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ON A NON-LINEAR EQUATION RELATED TO
THE GEOMETRY OF THE DIFFEOMORPHISM GROUP

DAVID BAO, JACQUES LAFONTAINE AND TUDOR RATIU

Let M be a compact boundaryless Riemannian manifold. We de-
rive the equations on M which characterize asymptotic vectors on
Diff v oi(M). We classify those M9s whose volume-preserving diίfeo-
morphism groups admit asymptotic vectors which are represented by
harmonic vector fields on M. We then show that these harmonic
solutions can be used to construct other (typically non-harmonic) so-
lutions.

Introduction. In this paper, we examine the extrinsic geometry
of Diffvoi(Λf) as a submanifold of the full diffeomorphism group
Diff(M). We derive and study the equations on M which characterize
asymptotic vectors on Diffvol(Λf). These equations on M constitute,
a priori, a second order pde system.

The contents of the paper are as follows. Section 1 reviews the weak
Riemannian geometry and the 'Lie group'-like structure of Diίf(M)
and Diffyoi (Af). Section 2 recalls the Levi-Civita connection on
Diίf(M). Section 3 discusses the induced connection on Diίfvol(Λf)
and derives the equations for asymptotic vectors. In §4, we show
that the second order pde system described in §3 is equivalent to
a single first order equation in the compact boundaryless case. We
classify those Riemannian manifolds whose volume-preserving diffeo-
morphism groups admit asymptotic vectors which are represented by
harmonic vector fields on M. These harmonic solutions can be used
to construct other (non-harmonic) solutions. In particular, we show
that any 2-dimensional manifold carries metrics such that the corre-
sponding volume-preserving diίfeomorphism group admits asymptotic
(but possibly non-harmonic!) vectors. Section 5 discusses the system
of equations derived in the previous section, in the setting of noncom-
pact boundaryless 2-dimensional manifolds.
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1. The groups Diff(M) and Diffvoi(Af) as weak Riemannian man-
ifolds. Let (M, g) be a C°° m-dimensional compact boundaryless
manifold. The Riemannian density is denoted by μ and its local
expression is given by μ(x) = y/g(x) dmx, where x G M, g(x) =
det(gij(x)), and dmx is the usual Lebesgue measure on Rm. For
vector fields I , Γ on ¥ , V χ 7 denotes the covariant derivative
with respect to the Levi-Civita connection of g.

The diffeomorphisms and vector fields used throughout this paper
are all of class Hs. We assume throughout this paper that s > y + 1,
which guarantees that all objects are at least C 1 . We will denote by
Diff(M) the group of all Hs diffeomorphisms on M, by 8?{M) the
vector space of all Hs vector fields on M, by

Diffvol(M) = {ηe Όifΐ(M)\η*μ = μ}

the subgroup of all volume-preserving Hs diffeomorphisms of M,
and by

a*fa(M) = {X e a?(M)\ divX = 0}

the subspace of divergence-free Hs vector fields on M.
The groups Diff(Λf) andDiffvoi(Λf) are topological groups, C°°

Hubert manifolds, and only right translation Rη{φ) := φ o η is C°° .
They are not Hubert Lie groups since left translation and inversion
are only C°. Diffvol(Λ/) is a closed Hubert submanifold of Diff(M).
The formal Lie algebras of Diff(M) and Diffvol(M) are 3?{M) and
^iv(M) respectively; see [EM] and [MEF] for more details.

Any tangent vector Xη to DiflF(Af) at η is of the form X o η for
some X e 3?{M). For a given X e 8?{M), let XR denote the right-
invariant vector field on Diff(Af) whose value at the identity is X,
i.e., XR(η) = X o η. In other words, to get XR, we use the same X
at every η. Lie differentiation is functorial on right-invariant vector
fields:

(1.1) χ

where X, Y e S?{M), η e Diff(M), and S?XY = [X, Y]R de-
notes the usual Jacobi-Lie bracket of vector fields on M namely,
([X, Y]Ry = Xiγ\. - YjX\r This bracket is the right Lie algebra
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bracket of %?(M) thought of as the formal Lie algebra of Diff(Af),
hence the subscript R.

For Xη, Yη e Tη Diff(Af), define the inner product

(1.2) (Xη, Yη) = ί gη{x)(Xη(x), Yη(x))μ{x).
J M

The choice of this non-right-invariant (for a justification of this
choice, see the discussion just before Proposition 2) metric makes
Diίf(Λf) into a weak Riemannian manifold. The induced metric on
Diffvoi(M), however, is right-invariant, as can be seen through the use
of rfμ = μ and a change-of-variables argument.

2. The Levi-Civita connection on Diff(M). The classical proof of
the existence and uniqueness of the Levi-Civita connection on a finite
dimensional Riemannian manifold does not generalize to infinite di-
mensional Hubert manifolds endowed with a weak metric. Only the
uniqueness part of the proof stays unchanged. The existence of such
a connection is proved in [EM], inspired by an outline in [Ar]. Below
we shall sketch an alternative approach which avoids the machinery
of connectors used in [EM].

