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Abstract. The conditions under which it is possible to reduce a Poisson manifold via a regular
foliation have been completely characterized by Marsden and Ratiu. In this Letter we show that
this characterization can be generalized in a natural way to the singular case and, as a corollary,
we obtain that when the singular distribution is given by the tangent spaces to the orbits created
by a Hamiltonian Lie group action, one reproduces theUniversal Reduction Procedureof Arms,
Cushman, and Gotay.

Mathematics Subject Classifications (1991):70H33, 58F05, 53C80.

Key words: Poisson manifold, reduction, symmetry, singularity, stratification.

1. Introduction

Reduction theory is the standard method within the framework of Hamiltonian
dynamics for taking advantage of the conserved quantities associated with the
symmetries of a problem. See [1, 14], and references therein for an exposition
of this subject.

The symmetries of a system are usually expressed in terms of a Hamiltonian
Lie group action. However, as it was already known to É. Cartan [9], the natural
mathematical objects that one should look at when carrying out reduction are foli-
ations. When one takes as the foliation the tangent spaces to the orbits created by
a free Hamiltonian Lie group action, one recovers the group-theoretical approach
to the symmetries of the system. This degree of generality has proven to be ex-
tremely convenient when formulating necessary and sufficient conditions for the
reducibility of a problem in the Poisson category [11].
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The goal of this Letter is to show a generalization of the reducibility char-
acterization in [11], to the case in which the distribution used for the reduction
process presents singularities. The results obtained will allow us to reproduce in a
straightforward manner some standard results in the theory of singular reduction
by Hamiltonian Lie group actions.

2. Stratified Poisson Reduction by Foliations

We first introduce some concepts that will be used in the exposition.

DEFINITION 2.1. LetM be a differentiable manifold. A collection of subspaces
Dm ⊂ TmM is called asmoothor differentiable distributionif there are locally
defined smooth vector fields{Xi}i∈I in X(M), such that{Xi(m)}i∈I spansDm.

(i) D is called integrable if for any m ∈ M, there is an injectively immersed
submanifoldSm ⊂ M, such thatTmSm = Dm.

(ii) D is called involutive if it is invariant under the (local) flows associated to
vector fields with values inD.

Remark 2.2.The definition of involutive distribution given above is more gen-
eral than the traditional one, that is, the Lie bracket[X,Y ] takes values inD when-
everX andY are vector fields with values inD. The two concepts of involutivity
are equivalent only when the dimension ofDm is independent ofm ∈ M.

THEOREM 2.3 (Generalized Frobenius Theorem).A differentiable distributionD
on a manifoldM is integrable iff it is involutive.

Proof.See [10, 12, 16, 17]. 2

DEFINITION 2.4. LetM be a differentiable manifold andS ⊂ M be a subset of
M. We say thatS is astratified subsetof M with strata{Si}i∈I when

(S1) The subsetsSi ⊂ S, i ∈ I , are injectively immersed submanifolds ofM and
form a partition ofS.

(S2) The partition ofS into the connected components{Sji }j∈Ji∈I of the subsetsSi
is locally finite.

(S3) If Sji ∩ cl(Sj
′
i′ ) 6= ∅ for (i, j) 6= (i′, j ′), thenSji ⊂ S

j ′
i′ and dim(Sji ) <

dim(Sj
′
i′ ).

(S4) cl(Si) \Si is a disjoint union of strata of dimension strictly less than dim(Si).

We define thetangent bundleT S of the stratified subsetS asT S = ⋃
i∈I T Si,

whereT Si denote the ordinary tangent bundles of the manifoldsSi.

DEFINITION 2.5. LetM be a differentiable manifold andS ⊂ M be a stratified
subset ofM with strata{Si}i∈I . We say thatD ⊂ TM|S is asmooth distribution on
S adapted to the stratification{Si}i∈I , if D ∩ T Si is a smooth distribution onSi for
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all i ∈ I . The distributionD is said to beintegrableif D ∩ T Si is integrable for
eachi ∈ I .

In the situation described by the previous definition, the integrability of the
distributionsD ∩ T Si on Si allows us to partition eachSi into the maximal inte-
gral manifolds. Thus, there is an equivalence relation8i on Si whose equivalence
classes are precisely these maximal integral manifolds. Doing this on eachSi, we
obtain an equivalence relation8 on the whole setS by taking the union of the
different equivalence classes corresponding to all the8i. We define the quotient
spaceS/8 asS/8 := ⋃i∈I Si/8i.

Notice that Definition 2.4 does not require the stratified subsetS to be a smooth
manifold. In fact, during part of our discussion we will work with structures some-
what more general than manifolds, namelyvarieties.

