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Abstract. The conditions under which it is possible to reduce a Poisson manifold via a regular
foliation have been completely characterized by Marsden and Ratiu. In this Letter we show that
this characterization can be generalized in a natural way to the singular case and, as a corollary,
we obtain that when the singular distribution is given by the tangent spaces to the orbits created
by a Hamiltonian Lie group action, one reproduces theversal Reduction Procedumaf Arms,
Cushman, and Gotay.
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1. Introduction

Reduction theory is the standard method within the framework of Hamiltonian
dynamics for taking advantage of the conserved quantities associated with the
symmetries of a problem. See [1, 14], and references therein for an exposition
of this subject.

The symmetries of a system are usually expressed in terms of a Hamiltonian
Lie group action. However, as it was already known to E. Cartan [9], the natural
mathematical objects that one should look at when carrying out reduction are foli-
ations. When one takes as the foliation the tangent spaces to the orbits created by
a free Hamiltonian Lie group action, one recovers the group-theoretical approach
to the symmetries of the system. This degree of generality has proven to be ex-
tremely convenient when formulating necessary and sufficient conditions for the
reducibility of a problem in the Poisson category [11].
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360 JUAN-PABLO ORTEGA AND TUDOR S. RATIU

The goal of this Letter is to show a generalization of the reducibility char-
acterization in [11], to the case in which the distribution used for the reduction
process presents singularities. The results obtained will allow us to reproduce in a
straightforward manner some standard results in the theory of singular reduction
by Hamiltonian Lie group actions.

2. Stratified Poisson Reduction by Foliations

We first introduce some concepts that will be used in the exposition.

DEFINITION 2.1. LetM be a differentiable manifold. A collection of subspaces
D, c T,M is called asmoothor differentiable distributionif there are locally
defined smooth vector field¥;};c; in X(M), such thaf{ X; (m)};c; spansD,,.

(i) D is calledintegrableif for any m € M, there is an injectively immersed
submanifolds,, ¢ M, such that7,,S,, = D,,.

(i) D is calledinvolutiveif it is invariant under the (local) flows associated to
vector fields with values iD.

Remark 2.2.The definition of involutive distribution given above is more gen-
eral than the traditional one, that is, the Lie bradkétY] takes values itD when-
everX andY are vector fields with values iP. The two concepts of involutivity
are equivalent only when the dimensionf, is independent of: € M.

THEOREM 2.3 (Generalized Frobenius Theorem)differentiable distributiorD
on a manifoldM is integrable iff it is involutive.
Proof. See [10, 12, 16, 17]. O

DEFINITION 2.4. LetM be a differentiable manifold an§l C M be a subset of
M. We say thafS is astratified subsedf M with strata{S;};c; when

(S1) The subsetS; c S, i € I, are injectively immersed submanifolds &f and
form a partition ofS.

(S2) The partition ofS into the connected componerits/}/S/ of the subsets;
is locally finite.

(S3) If 8/ ncl(S)) # @ for GG, j) # @, j), thenS! c S/ and dim(S/) <
dim(s;).

(S4) ckS;) \ S; is a disjoint union of strata of dimension strictly less than @m

We define theangent bundler'S of the stratified subses as7S = |J,.; TS;,
whereT S; denote the ordinary tangent bundles of the maniféids

iel

DEFINITION 2.5. LetM be a differentiable manifold ansi C M be a stratified
subset of\f with strata{S;};c;. We say thalD c T M| is asmooth distribution on
S adapted to the stratificatiofs; };<;, if DN TS; is a smooth distribution of; for
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all i e I. The distributionD is said to beintegrableif D N T'S; is integrable for
eachi e I.

In the situation described by the previous definition, the integrability of the
distributionsD N T'S; on S; allows us to partition eachl; into the maximal inte-
gral manifolds. Thus, there is an equivalence relatipron S; whose equivalence
classes are precisely these maximal integral manifolds. Doing this onSgagh
obtain an equivalence relatioh on the whole sef by taking the union of the
different equivalence classes corresponding to all®heWe define the quotient
spaceS/® asS/ P := ;. Si/ ;.