A. We state for later use a general fact; for the details of the proof
one can consult, for example, [MRR]. Let G be an arbitrary (pos-
sibly infinite dimensional) C 1 manifold which is also a topological
group with a C 1 right translation; for example, G can be Diff(M) or
Diffvol(Λ/). If Y is a given vector field on G and g EG, denote by
[Yg]

R the right-invariant vector field on G whose value at g is Y(g)
(also denoted Yg). That is,

(2.1) [Yg]
R(h) = (TeRh o TgRg-ή(Yg),

where g, heG, Rk denotes right translation by fc on G, and Γ57^
is its derivative at s eG.

PROPOSITION 1. Assume that all vector fields below are of class Cι

on G.
(i) There exists a unique connection Vc on G such that VCZ = 0

for all right-invariant vector fields Z on G. In fact, for any X, Y e

(2.2) Φ g

(ii) Any connection V on G is completely determined by its values
on right-invariant vector fields in the following manner:

(2.3) ΦχY){g) = {V[Xg]R[Yg]
R){g) + {Vc

xY){g).
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B. The basic step consists of a functorial relationship between the
geodesies on Diff(Af) and those on M. For Zη = Zoη e Tη Diff(Af),
we denote by exp(tZη) the geodesic of the weak Riemannian metric
(1.2) with initial velocity Zη. Ebin and Marsden [EM] proved the
local existence of such geodesies by first establishing a rather general
theorem about vector fields. They then deduced that

(2.4)

where [exp(ίZ)](y) := exp(tZ(y)) is the geodesic on M through y
with initial velocity Z(y).

C. Using (2.4), one directly calculates the values of the Riemannian
connection on right-invariant vector fields, and finds that: for X, Y e
2?{M), η e Όiff(M), one has

(2.5) (VχRYR)(η) = (VxY)oη,

where V and V are the Levi-Civita connections on M and Diff(Af)
respectively. Note that the torsion-freeness of V follows, in view of
(2.5), directly from that of V. Its metric compatibility can also be
ascertained in a similar manner. The values of the connection V on
arbitrary vector fields of Diff(Λf) now follows from Proposition 1.

Formula (2.5) implies a functorial relationship between the curva-
ture of M and that of Diff(Af), made specific by a statement in the
proof of the following proposition. This functorial/natural relation-
ship is an asset because we are using Diff(Af) as an ambient space to
study the geometry of Diffvol(M) and, to this end, the more accessible
the geometrical information on the ambient space the better.

PROPOSITION 2. (i) If M is flat, then so is Diff(Af).
(ii) If M has non-negative (respectively non-positive) sectional cur-

vatures, then so has Diff(Af).

Proof (i) By (1.1) and (2.5), together with the tensorial nature of
curvatures, we see that the curvature tensors R of Diff(M) and R
of M are related by

(2.6) RxγZη = (RxγZ)oη.

Formula (2.6) shows that if RXYZ = 0 for all X, Y, Z, then
Όifί(M) is flat.

(ii) Let Xη = X o η, Yη = YoηeTη Όiff(M) be any two linearly
independent tangent vectors at η, set

A\γ = g(X, X)g(Y, Y) - (g(X, Y))2
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and

A2

Xγη = (Xη,Xη){Yη,Yη)-(Xη,Yη))2.

Recall that linear independence in Tη Diff(M) is over R, not over
the functions on M. For example, if / : M »-> R is a non-constant
function, then X o η and (fX) o η are linearly independent. This
shows that A2

XY can be identically zero on M while A?χ γ is strictly
positive by the Cauchy-Schwarz inequality.

By the definition of the sectional curvature K > we have

(2.7) A2

XYKXY := (RxγYη, Xη) = ((RχγY)oη, Xoη)
η η η η η η

= /

Therefore, a constant sign of the sectional curvature on M implies
the same for K_ with the possibility of additional vanishing due to
Axγ, for instance when X, 7 are collinear over the functions on
M but linearly independent over R. For this reason, we also see
that sharpening the hypothesis from non-negative to positive does not
produce a corresponding change in the conclusion. D

For example, when S 2 is given the usual metric, DifT(S2) has non-
negative sectional curvature.

If the sign of the sectional curvature of M is non-constant, then that
of Diff(Af) cannot, in general, be controlled, as the following example
of Diff(T2) shows. Here, T2 is the torus of revolution obtained by
rotating, about the z-axis, the circle of radius r in the xz-plane with
center at x = R > r. Therefore, a parametric representation of this
torus is (with 0 < θ < 2π, 0 < φ < 2π)

(2.8) (0, φ) ι-+ ((l? + rcos^)cos0, (R + r cos 9?) sin 0, r s in^) ,

and its Gaussian curvature is given by K = cos^/[r(i? + rcos^)] .
One finds that

Aχγ = (XιY2~X2Yι)2r2(R +

and, since Kxγ = K, formula (2.7) becomes

(2.9) ScηγKXYη = J^((XιY2-X2Yι)2arcosφ)η{x)μ(x),

where we have abbreviated the quantity (R + r cos φ) by a.
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Let p(φ) be an axially symmetric 2π-periodic function on T2 and
let X = P§Q , Y = ^ . Then (2.9) becomes

(2.10) A2

XYKXY = / {p2arcos φ)η(x)μ(x).

