,(m) in S’, then 
0 and 0’ are locally G-equivariantly conjugate, that is, there are G-invariant open 
neighborhoods W2 of m E S, W; of m’ E S’, and a G-equivariant diffeomorphism 
‘H : (W2 + W.$ such that W2 c WO n WI, W; c WA n Wi, and the diagram 

o-1(w2) n w2 -%= w2 n ww2) 

Ii I 1 ‘H 

commutes. 

For future reference we quote here a lemma due to Patrick (see [27] for a proof). 

Lemma 3.9. Let A and B be bilinearforms on a$nite dimensional vector space. Suppose 
that A is positive semidefinite and that B is positive definite on ker A. Then there exists 
r > 0 such that A + E B is positive definite for all E E (0, r). 

4. The symmetric energy-integrals method 

We shall work generally on a Poisson manifold, that is, a manifold M whose space of 
functions Coo(M) admits a bracket {. , .} relative to which it is a Lie algebra and the Leibniz 
identity holds in each argument. The Hamiltonian vector field Xh given by a function h E 
C”(M) is defined (as a derivation) by the relation Xh = {. , h). The elements of the center 
of the Lie algebra (r?‘(M), {. , e}) are called Casimirfunctions. The triplet (M, {. , .}, h) 
is called a Poisson system. Any Poisson manifold is partitioned into symplectic leaves, 
which are connected immersed symplectic manifolds of M by the inclusion map, whose 
own Poisson bracket coincides with the given one on M. The tangent space at m to a leaf 
consists of all vectors that are equal to the value of some Hamiltonian vector field at m. The 
symplectic leaves are invariant under the flow of any Hamiltonian vector field. 

We can state now the main result on the stability of RPPs. 
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Theorem 4.1 (The symmetric energy-integrals method). Let (M, (. , .), G, J : M + g*, 

h : A4 + W) be a Hamiltonian system with a symmetry given by the Lie group G acting 
properly on M. Assume that the Hamiltonian h E Coo(M) is G-invariant and that J is equiv- 
ariant. Let m E M be a RPP such that J(m) = p E g* and the coadjoint isotropy subgroup 
G, is compact. Then, if there is a set of G, -invariant conserved quantities Cl, . . . , C,, E 
Co3 (M), for which 

d(Ct + a.. + C,)(m) = 0, 

d2(C1 +. . . + G)(m)lwxw 

is definite for some (and hence for any) W such that 

kerdCt(m) n . . . n ker dC, (m) fl ker Tnt J 

= W @ (span{&(m)) + T,(G, . ml), (4.1) 

then m is a G,-stable RPP If dim W = 0, then m is always a G,-stable RPP In what 
follows, the matrix d2(C1 + . . . + C,)(m) ( w x w will be referred to as the stability form. 

Proof. We first prove the case W # {O} and we begin by showing that the result does not 
depend on the choices of m in the RPO and W. Indeed, if d(Ct + . . . + C,)(m) = 0 and 
Fr is the flow of the Hamiltonian vector field xh, then for any t > 0 and any V, w E T,M 
we have 

d(C1 f.. . + GMt(m))G~(~), Tmfi(w)) 
= F,*(d(C, + + + e + C,)(m))(v, w) 

= d(F,*(Ct + . . . + C,))(m)(u, w) 

= d(Ct + . . . + C,)(m)(u, w), 

sinceF,*od=doF,*andCt,C2,..., C, are invariant under Ft. If W is a complement to 
(span{Xh(m)}+T,(G~~m))inkerdCl(m)fl. . .nker dC,, (m)nker T,,, J, then for any t > 0, 
T,F,(W) is a complement to (Span{&(F~(m))) + T,(G, . F*(m))) in kerdCt(F,(m>) fl 
. . . n kerdC,(F,(m)) n ker T,c,(~)J. Moreover, d2(C1 + .-. + C,)(m)lwxw is definite iff 

d2(Ct+...+Cn)(Ft(m))lr m p-t w x T,,, F~. w is definite, since the conservation of Cl, . . . , C,, , 
implies that for any u, w E T, M: 

d2(Ct +a. . + CA(fi(m))(T,fi(u), Tmfi(w)) 

= d2(Fr*C1 + ..++ Ft*C,)(m)(v, w) 

= d2(C1 +a. . + C,)(m)(v, w). 

The statement of the theorem does therefore not depend on the choice of the point m in the 
RPO. 
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The choice of W is also irrelevant since d2 (Cl + . . . + C,)(m)(v, UJ) = 0 whenever 
v E span{& (m)} + Tm (G, . m). Indeed if we take without loss of generality u = Xh (m) + 
6$(m) = X+(m) + XJ~ (m) with c E gp, then 

d2(C, + .I . + G>@>(v, WI = dm + X,,>[Cl + . . . + Gll 
=w[(CI,h}+... +{C,,hl+(C,,J~)+...+{C,,J~}l=O, 

since the functions Cj, for i e { 1, . . . , n), are G,-invariant conserved quantities for the 
evolution induced by h and therefore {Ci , h} = 0, and for any z E M, {Ci , Jt }(z) = 
dCi (z) e 6~ (z) = 0 by G,-invariance. 

We now construct a G,-invariant local transversal section for Xh at m with the help of the 
Slice theorem. Since G, is closed in G and G acts properly on M, so does G,. Therefore, 
there is a G,-invariant neighborhood of G, 9 m that can be represented as a G,-space by 

Y, = G, XH B, 

with B a H-vector space constructed as in Remark 3.5, and where the point m is represented 
by [e, 01. For times t small enough, the flow FI is represented in these coordinates by 
Fr[e, 01 = [g(t), b(t)], where g(t) E G,, and b(t) E BH. Indeed, by the G-equivariance 

of Fr, H = Gl,,ol = Gl,(,),b(,)l, hence [g(t),b(t)] E (YJH = NG,(H) XH BH, which 
implies that g’(0) E Lie(No,(H)) and b := b’(0) E BH. Notice that since m is not a 
relative equilibrium, b # 0 necessarily. The subspace span(b) of BH c B is H-invariant 
in B. The compactness of H and a standard result in representation theory of compact Lie 
groups (see for example Proposition 2.1 in [l 11) guarantees the existence of a H-invariant 
subspace BI c B such that 

B = span{b) @ BI. 