Notice that Definition 2.4 does not require the stratified suSsetbe a smooth
manifold. In fact, during part of our discussion we will work with structures some-
what more general than manifolds, namedyieties

DEFINITION 2.6. Apair(X, C* (X)), whereX is a topological space arth (X)

C CO(X) is a subset of continuous functions &nis called avariety with smooth
functionsC*(X). If Y C X is a subset o, the pair(Y, C*(Y)) is said to be a
subvarietyof (X, C*(X)), if Y is a topological space endowed with the relative
topology defined by that ot and

C®Y)={f eC%Y)| f =F|yfor someF € C®(X)}.

SometimegT*(Y) is called the set divhitney smooth functiors Y with respect
to X. Amapg: X — Z between two varieties is said to kenoothwhen it is
continuous an@*C*(Z) C C*(X).

In our discussion, we will considés, C*°(S)) as a subvariety afM, C>*(M)).
S/® is a variety whose set of smooth functions is defined by the requirement that
the canonical projection: S — S/® is a smooth map, that is,

C®(S/®) := {f € CUS/®) | fom € CP(S)}
= {feC%S/®)| f o = F|s for someF € C*(M)}.

We will consider the case in which the distributi@dhis given by the tangent
spaces to the orbits of a Lie gro@pacting smoothly oM. By construction,D is
integrable (the maximal integral manifolds are the orbits). We will be particularly
interested in the case in which tiie-action is proper. For future reference, we
guote the following result in relation with this particular kind of action:

PROPOSITION 2.7.Let G be a Lie group acting properly on the manifald. Let
(S, C*(S)) be a subvariety ofM, C*°(M)) such thatS is a G-invariant subset
of M. Then eaclG-invariant functionf € C>(5)¢ on S can be extended t in
a G-invariant fashion, that is, there is & € C*(M)¢ such thatF|s = f.

Proof. See [3, Proposition 2]. O
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DEFINITION 2.8. Let(M, {-,-}) be a Poisson manifold anB C TM be a
smooth distribution od/. The distributionD is calledPoissonor canonical if the
conditiond f|p = dg|p =0 for f, g € C*°(M) implies thatd{f, g}|p =0

If the distribution D is defined by the tangent spaces to the orbits of a Lie group
G acting smoothly onM, the condition thatD is Poisson can be expressed in the
following way: if f, g € C*°(M) are such thaty[f] = &y[g] = O for anyé € g,
thenéy[{f, g}]1 = O, for any¢ € g, whereg,, denotes the infinitesimal generator
of the action.

DEFINITION 2.9. LetS c M be a stratified subseg, € C*(S), andm € S.
A local extensiorof g atm is a functionG € C*(M) satisfying the following
condition: there exists an open neighborhdgg of m in M such thatG|sny, =
8lsnu,-

Let D be an integrable distribution adapted to the stratified subsetM. We
say thatD has theextension propertyf for any f € C*(S/®) and anym € §
the mapf o 7 € C°(S) admits a local extensiof € C*(M) atm such that
dF|p = 0 (at all points ofM).

Remark 2.10Note that if S is just a submanifold o and D has constant
dimension, that isD is a usual smooth integrable subbundl’'d#, the extension
property is satisfied automatically: it suffices to take a submanifold chast of
relative toM which is also a foliated chart of with respect to the distribution
D|s. Also, if D is given by the tangent spaces to the orbits of a prgpection on
M and S is a G-invariant subset of, Proposition 2.7 guarantees that the triplet
(M, S, D) has the extension property. In general, note that given two different
pointsm, m’ € S, the local extensions ai and atn’ need not coincide.

DEFINITION 2.11. Let(M, {-, -}) be a Poisson manifold, be a stratified subset
of M with strata{S;};c;, and D C TM]|s be a Poisson integrable distribution
adapted ta& such that M, S, D) has the extension property. We say thet S, D)

is Poisson reduciblgf the pair (C*(S/®), {-, }s/o) is a well-defined Poisson
algebra, where the brackgt -}s,¢ is given by

{f, &lsjo(m(m)) = {F, G}(m), (2.1)

for everym € S, whereF, H € C*°(M) are smooth local extensions ¢fo 7, g o
T € C*(S) atm satisfyingdF|p = dG|p = 0.