Note that for each choice of p(φ), the corresponding 2-plane in
TηΌiff(M) has

(2.11) Axγ = f (p2a2)η{x)μ(x) I r2μ{x)

= r2S ί (p2a2)n{x)μ{x),

where S = 4π2rR is the total surface area of T 2 . Therefore (2.10)
and (2.11) give

K χ Y ~ S J ( 2 2 ) ( ) '

Let us draw some conclusions from (2.12). If φ = ± f , we have
cos φ = 0 and a = R. From this we see that if we let p(φ) be a bump
function which is supported and peaks inside a small neighborhood on
the immediate left (resp. right) of f and is zero outside, K_x γ can be
made to take on any small positive (resp. negative) values. Secondly,
from a — R + r cos φ, we deduce

t cos ^ | < 1 < 1 + - i _ _ _ _ ^ = _ _ _ ,

so (2.12) implies that \K_X γ | < l/[r(R-r)S]. Thus, our uncountable
family of 2-planes indexed by p(φ) is not large enough to tell us
whether \K_X γ \ can take on arbitrarily large values. Lastly, if Xη =

(Pjg) o η and Zη = ^ o η, then £*xz > 0 by the strict Cauchy-

Schwarz inequality whereas A\ Z K^X Z = 0 by (2.9). So K_χ z = 0
η η η η η η

We have proved the following:

PROPOSITION 3. Let T2 be the torus of revolution with radii r and
Rf R > r > 0. For each η G Diff(T2), there exists an uncountable fam-
ily of 2-planes in Tη Diff(T2), each indexed by an axially symmetric
Iπ-periodic continuous function p = p(φ), such that the corresponding
sectional curvatures of Diίf(T2):

(i) are uniformly bounded above by l/[r(R - r)S], where S =
4π2rR is the total surface area of T2
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(ii) take on positive, zero, and negative values',
(iii) take on values of arbitrarily small magnitude, so that a positive

uniform lower bound {on \K_\ is not possible.

3. The connection and the second fundamental form of Diffvoi(Λf).
The metric ( , ) on Diff(M), given by (1.2), induces a metric on
Diffvoi(M) which we denote by the same symbol. As remarked before,
this restricted metric is right-invariant. In fact, more is true: given
η G Diίfvoi(M), we have

(3.1) (Xoη,Yoη)= ί g(X, Y)(χ)μ(χ)
JM

for any vector fields (not necessarily divergence-free) X, Y e %?(M),
as a change-of-variables argument shows; note that the right-hand side
is independent of η. Put another way, (3.1) says that whenever the
diffeomorphism η is volume-preserving, the map X h-> X o η is an
isometry from Sf(M) onto Tn Diff(Λf). Now, from Hodge theory
one gets (see e.g. [EM] or [MEF]) the following ( , )-orthogonal di-
rect sum decomposition (of closed spaces) on a compact Riemannian
manifold:

(3.2) 3?{M) = ^div(M) θ Grad(M),

where all vector fields are of class Hs, s > y + 1, and Grad de-
notes gradient vector fields (relative to g) of Hs+ι functions on M.
Using the aforementioned isometry, this induces an ( , )-orthogonal
splitting

(3.3)

where

(3.4)

We shall

TηΌiff(M) =

denote by

Pη-T,

Γ,Diffv o l(M)€

DifFvol(M))^ =

7 D i f F ( M ) ^ Γ ,

Grac

Diff v o l (M)

the orthogonal projection given by (3.3) and, if η is the identity,
we let P_η be the projection P: Sf(M) -> %?&N(M) implied by the
decomposition in (3.2). Note that on account of the isometry, one
has Pη(Xoη) = (PX)oη.

As in §2, the metric ( , ) on Diffvoi(Af) induces the Levi-Civita
connection; its uniqueness can be proved as in the finite dimensional
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case, whereas its existence needs a separate argument. This is easier
than in §2 due to the splitting (3.3). Put

(3.5) (ΨuV)(η) := Pη(VvV),

where the U, V on the left-hand side of (3.5) denote arbitrary vector
fields on Diffvol(Λf), while those on the right-hand side denote their
(non-unique) extensions to a neighbourhood of Diff(M) containing
Diffvoi(Af). One can verify that (3.5) defines indeed the covariant
derivative of a torsion-free affine connection which is compatible with
the metric (., ) . By the uniqueness of such a connection, it must equal
the Levi-Civita connection defined by ( , ) .

The explicit calculation of V ^ F , or for that matter the projection
operator P , involves the solution of a Poisson equation (obtained by
taking the divergence of (3.2)) on M9 and can be done in terms of
Green's functions.

