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ON THE NONLINEAR CONVEXITY THEOREM OF KOSTANT

JIANG-HUA LU AND TUDOR RATIU

1. INTRODUCTION

A classical result of Schur and Horn [Sc, Ho] states that the set of diagonal
elements of all n x n Hermitian matrices with fixed eigenvalues is a convex set
in R"”. Kostant [Kt] has generalized this result to the case of any semisimple
Lie group. This is often referred to as the linear convexity theorem of Kostant:
picking up the diagonal of a Hermitian matrix is a linear operation. This re-
sult was later put into the framework of symplectic geometry by Atiyah [Ay],
Guillemin-Sternberg [Gu-St] and Duistermaat [Dul], the key argument being
that the map that picks up the diagonal of a Hermitian matrix is a moment
map for a Hamiltonian torus action and that the image of such a moment map
is always a convex polytope.

There is also a nonlinear version of the convexity theorem of Kostant. It has
not been connected so far with symplectic geometry. The purpose of this paper
is to make this connection.

We first describe the nonlinear convexity theorem for the case of SL(n, C)
(see §2 for more details). The Gram-Schmidt orthonormalization process in
linear algebra asserts that every nonsingular #» x n complex matrix g can be
uniquely written as the product g = kan for some unitary matrix k, positive
diagonal matrix a, and strictly upper-triangular matrix n. We use 4 to denote
the group of all positive diagonal matrices, and we call the matrix @ in the above
decomposition the A-component of g. The nonlinear convexity theorem of
Kostant now asserts that the set of 4-components of g as g runs through all
positive definite Hermitian matrices with fixed eigenvalues a = (a,, ..., a,) is
the convex hull of the set of all points obtained by permuting the coordinates
of a. Here we identify 4 with its Lie algebra a via the exponential map; thus
convexity in 4 makes sense.

For a general semisimple Lie group G, the Gram-Schmidt decomposition is
replaced by an Iwasawa decomposition G = KAN of G, and the permutation
group that appeared above is replaced by the Weyl group W of (K, 4). If
an element g € G is written as the product g = kan for k € K,a € A4,
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and n € N, then a is called the A-component of g. For any a € A, the
set of A-components of kak™' as k runs through K often appears in the
representation theory of G . Kostant’s nonlinear convexity theorem now states
that this set is the convex hull of the Weyl group orbit W .a in 4.

We remark that as a and k respectively run through 4 and K, the point
kak™' runs through the symmetric space P. (In the case when G =SL(n, C),
P is the space of all positive definite »x»n Hermitian matrices with determinant
1.) Eachset {kak™':k e K} for fixed a € A is an orbit of the K-action on P
by conjugations. Such an orbit is usually called a flag manifold. When G is a
complex semisimple Lie group, such as SL(xn, C), but considered as a real Lie
group, these orbits are called complex flag manifolds. When G is a real form
of a complex semisimple Lie group, such as SL(#n, R), these orbits are called
real flag manifolds.

In this paper, we will show that when G is a complex semisimple Lie group,
there is a Poisson structure 7© on the symmetric space P whose symplectic
leaves are exactly the K-orbits in P. The Poisson structure 7z has the addi-
tional property that it is invariant under the action of a maximal torus T of K,
and, most importantly, the map that picks up the A-component of an element
is an equivariant moment map for this torus action with respect to 7. Ap-
plying the convexity theorem of Atiyah-Guillemin-Sternberg to each orbit, i.e.,
each symplectic leaf, we immediately obtain the nonlinear convexity theorem
of Kostant.

The first step in defining 7 is to identify P with the subgroup AN of G via
the two decompositions G = KP (the Cartan decomposition) and G = KAN
(the Iwasawa decomposition) of G. We then define a Poisson structure on AN,
which, when considered as defined on P, has the aforementioned properties.

Our result is a consequence of those in [Lu-We] on Poisson Lie groups. In
fact, the Poisson structure on AN that we are going to use is defined in [Lu-We]
as an example of Poisson Lie groups. It has also been observed by Reshetikhin
[Rs] and de Concini, Kac, and Procesi [Co-Kc] [C-K-P] that this Poisson struc-
ture plays an important role in the representation theory of quantum groups
at roots of unity. Our treatment here, however, is self-contained and does not
appeal to the general theory of Poisson Lie groups. Details on this subject can
be found in [Drl, STS, KS-Ma, Lu-We, Lu2].