The set G, XH BI is a submanifold of Y,, and by construction, there is a G,-invariant 
neighborhood T of m = [e, 0] in G, x H BI such that for any z E T, X~(Z) $ T,T, that is, 
T is a G,-invariant local transversal section to Xh at m. We now define S as the submanifold 
of T given by 

S := (H xH Br) n T, 

and prove the following lemma. 

Lemma 4.2. With the notation previously introduced, the submanifold S satisjes 

T,M =T,,,S63T,(G,~m)@span{X~(m)J. 

Proof. Note first that the sum Tnt(GP . m) @ span{ Xh (m)} is indeed direct since there is 
no .$ E gw for which Xh (m) = &f(m), for this equality is equivalent to m being a relative 
equilibrium (see [ 11) which we assume is not the case; m is assumed to be a genuine RPP. 

Second, we show that the sum T,,, S + (Tm (G, . m) @ span{Xh(m))) is also direct by 
showing that (T, (G, . m) @ span{Xh (m)]) fl T,S = {O}. Indeed, since m is identified with 
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[e, 0] we conclude that the h-action on glr. x B (which is the linearization of the H-action at 
(e, 0)) is just the translation by h x {0) in gP x B. Thus, we can identify T,M 2 gwL/Ij x B, 
T,,, S Z {0) x BI, and T,,, (G, . m) 2 (gJtj) x {O). Finally, Xh (m) is represented by a pair 
of the form (6 + n, b), for some n E 6, 4 E Lie(NG,(H)) C gp, and b $?! BI. Thus, an 
arbitrary vector w E Tm(Gp . m) CD span{Xh (m)) is represented by (p + n, b), for 7 E 4, 
p E gP, and b E B. However, if this vector is also in Tm S, then this representative must lie 
in (0) x BI, that is, p = -n E IQ and b E BI fl span(b) = {O). Therefore, this representative 
must be an element of h x {0) which in the quotient is the zero vector; we showed that w = 0. 

Third, dim(T,S) = dim B - 1 = dim M - dim G, -/- dim H - 1, dim(T,(G, . m)) = 
dim G, - dim H, and dim(span{Xh (m))) = 1, hence 

dim(T,S $ Tm(Gp .m) @ span(Xh(m))) = dimM = dim(T,M), 

which concludes the proof. v 

We now define 

Z:=T,SnkerT,J17kerdC~(m)n...nkerdC,(m). 

The reduction lemma (T, (G, . m) = ker T, J fl T, (G . m); see [l]), Noether’s theorem, 
and the choice of the functions Cl, . . . , C,, imply that 

T, (G, . m) + span{Xh (m)) c ker dC1 (m) n . . . n ker dC,, (m) n ker T, J. 

This inclusion and Lemma 4.2 allow us to write 

ker dC1 (m) fl . ..nkerdC.(m)nkerT,J 

= T,MnkerdCl(m)n...rlkerdC,(m)nkerT,J 

= (Tm S n ker T, J rl ker dC1 (m) fl . . . fl ker dC,, (m)) 

@(Tm(G, . m) + span(& (m))) 

= Z @ G(G, . m) + van{&(m))), 

hence Z is one of the spaces that satisfy the defining conditions of W in the statement of 
the theorem. 

Let now fl and f2 be the functions defined by 

fl =(C1 -Cl(m>)+.**+(Cn -C,(m)>, 

f2=(C1 -C1(W2+.. . + CC, - GW2 + IIJ - A12, 

where in fz, the norm is associated to some Ad*, -invariant inner product in g* (always 
available by the compactness of G,); this makes f2 &,-invariant. Since fl and Ct +. . .+C, 
differ by a constant, the hypothesis of the theorem implies that dfl (m) = d f2 (m) = 0, and 
that the form d2fi I z x z is definite. Taking into account that 

d2fi@41zxz = (d2fi(m)lT,SxT,S)Izxz = d2<.fi Is>h)lzxz> 

the hypothesis of the theorem implies that d2 (fl I s)(m) I z x~ is definite. 
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WenowprovethatZisthekemelofd2(f2(s)(m).Itiseasytoseethatifvl,v2 E T,S 
then 

= 2[(dCl (m) . vz)(dCl(m) . VI) + . . . + (K,(m) . vz>(dG(m) . VI> 

+IITmJ . ~1 IIIITmJ. ~2111. 

Then, TV 1 E ker d2 (f2 Is>(m) iff for any v2 E Tm S, we have that 

In particular, for VI = ~2, this identity implies that dCl(m) . u1 = .. . = dC,(m) . ~1 = 
(1 Tm J . vr 11 = 0 and hence vt E ker T,J n ker dC1 (m) II . . . fl ker dC, (m) fl Tm S = Z. 
Conversely,ifvl E Z = T,SnkerdCl(m)n. . . fl ker dC, (m) n ker T, J the above relation 
is satisfied trivially for all VI E T,S. Therefore, 

Z = kerd2(f2(S)(m). 

Using these remarks, Lemma 3.9 guarantees the existence of some a > 0 for which the 
function f defined by 

f :=af1 +f2 (4.2) 

is such that d2( f Is)(m) is positive definite. Note that f is a G,-invariant integral of the 
motion such that f(m) = 0. Shrinking T if necessary, the Morse lemma allows us to choose 
S such that f 2 0 on S. We now prove the following lemma. 

Lemma 4.3. The submanifold S is a slice at m E T c M for the G,-action on T. 

Proof. By Theorem 3.3 (iii), it is enough to prove that G, . S is an open neighborhood of 
G, . m in T and that there is a G,-equivariant retraction r : G, . S + G, . m such that 
r-‘(m) = S. Without loss of generality we may take S = H x H BI, and T = G, x H BI. 
Clearly G, . S = T, which is trivially open in T, and the equivariant retraction that we 
need is 

r : G, .S=T--tGp.mm, 

[g, bl - k, 01 = g . m. 

The map r is clearly well-defined, it is G,-equivariant, and r-‘(m) = {[h, b] E Tlh E 
H, b E BI} = S. v 

Notice that Theorem 3.3 (i) guarantees that the G,-invariant local transversal section T 
is locally diffeomorphic to G, x HS E G, . S. 

We now recall that, by Theorem 2.6 (ii), the RPP m has a phase shift in G,. The dynamic 
orbit through m can therefore be considered as a RPO associated to the G, symmetry of the 
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system, and taking T as a G,-invariant local transversal section, Theorem 3.8 guarantees the 
existence of a G,-equivariant Poincare section 0, with G,-invariant open sets Wo, WI c T, 
and G,-invariant period function 7 : WO -+ R. 