Below we shall use the following notation:¥f is a vector space andf c V is
a subspace, thennihilator W° of W in the dualV* of V is defined by

We={aeV"|a(w)=0, forallw e W}.

MPA98131.tex; 3/12/1998; 16:11; p.4



SINGULAR REDUCTION OF POISSON MANIFOLDS 363

We now give a necessary and sufficient condition(fif, S, D) to be Poisson
reducible. This result naturally generalizes the result of Marsden and Ratiu [11] to
the singular case.

THEOREM 2.12. Let (M, {-, -}) be a Poisson manifold with Poisson teng®r
T*M — T M, S be astratified subset af with strata{sS;};c;,andD Cc TM|sbea
Poisson integrable distribution adapted $asuch that(M, S, D) has the extension
property. ThenM, S, D) is Poisson reducible if and only if for amy € S we have

B(A,) C TS +[AST°, (2.2)
where

Ay i={dF(m) | F € C*(M),dF|p = 0},
and

A,i :={dF(m) € A, | F|y,ns IS constant, foi,, an open
neighborhood ofz in M}.

Proof.If F € C*(M), denote byX  the Hamiltonian vector field defined by
F. An alternative way to write the condition in the statement is

{Xp(m) | F € C*(M),dF|p =0}
C T,S+{dF(m) | F € C®(M),
dF|p =0, Fl|y,ns is constant, folJ,, an open
neighborhood ofz in M}°.

The proof of the theorem follows the strategy of [11]. First, we suppose that
(M, S, D) is Poisson reducible. L&t € C*° (M) satisfydF|p = 0 and let

oy € [TS +[AST°1 = [T, SI° N AS.

Thus,«,, = dK (m) for somekK e C*°(M) satisfyingdK|p = 0, K is constant on
U, NS, whereU,, is an open neighborhood of in M. Therefore, the functiong
andK induce functionsf, k € C*°(S/®)by fomr = Foi,komr = K oi andk is
constant in an open neighborhoodsafin) in S/ ®. Thus, by Poisson reducibility
(2.2),

(om, Xp(m)) = {K, F}(m) ={k, f}s/o(m(m)) =0,

sincek is a constant in a neighborhood ofm). Sincea,, € [T,,S + [AS]°]° is
arbitrary, it follows thatX r(m) € T,,S + [A3 ]°.

Conversely, ifB(A,) C T,S + [AS]°, let f,g € C®(S/®) and F,G ¢
C*(M) be smooth local extensions gfo m, g o m € C*(S) atm such that
dF|p = dG|p = 0. SinceD is a Poisson distribution, it follows thd{ F, G}|p =
0, which implies that{F, G} is constant on the equivalence classesbofind
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therefore induces a function, which we shall cgfl g}s/0 € C®(S/P), satis-
fying the condition (2.1). If we show that this function does not depend on the
extensions involved, this defines the reduced bragket}s o on S/ ®. Indeed,

let G’ € C*°(M) be another local extension gfo r € C*(S) atm such that
dG’|p = 0. Then(G — G')|snu,, = O, whereU,, is the neighborhood ao#: in

M given by the hypothesis of local extendability of pull backs of functions from
the quotient. Thusd(G — G’)(m) vanishes oif,,S. It also vanishes opAS ]° by
definition. Now using the hypothesis, for amy< S

(d(G — G')(m), B(m)(dF(m))) =0, hence {F,G}(m)={F, G'}(m),

which proves the independence on hgwer is extended. By antisymmetry 6f -}
itis also independent of the extension 06 r, therefore( £, g}s/4 is well-defined
and uniquely determined by the expression (2.1). With this bra@k&t(S/ @),
{-,-}s/») is a Poisson algebra since the bracket}s, s inherits all the properties
of a Poisson bracket from those {of -}. |