DEFINITION 2.6. A pair(X, C∞(X)), whereX is a topological space andC∞(X)
⊂ C0(X) is a subset of continuous functions onX, is called avarietywith smooth
functionsC∞(X). If Y ⊂ X is a subset ofX, the pair(Y, C∞(Y )) is said to be a
subvarietyof (X, C∞(X)), if Y is a topological space endowed with the relative
topology defined by that ofX and

C∞(Y ) = {f ∈ C0(Y ) | f = F |Y for someF ∈ C∞(X)}.
SometimesC∞(Y ) is called the set ofWhitney smooth functionsonY with respect
to X. A mapϕ: X → Z between two varieties is said to besmoothwhen it is
continuous andϕ∗C∞(Z) ⊂ C∞(X).

In our discussion, we will consider(S, C∞(S)) as a subvariety of(M, C∞(M)).
S/8 is a variety whose set of smooth functions is defined by the requirement that
the canonical projectionπ : S→ S/8 is a smooth map, that is,

C∞(S/8) := {f ∈ C0(S/8) | f ◦ π ∈ C∞(S)}
= {f ∈ C0(S/8) | f ◦ π = F |S for someF ∈ C∞(M)}.

We will consider the case in which the distributionD is given by the tangent
spaces to the orbits of a Lie groupG acting smoothly onM. By construction,D is
integrable (the maximal integral manifolds are the orbits). We will be particularly
interested in the case in which theG-action is proper. For future reference, we
quote the following result in relation with this particular kind of action:

PROPOSITION 2.7.LetG be a Lie group acting properly on the manifoldM. Let
(S, C∞(S)) be a subvariety of(M, C∞(M)) such thatS is aG-invariant subset
ofM. Then eachG-invariant functionf ∈ C∞(S)G onS can be extended toM in
aG-invariant fashion, that is, there is aF ∈ C∞(M)G such thatF |S = f .

Proof.See [3, Proposition 2]. 2
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DEFINITION 2.8. Let (M, {·, ·}) be a Poisson manifold andD ⊂ TM be a
smooth distribution onM. The distributionD is calledPoissonor canonical, if the
conditiondf |D = dg|D = 0 for f, g ∈ C∞(M) implies thatd{f, g}|D = 0

If the distributionD is defined by the tangent spaces to the orbits of a Lie group
G acting smoothly onM, the condition thatD is Poisson can be expressed in the
following way: if f, g ∈ C∞(M) are such thatξM[f ] = ξM[g] = 0 for anyξ ∈ g,
thenξM[{f, g}] = 0, for anyξ ∈ g, whereξM denotes the infinitesimal generator
of the action.

DEFINITION 2.9. LetS ⊂ M be a stratified subset,g ∈ C∞(S), andm ∈ S.
A local extensionof g at m is a functionG ∈ C∞(M) satisfying the following
condition: there exists an open neighborhoodUm of m in M such thatG|S∩Um =
g|S∩Um.

LetD be an integrable distribution adapted to the stratified subsetS ⊂ M. We
say thatD has theextension propertyif for any f ∈ C∞(S/8) and anym ∈ S
the mapf ◦ π ∈ C∞(S) admits a local extensionF ∈ C∞(M) at m such that
dF |D = 0 (at all points ofM).

Remark 2.10.Note that ifS is just a submanifold ofM andD has constant
dimension, that is,D is a usual smooth integrable subbundle ofTM, the extension
property is satisfied automatically: it suffices to take a submanifold chart ofS

relative toM which is also a foliated chart ofS with respect to the distribution
D|S. Also, ifD is given by the tangent spaces to the orbits of a properG-action on
M andS is aG-invariant subset ofS, Proposition 2.7 guarantees that the triplet
(M, S,D) has the extension property. In general, note that given two different
pointsm,m′ ∈ S, the local extensions atm and atm′ need not coincide.

DEFINITION 2.11. Let(M, {·, ·}) be a Poisson manifold,S be a stratified subset
of M with strata{Si}i∈I , andD ⊂ TM|S be a Poisson integrable distribution
adapted toS such that(M, S,D) has the extension property. We say that(M, S,D)

is Poisson reducibleif the pair (C∞(S/8), {·, ·}S/8) is a well-defined Poisson
algebra, where the bracket{·, ·}S/8 is given by

{f, g}S/8(π(m)) = {F,G}(m), (2.1)

for everym ∈ S, whereF,H ∈ C∞(M) are smooth local extensions off ◦ π, g ◦
π ∈ C∞(S) atm satisfyingdF |D = dG|D = 0.

Below we shall use the following notation: ifV is a vector space andW ⊂ V is
a subspace, theannihilatorW ◦ of W in the dualV ∗ of V is defined by

W ◦ = {α ∈ V ∗ | α(w) = 0, for all w ∈ W }.
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We now give a necessary and sufficient condition for(M, S,D) to be Poisson
reducible. This result naturally generalizes the result of Marsden and Ratiu [11] to
the singular case.