With all these tools we will prove the G,-stability of m. Let V be an arbitrary G,- 
invariant open neighborhood of G, . {F,(m)},,c. The positive definiteness of d*(fl,y)(m) 
and the Morse lemma guarantee the existence of certain E > 0 such that 

f-l[o,~)nscvnwonwl, (4.3) 

with f-‘[O, E) II S an open subset of S. Notice that the G,-invariance of f implies that 
f-l [0, C) is G,- invariant, in particular H-invariant. This allows us to define the open 
submanifold A of T as 

A :=Gp x H(f-l[O,c)fIS) rGp .(f-‘[O,c)nS). 

The G,-invariance of V, Wo and WI and (4.3) guarantee that 

A = G,(f -‘[O, 6) n S) c G, . (V n W. n Wl) = V n Wo n WI. (4.4) 

We now show that if rc : M -+ M/G, is the continuous canonical projection of M onto 
the Hausdorff quotient topological space, then the closed orbit y in M/G, corresponding 
to the RPP m, that is y = n((Ft(m)},~o), is orbitally stable. 

The Gti-invariance of V, Wo, WI, T, and A allows us to define 7 = V/G, = n(V), 
and analogously, To, c, F, and A? Also, let 6, rand Fr’ be the continuous maps uniquely 
determined by the equalities: G o rc = rr o 0,x-o n = 6, and Ftp o n = n o F,, with Ft 
the G-equivariant Hamiltonian flow of xh. Note that by construction A^, Ec, and K are 
includedin pandthat for any [z] = n(z) E Fa, 6([z]> = Fw([z], 7 -z([z]>) E 6. 

We now see how the Gp-invariance of f guarantees that if [z] E x, then 6([z]) E A? 
Indeed, if z = 1 . a with 1 E G, and a E f -‘[O, E) fl S c WO cl WI n S, then O(z) = 
F5-~(z)(z) = I. F,_~l.~)(a). By the G,-invariance of 6, F,_~(r.~)(a) = F,_J(,)(~), and as 
a E WO, FS_~(a)(a) E WI c T necessarily. Since by Lemma 4.3, T = G, x HS, there are 
elements n E G,, and b E S such that F,_J(~)(u) = n . b. Now, since f is a G,-invariant 
conserved quantity 

f (Q(z)) = f V--G(z)(z)) = f (z> = f(a); 
but. at the same time 

f (O(z)) = fVh(~)(z)) = .fOn . b) = f(b) = f(a), 

which guarantees that b E f-‘10, E) fl S c WO fl WI n S and hence &[zl) = Lb1 E A? 
Note that expression (4.4) implies that 

since 

A^= n(A) c n(Wo /I WI n V) c n(Wo) n n(W1) n n(V) = i%j n q n r;. 
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Also, the G,-invariance of V (resp. A) guarantees that 7 (resp. 2) is open in the quotient 
topology of M/G @: p is open iff x5-l(p) is open in M. We show that n-‘(F) = V. 
Indeed, it is always true that V c n-‘(n(V)) = n-‘(v). Conversely, if z E n-l(?), 
n(z) = n(v) for some v E V, hence z = 1 . u for some 1 E G, . The G,-invariance of V 
guarantees that z E V, and therefore V = x-’ (p). 

Notice that since y = F/*([O, T], [ml) and FM is continuous, y is a compact subset of 
Ml G,. This fact, together with the openness of c, implies that the number L$ defined by 

0~ = inf{d([x], y)l[x] E ClF \ F} 

is never zero, where d is the distance function associated to a metric on M/G that induces 
1 

its quotient topology and Clp is the point set topological closure of the set V. This metric 
always exists and can be constructed as follows: take a G,-invariant Riemannian metric on 
M (always available by the compactness of G,). This makes M into a metric space whose 
metric topology coincides with the topology of M (see [8, Proposition 10.621). With this 
metric, G, acts by isometries, which implies that the distance function drops to M/G,, 
endowing it with a metric structure. 

We define the map: 

D:A^-+R, 

[zl +--+ Nzl) := mq Wr%l>~ Y>. 
tE[O.r-S([zl)l 

Note that D([m]) = 0. By the continuity of D, we can choose E > 0 (and therefore 2) small 
enough so that D([z]) -c w/2 for any [z] E A? Define the open neighborhood v^ of y by 

u^ := (FfW([Z’]) I [z’] E z, t 2 0). 

We shall prove below that Fr (I?) c p for all f 2 0. In order to see this, note that, by 
construction, u^ is invariant under the flow Flp and hence the claim is proved if we show that 
I!? c 7. Let us suppose the contrary, namely that there is an element Fp([z’]) E u^, [z’] E A^ 
such that Fr([z’]) $ ?. Without loss of generality we can assume that t E [0, t - %([z’])] 
which then implies that d(Fr ([z’]), y) 5 D([z’]) < D7/2. However, since we assume 
that Fr([z’]) $ p, it follows that d(Ft’([z’]), y> 2 ot; by the definition of &. This 
contradiction guarantees that y is orbitally stable. We now see how the orbital stability of 
1/ implies the G,-stability of m, taking as the open set that we need U = x-’ (u^), that is, 
Fr(z) E V for any positive time t and any z E U: we know that Fr([z]) E p = n(V) for 
any positive t. Since Frp is defined by the relation 

no Fr = Ftp on, 

it follows that rc o F,(z) = n(v) for some IJ E V. Hence there exists some h E G, such that 
F!(z) = h . u but since V is G,-invariant, h . v E V, and therefore F,(U) c V as required. 
This proves the case dim W # 0. 

If W = {0}, the proof is completely analogous, but in this case one takes f2 as f, given 
that (0) = 2 = ker d2(f21s)(m), and hence d2(f21s)(m) is positive definite. 0 
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Example 4.4. The previous theorem applies to the collision solutions of the examples 
presented in [24] and that could not be treated there, given their singular nature: 
(i) The spherical pendulum. If the angular momentum of the pendulum is equal to zero, 

the spherical pendulum becomes a planar pendulum. However, zero is not a regular 
value of the momentum map associated to the SO (2) symmetry of the system, hence 
we need Theorem 4.1 to deal with the stability of these solutions that consist of an 
equilibrium, when the energy of the system equals -mgl, and a set of planar periodic 
orbits when the energy is bigger. These periodic orbits are not orbitally stable since a 
small perturbation on pu makes the system precess. However, as trivial RPOs (RPOs 
whose phase shift is the identity), they are S’ -stable, which follows from Theorem 4.1 
by showing that in this case W = (0). 