Next, let us consider the decomposition

(3.6) <5LυV){n) = Pη[(VuV)(η)] +

according to (3.3), where U, V denote arbitrary vector fields on
Diff(Λf). It can be checked, as in the finite dimensional case, that the
quantity [(YC/F)(//)]J- depends (bilinearly) on Uη and Vη—the val-
ues of the vector fields U and V at the point η — a n d is hence tenso-
rial. It defines the second fundamental form S_ of (Diffvoi(M), ( , ))
in (Diff(M), ( , )) and its symmetry follows from the torsion-freeness
of V. Exploiting the tensorial nature of S_ and using (2.5), we arrive
at the following formula: for tangent vectors (rather than vector fields)
Xη = Xoη, Yη = Yoη on DifFvol(M),

(3.7) Sη(Xη, Yη) := [<ZχΛY*)(η)]± = (VXY - P(VXY)) o η.

The explicit computation of S_η can again be done in terms of Green's
functions.

4. Asymptotic vectors of Diffvoi(M) in Diff(Af). In this section
we shall characterize all asymptotic vectors Xη e TηDiffyo\(M), i.e.
all vectors Xn satisfying S_η(Xη, Xη) = 0, and look for manifolds
M for which such vectors exist on Diffvoi(Λf). If Xη = X o η with
X e afaiM), then (3.7) says that Sη(Xη, Xη) = (VxX-P(VxX))oη.
Therefore Xη — Xoη is an asymptotic vector if and only if divZ = 0
and VXX = £(VχX), which is equivalent to the system

(4.1) div X = 0 and div( VXX) = 0.
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Let us give a motiviation for studying asymptotic vectors of
Diffvoi(Af). Take any Xη e Tη Diffvol(M) and view it as the time
to velocity of some curve ηt in Diffvoi(M) which happens to pass
through the point η at time to. Let Vt := Xt o ηt be the velocity
vector field of this curve; then Vt = Xη. Considering ηt as a curve in
DifF(M) instead of Diffvoi(M), the ambient acceleration vector field
V.vVt makes sense. If we project this quantity tangent to Diffvoi(Λf)
and set the result to zero, we get the condition which characterizes ηt

as a geodesic of Diffvoi(M). The corresponding pde on M is then
(see [Ar] and [EM]) the Euler equation for an incompressible fluid:

where Xt is divergence-free and pt, a time-dependent scalar potential
(the negative of the pressure in physics), is part of the "unknowns." On
the other hand, if we project the ambient acceleration ( , )- orthogonal
to Diffvoi(M), evaluate at time to, and set the result to zero, we get
ξiηiXη, Xη) = 0 (essentially because S_ is tensorial). Thus our focus
on asymptotic vectors in this paper is naturally complementary to the
question studied by Arnold, Ebin, and Marsden.

THEOREM 4. For a compact boundaryless Riemannian m-manifold
(M, g), X o η is an asymptotic vector of (Diίfvoi(M), ( , )) in
(Diff(M), ( , )) if and only if X satisfies the equation

(4.2) \\\^χg\\2 - Hi Λ^H 2 + Ric(X, X) = 0,

where the tensor norms and our conventions on curvature tensors are
clarified below. Also, the vector field X is of class Hs, with s > y + 1 .

REMARK. On any submanifold, asymptotic vectors are character-
ized by a first order differential equation on that submanifold. For
example, here on Diffvoi(M), the first order equation in question is
[{V_χRXR)(η)γ- = 0. Note, however, that its restatement on the un-
derlying M is div(VχX) = 0 (together with divX = 0), which is a
priori of second order on M. Nevertheless, Theorem 4 tells us that
the divergence-freeness of X reduces this second order equation to a
first order one, on M.

Proof. We begin by stating our convention for the Ricci tensor; it
will be used in the computations below. Our curvature tensor R is
defined as RxyZ = V x VyZ - Vy V^Z - V[X)Y]Z . To avoid clutter,
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we have left out the subscript R on the Lie-bracket. In components,
we have RxyZ = (RL^Y^^dj. The Ricci tensor is symmetric and
has components Ric7/ = i?j z /; that is Ric(Γ, Z) = tmcc(X ^ RXYZ)
where, on the right-hand side, the trace is that of the linear operator
obtained from RxγZ by keeping Y and Z fixed.

Next we recall a Bochner formula (see, for example, [L] or [BY]):

(4.3) ||VXb||2 - (ΔXb, Xb) + Ric(X, X) = -^Δ[| |X| | 2 ].