In §2, we recall the convexity theorems of Kostant, and in §3, we recall some
basic facts from Poisson and symplectic geometry. The main result is presented
in §4, where we define a Poisson structure on the subgroup AN when G is
complex semisimple, and we show that it has the required properties. As a
consequence, we obtain the nonlinear convexity theorem of Kostant. In §5, we
make some remarks on the Poisson structure 7 in relation with its linearization
and quantum groups, as well as some future questions. In §6, we show how to
obtain the nonlinear theorem for real flag manifolds by the same argument
as Duistermaat [Dul] used in the linear case. This was pointed out to us by
Alan Weinstein.



ON THE NONLINEAR CONVEXITY THEOREM OF KOSTANT 351

2. THE CONVEXITY THEOREM OF KOSTANT

In this section, we review the convexity theorem of Kostant [Kt]. We first
recall the Cartan and Iwasawa decompositions for a semisimple Lie group. See
[He] for more details.

Let G be a real connected semisimple Lie group and g its Lie algebra. Let
t be a subalgebra of g corresponding to a maximal compact subgroup of the
adjoint group of G, and let p be the orthogonal complement of ¢ in g with
respect to the Killing form E of g. Then g is the direct sum of ¢ and p as
vector spaces; the decomposition g = ¢® p is called the Cartan decomposition
of g. Elements of p are semisimple, i.e., the linear map Ad,:g — g is
diagonalizable for X € p. It follows that P := expp is a closed submanifold
of G, diffeomorphic to p via the exponential map. Let K be the connected
subgroup of G with ¢ as its Lie algebra. The Cartan decomposition for G says
that G=KP,ie.,themap K xP — G: (k, p)— kp is a difftcomorphism. By
the invariance of the Killing form, we have [¢, p] C p, so K acts on p by the
adjoint action and on P by conjugations, with the exponential map from p to
P being K-equivariant.

Let a be a maximal abelian subspace in p. Since a consists of semisimple
elements, the adjoint representation of a on g decomposes g into the direct
sum of the eigenspaces g = [ & Z/le N , where [ is the centralizer of a in g,
and for a linear functional A on a, g, denotes the set of all X € g such that
[H, X] = A(H)X for all H € a, and A is the set of all such nonzero A’s.
Fixing a basis for a, we can then compare any two linear functionals on a in
the lexicographical way. Put n =}, ,g,. Then n is a nilpotent subalgebra
of g, and g = £€d a®n as vector spaces. Let 4 and N be respectively
the connected subgroups of G with a and n as Lie algebras. The theorem
of Iwasawa states that the map (k,a,n)— kan, ke K,a€ A,ne N,isa
diffeomorphism of K x Ax N with G. The decomposition G = KAN is called
an Iwasawa decomposition of G. We will use W to denote the (relative) Weyl
group of (K, a); it is defined as the quotient of the normalizer of a in K by
the centralizer of a in K.

If G is a complex semisimple Lie group but considered as a real Lie group,
we can choose & to be a compact real form of g. The Killing form of g is the
complex linear extension of that of ¢ to g. Therefore we have p = it. If t is
a Cartan subalgebra of ¢, then a = it is a maximal abelian subspace of p, and
the Weyl group of (K, t) is the same as that of (K, a). Any choice of a basis
for t will define an Iwasawa decomposition for g and G.

Example 2.1. Let G =SL(n, C), K =SU(n), P the space of all nx n positive
definite Hermitian matrices of determinant 1, 4 the group of all nxn positive
definite diagonal matrices with determinant 1, and finally N the group of all
n x n strictly upper triangular (complex) matrices. Then SL(n, C) = SU(n)P
is a Cartan decompositionand SL(#n, C) = SU(n)AN is an Iwasawa decompo-
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sition of SL(n, C). Similarly, replacing SU(n) by SO(n), and “complex” by
“real,” we get a Cartan and an Iwasawa decomposition of SL(n, R).

The two decompositions G = KP and G = KAN give rise to an identifi-
cation between the space P and the group AN ; namely, if p € P is written
as p = kan for some k € K,a € A and n € N, then p is identified with
an € AN. We will use p, to denote the projection from P (or G, or AN)
to A: p,(p = kan) = a. Kostant’s nonlinear convexity theorem concerns the
image of a K-orbit in P under the projection p, .