(ii) The Munev problem. In this case the situation is analogous. When the angular mo- 
mentum equals zero, we have a collision problem, that is, apart from the equilibrium 
solution, the particle describes an oscillatory motion on a straight line that goes through 
the origin. If we consider these motions as periodic orbits, they are not orbitally stable 
however, as trivial RPOs, Theorem 4.1 shows that they are S0(3)-stable (W = (0)). 

The approach followed in the proof of Theorem 4.1 allows us to generalize the energy- 
momentum method (see [1.5,16,20,23,27,28]), that we briefly review. This method is de- 
signed to study the stability of relative equilibria in symmetric Hamiltonian systems. If 
(M, {. , .}, h, G, J : M + g*) is a Hamiltonian system with symmetry, in which G acts 
properly on M, recall that a relative equilibrium associated to the dynamics induced by the 
G-invariant Hamiltonian h is a point m E M such that the integral curve m(t) of the Hamil- 
tonian vector field xh starting at m equals exp(tt) . m for some 6 E g, where exp : g + G 
is the exponential map; any such 6 is called a velocity of the relative equilibrium. Note that 
if m has a non-trivial isotropy subgroup, < is not uniquely determined; this leads us to de- 
fine the concept of orthogonal velocity of a relative equilibrium. If our relative equilibrium 
m E M is such that H := G, and J(m) = p E g*, it can be proved (see [23]) that there is 
a unique k E Lie(NG, (H)/H) C Lie(N(H)/H) := Lie(L) such that 

F,(m)= expLth .m, 

where Ft is the Hamiltonian flow of xh. The properness of the G-action allows us to choose 
an AdH-invariant inner product in rtb := Lie(NG, (H)) and hence we have an orthogonal 
direct sum decomposition 

u,, =b@P,, 

where plr is the orthocomplement of JZJ in n, relative to the inner product on n,. 
If we consider the quotient Lie group NcU (H)/H, the canonical projection 

n : NC,(H) + Nc,(ff)/H 

(4.5) 

is a surjective submersion and therefore ker T,n = (Ten)-l ([e]) = 6, which implies that 

Lie(Nc, (H)IH) 2: n,/b 2: Pp. (4.6) 
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Let 6 E p@ c nW be the unique image of h E Lie(NG, (H)/H) under the isomorphism 
in (4.6). Since n is a group homomorphism, we can write 

Ft(m) = expL th . m = exp t( . m. 

Definition 4.5. The unique element 6 E pw just defined is called the orthogonal velocity 
of the relative equilibrium m E M relative to the splitting (4.5). 

Due to the possibility of group drift, the definition of stability that one uses when dealing 
with relative equilibria is similar in spirit to the case of the RPOs. 

Definition 4.6. Let (M, {. , .), h, G, J : M + g*) be a Hamiltonian system with symmetry 
and let G’ be a subgroup of G. A relative equilibrium m E M is called GIstable, or stable 
module G’, if for any G/-invariant open neighborhood V of the orbit G’ . m, there is an 
open neighborhood U 5 V of m such that if Ft is the flow of the Hamiltonian vector field 
xh and u E U, then Ft(u) E V for all t 1 0. 

The energy-momentum method, as stated in [23], is described in the following theorem. 

Theorem 4.7. Let (M, {. , e}, h) be a Poisson system with a symmetry given by the Lie group 
G acting properly on M in a globally Hamiltonian fashion, with associated equivariant 
momentum map J : M -_, g*. Assume that the Hamiltonian h E COO(M) is G-invariant. Let 
m E M be a relative equilibrium such that J(m) = p E g*, g* admits an Ad*G,-invariant 
inner product, H := G,, and 6 E Lie(NG, (H)) is its orthogonal velocity relative to a 
given AdH -invariant splitting. If the quadratic form 

d*(h - Jc)(m)lwxw 

is definite for some (and hence for any) subspace W such that 

ker T,J = W $ T,(G, . m), 

then m is a Gp-stable relative equilibrium. Zf dim W = 0, then m is always a G,-stable 
relative equilibrium. 

This can be generalized as follows. 

Theorem 4.8 (Generalized energy-momentum-method). Let (M, {. , .}, G, J : M -+ g*, 
h : M + R) be a Poisson system with a symmetry given by the Lie group G acting properly 
on M. Assume that the Hamiltonian h E Coo(M) is G-invariant and that J is equivariant. 
Let m E M be a relative equilibrium such that J(m) = p E g*, G, is compact, H := Gm, 
and 6 E Lie(NG, (H)) is its orthogonal velocity, relative to a given Adn-invariant splitting. 
If there is a set of G,-invariant conserved quantities Cl, . . . , C, : M + R for which 

d(h - Jc + Cl + . . . f C,)(m) = 0, 
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and 

d*(h--Jc+Cl +~~~+Cn)(m)lwxw 

is dejinite for some (and hence for any) W such that 

ker dC’ (m) fl . ..nkerdP(m)nkerT.J= W@T,(G,.m), 

then m is a G,-stable relative equilibrium. If dim W = 0, then m is always a G,-stable 
relative equilibrium. 

Proof. We first suppose that W # {O). One shows as in Theorem 4.1 that the result does 
not depend on the choice of m in the relative equilibrium. ‘Ihe choice of W is also irrelevant 
since 

d*(h - Jc + CI +. . . + Cd(m>(v, w> = 0, 

whenever v E T,(G, . m), and tc E ker T, J fl ker dCt (m) fl - a - fl ker dC, (m). Indeed, 
if we take v = am with n E gP, then 

d*(h - J’ + CI f.. . + C,)(m)(v, w) = ?,U[XJq[h - Jc + CI +. . . + C,ll 

= t.u[{h, Jv} - J’cvql + {Cl, Jv) + . . . + {C,, J’l)l 
= w[J[t,‘11] = 0, 

where we used the G,-invariance of h, Cl, . . . , C,, , and that w E ker T, J. 
Let now T := G, x H W be a tube around the orbit G, 9 m associated to the Hamiltonian 

action of G, on M. We denote by S the submanifold of T given by 

S:= H X Hw. 

It can be easily shown (see Lemma 4.2) that 

T,M = T,S @ T,(G, . m). 