Here, VXb is regarded as a covariant 2-tensor, not as a 2-form;
hence its point-wise norm-squared is taken in the tensor sense, namely
(V 7X/)(V^0 = XfijX^. Also: ( , ) is the inner product on differ-
ential forms; ΔXb := (δidγ + doδ\)Xb and Δ = δ\do = -divograd on
functions. A calculation in components re-expresses (4.3) as

(4.4) \\ι

Ί^χg\\2 - \\ι

ΊdXψ + Ric(X, X)

= div(VχX) - div[(divX)X] + (divX)2,

where all norms are taken in the tensor sense. In other words, even
though the curl

dXb = Xjj dxι Λ dxj = \{Xjj - Xi^^dx1 Λ dxj

is a 2-form, we choose to rewrite and work with it here as the 2-tensor
(XJJ - XiJ)dxi 9 dxJ. Note that | |rf | | t

2

e n s o r = 2||rfXb||2orm.
From (4.4), it is clear that (4.1) implies (4.2). The hypothesis that

M is compact and boundaryless enters only in establishing the con-
verse. Indeed, suppose (4.2) holds, then (4.4) becomes

(4.5) div(VzX) - div[(divZ)X] + (divX)2 = 0

which, upon integrating over the boundaryless M and using the fact
that in such case exact divergences integrate to zero (this requires
compactness unless one uses function spaces with appropriate decay
conditions), yields JM(diyX)2μ — 0; hence divX = 0 because our
X here is at least C 1 . Plugging this conclusion back into (4.5) gives
div(VxX) = 0. D

DEFINITION. A vector field X is said to be asymptotic if it satisfies
the first order non-linear pde (4.2). It is said to be harmonic if δXb = 0
(equivalently, divX = 0) and dXb = 0; equivalently, since M is
boundaryless, if ΔXb = 0.
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PROPOSITION 5. Let X be a harmonic vector field on a compact
boundaryless Riemannian manifold (M, g), then X is asymptotic if
and only if \\X\\2 is constant on each connected component of M.

Proof. We use here a slightly re-expressed version of Bochner's for-
mula (4.3), namely:

(4.6) \\\&χg\Ϋ + \\\dX'f - (AX', X') + Ric(X, X) = 4 Δ [ | | X | | 2 ] .

(Note that the sign here between the first two terms is a plus, whereas
that in (4.4) is a minus.)

By (4.2), a harmonic vector field is asymptotic if and only if

In view of (4.6), this is equivalent to Δ(||X||2) = 0, and to ||X||2 =
constant on each connected component if M is compact and bound-
aryless. D

Therefore, in order to classify compact boundaryless manifolds
{M, g) which admit a harmonic asymptotic vector field, it suffices
to characterize those which carry a harmonic 1-form with constant
norm.

We begin by enumerating some consequences of having a closed 1-
form yb on an ^-dimensional Riemannian manifold (TV, h) which
is not necessarily compact. The reason for such a degree of generality
is that this will be applied, for example, to the universal Riemannian
cover of our compact boundaryless manifold (M, g).

PROPOSITION 6. Let Y be an Hs, s > § + 1, vector field on an n-
dimensional Riemannian manifold (N, h) such that the corresponding
l-form Yb is closed. Then,

(A) The following two properties are equivalent:

(i) | |Γ | | 2 = h(Y, Y) = constant on each connected component of
N,

(ii) VyY = 0, where V is the Levi-Civitά connection of h.

(B) The distribution Y1, defined as Y±(x) := {υ e TxN\h(v , Y(x))
= 0}, is involutive, hence integrable, and the leaves foliate N. If Y is
nowhere zero, then each leaf is the one-to-one immersion into N of an
(n - lydimensional connected manifold. If in addition to the above,
N is boundaryless and Hι(N, R) = 0, then each leaf is actually a
connected component of some level set of a submersion f:N-+R,
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and hence is a closed (n - \)-dimensional connected submanifold of
TV.

(C) If Y has nonzero constant length, which without loss of generality
may be taken to be 1, then (in view of parts (A) and (B)) its integral
curves are unit speed geodesies which intersect orthogonally the leaves
of YL. Let φt be the time t map of the flow of Y. Whenever τ > 0
is such that φτ is defined at and near x, then for all v e Y±(x), we
have.

(4.7) h(φt.v,Y[φt(x)]) = 09 0<t<τ.

A similar statement would hold if τ < 0. In other words, the initial
orthogonality between v and Y(x) is preserved by the flow φt.

Proof. (A) Since 7 b is closed, we have Yjj = Yjj and hence
Y^j = Yjμ because the connection V on TV is torsion-free. Using
this and the metric-compatibility of V, we observe that

d(\\γf) = U ^ *

(B) Let t/, F be vector fields on TV with values in Y1. Using
the fact that V is torsion-free and Λ-compatible, and that U, V are
orthogonal to Y, we can show that <5f/ V again takes values in YL .
Indeed, a calculation gives

which vanishes because Yty = Y^ (i.e. Yb is closed). The first half
of conclusion (B) thus follows from Frobenius' theorem.

Next suppose Hι(N, R) = 0. Then the closed 1-form Yb is equal
to df for some globally defined Hs+ι function / : N -> E. This /
is a submersion because Y is nowhere zero. So, on a boundaryless
TV, its level sets are closed (n - l)-dimensional submanifolds of TV.
Finally, the tangent spaces to these submanifolds are given by the
kernels of df, which are simply the hyperplanes YL .