Remark 2.13In the regular case considered in [1%]js a submanifold and
D is a smooth subbundle gfM. We have already seen that in this situation the
extension property is automatically satisfied. The condition of Poisson reducibility
is stated as

B(D°) C TS+ D. (2.3)

Since the distributionD is adapted to the submanifol§] working in a chart on
M around a given pointz € S, anya,, € D;, can be written aslF (m) for some
smooth functionF defined in this chart and constant on the local leaves of the
foliation given by D. Now choose in every chart some function that is constant
on the leaves of the foliation and construct a smooth functioMdny adding all
these functions by means of a partition of unity. The resulting smooth function, also
calledF, is constant on the leaves of the foliation (sinlde , = 0 by construction)
and has the same differential rat that is,dF(m) = «,,. This shows that in the
regular case\,, = D;,.

Let us now show that in the regular ca®g S+ D,, = T,,S+[A5 ]°. SinceAS C
A, it follows thatD,, = [A,,]° C [AS]° and, henceT;,S + D,, C T,,S + [AS ]°.
To prove the converse, it suffices to show that

[Ai]o C TmS + Dm = [TmS]OO + [Am]O = [(TmS)O N Am]o,

or, equivalently, that7,,5)° N A,, C A3 which is proved in the following way.
If a, € (T,,8)° N A, thenw,, = dF(m) for F € C*(M) satisfyingdF|p =
0 anddF(m)|s,,s = 0. One can replacé by a smooth function vanishing on
the distributionD and at the same time being constanim S, for U an open
neighborhood ofr in M. (To do this, replace in a chart at the functionF|, by
the constant function equal tg,, which is possible since,, vanishes orD,, and
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onT,S, and then patch this function with the restrictionfoto an open se¥ such
thatU UV = M by means of a partition of unity. The resulting function is smooth,
satisfiesdF|p = 0 and is constant oty N §.) This function has differential at
belonging toA3 which proves the desired inclusion.

It should be also noted that in the singular case condition (2.3) is only sufficient
for the Poisson reducibility ofM, S, D), even if D is given by a group action. For
example, consider the case of tiitaction by positive rotations on the complex
line C. We take the integral manifolds of the distributi@nto be the concentric
circles and the origin. This action has an equivariant momentum map given by
J(z) = [z]?/2 so thatS := J71(0) = 0. ThenD, = {0} so thatD§ = C and,
hence,B(Dg) = C, since the Poisson structure @his induced by the standard
symplectic structure which is nondegenerate. On the other Hgfids= 0, so that
ToS + Do = {0}, which contradicts (2.3). Howevero = {0} and thus this is
consistent with (2.2).

We now study the functoriality property of Poisson reduction, that will be used
to reduce the dynamics.

PROPOSITION 2.14.Let(M;, S;, D;) j = 1, 2, be Poisson reducible. We denote
the Poisson bracket d/; by {-, -};. Letg: M; — M, be a Poisson map such that
¢(S1) C Sp, andTe(D1) C D, (thereforep maps the equivalence classesdof
into the equivalence classes®$). Theng induces a uniqgue smooth Poisson map
@: S1/®1 — S/ P, characterized byr,o@oiy = @omy, Wherei;: §; — M; are
the inclusions andr;: S; — S;/®; are the projections. We caff the reduction
of ¢.

Proof. By the hypotheses op, the mapy exists, is smooth, and is unique. We
show that it is Poisson. Lef, g € C*°(S,/®,), m € Sy, andF, G € C*(M,) be
local extensions ap(m) € S, of f o7, g 0o 1 € C™®(S,) respectively, such that
dF|D2 = dG|D2 = 0. Then

O [y 8lspya,(m1(m)) = {f, 8}s,/0,((¢ 0 1) (m))
= {f7 g}Sz/d)z((nZ o 90)(’/”))
= {F, G}2(p(m)). (2.4)

Note thatF o ¢, G o ¢ € C*(My) are smooth local extensions iat € S; of
fo@om, go@om € C®(Sy), respectively, which satisfd(F o ¢)|p, =
d(G o ¢)|p, = 0 by the chain rule and the hypothegig(D1) C D,. Therefore,

{a*f’ a*g}sl/dn(”l(z)) = {F o, Go ¢}1(Z) = {F7 G}Z((P(Z))a

which coincides with (2.4) thereby proving the proposition. O

Within the framework of Poisson manifolds, the natural identification between
derivations on the ring of smooth real-valued functions and vector fields, allows us
to associate to each function on the manifold a Hamiltonian vector field. In the case
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of Poisson varieties likéS/®, C*(S/®)), we need something more general to
introduce dynamics since, in gener&l,® is not a smooth manifold and, therefore,
defining vector fields is not always possible.