THEOREM 2.12. Let (M, {·, ·}) be a Poisson manifold with Poisson tensorB:
T ∗M → TM, S be a stratified subset ofM with strata{Si}i∈I , andD ⊂ TM|S be a
Poisson integrable distribution adapted toS such that(M, S,D) has the extension
property. Then(M, S,D) is Poisson reducible if and only if for anym ∈ S we have

B(1m) ⊂ TmS + [1S
m]◦, (2.2)

where

1m := {dF(m) | F ∈ C∞(M),dF |D = 0},
and

1S
m := {dF(m) ∈ 1m | F |Um∩S is constant, forUm an open

neighborhood ofm inM}.
Proof. If F ∈ C∞(M), denote byXF the Hamiltonian vector field defined by

F . An alternative way to write the condition in the statement is

{XF(m) | F ∈ C∞(M),dF |D = 0}
⊂ TmS + {dF(m) | F ∈ C∞(M),

dF |D = 0, F |Um∩S is constant, forUm an open

neighborhood ofm in M}◦.
The proof of the theorem follows the strategy of [11]. First, we suppose that

(M, S,D) is Poisson reducible. LetF ∈ C∞(M) satisfydF |D = 0 and let

αm ∈ [TmS + [1S
m]◦]◦ = [TmS]◦ ∩1S

m.

Thus,αm = dK(m) for someK ∈ C∞(M) satisfyingdK|D = 0,K is constant on
Um ∩ S, whereUm is an open neighborhood ofm inM. Therefore, the functionsF
andK induce functionsf, k ∈ C∞(S/8) by f ◦π = F ◦ i, k ◦π = K ◦ i andk is
constant in an open neighborhood ofπ(m) in S/8. Thus, by Poisson reducibility
(2.1),

〈αm,XF (m)〉 = {K, F }(m) = {k, f }S/8(π(m)) = 0,

sincek is a constant in a neighborhood ofπ(m). Sinceαm ∈ [TmS + [1S
m]◦]◦ is

arbitrary, it follows thatXF(m) ∈ TmS + [1S
m]◦.

Conversely, ifB(1m) ⊂ TmS + [1S
m]◦, let f, g ∈ C∞(S/8) and F,G ∈

C∞(M) be smooth local extensions off ◦ π, g ◦ π ∈ C∞(S) at m such that
dF |D = dG|D = 0. SinceD is a Poisson distribution, it follows thatd{F, G}|D =
0, which implies that{F,G} is constant on the equivalence classes of8 and
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therefore induces a function, which we shall call{f, g}S/8 ∈ C∞(S/8), satis-
fying the condition (2.1). If we show that this function does not depend on the
extensions involved, this defines the reduced bracket{f, g}S/8 on S/8. Indeed,
let G′ ∈ C∞(M) be another local extension ofg ◦ π ∈ C∞(S) at m such that
dG′|D = 0. Then(G − G′)|S∩Um = 0, whereUm is the neighborhood ofm in
M given by the hypothesis of local extendability of pull backs of functions from
the quotient. Thus,d(G −G′)(m) vanishes onTmS. It also vanishes on[1S

m]◦ by
definition. Now using the hypothesis, for anym ∈ S
〈d(G−G′)(m), B(m)(dF(m))〉 = 0, hence {F,G}(m) = {F,G′}(m),

which proves the independence on howg◦π is extended. By antisymmetry of{·, ·}
it is also independent of the extension off ◦ π , therefore{f, g}S/8 is well-defined
and uniquely determined by the expression (2.1). With this bracket(C∞(S/8),
{·, ·}S/8) is a Poisson algebra since the bracket{·, ·}S/8 inherits all the properties
of a Poisson bracket from those of{·, ·}. 2

Remark 2.13.In the regular case considered in [11],S is a submanifold and
D is a smooth subbundle ofTM. We have already seen that in this situation the
extension property is automatically satisfied. The condition of Poisson reducibility
is stated as

B(D◦) ⊂ T S +D. (2.3)

Since the distributionD is adapted to the submanifoldS, working in a chart on
M around a given pointm ∈ S, anyαm ∈ D◦m can be written asdF(m) for some
smooth functionF defined in this chart and constant on the local leaves of the
foliation given byD. Now choose in every chart some function that is constant
on the leaves of the foliation and construct a smooth function onM by adding all
these functions by means of a partition of unity. The resulting smooth function, also
calledF , is constant on the leaves of the foliation (sincedF |D = 0 by construction)
and has the same differential atm, that is,dF(m) = αm. This shows that in the
regular case1m = D◦m.