(C) Given v € Y±(x)9 let Q be the leaf which passes through
x. There exists a curve s «-» qs> 0 < s < ξ in Q which passes
through the point x with initial velocity v. This curve and the 1-
parameter family of maps {φt : 0 < t < τ} now define a "rectangle"
of curves in the following sense. For each fixed s, one gets a unit
speed geodesic φt(qs), 0 < t < τ which is issued orthogonal to the
leaf Q. At each point ψt{x) on the "base geodesic," there emanates
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a transversal curve s *-> φt(qs) > 0 < 5 < ^, with initial velocity vector
ψt*v. Conclusion (4.7) now follows from the formula for the first
variation of arc length. D

We are now ready to deduce the following structure theorem which,
in view of Proposition 5 and its ensuing remark, completely charac-
terizes those compact boundaryless Riemannian manifolds that admit
harmonic asymptotic vector fields. This theorem is related to some
classical properties of Riemannian foliations (see, for example, [Mo]).

THEOREM 7. Let (M, g) be a compact connected boundaryless m-
dimensional Riemannian manifold, and let (TV, h) denote its universal
Riemannian cover. The following two conditions are equivalent (and,
the theorem remains valid if in its statement, we delete the sentences
which come after the semicolons, followed by obvious deletions in the
proof):

(i) (M, g) admits a nonzero Hs, s > y + 1, vector field X of
constant norm such that Xb is closed', and X is divergence-free (i.e.,
Xb is co-closed).

(ii) There exists an isometry Φ: (R x L, dt <g> dt + h£) -• (N, h),
where L is a closed boundaryless (m - \)-dimensional submanifold of
N, h^ is a Riemannian metric on the slice {t} xL, and the (globally
defined) vector field Φ*§-t is the lift of some globally defined Hs vec-
tor field X on M\ and μf—the volume form of h^ on {t} x L—is
independent of t when regarded as an (m- I)-form on L.

Proof, (i) => (ii). Normalizing by a constant if necessary, we may
assume without loss of generality that \\X\\ = 1. By definition, (N, h)
is locally isometric to (M, g) hence X lifts to a vector field Y on
N such that: | |Γ | | = 1, dYb = 0, and divy = 0. Furthermore,
since X is complete (because M is compact and boundaryless), so is
Y. Since iV is connected and simply-connected, its first cohomology
is zero; hence Yb = df for some globally defined Hs+ι function
/ : N —> R. This / is a submersion because Y is nowhere zero. Let
x E N and {φt : t e R} be the flow of the complete vector field Y
one checks that

(4.8) f(<Pt(x)) = t + f(x) for all ί e R.

Thus / maps N onto R.
Let L := f~ι(0). Since N is boundaryless and / is a submersion,

L is a closed boundaryless (m - 1)-dimensional submanifold of N.
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From (4.8), we have ψt{L) = f~ι(t) , so it is natural to consider the
map Φ: R x L —• N given by

Φ(ί, x) := φt(x) for all t e R, xe N,

which is well-defined (because Y is complete) and differentiate. It
is surjective because any z e N can be expressed as z = ψf(Z)(χ) >
where x := ^[-/(z)](z) lies in L by virtue of (4.8). It is injective
because distinct integral curves do not intersect. Therefore Φ is a
diffeomorphism.

For each ί e l , the closed (m - 1)-dimensional submanifold φt(L)
is diίfeomorphic to L and is everywhere orthogonal to the unit vector
field Y. This orthogonality follows if we first observe that the tangent
bundle of L lies in the distribution YL , and then use (4.7). Such a
geometrical picture is equivalent to the following statement:

(4.9) Φ*h = dt®dt + h{,

where Λf is the Riemannian metric on {t} x L given by

(4.10) h\iμ, υ) := h(φt*u, φt*υ).

On the left-hand side of (4.10), u, υ denote tangent vectors of {t} x
L but on the right-hand side, they are regarded as tangent vectors
of L before having φt* applied to them. Endowing Rx L with the
metric Φ*h makes Φ an isometry.

Lastly, let us choose local coordinates (t, xι, . . . , xm~ι) on E x L ,
write

(4.11) μϊ = k(t, xι, ..< , xm~l)dxl Λ Λdxm~ι,

note that Φ* | j = Y, (hence, since Φ is an isometry,) Φ*div7 =

div | τ , and (from J? = iod+doi) ^ d t = 0 = ~S*k dxj . Computing

A μ\) with this information gives:

(4 12) ί ! τ ! r
Thus div 7 = 0 gives | y = 0 and completes the proof of (i) -* (ii).

(ii) => (i). From the product structure (4.9) of the metric on R x
L, we see that the globally defined vector field §-t has norm 1, and
(A)b = dt, hence the latter is a closed 1-form; also, d i v ^ = 0 by
(4.11), (4.12), and the hypothesis that μ\ is independent of t. The
same three properties hold for Y := Φ* J^ because Φ is an isometry.
Note, however, that one only needs a local isometry to preserve these
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three properties. Thus the same is true for the vector field X := π*Y
(which incidentally is well-defined by hypothesis) because the covering
projection π: (N, h) —• (Af, g) is a local isometry. D

When Theorem 7 is applied to 2-dimensional compact boundaryless
surfaces (Af, g), more specific information can be obtained. Indeed,
in that case the submanifold L is 1-dimensional; hence the product
structure described in Theorem 7 implies, among other things, that the
universal cover is flat. Consequently (Af, g) is also flat and, in view
of the Gauss-Bonnet theorem, must be of genus 1. In other words,
only a flat torus or a flat Klein bottle can possibly satisfy criterion (ii)
of Theorem 7; an inspection shows that they indeed do. We thus have:

COROLLARY 8. Let (Af, g) be a compact boundaryless connected
2-dimensional Riemannian manifold. Then (Af, g) admits nonzero
harmonic asymptotic vector fields if and only if it is a flat torus or a
flat Klein bottle.