Now let it be 

(4.7) 

.Z:= T,SnkerT,JflkerdCl(m)rl...nkerdC,(m). (4.8) 

Since T, (G, em) c kerT,JnkerdCt(m)n... fl ker dC,* (m), by (4.7) and (4.X), we 
have that 

ker T, J n ker dC1 (m) fl. . . nkerdCn(m)=Z$T,(Gw.m); 

hence Z satisfies the requirements of W in the statement of the theorem. 
We now introduce Patrick velocity map. We start by recalling a lemma whose proof can 

be found in [23]. 

Lemma 4.9. Fix a splitting (4.5) and let 6 E p@ be the corresponding orthogonal velocity 
of the relative equilibrium m E M whose symmetry group is H := G,. Then Adht = 6 
for any h E H. 
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Following a strategy identical to Lemma 4.3, it is easy to see that S is a slice at m for the 
G,-action; in other words G, x HS = G, 1 S = T is an open G,-invariant neighborhood 
of the orbit G, . m and there is a G,-equivariant retraction 

r : G, . S+Gcc.m, 

[g, ~1 t+ g. m. 

We define 

\t: G,.m--+Gcc.t, 

g. m w Ad,6 

with 6 the orthogonal velocity of the relative equilibrium. The previous lemma guarantees 
that G is well-defined: if g . m = g’ ’ m then g- ‘g’ E H and therefore g- ‘g’ .t = < and so 
g’ . c = g .t. We define Patrick’s velocity map as w := 6 o r : g . z E G, . S H Ad& E 
G,.~.Notethat\I,(m)=\?l(m)=~andthatforanygEG,andanyz=g’.z’EG,.S, 

‘&(g. z) = ‘I’(gg’ . z’) = Ad,& = Ad,(Ad&) = Ad,Q(g’ .z’) = Ad,‘I’(z). 

Also, Im\Ir = G, . < and (p, Q(z)) = (p, 0, for any z E G, . S. 
Now let fr and f2 be the functions defined by 

.f~ = (h - h(m)) + ((J, W - (P, 0) + (CI - CI (ml> + . . . + CC, - G(m)) 
f2=(C1 -Cl(m))2+.. e + CC, - Gh>12 + IIJ - A12, 

where in f2, the modulus is taken using the norm associated to some AdT; -invariant inner 
product in g* (always available by the compactness of G,) that makes fi a G,-invariant 
conserved quantity. Remark that ft is G,-invariant, but, in general, it is not conserved. 
Notice also that on S, h - Jc + Cl + . - . + C, and ft 1s differ by a constant, which implies 
that d(fl 1s) (m) = 0 and d2 (fl ) s) (m) is well defined. Moreover, 

d2(ft Is>(m>lzxz = d2(h - J’ + CI +. . . + Cn)(m>lzxz. 

Since 2 satisfies the requirements of W, the hypotheses of the theorem guarantees that 
d2 (fl 1s) (m) I z x z is definite. As we did in the proof of Theorem 4.1, it can be checked that 
Z is the kernel of d2(f21s)(m), hence by Lemma 3.9, there exists a positive constant a for 
which 

f:=af1+f2 

is such that d2 (f I S) (m) is positive definite. Note that f is G,-invariant but, in general, it 
is not a constant of the motion since (J, W) is not conserved. In fact, for any z E S, 

f(F,(z)) - f(z) = (J(F,(z)), Q(F,(z))) - (J(z), q(z)) = (J(z), @(F,(Z)) - Q(Z)) 

= (J(Z) - P + CL, @(Ft(z)) - 0 
= (J(z) - /A *(fi(z)) - 4) + (PL, *(Fr(z))) - (I-G t) 
= (J(z) - PL, *(F,(z)) - 41, 



J.-P Ortega, T.S. Ratiu/Journal of Geometry and Physics 32 (1999) 160-188 179 

where we used Noether’s theorem, q(z) = 6 because z E S, and (P, Q(z)) = (F, 0, for 
any z E G, (S). Hence, for any z E S, 

0 P f(fi(z)) 5 f(z) +al(J(z> - wu, q(Ft(z)) - 4)I 
5 f(z) +~llJ(z> - ~II(ll~‘(fi(z))II + IItII> 
=f(z)+2~ll~IIIIJ(z)-,41~ (4.9) 

where we used that Im\Ir = G, . (, and the G,-invariance of the norm II . II. 
With these tools, we prove the G,-stability of m. Let V be a G,-invariant open neigh- 

borhood of G, . m. Since f(m) = 0, by the positive definiteness of d’(fls)(m) and the 
Morse lemma, there is an E > 0 such that 

f-‘[O, E) fl S c V and f-‘[O, E) fl S c S, (4.10) 

where f-‘[O, E) is an open neighborhood of m in S. The continuity off and J and Corol- 
lary 3.6 imply the existence of an open H-invariant neighborhood S’ of m on S such that 

S’ c f-* [0, E) n S, and that for any z E S’, f(z) < c/2 and IIJ(z) - pll < ~/4all6 II. We 
shall prove that 

F,(S’) c f-‘[O, E) f~ G, . S for all positivet. (4.11) 

Given this inclusion U := lJ,,oF,(G, . S’) c f-’ [0, c) fl G, . S c V is the neighborhood 
that we need to conclude stability, in other words, Ft (U) c V for all t > 0. 

We will show the inclusion (4.11) by contradiction. Suppose that (4.11) is false for some 
positive t, which implies the existence of a zc E S’ such that 

to := sup{t > OlF.,(zo) E f-‘(0, E) n G, . S, V’s E [0, t)} < 00. 

The point pu := F,(zo) $ f-‘[O, E) n G, . S by the openness of f-‘[O, E) n G, . S 

and the definition of to. However, by construction po E f-t [0, E) fl G, . S. Thus, there are 
sequences{zi} c Sand{gi} C G, suchthatgi.Zi + po.Since{gi.zi) C f-‘[O, E)nG,.S 
and f is G,-invariant, the sequence {zi} actually belongs to f-‘[O, E) n S. Since S is 

relatively compact, we may assume that zi + z E f-t [0, r) fl S c S by (4.10). At the 
same time, the properness of the G, action gives a subsequence of {gi} converging to some 
g E G,. Therefore, F,(zo) = po = g . z E G, . S so that we can apply inequality (4.9) to 

get 

I = f(&(zo)) I f(zo) + 2~ll~llIIJ(zo) - PII -=c ~9 

since zc E S’. We conclude that po E f-‘[O, E) n G, . S, which is a contradiction. 
If W = (0), then d*(fi I s)(m) is definite. The theorem follows taking ft as f in the 

previous proof. 0 

Remark 4.10. This method presents the advantage, with respect to the classical energy- 
momentum method, that dim W, and therefore the dimension&y of the stability form, is 
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generically reduced by one each time we find a G, -invariant conserved quantity. This is 
particularly convenient at the time of applications. 