Theorem 2.2. (Kostant [Kt]). Let G be a connected semisimple Lie group, and
let G = KP and G = KAN with, A C P, be respectively a Cartan and an
Iwasawa decomposition of G. For a € A, let &, be the K-orbit of a in P.
Then the image of @, under the projection p, is the convex hull of the Weyl
group orbit W -a in A. Here, we identify A with its Lie algebra a by the
exponential map; thus convexity in A makes sense.

To justify the term “nonlinear,” we recall the linear convexity theorem. The
linearization of p,: P — A at the identity element e € G gives rise to the
orthogonal projection p, from p to a with respect to the Killing form of g.
We compare p, with the map J, := logop, o exp, where log: 4 — a is the
inverse of the exponential map of 4. Both of them are from p to a. With
respect to the linear space structures of p and a, p, is linear, while J, is highly
nonlinear as seen from the example below. But the linearization of J; at the
zero point of p is just p, . Now the full convexity theorem of Kostant states
that each K-orbit &, in p has the same convex image under both the nonlinear
map J, and its linearization p_; this convex set is in fact the convex hull of
the Weyl orbit W - X .

Example 2.3. Take g =sl(n, C), ¢ = su(n), a = the space of all real diagonal
traceless matrices, and p = the space of all traceless Hermitian matrices. Then
for X €p, p, simply picks up the diagonal part of X, while

J,(X) = (logop, o exp)(X)

! 2w, By (e™) A, (e )
= ~(logA,(e”"), log 22—+, ..., log—2——" |,
2( g 1( ) gAl(ez’Y) gA,,_l(ezx)
where for a matrix S = (s, i j=1...n» B (S) denotes the determinant of the
submatrix (s, j) Ptk It is clear that J, is highly nonlinear. For a given
X =(x;,...,x,) € a, the flag manifold &, is the set of all Hermitian matrices
with {x, ..., x,} as their eigenvalues. The relative Weyl group W is just the

permutation group X, of n elements. Therefore, the linear convexity theorem
of Kostant restates a known result of Schur and Horn [Ho] [Sc].

The linear convexity theorem of Kostant has been shown to fit into symplectic
geometry by Atiyah [Ay], Duistermaat [Dul], and Guillemin-Sternberg [Gu-St]
by realizing that (1) in the case of complex flag manifolds the projection p,
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is a moment map for a Hamiltonian torus action and (2) a real flag manifold
could be thought of as the fixed point set of an anti-symplectic involution on
a complex flag manifold. Our approach for the nonlinear theorem follows the
same line.

3. POISSON AND SYMPLECTIC GEOMETRY

A Poisson structure on a manifold M [We] is a bivector field 7 on M such
that the bracket operation on the algebra C°°(M) of smooth functions on M
defined by

{¢, 0} =n(dd,dp), ¢,9peC7(M),

satisfies Jacobi’s identity. {¢, ¢} is called the Poisson bracket of ¢ and ¢.
Purely in terms of the bivector field 7, the Jacobi identity of the Poisson bracket
can be expressed as [n, n] = 0, where [ , ] denotes the Schouten bracket on
the space multivector fields on M ([Ku]).

The bivector field 7 can also be regarded as the bundle map

' T"M — TM: B(n*(a)) = n(8, a).

For a smooth function f on M, the vector field n#(d ') is called the Hamilto-
nian vector field of /. When 7 is of maximal rank (M is then necessarily even
dimensional), the bundle map (n#)_lz TM — T"M defines a nondegenerate
closed 2-form w on M by i,w = (n#)_'(X ), where X is a vector field on
M and i denotes the interior product of vector fields and differential forms.
A manifold with a nondegenerate closed 2-form is called a symplectic mani-
fold. In general, # may have varying (but necessarily even) ranks. The image
of the bundle map 7" T"M — TM defines a singular involutive distribution
on M . Integral submanifolds of this distribution naturally inherit symplectic
structures, and they are called the symplectic leaves of (M, ). Therefore,
symplectic manifolds are special cases of Poisson manifolds and every Poisson
manifold is foliated by symplectic manifolds.

Obvious symmetries of a Poisson manifold (M, n) are described by Lie
group actions on M leaving 7 invariant. Let ¢ : G x M — M be such an
action, and let g — Vect(M): X — g, be the corresponding infinitesimal action
of g on M. The action is said to be Hamiltonian if there is a linear map g —
C™(M): X — J, such that (1) n#(dJX) =0y, and (2) Jx. vy = x> Iy},
where X, Y € g. In this case, themap J : M — g": (J(m), X) = J,(m), m e
M, X € g, is called a moment map for the action ¢ .