In some special situations, asymptotic (but typically non-harmonic)
vector fields can be obtained in the following way,

LEMMA 9. Let Ω be a "domain" in the compact boundaryless m-
dimensional Riemannian manifold (Af, g). Suppose

(1) X is an Hs, s > y + 1, vector field defined on Ω satisfying
divX = 0 and VxX = 0 (note: this is admittedly a stronger require-
ment than div(VχX) = 0, but then it only needs to be satisfied on
Ω),

(2) / is an Hs function supported in Ω, and
(3) in Ω, / is constant along each integral curve of X

then the vector field which is fX on Ω and zero elsewhere is asymptotic
on (Af, g).

This is an immediate consequence of (4.1) and the two formulas
below:

and
2 {&xf)fX.

PROPOSITION 10. Let (Af, g) be a compact boundaryless m-dimen-
sional Riemannian manifold.

(i) If (Af, g) admits a nonzero harmonic asymptotic vector field,
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then it also admits an infinite-dimensional (over R) set ofnonharmonic
asymptotic vector fields,

(ii) If (M, g) is 2-dimensional, then by "slightly modifying g to
some other metric g if necessary, we can always find asymptotic vector
fields on (M, g).

Proof, (i) By Proposition 5 and Theorem 7, we see from the struc-
ture of the universal cover that in a small neighbourhood Ω of M ,
we can find coordinates [t, xι,... , xm~ι) such that the metric g
takes the form

dt®dt + hij{t,xι,... ,xm~ι)dxi®dxj (l<i,j<m-l)9

and that y/άeUjtίj) dm~ιx is independent of t. Thus, the vector field
X := §-t, defined on Ω, satisfies d ivZ = 0 (see (4.12)) and VXX =
0 (by part (A) of Proposition 6). Now let / be any Hs function
supported in Ω and depending only on the variables xι, . . . , xm~ι.
The conclusion follows immediately from Lemma 9.

(ii) Work on any open subset U of M for which the following
procedure makes sense; for example, U can be any geodesic disc of
(M, g), or it can be the domain of a local chart. We shall see that
once a workable U is chosen, all the modifications of the metric g
can be localized in U.

In U, take a simple closed curve and generate a tubular neighbour-
hood Ω (still in U) which is diffeomorphic, through some map Φ,
to a "vertical" cylinder (Sι xl, dθ®dθ + dz®dz) in Euclidean R3 .
Equip Ω with the product metric Φ*(dθ®dθ + dz® dz), which we
then prolongate to a Riemannian metric h on M.

Next we use a standard procedure to confine the changes on g to
within the neighbourhood U. Construct a smooth function ψ: M —•
R with the following properties: 0 < ^ < 1 ψ = 1 on Ω; ψ =
0 on M\U. The "slightly" modified metric g is then defined to
be ψh + (1 - ψ)g. It is still Riemannian because the space of all
Riemannian metrics is an open convex^ cone in the space of metrics.
Denote its Levi-Civita connection by V.

Since Φ is an isometry between (Ω, g) and (Sι x / , dθ ® dθ +
dz ® dz), one can readily verify that the vector field X := Φ " 1 ̂  ,
defined on Ω, satisfies V X = 0 and VXX = 0. Now let / be
the pullback under Φ of any Hs function supported in Sι x / and
depending only on the variable z. We are thus again in a position to
apply Lemma 9. D
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REMARKS. (1) We hasten to point out a subtlety in the above con-
struction. It is imperative that Ω be given a geometry which is iso-
metric to a cyclinder (Sι x I, dθ ®dθ + dz® dz) in R3 and not to
an annulus (Sι x I, r2 dθ ®dθ + dr® dr) in R 2, even though both
are flat. On the practical level, this means that in deforming the given
surface, one must take care to create a 'vertical' cylindrical band and
not a 'horizontal' annular plateau. More discussion on this issue is
given in [BR].

(2) By Corollary 8, the torus of revolution (which is geometrically
different from the flat torus) does not admit any nonzero harmonic
asymptotic vector fields. Proposition 10, however, assures us that if
we flatten one of its two equators into a vertical equatorial band, then
asymptotic (though typically non-harmonic) vector fields do exist on
the slightly deformed surface.

5 The non-compact two-dimensional case. Although the geometrical
interpretation in terms of Diffvol(M) fails, the system (4.1), namely,
divX = 0 and div(VχJSΓ) = 0, still makes sense in the non-compact
boundaryless case. Here we give some examples which seemed to us
geometrically interesting, restricting ourselves to 2-dimensional sur-
faces without boundary.