Notice that if in Theorem 4.8, we consider the case G = (e}, the relative equilibrium 
becomes an equilibrium and one has the following corollary. 

Corollary 4.11 (Generalized energy-Casimir method). Let (M, (. , .), h) be a Poisson sys- 
tem, and m E M be an equilibrium of the Hamiltonian vector$eld xh. If there is a set of 
conserved quantities Cl, . . . , C, E P(M) for which 

d(h t- Cl +a.-+ C,)(m) = 0, 

and 

d2(h + Cl + -~~+G)(m)lwxw, 

is definite for W defined by 

W = ker dC1 (m) 17 . . . n ker dC, (m), 

then m is stable. If W = (0}, m is always stable. 

Notice that this statement of the energy-Casimir method presents an improvement with 
respect to the classical one [5,14], since here the definiteness of d*(h + Cl + . . . + C,)(m) 
is required only on W x W, while in the original version, this condition needs to be satisfied 
on the whole T,M x T,M. This difference becomes apparent in the following example 
where the stability of the sleeping Lagrange top is studied. The classical treatment of this 
solution based on the energy-Casimir method requires the study of a 6 x 6 matrix (see [ 1 S]), 
however, using Corollary 4.11, a 4 x 4 matrix will suffice to obtain the classical stability 
condition. 

Example 4.12 (Stability of the sleeping Lagrange top as a Poisson equilibrium). The La- 
grange top can be described as a Poisson system on R3 x R3 2 se(3), by taking the 
Poisson structure given by the (-) Lie-Poisson bracket in se(3)*. If we denote by (Il, r) 
the elements in R3 x R3 this bracket, also called the heavy top bracket, has the form 

{F, G)(l-I, r) = -l-l. (VnF x VnG) - P. (VnF x VI-G - VnG x VrF). 

The Lagrange top Hamiltonian in these variables takes the form 

1 l-l:+ I-I; 
h(rl, I-) = 5 

( 

l-l; 

11 
+ r3 +Mglr3, 

) 

where A4 is the total mass of the body, 1 the distance from the fixed point of the top to its 
center of mass and the inertia tensor of the body is 0 = diag[ll , II, 131. 

It can be easily verified that the quantities 

Cl = Ip~(ll~ll*)~ C2 = b02(n . r>, and G = ~3Ub>, 
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with qt,cp2, and ~3 arbitrary real smooth functions, are constants of the motion, that we 
will use in Corollary 4.11 to study the stability of the sleeping top solution, that is, the 
equilibrium solution given by 

m = C&O, n3,0,0, 11, 

with lI3 arbitrary. Let f = h + Cl + C2 + C3. It is easy to see that 

df(m) = 
( 

O,O, 2 + 4o;(n3) + ~j(n3), 0, 0, MgZ + 2~;(1) + r@(r~~) 
> 

. 

Hence taking 1pt,43, and ~3 such that 

v;(l) = +gl + kn31, &n3> = k, and &-13) = - 
kZ3 + n3 

13 ’ 

with k E R arbitrary, we have that df(m) = 0. With the notation of Corollary 4.11, it may 
be computed that 

= spanI(l, 0, 0, O,O, O), (0, 1, 0, 0, O,O>, (O,O, 0, 1, 0, 01, (0, O,O, 0, l,O>l. 

Moreover, 

d2f(m)lwxw = 

whose eigenvalues are 

l/Z1 0 k 
0 l/11 0 
k 0 -Mgl - kI13 
0 k 0 

1 
hk = - (1 - MgZZl - kl, l-I3 

211 

fJ4Zl(ZIk2 + Mgl + kl-13) + (1 - MglZl - kZ,l-13)2). 

The eigenvalues A+ and A_ have both the same sign provided that 

I-I; > (Zlk+y)2. 

Since we are free in the choice of k, the optimal stability condition will occur when (Zr k + 
h4gl//k)2 has a minimum with respect to k, which happens when k = Jm. Hence 
an upright sleeping top is stable provided that 

l-I; > 4MgZZl, 

which is the classical stability condition for a fast top. 
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5. Block diagonalization and reduced periodic orbits 

As we saw in Theorem 2.6 (iv), the projection of a RPO onto the reduced space produces 
a periodic orbit. In [24] we saw how, in the regular case, the G,-stability of the RPO 
is equivalent to the orbital stability of the corresponding periodic orbit in the associated 
symplectic reduced space. In this section we will construct a block diagonalization of the 
stability form based on the isotypic decomposition of a linear representation of a compact 
Lie group. In virtue of the blocking obtained, it will be easy to see the generalization to 
the singular case of the link between the stability of the RPO and its associated (singular) 
reduced periodic orbit. 

In all that follows, we use the notation introduced in the statement of Theorem 4.1, In order 
to use the results on singular reduction introduced in Section 2 in its simplest form, we will 
assume that N(H), the normalizer of the isotropy of the RPO, is a compact subgroup of G. 

Let g be a H-invariant metric on M, always available by the compactness of H, and 
define 

A := T,(G, . m) 613 span{Xh(m)). 

Obviously, 

T,M = (T,(G, . m) @ span{Xh(m))> @ A’, 

where AL is the orthogonal complement to A relative to the inner product induced by g on 
T,M. Since A c ker dC1 (m) fl . . . fl ker dC, (m) rl ker r, J, we have that 

ker dC1 (m) 17 . . . n kerdC,(m) n ker T,J 

= (Tm(GM . m> @ spW& Cm>}> 

$(ker dC1 (m) n . . . n ker dC, (m) n ker T, J n A’) := A $ W, (5.1) 

where we use W for ker dC1 (m) n. . . n ker dC, (m) fl ker Z’, J n A’, since it is obviously one 
of the spaces mentioned in the hypothesis of Theorem 4.1 needed to construct the stability 
form. 

Proposition 5.1. The subspace W = ker dC1 (m) n . . . fl ker dC, (m) n ker T, J n A’, 
constructed above using the H-invariant metric g, has the following properties: 
(i) W is H-invariant as a subspace of T,M, where H acts on W via the natural lifted 

action. 
(ii) The vector subspace WH of H-fixed vectors is naturally isomorphic to WhH), where 

WhH) is such that 

ker d(Ct)(H)([m]‘H’) n . . . n kerd(C,)~H)([m]~H)) W p 
= WhH’ @ span{XhLH,([m]LH))). 