The convexity theorem of Atiyah-Guillemin-Sternberg is now stated as fol-
lows.

Theorem 3.1 (Atiyah [Ay]-Guillemin-Sternberg [Gu-St]). If J: P — R is a mo-
ment map for a Hamiltonian torus T* action on a compact symplectic manifold

k k
P, then the image J(P) is the convex hull of J (PT ), where PT denotes the
fixed point set of the action.
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We will use the following theorem of Duistermaat to study the case of real
flag manifolds.

Theorem 3.2 (Duistermaat [Dul]). If J: P — R* is a moment map for a Hamil-
tonian torus T* action on a compact symplectic manifold P and if Q is the

fixed point set (or a connected component of it) of an anti-symplectic involu-
tion of P leaving J invariant, then J(Q) = J(P) and it is the convex hull of

J(PT nQ).

4. A POISSON STRUCTURE ON THE GROUP AN

In this section, we assume that G is a complex semisimple Lie group regarded

as a real Lie group. Let K be the compact real form of G, and let G = KAN
be an Iwasawa decomposition of G. We will define a Poisson structure on the
subgroup AN .
Notation 4.1. Let g, £, a, and n be respectively the Lie algebras of G, K, 4,
and N . From now on, we will use b to denote a®n and B to denote AN.
The Iwasawa decompositions are then g =¢® b and G = KB . Elements of ¢
and b will be denoted respectively by X, Y, ... and &, 7n,.... We will also
denote the two projections from g to its two factors ¢ and b by p, and p,:

Peig=t®b— L X+L— X,

Ppi8=tOb—b: X++—¢.
The adjoint action of G on g will be denoted by Ad. For b€ B and X € ¢,
the element Ad, X € g will, in general, have both ¢ and b components.

Let E be the (complex-valued) Killing form E of g as a complex Lie alge-
bra, and let ( , ) be its imaginary part. Then ( , ) is symmetric, nondegener-
ate, and invariant. Since ¢ is a real form of g, we know that (¢, £) = 0. It also
follows from the fact that E(g,, g,) =0 for A+ 4 #0 that (a®n,adn)=0.
Therefore, using ( , ), we can identify ¢ with the dual space of b. We are
now ready to define the Poisson structure on B = AN .

Definition 4.2. On the subgroup B = AN, define a bivector field n by

(ry-1 (D)X, Y) = (p(Ady-1 X), p,(Ad,-1 Y)),
where X, Y € ¢ are considered as elements of the dual space b* of b via
(, ),and for b € B, r, denotes both the right translation in B by b, as well
as its differential map extended to bivector fields on B.

We need to show that n is a Poisson structure on B = AN .
Lemma 4.3. 7 is skew-symmetric.
Proof. Since ( , ) is invariant, we have forany X, Y € ¢ and b € B, that
0=(X,Y)=(Ad,-1 X, Ad,-. Y)
= (Py(Ady1 X), py(Ady-1 Y)) + (p,(Ady1 X), py(Ad,-: Y)).
Hence 7 is skew-symmetric. 0O
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The next lemma shows that 7z is compatible with the group structure of B =
AN in the sense that the group multiplication map BxB — B: (b, b,) — b,b,
is a Poisson map; B x B is equipped with the direct product Poisson structure
nemn.

Lemma 4.4. For b, b, € B, we have that
(1) n(b,b,) = lbln(bz) + rbzn(bl).

Proof. Set =, (b) = r,-1n(b) for b € B. Equation (1) then becomes the follow-
ing cocycle condition:

(2) n, (b by) =m (b)) + Adbl n(b,), Vb,,b,€B.
Let X,Y et=b". Then,
n(bb,)(X,Y) = (p, Ad(b]bz)_l X, p, Ad(blbz)_l Y)

Adbl.l X, Adb2 Py Ad(blbz)” Y)
eAdb;’ X, Adb2 Py Adbz—l(Adbl—l Y))
!Adb‘—x X, Adb2 Py Adb2_1 Py Adb‘_. Y)

+ (P, Adb,-’ X, Adb2 Pe Adb;’ Pe Adb," Y)
=n,(b,)(X, Y)+n(b,)(p, Adbl_l X, p, Adb;' Y).