On a 2-manifold (M, g), divergence-free vector fields can be repre-
sented by "stream function"—which are in general only locally defined
unless Hι(M, R) vanishes—as follows. Let M be orientable (oth-
erwise, work with its orientable cover) and let * denote the Hodge
star operator. The condition divX = 0 is, up to a sign, the same
as *d * Xb = 0. Hence locally we have *Xb = df for some stream
function / ; in other words,

(5.1) X = -(*<//)*

solves the divX = 0 equation on the domain of / . Here, X is Hs

with s > f + 1 = 2, and / is Hs+ι. It can be checked that geo-
metrically, (5.1) says that X is the gradient of / rotated "clockwise"
(relative to the chosen orientation) by 90 degrees in each tangent plane
of M. Also, the demand that X is to be a globally defined vector field
means that its collection of local stream functions must differ only by
constants on their domain overlaps.

Next, we plug (5.1) into div(VχX) = 0 to obtain a pde that /
must satisfy. Such a calculation is detailed in [BR], and the result is
the following degenerate Monge-Ampere equation:

(5.2) \ 2
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where K is the Gaussian curvature function of the metric g (our con-
vention being that the round 2-sphere of radius a has K = +l/a2),
\\aJ\\ — J\ιJ\jS 9 a n a j \ ή j — j 9 l i j — / ^ i tj.

For the sake of simplicity, we shall restrict our search to globally
defined solutions of (5.2), even if Hι(M, R) φ 0; that is, we are
solving div(VχX) = 0 for those X such that *Xb is globally exact.

EXAMPLE 1. The Euclidean plane. In this case, (5.2) reduces to
f,x,xf,y,y - (/,x,y)2 = 0, which says that the graph {{x,y, z)\z =
f(x, y), (x, y) G K2} is a complete, boundaryless, flat, injectively
immersed surface in R 3 . These are then precisely the so-called gen-
eralized cylinders (see, for example, [S] Chapter 5) which hover over
the xy-plane. Consequently, it is not hard to see that the solutions
f = f(x,y) are of the form <p(ax + by + c), where a, b, c are arbi-
trary constants and φ is any Hs+ι, s > 2, function of one variable.

EXAMPLE 2. Non-compact boundaryless surfaces of revolution. Let
us generate such surfaces by revolving, around the z-axis, a parametric
curve (a(t), 0, b(t))9 0 < t < τ (τ could = +oc), given in the
xz-plane. The parametrization is chosen such that the speed of the
curve is always 1; that is, {a')2 + (bf)2 = 1, where the prime denotes
differentiation with respect to t. Hence the metric on the resulting
surface has the form g = a2(t)dθ <g> dθ + dt ® dt, 0 < θ < 2π,
0 < t < τ, and the Gaussian curvature K is calculated to be -a"/a.
We shall assume that the curve begins on the z-axis, namely

(5.3) α(0) = 0.

For a technical reason that will become evident later, let us suppose
that it heads off in the positive x direction and never turns back:

(5.4) β ' ( ί ) > 0 , 0<t<τ.

Note that (5.4) is automatic if α'(0) > 0 and K < 0.
For an axially symmetric function / = f(t), the Monge-Ampere

equation (5.2) becomes, after a straightforward calculation,

(5.5) (/W)r=f^(α2)(/02.

Note that it remains regular at t = 0, the only time when a is 0. Let us
look for those solutions which lack critical points. Since / is axially-
symmetric and at least C 2 , and (5.5) is invariant under / —> - / , this
is equivalent to the assumption that

(5.6) / / ( 0 > 0 , 0<t<τ.
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Conditions (5.4) and (5.6) simplifies (5.5) to / " / / ' = ^(a"/a')9

which can then be integrated twice (the second integration needs (5.6)
again) to give

(5.7) f(t) = /(0) + C f -j£L= , C> 0.

Here, C and /(O) are the two arbitrary constants of integration.
We would like to mention here that the technical conditions (5.3),

(5.4), and (5.6) are highlighted not for fastidious reasons. As is demon-
strated in [BR], one can gather a good deal of information about the
solution / by studying its interplay with these technical conditions.

EXAMPLE 3. The hyperbolic plane H2. We can write the metric
in normal coordinates as g = (sinh2 t)dθ ® dθ + dt ® dt (see, for
example, [GHL] p. 119). Then the computations in Example 2 are
applicable, and we find that the axially symmetric the monotonically
increasing solutions f = f(t) are given by

(5.8) f(t) = f(0) + cίt /"_, C>0.
Jo <

From this, one sees that given any XQ £ H2, the function h{x) :=
/(dist(x0, x)) is a solution.

On the other hand, taking the Poincare upper half-plane model,
with g = (l/y2)(dx ®dx + dy® dy), y > 0, one can check that ([P])
all solutions of the type / = f(y) with |£ never 0 are of the form

(5.9) f(y) = ay/y + b, a>0.

Geometrically, (5.9) can be viewed as A? , where h is a horofunction

of//2.
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