Let us now show that in the regular case,TmS+Dm = TmS+[1S
m]◦. Since1S

m ⊂
1m, it follows thatDm = [1m]◦ ⊂ [1S

m]◦ and, hence,TmS +Dm ⊂ TmS + [1S
m]◦.

To prove the converse, it suffices to show that

[1S
m]◦ ⊂ TmS +Dm = [TmS]◦◦ + [1m]◦ = [(TmS)◦ ∩1m]◦,

or, equivalently, that(TmS)◦ ∩ 1m ⊂ 1S
m which is proved in the following way.

If αm ∈ (TmS)◦ ∩ 1m, thenαm = dF(m) for F ∈ C∞(M) satisfyingdF |D =
0 anddF(m)|TmS = 0. One can replaceF by a smooth function vanishing on
the distributionD and at the same time being constant inU ∩ S, for U an open
neighborhood ofm in M. (To do this, replace in a chart atm the functionF |U by
the constant function equal toαm, which is possible sinceαm vanishes onDm and
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onTmS, and then patch this function with the restriction ofF to an open setV such
thatU ∪V = M by means of a partition of unity. The resulting function is smooth,
satisfiesdF |D = 0 and is constant onU ∩ S.) This function has differential atm
belonging to1S

m which proves the desired inclusion.
It should be also noted that in the singular case condition (2.3) is only sufficient

for the Poisson reducibility of(M, S,D), even ifD is given by a group action. For
example, consider the case of theS1 action by positive rotations on the complex
line C. We take the integral manifolds of the distributionD to be the concentric
circles and the origin. This action has an equivariant momentum map given by
J(z) = |z|2/2 so thatS := J−1(0) = 0. ThenD0 = {0} so thatD◦0 = C and,
hence,B(D◦0) = C, since the Poisson structure onC is induced by the standard
symplectic structure which is nondegenerate. On the other hand,T0S = 0, so that
T0S + D0 = {0}, which contradicts (2.3). However,10 = {0} and thus this is
consistent with (2.2).

We now study the functoriality property of Poisson reduction, that will be used
to reduce the dynamics.

PROPOSITION 2.14.Let(Mj , Sj ,Dj) j = 1,2, be Poisson reducible. We denote
the Poisson bracket ofMj by {·, ·}j . Letϕ: M1→ M2 be a Poisson map such that
ϕ(S1) ⊂ S2, andT ϕ(D1) ⊂ D2 (thereforeϕ maps the equivalence classes of81

into the equivalence classes of82). Thenϕ induces a unique smooth Poisson map
ϕ̂: S1/81→ S2/82, characterized byπ2◦ϕ◦i1 = ϕ̂ ◦π1, whereij : Sj ↪→Mj are
the inclusions andπj : Sj → Sj/8j are the projections. We call̂ϕ the reduction
of ϕ.

Proof.By the hypotheses onϕ, the map̂ϕ exists, is smooth, and is unique. We
show that it is Poisson. Letf, g ∈ C∞(S2/82),m ∈ S1, andF,G ∈ C∞(M2) be
local extensions atϕ(m) ∈ S2 of f ◦ π2, g ◦ π2 ∈ C∞(S2) respectively, such that
dF |D2 = dG|D2 = 0. Then

ϕ̂∗{f, g}S2/82(π1(m)) = {f, g}S2/82((ϕ̂ ◦ π1)(m))

= {f, g}S2/82((π2 ◦ ϕ)(m))
= {F, G}2(ϕ(m)). (2.4)

Note thatF ◦ ϕ, G ◦ ϕ ∈ C∞(M1) are smooth local extensions atm ∈ S1 of
f ◦ ϕ̂ ◦ π1, g ◦ ϕ̂ ◦ π1 ∈ C∞(S1), respectively, which satisfyd(F ◦ ϕ)|D1 =
d(G ◦ ϕ)|D1 = 0 by the chain rule and the hypothesisT ϕ(D1) ⊂ D2. Therefore,

{ϕ̂∗f, ϕ̂∗g}S1/81(π1(z)) = {F ◦ ϕ, G ◦ ϕ}1(z) = {F, G}2(ϕ(z)),
which coincides with (2.4) thereby proving the proposition. 2

Within the framework of Poisson manifolds, the natural identification between
derivations on the ring of smooth real-valued functions and vector fields, allows us
to associate to each function on the manifold a Hamiltonian vector field. In the case
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of Poisson varieties like(S/8, C∞(S/8)), we need something more general to
introduce dynamics since, in general,S/8 is not a smooth manifold and, therefore,
defining vector fields is not always possible.