=
={p
=(p

Notice that p, Adbl—l X € = b" is just the coadjoint action of b€ B on X €
b*. Hence the last term in the above equation becomes (Adb] n(b))(X,Y).
This proves the cocycle condition (2). O

Definition 4.5. We say that a multivector field IT on a Lie group B is multi-
plicative if

(3) (b, b,) = lblII(bz) + rbZII(bl)
forall b,,b,€B.

Lemma 4.6. Assume that B is connected. Then,

(1) a multivector field 11 is multiplicative if and only if II(e) = 0 and &£, 11
is left invariant whenever V is a left invariant (one)-vector field on B, where
e € B is the identity element of B and Z,I1 denotes the Lie derivative of T1
in the direction of V ;

(2) the Schouten bracket of two multiplicative multivector fields is again mul-
tiplicative,

(3) a multiplicative multivector field is identically zero on B if and only if its
derivative at e is zero.

Proof. By letting b, = b, = e, we see that a necessary condition for II to be
multiplicative is that Il(e) = 0. Replacing b, by exp¢V in (3) and differen-
tiating with respect to ¢ gives rise to the left invariant of %, I1. Conversely,
the left invariance of .Z,I1 for every left invariant ¥ implies that (3) holds
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for any b, € B and b, = exptV . Since B is connected, it is generated by any
open neighborhood of e. It follows that (3) holds for all b,, b, € B. Assume
now that Il;, and II, are two multiplicative multivector fields on B. Let V'
be any left invariant vector field on B. We have that
2,0, IL] = [Z 10, IL1+[I1,, &, I1,].

By (1) and by the product rule of the Schouten bracket, the right-hand side of
the above equation is left invariant. Again by (1), [II,, I1,] is multiplicative.
This proves (2). Now if IT is multiplicative, then Il(e) is necessarily zero. We
can then take the (intrinsic) derivative of Il at e. Itis a linear map 4,I1 from
b to A'b, where [ is the degree of II, defined by d,I1(¢) = (£, I)(e) , where
V' can be any vector field on B with value & at e. In particular, V' can be
the left invariant vector field defined by . Therefore if 4,IT = 0, then by
(1) &Z,I1 =0 for all left invariant vector field ¥ on B. Since left invariant
vector fields generate right translations, we know that Il is right invariant. But
II(e) =0,and thus [I=0. O

Now let © be a multiplicative bivector field on B. The dual map of d,n de-
fines a skew-symmetric operation [ , ] on b" by (¢, [X, Y] ) = (d,n(e))(&) x
(X,Y) for eband X,Y €b".

Lemma 4.7. On a connected Lie group B, a multiplicative bivector field n de-
fines a Poisson structure if and only if its derivative at e defines a Lie algebra
structure on b* .

Proof. By definition, 7 is Poisson if and only if [n, 7], the Schouten bracket
of 7 with itself, is zero. By Lemma 4.6, [, n] is also multiplicative, and it
is zero if and only if its derivative d,[n, n] is zero. By using the definition of
the Schouten bracket [Ku], one calculates (see also [Da-So]) that

drn,na)(X,Y,Z)=2[X,[Y, Z], ], +2[Y,[Z, X],], +2[Z,[X, Y]],
for X, Y, Z e€b". Therefore, d,[n, n] = 0 is equivalent to the Jacobi identity
for [ , ],. This proves the lemma. O

We now return to the bivector field # on B = AN defined in Definition 4.2.

Proposition 4.8. The dual map of the intrinsic derivative d,n of n at e is
exactly the Lie bracket map on t: A€ — t. Here recall that ¢ is identified with
the dual space of b via the scalar product ( , ) on g.
Proof. Let £ € b and X, Y € ¢. By definition, the pairingof ¢ and [X, Y],
is given by

d

(és [X> Y]n) = —d—t Orexp(—té)n(exp té)(X, Y)
1=

d
i), (Pe A1) exp(—1¢)

= (X, p[-C, YI) = (X, [, Y]) = (¢, [X, Y]).
Therefore [X, Y] =[X, Y], the Lie bracket of X and Y in ¢. O

X, p,Ad Y)
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We have therefore proved the following theorem [Lu-We, Lu2].

Theorem 4.9. The bivector field n as given in Definition 4.2 defines a Poisson
structure on B = AN .