DEFINITION 2.15. Let(M, S, D) be a Poisson reducible system andilet C*°
(S/®). We define theHamiltonian flowassociated té as the smooth map,”’®:

S/® — S/® such that for anyf € C*(S/®) and any; € S/®, we have

d
Ef(Ff/ ®@) = {f, hsjo(F ().

Note that within this framework there is no standard Existence and Uniqueness
Theorem, as is the case for flows associated to Hamiltonian vector fields on smooth
manifolds. In fact, these two issues need to be addressed separately. The following
result shows that existence is always guaranteed.

THEOREM 2.16 (Reduction of the dynamicd)et(M, S, D) be a Poisson reduci-
ble system and let € C*(M) be a function such thadk|, = 0 and whose
Hamiltonian flowF; preserves the subs§ithat is, for any time, F;(S) C S. Sup-
pose also that for any, T F,(D) C D. Then there is a functions/® € C*(S/®)
uniquely defined by the relation’/® o m = h o i, called the reduced Hamiltonian,
for which the reductions,*’® of F, is a Hamiltonian flow induced by5/®. In
addition, F*/® is a Poisson map.

Proof. The conditiondi|p = 0 guarantees thatis constant on the equivalence
classes ofd and therefore the relatioh’’® o 7 = h o i definesh®/® uniquely.
Proposition 2.14 ensures the existencerf®: S/® — S/® as the unique
Poisson mapping satisfying the equalityo F; o i = F'® o . We verify that
F*'® is a Hamiltonian flow for:5/®. Notice that, by constructior is a smooth
extension ofi5/® o . Thus, if £5/® € C*(S/®) is arbitrary, letf € C®(M) be a
smooth local extension &, (m) € S of £5/® o 7. By the flow property, for small
|t — 1], f is also a smooth local extensionfaim) of £5/® o . Thus, we get for
suche

%f”“’(Ff/ (7 (m)))

_ E S/® : — E
= dtf ((r o F, 0i)(m)) = dzf(F’(m))

= {f, h}(F,(m)) = {5/, h*/®}g)0(m(F,(m)))
= (£5®, 15/ %50 (F T (7 (m))),

which proves the claim. O
Let us remark again thak”’® may not be the unique Hamiltonian flow as-

sociated ta25/®. The following proposition, due to Sjamaar and Lerman [5, 15],
describes a situation in which the uniqueness of the reduced flow is guaranteed.
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PROPOSITION 2.17.Let (M, S, D) be a Poisson reducible system. If the func-
tions in C>(S/®) separate points, then each Hamiltonia® e C*(S/®) has
a unique associated Hamiltonian flow.

Proof. The existence is guaranteed by the previous theorem since the reduction
F’'® of the Hamiltonian flowF, associated to any smooth local extenstore
C>®(M) of h/® o at an arbitrary point, such thdt |, = 0, does the job. Suppose
now that GY/® is another Hamiltonian flow fokS/®. Since by hypothesis, the
functions inC>(S/®) separate points, it is enough to show that for giy® <

C>®(S/®), m(m) € S/, and any time,

FIRGIF G m))) = 52 (e (m)).
This identity holds as a consequence of the following computation, in which we
use the chain rule and the fact that/® is a Hamiltonian flow for—#5/<:

%fs“’«;f/ *(F*((m))))

= (£S5, B/ ®)g0(GY O (F® (e (m)))) +
{520 GV —hS® 0 G/ Y5 0 (FL ((m))) = 0.

since the flonG:/® is Poisson by Theorem 2.16. O

This result is particularly relevant when the distributibris given by the proper
action of a Lie group, since in this case, the hypothesis on the separation of points
always holds.