Thefunctions (Ct)LH’ with i E { 1, . . . , n} are uniquely de$ned by the identity 
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Proof. (i) The space ker dC1 (m) rl+ 9 + rl ker dC, (m) II ker Tm J is clearly H-invariant by the 
G,-invariance of the functions Ci and the G-equivariance of J. We therefore just need to 
show that Al is H-invariant. Let u E A’; by definition, for any 4 E gLL, g(m)(v, TV + 
Xh (m)) = 0. The vector k . u for k E H behaves similarly because, by the H-invariance of 

g, 

g(m)@. v, h!(m) + -G(m)) = g(m>(lJ, It-’ . $%m) + k-’ . X,@>> 

= gh)(v, (AdpOM(m) + X/z(m)) = 0, 

since Ad,-1 6 E gw. 

(ii) By Theorem 2.4, (ML?, wL~‘) IS naturally symplectomorphic to the symplectic 

reduced space (KL’ (ho)/L~,, who). Abusing the notation, we will denote by rriH’ the 
surjective submersion 

rrcH) : KL1(ho) = J-‘(p) n MH -+ K,‘(A~)/L~,, P 
= (J-b-4 n adI(~G, (W/H), 

and by ihH) the injection 

icH) : K,‘(ho) - M. 

Since ttn,c~j rrhH) is surjective with kernel T, (L ho . m), we can identify (non-canonically 

because o;the choice of m) T,m,~~~ MhHH’ with T,KL’ (ho)/ T, (Lho . m), and since 

WH = W n T,Mu = ker dC1 (m) n . - . n ker dC, (m) n ker T, J n A’ n T, MH 

=kerdCt(m) n.. . n kerdC,(m) n A’n T,K,‘(ho) c T,K,‘(ho), 

we can define the linear map 

A : WH ----+ Trm,, wMjLH) = T,K,‘(~o)/T,(LA~ .m>, 

w w w + T,,,(Lk, . m) = T,T,$~). w. 

We first show that A is injective: if w E WH is such that w + T, (L,, . m) = T, (Lho . m), 
then w E T,(Lho . m) necessarily and hence there is an element c E Lie(Nc, (H)) c gp 
such that w = .&f(m). Since W fl (T,(G, . m) @ span(Xh(m)}) = {0}, it follows that 
w = 0 and therefore A is injective and an isomorphism onto its image, which we will prove 
is a vector space WLHl”’ := A(WH) c T,,,1;~)it4~~’ such that 

kerd(Ct)(H)([m](H)) fl . . . n ker d(Cn)~HH,([m]~H)) k P 

= WLHL”’ @ span{Xqf~ ([mlLHH’)). (5.2) 

We show first that the sum WLH’ + span{XhF) ([m]iH’)} is direct, that is, 

WLH) n span{Xhirr) ([ml~H’)l = (01. 
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Suppose, without loss of generality, that there is a v E WH such that A(v) = v + T, (LA,, . 

m) = X,+~)([rn$~)). By Theorem 2.3, Xh(~)([,]bH)) = T,nLH’ . Xh(m). If we write 

A(v) as T:,nkH) . 
P 

v, then T,xiH) (Xh (m) - v) = 0, and therefore there exists an element 
4 E Lie(NG, (H)) such that Xh (m) -v = 6~ (m), hence u = Xh (m)+&(m) and therefore 
v E A I-I W = {O). 

We now prove the equality in (5.2). Since every A(v) E WzLH) is such that u E 
kerdCl(m)rl... n ker dC, (m) n ker T, J, this implies that for any i E ( 1, e + . , n), 

d(Ci)jfi’([m]hH’) . A(V) = T,((Ci)LH’ 0 n~H’)(m) . V = d(Ci 0 iLH’,H’)(m) * V = 0, 

and therefore, 

c ker d(CI)‘H’([m](H’) n . . . rl kerd(C,)iH)([m](H)) Ir. cc P . 

Conversely, let [v]hH’ = T,nLH) . v E kerd(Cl)lH)([m],$H’)n. ..nkerd(C,)bH’([m]iH)) 
with v E T,K,‘(ho) = ker T, J n T,M H. Clearly, this implies that v E ker T,J fl 
T, MH n ker dC1 (m) n . . . fl ker dC, (m), and hence it can be uniquely decomposed as 
v = VI + v2, with VI E A and v2 E W. Without loss of generality we assume that 
v~=~~(m)+X~(m),forsome~~g~.SinceuET,M~,k~v=v,foranyk~H,and 
hence 

or equivalently, 

Wr&)~(m> + &h) + k. u2 = h(m) + x/z(m) + 212. 

Since Adkc E Q, the directness of the splitting (5.1) implies that k . {I = am 

and that k . v2 = 212 for all k E H, and therefore [v]hH’ = Xh(~)([rn]LH)) + T,nhH) . ~2, 
w 

with v2 E T,MH n W = WH which guarantees that [v]LH’ = Xh(~)([,]bH)) + A(v2) E 
p 

span{ Xh(H) ([mlifi’)} $ Wh?. ??
Ir 

Definition 5.2. Wecallthe subspace W = ker dCl(m)n.. .nker dC,(m)nker T,JnA’, 
the stability subspace through the RPP m E M, associated to the constants of the motion 

Cl,. . ., C,, and the H-invariant metric g on M. 

Another tool that will be of great importance is the isotypic decomposition of the stability 
subspace W. 

Theorem 5.3. Let W be a stability subspace as in Dejinition 5.2. Then: 
(i) Up to H-isomorphisms, there are ajnite number of distinct (that is, not H-isomorphic) 

H-irreducible subspaces of W. Call these U1, . . . , U,. 
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(ii) Define Wk to be the sum of all H-irreducible subspaces V of W such that V is H- 
isomorphic to Hk. Then 

w = WI a...@ wt. 
We say that the above direct sum decomposition is the H-isotypic decomposition of 
W and that Wk is the isotypic component of W of type uk. By construction, this 
decomposition is unique. 

(iii) Let A : W -+ W be a H-equivariant linear mapping. Then A(Wk) C Wk for k = 
1 t. ,...I 

Proof. This is a restatement of the isotypic decomposition theorem for compact Lie group 
representations in [l l] (Theorems 2.5 and 3.5 of Chapter 12). The hypotheses are verified 
since there is a well-defined H-representation on W by Proposition 5.1 (i) and H = G, is 
compact, because the G-action on M is proper. 0 

We now state the main result of this section. 