Remark 4.10. A Lie group together with a multiplicative Poisson structure is
called a Poisson Lie group [Drl, STS, Lu-We]. We have in fact showed that B
together with 7 defined above is a Poisson Lie group.

We now turn to the study of the symplectic leaves of 7. Recall that the
Iwasawa decomposition states that G = KB. We will use p,: G — B to
denote the projection from G to B with respect to this decomposition. Then
an action of K on B can be defined as

(4) 0:KxB— B: (k,b)— py(kbk™"), keK,beB.

This is indeed an action. If we identify B with the coset space K\G, then it
is just the right action of K on K\G by right translations made into a left one
by replacing k£ by k~'. For X € ¢, the infinitesimal generator of the action in
the direction X is given by o,(b) = —r,p,(Ad, X) for b € B. On the other
hand, each X € ¢ can be considered as a covector at e € B, so it defines a left
invariant 1-form X' on B. Let n*: T"B — TB be the bundle map defined
by n. The symplectic leaves of n are by definition the integral manifolds of
the distribution in B defined by the image of this bundle map.

Theorem 4.11. For any X € ¢, we have n* (X ! ) = 0y . Therefore the symplectic
leaves of m in B are exactly the orbits of the K-action ¢ on B.
Proof. Let Y e ¢~ b", andlet Y' be the right invariant 1-form on B defined
by Y. Then the pairing of Y" with n#(X 1) at a point b € B is given by
(Y, 2"(X)(B) = n(b)(Y", p,Ad, X)
=(pAd, -1 Y, p,Ad,-1 p,Ad, X)
=(p,Ad,- Y, —p, Ad,-: p, Ad, X)
= —(Y, p,Ad, X) = (Y, a,)(b).
Therefore n#(X’) =0, forall Xet. O

Remark 4.12. Theorem 4.11 can be thought of as another description of 7,
namely, regarded as a bundle map from the cotangent bundle 7*B to the tan-
gent bundle 7B, m is the unique one that maps each left invariant 1-form X !
to the vector field o, for X €¢.

Let T be the connected subgroup of K with Lie algebra t = ia. Itis a
maximal torus of K.

Theorem 4.13. The restriction of o to T leaves the Poisson structure m on B
invariant and the map

J :=logop,: B=AN — a: an ~— log(a)

is a moment map for this T-action.
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Proof. Since T commutes with 4 and since N is a normal subgroup of TAN ,
we know that J is invariant under 7. For X € t, let J, € C*(4N) be
the X-component of J, ie., J,(b) = (J(b), X) for b € AN. Then the
differential dJ, is exactly the left invariant 1-form on AN with value X at

the identity. Therefore by Theorem 4.11, n#(d Jy) = g, . This, together with
the T-invariance of J, implies that J is an equivariant moment map for the
T-action. O

Remark 4.14. The Poisson structure 7 on B is not invariant under the whole
K-action. Namely, each individual element k € K does not necessarily preserve
7, unless k € T. In fact there is a nonzero Poisson structure defined on K
such that the action map K x B — B is a Poisson map, where K x B has
the direct product Poisson structure. See [Lu-We]. This is an example of a
Poisson action by a Poisson Lie group. There is a similar theory of moment
maps and reductions for such actions [Lul]. When the Poisson structure on the
Lie group is zero, this reduces to the corresponding theory in the usual case.
The Poisson structure on K mentioned above vanishes on 7' . This is why we
have a Hamiltonian torus action in the usual sense.

Proof of Kostant’s Theorem (Theorem 2.2) in the complex case. We now identify
B = AN with the symmetric space P = exp ip by identifying both of them with
the quotient space K\G, or more precisely by P > p — an € B if p = kan for
keK,ae A and ne N. The action ¢ of K on B then becomes the action
of K on P by conjugation. We still use 7 to denote the induced Poisson
structure on P by this identification. Then by Theorem 4.11, the symplectic
leaves of m are exactly the orbits of the K action on P. By Theorem 4.13,
T leaves = invariant and it has the map P — a: p = kan — loga as an
equivariant moment map. It is well-known that every K-orbit in P intersects
with A4, and the fixed point set of the 7-action on the K-orbit &, through
a € A is exactly the Weyl group orbit W -a. Applying Theorem 3.1, we obtain
the nonlinear convexity theorem for complex flag manifolds (Theorem 2.2).

5. SOME REMARKS

In this section, we make some remarks on the Poisson structure n defined
in §4.