3. Singular Poisson, Point, and Orbit Reduction

We will now use the results just proved as the main tool to study the reduction of
Poisson structures by the proper and canonical action of a Lie group. The simplest
case is given in the following theorem.

THEOREM 3.1 (Singular Poisson reductionl)et (M, {-, -}) be a Poisson mani-
fold and letW: G x M — M be a smooth proper canonical action. Then the
following hold:

(i) The pair(C*(M/G), {-, -}u,c) is a Poisson algebra, where the Poisson brack-
et {, -}m/c is characterized b\ f, g}/ o m = {f o m, g o}, for any
f,g € C®M/G); m: M — M/G denotes the canonical smooth projection.

(i) Let~ be aG-invariant function onM. The Hamiltonian flowF; of X, com-
mutes with the5-action, so it induces a flow,"/¢ on M /G which is Poisson
and is characterized by o F, = F"/% o 7.

(iii) The flowF,"/“ is the unique Hamiltonian flow defined by the functibh e
C*®(M/G) which is given by[h] o 1 = h. We will call [#] the reduced
Hamiltonian.
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Proof. (i) This part can be obtained as a corollary to Theorem 2.12 by taking
M = S, andD c T M the distribution given byD,, = g - m. This distribution is
smooth since for evernyr € M, if {£1,...,£"} is a basis of the Lie algebgg the
evaluation of the vector fielm, ..., &}, atm, spansD,,. The distributionD is
also trivially integrable since, by construction, the oi@it m is a submanifold of
M such thatD,, = T,,(G - m) = g - m, for arbitrarym € M. The canonical char-
acter of theG-action guarantees thd is Poisson in the sense of Definition 2.8.
Remark that the distributio® satisfies trivially the extension property, as well as
the hypothesis of Theorem 2.12 sinBgA,,) C T,,M C T, M + [A3,]°. This
guarantees thaC>(M/G), {-, -}u/c) is a Poisson algebra.

(i) Since the Lie groupG acts canonically o/ and the Hamiltoniark is G-
invariant, the Hamiltonian flow associatedit@atisfies thatv, o F; = F; o W, for
anyg € G and therefore, for ang € g, anym € M, and any time

TmFt : SM(m) ds

F,(exps§ - m)
s=0

expsé - Fy(m) = &y (F(m)),
s=0

which implies thatT F; (D) c D. The claim follows from Proposition 2.14.
(i) is a corollary of Theorem 2.16. The uniqueness follows from Proposi-
tion 2.17, and the properness of the action. O

At this point we will assume tha¥/ is not only Poisson, but also symplectic,
and that the canonical action 6f on M is proper and has an associated globally
equivariant momentum mab M — g*, that is, the action is globally Hamiltonian.
The natural step to take in this situation is studying point and orbit reduction. Re-
garding the former, recall that in the regular case [13})/ifvas a symplectic man-
ifold, so was the point reduced spatg, := J~1(1)/G,,, whereG,, denotes the
coadjoint isotropy subgroup @f € g*. If we are in a genuinely, singular situation,
the space1(1)/ G, is not even a manifold; however, it can be shown that in the
sense of Definition 2.11, it is endowed with a Poisson structure. The construction
of this Poisson structure constitutes thriversal Reduction Procedu@ Arms,
Cushman and Gotay [3] which is described in detail in the following theorem.

THEOREM 3.2 (Singular point reduction)Let (M, ) be a symplectic manifold
and letG be a Lie group acting properly o in a globally Hamiltonian fashion
with associated equivariant momentum ndap — g*. Letu € g* be a value of
J and denote by, the isotropy ofu under the coadjoint action af on g*. The
following hold:

() The setM,, := J71(u)/G, is such that the paitC>(M,), {-, Jum,) is @
Poisson algebra, with Poisson bracKet-},,, characterized by

s 8, (Im)) = {f, g}(m), 3.1
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for any f,, g, € C®(M,). The functionsf,g € C>*(M)° are arbitrary
smooth local extensions at € J=1(1) of f, o7, g, o7, € C®I71(w))%",
wherer,: J71(n) — M, is the canonical smooth projection, afiet],, :=
m,(m)eM,.