DEFINITION 2.15. Let(M, S,D) be a Poisson reducible system and leth ∈ C∞
(S/8). We define theHamiltonian flowassociated toh as the smooth mapFS/8t :
S/8→ S/8 such that for anyf ∈ C∞(S/8) and anyz ∈ S/8, we have

d

dt
f (F

S/8
t (z)) = {f, h}S/8(F S/8t (z)).

Note that within this framework there is no standard Existence and Uniqueness
Theorem, as is the case for flows associated to Hamiltonian vector fields on smooth
manifolds. In fact, these two issues need to be addressed separately. The following
result shows that existence is always guaranteed.

THEOREM 2.16 (Reduction of the dynamics).Let(M, S,D) be a Poisson reduci-
ble system and leth ∈ C∞(M) be a function such thatdh|D = 0 and whose
Hamiltonian flowFt preserves the subsetS, that is, for any timet , Ft(S) ⊂ S. Sup-
pose also that for anyt , T Ft(D) ⊂ D. Then there is a functionhS/8 ∈ C∞(S/8)
uniquely defined by the relationhS/8 ◦ π = h ◦ i, called the reduced Hamiltonian,
for which the reductionFS/8t of Ft is a Hamiltonian flow induced byhS/8. In
addition,FS/8t is a Poisson map.

Proof.The conditiondh|D = 0 guarantees thath is constant on the equivalence
classes of8 and therefore the relationhS/8 ◦ π = h ◦ i defineshS/8 uniquely.
Proposition 2.14 ensures the existence ofF

S/8
t : S/8 → S/8 as the unique

Poisson mapping satisfying the equalityπ ◦ Ft ◦ i = F
S/8
t ◦ π . We verify that

F
S/8
t is a Hamiltonian flow forhS/8. Notice that, by construction,h is a smooth

extension ofhS/8 ◦π . Thus, iff S/8 ∈ C∞(S/8) is arbitrary, letf ∈ C∞(M) be a
smooth local extension atFt0(m) ∈ S of f S/8 ◦ π . By the flow property, for small
|t − t0|, f is also a smooth local extension atFt(m) of f S/8 ◦ π . Thus, we get for
sucht

d

dt
f S/8(F

S/8
t (π(m)))

= d

dt
f S/8((π ◦ Ft ◦ i)(m)) = d

dt
f (Ft (m))

= {f, h}(Ft(m)) = {f S/8, hS/8}S/8(π(Ft(m)))
= {f S/8, hS/8}S/8(F S/8t (π(m))),

which proves the claim. 2

Let us remark again thatFS/8t may not be the unique Hamiltonian flow as-
sociated tohS/8. The following proposition, due to Sjamaar and Lerman [5, 15],
describes a situation in which the uniqueness of the reduced flow is guaranteed.
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PROPOSITION 2.17.Let (M, S,D) be a Poisson reducible system. If the func-
tions inC∞(S/8) separate points, then each HamiltonianhS/8 ∈ C∞(S/8) has
a unique associated Hamiltonian flow.

Proof.The existence is guaranteed by the previous theorem since the reduction
F
S/8
t of the Hamiltonian flowFt associated to any smooth local extensionh ∈
C∞(M) of hS/8◦π at an arbitrary point, such thatdh|D = 0, does the job. Suppose
now thatGS/8

t is another Hamiltonian flow forhS/8. Since by hypothesis, the
functions inC∞(S/8) separate points, it is enough to show that for anyf S/8 ∈
C∞(S/8), π(m) ∈ S/8, and any timet ,

f S/8(G
S/8
t (F

S/8
−t (π(m)))) = f S/8(π(m)).

This identity holds as a consequence of the following computation, in which we
use the chain rule and the fact thatFS/8−t is a Hamiltonian flow for−hS/8:

d

dt
f S/8(G

S/8
t (F

S/8
−t (π(m))))

= {f S/8, hS/8}S/8(GS/8
t (F

S/8
−t (π(m))))+

+ {f S/8 ◦GS/8
t ,−hS/8 ◦GS/8

t }S/8(F S/8−t (π(m))) = 0.

since the flowGS/8
t is Poisson by Theorem 2.16. 2

This result is particularly relevant when the distributionD is given by the proper
action of a Lie group, since in this case, the hypothesis on the separation of points
always holds.

3. Singular Poisson, Point, and Orbit Reduction

We will now use the results just proved as the main tool to study the reduction of
Poisson structures by the proper and canonical action of a Lie group. The simplest
case is given in the following theorem.

THEOREM 3.1 (Singular Poisson reduction).Let (M, {·, ·}) be a Poisson mani-
fold and let9: G × M → M be a smooth proper canonical action. Then the
following hold:

(i) The pair(C∞(M/G), {·, ·}M/G) is a Poisson algebra, where the Poisson brack-
et {·, ·}M/G is characterized by{f, g}M/G ◦ π = {f ◦ π, g ◦ π}, for any
f, g ∈ C∞(M/G); π : M → M/G denotes the canonical smooth projection.