Linearization of m. Recall that P can be identified with the linear space p = it
via the exponential map. Correspondingly, we can think of 7z as defined on
p. Its symplectic leaves are again K-orbits, but this time K acts on p by the
adjoint action. On the other hand, we can also identify p with the dual space
of ¢ (via the imaginary part of the (complex-valued) Killing form of g, namely
the scalar product ( , ) in §4). So there is also a Lie Poisson structure z, on
p [We] that has the same symplectic leaves as n does. Moreover, 7,(0) =0,
and by Proposition 4.8, the linearization of 7 at 0 is just m,. Since ¢ is
a compact semisimple Lie algebra, a theorem of Conn [Co] says that locally
around the zero point of p, 7 is diffeomorphic to 7.
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Question 5.1. Are n and 7, globally diffeomorphic as Poisson structures?

Such a diffeomorphism, if exists, cannot be K-equivariant because 7, is K-
invariant while 7z is not. But we strongly suspect that a T-equivariant Poisson
diffeomorphism exists. Recently, Ping Xu [Xu] has given such an explicit dif-
feomorphism for the case of K = SU(2). On the other hand, by looking at the
family of Poisson structures on p defined by 7, (X) = }n(hX) for h #0 and
their moment maps for the T'-action, Viktor Ginzburg [Gz] has observed that
their induced symplectic structures on each leaf have the same cohomology class
and therefore are diffeomorphic as symplectic structures. We would also like
to call the reader’s attention to [Du2], where the moment maps for n and 7,
are shown to be diffeomorphic by a homotopy argument. We thank Professor
Hermann Flaschka for pointing the reference [Du2] to us.

Relation with quantum groups [Wo, Dr2, Co-Kc, C-K-P]. The Poisson structure
on K that we mentioned in Remark 4.14 makes K into a Poisson Lie group
[STS], which can be regarded as the semiclassical limit of the quantum group
corresponding to K, and the group B = AN with the Poisson structure 7 is
the dual Poisson Lie group of K. Moreover the K-action ¢ on B defined
by Formula (4) is the so-called dressing action, which generalizes the coadjoint
action to the case of Poisson Lie groups. Therefore, keeping in mind the orbit
method in the representation theory of Lie groups, it is natural to ask how the
“quantization” of the symplectic structure on each K-orbit in B is related to
the representations of the corresponding quantum group. Indeed it has been
observed by Reshetikhin [Rs] and de Concini, Kac, and Procesi [Co-Kc, C-K-
P] that the Poisson structure 7 can be used to define the so-called “quantized
coadjoint action” for quantum groups at root of unity. But since 7 is not
K-invariant, the already existing geometric quantization theory does not apply.
This leads to the following question:

Question 5.2. How to geometrically quantize the (K-noninvariant) symplectic
structure on each K-orbitin B (orin p)?

6. THE CASE OF REAL FLAG MANIFOLDS

In §4, we assumed that G was a complex semisimple Lie group but regarded
asareal one. If G is areal form of a complex Lie group, such as G = SL(x, R),
the K-orbits in P (called real flag manifolds) can have odd dimensions, so they
do not admit symplectic structures. However, a real flag manifold should be
considered as the fixed point set of an anti-symplectic involution of a complex
flag manifold. This is the idea that Duistermaat used to put the linear convexity
theorem into the symplectic framework. We show in this section that the same
approach works for the nonlinear convexity theorem.

Let G be a connected semisimple Lie group over R with Lie algebra g.
Without loss of generality, we assume that G has trivial center so that it admits
a complexification G, . The Lie algebra g, of G, is then the complexification
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of g,ie., g, =g+ig. Weuse 7 todenote the conjugation of g, defined by g,
namely 1(X+iY)= X-iY for X, Y € g. It is an automorphism of g, - There
is also a unique automorphism of G, , also denoted by 7, whose differential at
the identity element is equal to 7. The connected identity component of the
fixed point set of 7 is G.