(i) Leth € C®(M)° be aG-invariant Hamiltonian. The Hamiltonian flow, of
h leaves the connected componentdd{ 1) invariant and commutes with the
G-action, so it induces a Poisson flaf‘ on M,,, uniquely determined by

m,0F 0i,=Fom,, (3.2)

wherei,: J71(1) < M is the canonical injection.

(i) The flowF/ is the unique Hamiltonian flow M, {-, -}»,), with Hamil-
tonian functionk, € C*(M,) defined byz, o 7, = hoi,. We will callh,
the reduced Hamiltonian.

(iv) Letk € C®(M)C be anotherG-invariant function. Then{h, k} is also G-
invariant and{x, k},, = {h,, ku}um,-

Proof. Once more, we will obtain this result as a corollary to Theorem 2.12
taking M as the Poisson manifold;*(x) as the stratified subsét and D as the
distribution given by the tangent spaces to th@rbits inJ~1(u), that is, for any
m e JX(w), D,, = g - m. We verify thatJ~1(n) is a stratified subset in the sense
of Definition 2.4 and thaD is a smooth, integrable, Poisson distribution, adapted
to the stratification o8=%(u), for which the extension property holds.

Firstly, the equivariance af with respect to the&s-action implies that there is
a well-defined continuous ,-action on the topological spade®(u). Since the
subset) (1) and the subgroug, are closed i and G, respectively, thes,
action onJ~1(n) is proper and therefore a standard result (see, for instance [6—8])
guarantees thal~!(u) can be stratified using the orbit type manifolds associ-
ated to theG ,-action, that isJ~*(n) is a stratified subset aff with strata the
submanifolds of\f

@M, = 37w N MG,
for any isotropy subgroup/ C G,. Recall that

M(Cj;‘) :={z € M | G, is conjugate td7 in G,}.

By the Bifurcation Lemma (see [4, 14]), for amy € M, rang€&T,,J) = (g,.)°,
whereg,, is the Lie algebra of the isotropy subgrodp,, and (g,,)° = {u €

g* | nlgm = 0O} denotes the annihilator ig* of g,,. Note that this proves that

I, 6n is a constant rank map and, hence, by the Subimmersion Theorem (see [2,

Theorem 3.5.17]),

(o) G0 = 3700 N MG = 370G

is a submanifold oM(GH“) and therefore of\1.
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Secondly, the distributioD is smooth since it is induced by a smooth group
action. We now verify that it is adapted to the stratificatiodof(x) by G ,-orbit

types. Recall that the Subimmersion Theorem states that fm%jJ*l(u))f;),

LA 0] = Ta(@lye) " w) = kert,l, o

G
= ker7,,J N TmM(H‘,‘),

Gu

and therefore, using the Reduction Lemma and2penvariance ofM ;).

_ G G
Dy N T, [ (w) ] = kerT,INT, M Ng-m
G
= g -mNT,M;y, =g, m.

This implies thatD coincides, stratum by stratum, with the smooth integrable
distribution induced by thé& ,-action, which guarantees thax is integrable and
adapted to the stratified subset (). As in Theorem 3.1, the canonical character
of the G-action implies that the distributioP is Poisson. The extension property of
D follows from the following proposition whose proof follows in a straightforward
manner from the use of normal forms (see [14]).

PROPOSITION 3.3.Let(M, w) be a symplectic manifold and I6tbe a Lie group
acting properly onM in a globally Hamiltonian fashion with associated equivari-
ant momentum map: M — g*. Letm € M and denotel(m) = u, H := G,,.

Then everyf € C*(J~ ()% (respectivelyf € C*J1(n) N Mg;‘))Gﬂ) admits
a local G-invariant extension at: to C*(M)°.