(ii) Let h be aG-invariant function onM. The Hamiltonian flowFt of Xh com-
mutes with theG-action, so it induces a flowFM/Gt onM/G which is Poisson
and is characterized byπ ◦ Ft = FM/Gt ◦ π .

(iii) The flowFM/Gt is the unique Hamiltonian flow defined by the function[h] ∈
C∞(M/G) which is given by[h] ◦ π = h. We will call [h] the reduced
Hamiltonian.
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Proof. (i) This part can be obtained as a corollary to Theorem 2.12 by taking
M = S, andD ⊂ TM the distribution given byDm = g · m. This distribution is
smooth since for everym ∈ M, if {ξ1, . . . , ξn} is a basis of the Lie algebrag, the
evaluation of the vector fieldsξ1

M, . . . , ξ
n
M atm, spansDm. The distributionD is

also trivially integrable since, by construction, the orbitG · m is a submanifold of
M such thatDm = Tm(G · m) = g · m, for arbitrarym ∈ M. The canonical char-
acter of theG-action guarantees thatD is Poisson in the sense of Definition 2.8.
Remark that the distributionD satisfies trivially the extension property, as well as
the hypothesis of Theorem 2.12 sinceB(1m) ⊂ TmM ⊂ TmM + [1S

M]◦. This
guarantees that(C∞(M/G), {·, ·}M/G) is a Poisson algebra.

(ii) Since the Lie groupG acts canonically onM and the Hamiltonianh isG-
invariant, the Hamiltonian flow associated toh satisfies that9g ◦ Ft = Ft ◦9g for
anyg ∈ G and therefore, for anyξ ∈ g, anym ∈ M, and any timet

TmFt · ξM(m) = d

ds

∣∣∣∣
s=0

Ft(expsξ ·m)

= d

ds

∣∣∣∣
s=0

expsξ · Ft(m) = ξM(Ft (m)),

which implies thatT Ft(D) ⊂ D. The claim follows from Proposition 2.14.
(iii) is a corollary of Theorem 2.16. The uniqueness follows from Proposi-

tion 2.17, and the properness of the action. 2

At this point we will assume thatM is not only Poisson, but also symplectic,
and that the canonical action ofG onM is proper and has an associated globally
equivariant momentum mapJ: M → g∗, that is, the action is globally Hamiltonian.
The natural step to take in this situation is studying point and orbit reduction. Re-
garding the former, recall that in the regular case [13], ifM was a symplectic man-
ifold, so was the point reduced spaceMµ := J−1(µ)/Gµ, whereGµ denotes the
coadjoint isotropy subgroup ofµ ∈ g∗. If we are in a genuinely, singular situation,
the spaceJ−1(µ)/Gµ is not even a manifold; however, it can be shown that in the
sense of Definition 2.11, it is endowed with a Poisson structure. The construction
of this Poisson structure constitutes theUniversal Reduction Procedureof Arms,
Cushman and Gotay [3] which is described in detail in the following theorem.

THEOREM 3.2 (Singular point reduction).Let (M,ω) be a symplectic manifold
and letG be a Lie group acting properly onM in a globally Hamiltonian fashion
with associated equivariant momentum mapJ: M → g∗. Letµ ∈ g∗ be a value of
J and denote byGµ the isotropy ofµ under the coadjoint action ofG on g∗. The
following hold:

(i) The setMµ := J−1(µ)/Gµ is such that the pair(C∞(Mµ), {·, ·}Mµ
) is a

Poisson algebra, with Poisson bracket{·, ·}Mµ
characterized by

{fµ, gµ}Mµ
([m]µ) = {f, g}(m), (3.1)
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for any fµ, gµ ∈ C∞(Mµ). The functionsf, g ∈ C∞(M)G are arbitrary
smooth local extensions atm ∈ J−1(µ) of fµ ◦ πµ, gµ ◦ πµ ∈ C∞(J−1(µ))Gµ ,
whereπµ: J−1(µ) → Mµ is the canonical smooth projection, and[m]µ :=
πµ(m) ∈Mµ.

(ii) Leth ∈ C∞(M)G be aG-invariant Hamiltonian. The Hamiltonian flowFt of
h leaves the connected components ofJ−1(µ) invariant and commutes with the
G-action, so it induces a Poisson flowFµt onMµ, uniquely determined by

πµ ◦ Ft ◦ iµ = Fµt ◦ πµ, (3.2)

whereiµ: J−1(µ) ↪→M is the canonical injection.
(iii) The flowFµt is the unique Hamiltonian flow in(Mµ, {·, ·}Mµ

), with Hamil-
tonian functionhµ ∈ C∞(Mµ) defined byhµ ◦ πµ = h ◦ iµ. We will callhµ
the reduced Hamiltonian.