Let g = E®p be a Cartan decomposition of g. Define ¢ = ¢+ ip and
p, = it+p =it . Then both ¢ and p, are invariant under 7 and the fixed
point set of r|tl and ‘c|pl are respectively ¢ and p. Moreover, £, isa compact

real form of g, , and g, = ¢, ®p, is a Cartan decomposition of g,. Let a bea
maximal abelian subspace of p, and let a be any maximal abelian subalgebra

of g containing a. Define a, = a+ i(al N€). Then a, is a maximal abelian
subspace of p,, and a C a, is the fixed point set of 7 in a,. In defining
lexicographic orderings on the dual spaces of a and a,, we choose a basis
X,..., X, of a, such that X,,..., X is a basis for a, where n = dima,

m
and m = dima. Then in the corresponding Iwasawa decompositions of g and

g
g=tdadn, glzél@aleanl,
n, is invariant under 7 and n C n, is the fixed point set of 7 in n .

On the group level, let G = KP, G = KAN, G, = K,P, and G, =K AP
be respectively the Cartan and Iwasawa decompositions of G and G,. Then
K,,P,N,, and A, are all invariant under 7, and K, P, 4, and N are
respectively (in the case of K, the identity component of) the fixed point set
of tin K;,P,A;,and N,. Let a € 4, and let &, (a real flag manifold)
and &, | (a complex flag manifold) be respectively the X and K , orbitsin P
and P, through a. Since 7(a) = a and since K, is 7 invariant, we know that
@a,l is 7 invariant. The fixed point set of 7 in @’a’l may not be connected,
but its a-connected component is ag,.

Proposition 6.1. Let n be the Poisson structure on B, = AN, as defined in
Definition 4.2. Then T restricted to B, is anti-Poisson with respect to n, namely,
T,m = —mn, where t, denotes the differential of t.

Proof. Lemma 4.4 says that n is multiplicative on B, . Since 7 is a a group
automorphism, 7,7, defined by 7, 7(b,) = T*ﬂ(T_l(bl)) , is also multiplicative.
By (3) of Lemma 4.6, it remains to show that the derivatives of t,m and -7
at e are equal. We already know by Proposition 4.8 that the dual map of the
derivative of m at e defines precisely the Lie algebra structure on t, . Here
recall that we are using the imaginary part of the Killing form E of g, , denoted
by (, ) in §4, to identify ¢, with the dual space of b . = a, +n, . Therefore,
it suffices to show that the dual map of 7|b, , considered as defined on £, s
a Lie algebra anti-automorphism of ¢, . But the Killing form E of g, 1s the
complex linear extension to g, of the Killing form of g. It follows that for
any X and ¢ in g, , we have (X, 7(£)) = —(1(X), &) . In particular, by letting
X €t and £ € b, we see that the dual map of r|bl becomes the map —t
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on ¢ when we identify € with bf. Since 7 is a Lie algebra automorphism
on ¢, —7 is a Lie algebra anti-automorphism. Therefore 7,7 = —=, i.e,, 7 is
anti-Poisson with respect to #. O

Proof of Kostant’s theorem (Theorem 2.2) in the real case. 1dentify the space P,
with the group B, = 4 N, by the map p, = k,a,n, — a,n,, and think of =
as defined on P,. Since t commutes with this identification map, it is again
anti-Poisson with respect to 7. Equipping each K -orbit &, 1 in P, with the
symplectic structure induced from 7, T becomes ant1 symplectlc The K-orbit
@, is the a-component of the fixed point set of 7 in &,

Let T, be the maximal torus of K, generated by zal Then it leaves the
Poisson structure m on P, invariant (Theorem 4.13). Let T be the subtorus
of T, generated by t = ia. Again by Theorem 4.13, the moment map of the
T-action on P, is given by

Jp:Pp—a:p =kan 1 (loga,),

where 1, means the orthogonal projection from a, to a with respect to the
Killing form of g, . If we use a, to denote the orthogonal complement of a
in a,, and set 4, = expa,. Then 4, = A4, and the moment map for the
T-action on P, can be regarded as

Jpi Py — A:p, = kjaayn, — a.

It is also clear that J;. is t-invariant.

Let a € A, and restrict the T-action and the moment map J, to the sym-
plectic leaf @ N of P, through a. By Theorem 3.2, the image of @, under
J is the convex hull of of the image under J. of the fixed point set of T in
@, . Since A is a maximal abelian subspace in P , any point in P that is fixed
by T must lie in A; thus the fixed point set of 7" in &, is just the intersection
of & and A, which is well known to be the orbit of the relative Weyl group
W = W(K, A) through a. Since J, restricts to the identity map on 4, it
follows that the image of &, under J. is exactly the convex hull of the Weyl
group orbit W -a, which is precisely the statement of the nonlinear convexity
theorem (Theorem 2.2) for G.
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