Finally, in order to show tha¥/,, is Poisson, we use Theorem 2.12 to prove that
the triplet(M, J-1(n), D) is Poisson reducible, that is, we will verify for arbitrary
m € J~X(n) that

B(An) C T3 M) + [A) @],
Indeed, ifF € C*®(M)%» andH = G,,, we will show that
Xpm) € T,[Q7 o)) +[a) ]
= [kerT,, dN T, M. ]+ [AL @],
To see this, let
an € [[kerTdn TMGp]+ [a% @)
Gy

= [kerT,, dN T, M ]° N AL,

so thata,, = dK (m) for someK e C>®(M)°, constant ort/,, N J~1(n), where
U,, is an open neighborhood of in M. Then,

(m, Xp(m)) ={K, F}(m) = Xp[K](m).
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However, by Noether’s Theorem, the Hamiltonian flBwof X . preserves the level
sets ofJ, in particularJ=*(u). Therefore,

d
Xr[K](m) = & K (Fi(m)) =0,
¢ t=0
since K |;-1,,= 0. This proves the required condition dfy(m) and, hence,
implies that(M,,, C*(M,,)) is a Poisson algebra with bracKet-},, defined by

{fu> utm, (Im]) = {f, g}(m),

foranyf,, g, € C*(M,),andf, g € C>*(M)® arbitrary smooth local;-invariant
extensions at of £, o 7, g, o 7, € C*°(J~1(w))%*, whose existence is again
guaranteed by Proposition 3.3.

The remaining points are a straightforward consequences of Noether's The-
orem, Proposition 2.14, and Theorem 2.16. The uniqueness of the flow for the
reduced Hamiltonian follows from Proposition 2.17, and the properness of the
action. O

A theorem completely identical can be stated for the singular orbit reduced
spaceMy, = J71(0,)/G. The only difference in the proof, with respect to the
one corresponding to Theorem 3.2, is that in this chs€0©,,) will play the role
of S, which will be stratified by means of the orbit types corresponding to the
G-action defined on it. The extension property follows directly in this case from
Proposition 2.7, due to thé-invariance ofl=1(0,,).

THEOREM 3.4 (Singular orbit reduction)Let (M, w) be a symplectic manifold
and letG be a Lie group acting properly o in a globally Hamiltonian fashion
with associated equivariant momentum ndap — g*. Letu € g* be a value of
J, and denote by, the orbit of under the coadjoint action ai ong*. Then the
following hold:

() The setM, := J71(0,)/G is such that the paiC>(Mop,), {-, Imo,) is a
Poisson algebra, with Poisson bracKet-} Moy, » characterized by

{f(9;u g(9M}M(9/1 ([m](%i) = {fv g}(m)7 (33)

forany fo,, g, € C*(My,). The functionsf, g € C>®(M)C are arbitrary
local extensions atn of fo, o 7g,, 80, © T, € C*I71(0,))°, where
T, It — Mg, is the canonical smooth projection arigh]y, :=
To,(m) € Mg,.

(i) Leth € C®(M)° be aG-invariant Hamiltonian. The Hamiltonian flow, of
h leaves the connected componentd of(®,,) invariant and commutes with

the G-action, so it induces a flowfg“ on Mg, , uniquely determined by
7'[(9” o Ft o i(9u = FIO‘L o T[@u’ (34)

wherei,,: J1(09,) — M is the canonical injection.
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372 JUAN-PABLO ORTEGA AND TUDOR S. RATIU

(iii) The rowF,(g" is the unique Hamiltonian flow itM e, , {-, Mo, ) with Hamil-
tonian functionzy, € C*(My,) defined byrp, oo, = hoie,. We will call
he, the reduced Hamiltonian.

(iv) Letk € C>®(M)C be anotherG-invariant function. Then{a, k} is also G-
invariant and{#, k}o, = {ho,. ko, }ma,-

Remark 3.5The Poisson algebragC>(M,), {-, -}u,) and (C*(My,),

{Iue,) are in general degenerate and, consequently, have nontrivial symplec-
tic leaves. It can be shown (see [14]) that these leaves correspond to the singular
symplectic reduced spaces of Sjamaar and Lerman [15], and Bates and Lerman [5].
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