(iv) Let k ∈ C∞(M)G be anotherG-invariant function. Then,{h, k} is alsoG-
invariant and{h, k}µ = {hµ, kµ}Mµ

.

Proof. Once more, we will obtain this result as a corollary to Theorem 2.12
takingM as the Poisson manifold,J−1(µ) as the stratified subsetS, andD as the
distribution given by the tangent spaces to theG-orbits inJ−1(µ), that is, for any
m ∈ J−1(µ),Dm = g · m. We verify thatJ−1(µ) is a stratified subset in the sense
of Definition 2.4 and thatD is a smooth, integrable, Poisson distribution, adapted
to the stratification ofJ−1(µ), for which the extension property holds.

Firstly, the equivariance ofJ with respect to theG-action implies that there is
a well-defined continuousGµ-action on the topological spaceJ−1(µ). Since the
subsetJ−1(µ) and the subgroupGµ are closed inM andG, respectively, theGµ

action onJ−1(µ) is proper and therefore a standard result (see, for instance [6–8])
guarantees thatJ−1(µ) can be stratified using the orbit type manifolds associ-
ated to theGµ-action, that is,J−1(µ) is a stratified subset ofM with strata the
submanifolds ofM

(J−1(µ))
Gµ
(H) := J−1(µ) ∩MGµ

(H),

for any isotropy subgroupH ⊂ Gµ. Recall that

M
Gµ
(H) := {z ∈ M | Gz is conjugate toH in Gµ}.

By the Bifurcation Lemma (see [4, 14]), for anym ∈ M, range(TmJ) = (gm)
◦,

wheregm is the Lie algebra of the isotropy subgroupGm, and (gm)◦ := {µ ∈
g∗ | µ|gm = 0} denotes the annihilator ing∗ of gm. Note that this proves that
J|
M
Gµ

(H)

is a constant rank map and, hence, by the Subimmersion Theorem (see [2,

Theorem 3.5.17]),(
J|
M
Gµ

(H)

)−1
(µ) = J−1(µ) ∩MGµ

(H) = (J−1(µ))
Gµ
(H)

is a submanifold ofM
Gµ
(H) and therefore ofM.

MPA98131.tex; 3/12/1998; 16:11; p.11
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Secondly, the distributionD is smooth since it is induced by a smooth group
action. We now verify that it is adapted to the stratification ofJ−1(µ) byGµ-orbit

types. Recall that the Subimmersion Theorem states that for anym ∈ (J−1(µ))
Gµ
(H),

Tm
[
(J−1(µ))

Gµ
(H)

] = Tm
((

J|
M
Gµ

(H)

)−1
(µ)

) = kerTmJ|
M
Gµ

(H)

= kerTmJ ∩ TmMGµ
(H),

and therefore, using the Reduction Lemma and theGµ-invariance ofM
Gµ
(H),

Dm ∩ Tm
[
(J−1(µ))

Gµ
(H)

] = kerTmJ ∩ TmMGµ
(H) ∩ g ·m

= gµ ·m ∩ TmMGµ
(H) = gµ ·m.

This implies thatD coincides, stratum by stratum, with the smooth integrable
distribution induced by theGµ-action, which guarantees thatD is integrable and
adapted to the stratified subsetJ−1(µ). As in Theorem 3.1, the canonical character
of theG-action implies that the distributionD is Poisson. The extension property of
D follows from the following proposition whose proof follows in a straightforward
manner from the use of normal forms (see [14]).

PROPOSITION 3.3.Let(M,ω) be a symplectic manifold and letG be a Lie group
acting properly onM in a globally Hamiltonian fashion with associated equivari-
ant momentum mapJ: M → g∗. Letm ∈ M and denoteJ(m) = µ, H := Gm.
Then everyf ∈ C∞(J−1(µ))Gµ (respectively,f ∈ C∞(J−1(µ)∩MGµ

(H))
Gµ) admits

a localG-invariant extension atm toC∞(M)G.

Finally, in order to show thatMµ is Poisson, we use Theorem 2.12 to prove that
the triplet(M, J−1(µ), D) is Poisson reducible, that is, we will verify for arbitrary
m ∈ J−1(µ) that

B(1m) ⊂ Tm(J−1(µ))+ [1J−1(µ)
m

]◦
.

Indeed, ifF ∈ C∞(M)Gµ andH = Gm, we will show that

XF(m) ∈ Tm
[
(J−1(µ))

Gµ
(H)

]+ [1J−1(µ)
m

]◦
= [

kerTmJ ∩ TmMGµ
(H)

]+ [1J−1(µ)
m

]◦
.