Theorem 5.4. Assume the hypotheses and notations of Theorem 4.1 and Proposition 5.1, 
and that, in addition the group N(H) is compact. Let W be the stability subspace through 
m E M associated to a H-invariant metric on M. Then, the stability form of the RPP m 
can be written as 

d2(C, +. . 9 + Cn)(m)lwxw 

d2((Cl)jLH) + . . . + (Cn$Y([ml’H’)I P WW) (H) 
Ai xw, 

0 

A1 ... 0 
= 

0 . . . . . . 
0 . . . A, 

(5.3) 

where d2((CI)kH’ + ... + (C,),$“‘)([m]~u’)] ~ W(H)XW(~) is the orbital stability form as- ~ 

sociated to the periodic point [m]lfi’ E Mjfi), and Al, . . . , A, are the restrictions of 
d2(C1 +. . . + C,,)(m) to the non-trivial isotypic components WI, . . . , Wr of the stability 
subspace W. 

Proof. We see first how the block structure in (5.3) is determined by the isotypic decom- 
position of W. The subspace W H is the trivial isotypic component of W. Therefore, by 
Theorem 5.3, there exist subspaces WI, . . . , W, such that 

w = WH @ wt @. * * cl3 w,, (5.4) 

is the isotypic decomposition of W. The H-invariance of Cl + . . . + C,, implies that 
d2(C1 + . . + + Cn)(m)] wx w, considered as an automorphism of W, is H-equivariant. 
Part (iii) of Theorem 5.3 and (5.4) imply the block diagonal form of (5.3). 0 
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It remains to be shown that the (1, 1)-block of (5.3) equals d2((C1)LH’ +. . . + (Cn)hH’) 

(bQH’> I WwI 
IL 

x Waft. We will use the following technical lemma that was proved in [22,23]. 
I* 

Lemma 5.5. Any v E WH can be expressed as v = (d/dt)Ir=OFy(m), with Fy the 
Hamiltonianjow of a N(H)-invariantfunction g, E COO(M). 

The entries of the (1, 1)-block that we want to compute have the expressions 

d2(C, +. . . + Cn)(m)(v, ~0) for arbitrary v, w E WH. 

By Lemma 5.5, there is a N(H)-invariant function g, on M, whose Hamiltonian flow Fy 
satisfies v = (d/dt) Ir=o Fy (m). We extend w to a vector field W along Fy (m) by setting 

W(FI”(m)) = T, Ftu . w. 

By the definition of the Hessian we get 

d2(C, +. . . + Cn>(m)(v, WI = vvv[cI + ’ . . + Cnll 
d 

=- 
dt t=o 

W[C’ +. . ’ + Gl(Ft”(m>> 

=- d”, _ (dC,(F,U(m)). T,F,' .20 + ... +dC,(F,"(m)) . T,F,” * w). (5.5) 
r-o 

Recall that the (Ci)LH’ are defined by the relations (Ci)LH’ o nLH) = Ci o iLH’ with i E 

11,. . . , n). We identify again (MLH), (H) wg )with(KL’(ho)/L~,,,o~,J,andwetakeforn~H) 

and i,!jH) (abusing th e notation) the canonical projection n, (H) : K,‘(ho) -+ KL’(lo)/&, 

and immersion ihH’ : K,‘(h)) c, M. If v, w E WH, the vector T,rrLH’ . w E WLH’ can 

be extended, using Fy , to a vector field We!’ along ni? ( FtV (m)) by 

W(H)(x(H)(F,“(m))) = T&Z(~) o FrU) . w. !J ti P 

Then, since d((Cl)jfi’ + . . . + (Cn)~H’)([m]‘H’) = 0, we get !J 

d2((C1)iH) + . . . + (Cn)~H,H’)([m]‘H’)(T,&H) . v, T,nhH) . w) /1 !J 

=- d”, _ W~)~HH)((~~H) 0 f~“(m))(T,(n;H,H) 0 fy) . w> + -. . 
r-o 

+Wn)~H,H)((~~H) 0 f;(m))(T,(njlH’ 0 f;) . w>> 

=- d”, _ (d((C$H) 0 nLH))(f;(m)). Tlnf; . w + * . . 
t-o 

+d((Cn)iH) o ncH) p )(f;(m)) . T,f,” . w> 

=- d”, _ (WC1 oihH))(f;(m)). Tmf; 9 w+... 
r-o 

+d(C, o iLH’>(fY(m)> . T, f: . w) 
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=- d”, _ (dC1 (f;(m)) . Ltf: . w +. e. + dGt(ft”h)) * Tmft” . w>, 
t-0 

which coincides with expression (5.5). Since, by definition, WiH’ = T,rchH’ + WH, the 
fact that 

b2(C, + . . . + Cn)(m)(~, w> 

= d2((C,)LHH) + . . . + (Cn)~H’)([m]‘H’)(T,n’H’ 1 u T,ncH) . w) w P ’ P ’ 

for arbitrary u, w E WH, proves the equality in (5.3). 

5.1. Summary of the method 

We have shown that taking the stability subspace W = ker dC1 (m) fl . . . f~ ker dC, (m) f~ 
ker Tnz J~I A’ through the RPP m E M associated to the constants of the motion Cl, . . . , C,, , 
and the H-invariant metric g, the relative periodic point m is G,-stable if the symmetric 
matrix 

i 

d2((C1)bH) + . . . + Kn>~H%[ml’H~>l cc W(H) x Ww) 0 
p & 

A1 ... 0 

0 

i I 

(5.6) 
. . . : 

0 . . . A, 

is definite, where AI, . . . , A, are the restrictions of d2 (Cl + . . . + C,)(m) to the non-trivial 
isotypic components WI, . . . , W, of the H-space W. 

Summarizing, given a RPP m E M, Theorems 4.1 and 5.4 guarantee that m is stable 
modulo G, if the following three conditions are satisfied: 

(H) (i) The bilinear form d2((C1), + + .. + (C,)~H’)([m]~~‘)l,(H,XW’H’ is definite, and 

therefore, the associated singular reduced periodic orbit is o:bitall; stable, 
(ii) The bilinear forms d2 (Cl + . . ~+C,,)(m)l~ixwi aredefinite,foranyi E (l,...,r}, 

(iii) All the definite bilinear forms in (i) and (ii) have the same sign. 
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