To see this, let

αm ∈
[[

kerTmJ ∩ TmMGµ
(H)

]+ [1J−1(µ)
m

]◦]◦
= [

kerTmJ ∩ TmMGµ
(H)

]◦ ∩1J−1(µ)
m ,

so thatαm = dK(m) for someK ∈ C∞(M)G, constant onUm ∩ J−1(µ), where
Um is an open neighborhood ofm inM. Then,

〈αm, XF (m)〉 = {K, F }(m) = XF [K](m).

MPA98131.tex; 3/12/1998; 16:11; p.12



SINGULAR REDUCTION OF POISSON MANIFOLDS 371

However, by Noether’s Theorem, the Hamiltonian flowFt ofXF preserves the level
sets ofJ, in particularJ−1(µ). Therefore,

XF [K](m) = d

dt

∣∣∣∣
t=0

K(Ft(m)) = 0,

sinceK |J−1(µ)= 0. This proves the required condition onXF(m) and, hence,
implies that(Mµ,C

∞(Mµ)) is a Poisson algebra with bracket{·, ·}Mµ
defined by

{fµ, gµ}Mµ
([m]µ) = {f, g}(m),

for anyfµ, gµ ∈ C∞(Mµ), andf, g ∈ C∞(M)G arbitrary smooth localG-invariant
extensions atm of fµ ◦ πµ, gµ ◦ πµ ∈ C∞(J−1(µ))Gµ , whose existence is again
guaranteed by Proposition 3.3.

The remaining points are a straightforward consequences of Noether’s The-
orem, Proposition 2.14, and Theorem 2.16. The uniqueness of the flow for the
reduced Hamiltonian follows from Proposition 2.17, and the properness of the
action. 2

A theorem completely identical can be stated for the singular orbit reduced
spaceMOµ := J−1(Oµ)/G. The only difference in the proof, with respect to the
one corresponding to Theorem 3.2, is that in this caseJ−1(Oµ) will play the role
of S, which will be stratified by means of the orbit types corresponding to the
G-action defined on it. The extension property follows directly in this case from
Proposition 2.7, due to theG-invariance ofJ−1(Oµ).

THEOREM 3.4 (Singular orbit reduction).Let (M,ω) be a symplectic manifold
and letG be a Lie group acting properly onM in a globally Hamiltonian fashion
with associated equivariant momentum mapJ: M → g∗. Letµ ∈ g∗ be a value of
J, and denote byOµ the orbit ofµ under the coadjoint action ofG ong∗. Then the
following hold:

(i) The setMOµ := J−1(Oµ)/G is such that the pair(C∞(MOµ), {·, ·}MOµ
) is a

Poisson algebra, with Poisson bracket{·, ·}MOµ
, characterized by

{f Oµ, gOµ}MOµ
([m]Oµ) = {f, g}(m), (3.3)

for anyf Oµ, gOµ ∈ C∞(MOµ). The functionsf, g ∈ C∞(M)G are arbitrary
local extensions atm of f Oµ ◦ πOµ, gOµ ◦ πOµ ∈ C∞(J−1(Oµ))

G, where
πOµ : J−1(µ) → MOµ is the canonical smooth projection and[m]Oµ :=
πOµ(m) ∈MOµ .

(ii) Leth ∈ C∞(M)G be aG-invariant Hamiltonian. The Hamiltonian flowFt of
h leaves the connected components ofJ−1(Oµ) invariant and commutes with

theG-action, so it induces a flowF
Oµ
t onMOµ , uniquely determined by

πOµ ◦ Ft ◦ iOµ = FOµ
t ◦ πOµ, (3.4)

whereiOµ : J−1(Oµ) ↪→M is the canonical injection.
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(iii) The flowF
Oµ
t is the unique Hamiltonian flow in(MOµ, {·, ·}MOµ

), with Hamil-
tonian functionhOµ ∈ C∞(MOµ) defined byhOµ ◦πOµ = h ◦ iOµ . We will call
hOµ the reduced Hamiltonian.

(iv) Let k ∈ C∞(M)G be anotherG-invariant function. Then,{h, k} is alsoG-
invariant and{h, k}Oµ = {hOµ, kOµ}MOµ

.

Remark 3.5.The Poisson algebras(C∞(Mµ), {·, ·}Mµ
) and (C∞(MOµ),

{·, ·}MOµ
) are in general degenerate and, consequently, have nontrivial symplec-

tic leaves. It can be shown (see [14]) that these leaves correspond to the singular
symplectic reduced spaces of Sjamaar and Lerman [15], and Bates and Lerman [5].
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