EULER-POISSON EQUATIONS ON LIE ALGEBRAS AND THE
N-DIMENSIONAL HEAVY RIGID BODY

By Tupor RaTIUu

Abstract. The classical Euler-Poisson equations describing the mo-
tion of a heavy rigid body about a fixed point are generalized to arbitrary
Lie algebras as Hamiltonian systems on coadjoint orbits of a tangent bun-
dle Lie group. The N-dimensional Lagrange and heavy symmetric top are
thereby shown to be completely integrable and a new family of completely
integrable systems on semisimple Lie algebras is found.

Introduction. In recent years a lot of attention has been drawn to
the problem of complete integrability of Hamiltonian systems. The most
widely used method for finding conserved quantities is to represent the
system in the form of a Lax equation L = [L, A], for L, A matrices or dif-
ferential operators. Each time this can be done, the problem is a Hamilto-
nian system on adjoint orbits of a Lie group on its Lie algebra and the in-
tegrals are intimately connected to the ring of invariants; see [2], [3], [4],
[19], [27], [371, [38], [44]. A famous problem which was solved by this
method is the complete integrability of the free rigid N-dimensional body
and its Lie algebraic analogues ([3], [27], [37]). It is based on the crucial
observation of Arnold [6] that the second component of the geodesic spray
of a left-invariant metric on a Lie group in body coordinates (i.e. trivialis-
ing the tangent bundle via left translations), the Euler vector field, is a
Lax equation.

It is important however to consider more general Hamiltonians of the
form kinetic (of a left invariant metric) plus potential energy. The typical
problem we have in mind is the rigid body motion about a fixed point
under the influence of gravity. The potential is no longer left-invariant
and thus the Hamiltonian vector field in body coordinates mixes the group
and algebra variables ([1, Section 4.4]). Nevertheless, for the heavy rigid
body, Euler and Poisson deduced equations of motion only in vector form,
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i.e. the Euler-Poisson equations live on the product Lie algebra. This in-
dicates that these equations are obtained by another technique, rather
than just computing body coordinates, as was the case for the free rigid
body. Assume (as in the case of the heavy rigid body) that the potential is
invariant under the isotropy subgroup of the adjoint action at a certain
element (the Oz-axis for the rigid body).

If one carries out the Marsden-Weinstein reduction of the Hamilto-
nian system with respect to this subgroup and its momentum map [26],
the Euler-Poisson equations drop out. Moreover, the reduced manifold—
the new phase space for the problem—turns out to be a symplectic cover-
ing of the adjoint orbit of the Lie algebra of the tangent bundle Lie group;
the latter is the semidirect product of the group with its Lie algebra
regarded as abelian group, under the Ad-action. Generically this covering
is a diffeomorphism. This generalizes a result of Marsden-Weinstein [26]
and is proved in the natural setting of duals for any Lie algebra in Section
2. In this way it is shown that Euler-Poisson equations are Hamiltonian on
adjoint orbits of tangent bundle Lie groups. The Hamiltonian character of
Euler-Poisson equations has been observed independently by Adler-van
Moerbeke [3] and Iacob-Sternberg [15]. Section 1 presents background
material relating especially to the Kirillov-Kostant-Souriau theorem and
displays the relevant formulas to be used throughout the paper.

For the three-dimensional heavy rigid body, it has been noted [40]
that the Euler-Poisson equations can be written in Lax form with variables
formal matrix polynomials if and only if the equations describe the
Lagrange (two of the principal moments of inertia are equal and the cen-
ter of mass is on the axis of symmetry of the body) or the heavy symmetric
top (all three moments of inertia are equal). After defining a general
N-dimensional heavy rigid body in so(N), the same result is proven in Sec-
tion 4 and the necessary number of integrals is found in order to make
these problems completely integrable. Section 3 presents the relevant ma-
terial on Hamiltonian structures, Kac-Moody Lie algebras (Lie algebras of
formal polynomials with coefficients in a given Lie algebra) and the
Kostant-Symes involution theorem. Together with an involution theorem
on semidirect products, these are used in Section 4 to prove the involution
of the integrals and to find Lenard recursion relations between their
Hamiltonian vector fields.

In Section S it is shown that the symmetric heavy top is a restriction to
so(N) of a more general Euler-Poisson equation on s/(; C) which is also
shown to be completely integrable. The methods used here generalize
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directly to any semisimple Lie algebra. All these problems have linear
flows on complex cylinders. We do not explicitly linearize them since this
follows either directly from theorems in Adler-van Moerbeke [4], or from
an obvious extension of the method in Ratiu-van Moerbeke [40].

I want to thank here Jerrold Marsden and Pierre van Moerbeke for
their kind help and suggestions during the work on this paper. Many
thanks to M. Adler, J. Fox, C. Moore, and S. Smale for fruitful discus-
sions and remarks.

1. Preliminaries. In this section we concentrate the basic theorems
and formulas to be used throughout the paper. All facts stated here are
found either in the literature (specific references are included) or can be
easily worked out from the given information. We suppose the reader is
familiar with momentum maps and the Marsden-Weinstein reduction
procedure; accounts thereof can be found in e.g. [1, Sections 4.2, 4.3],
[251, [26], [17], [33], [46], [38], [37], [41]. In the sequel G denotes a Lie
group and g its Lie algebra with dual g*.

1.1. LetG, = {g € G|Ad#1» = v} be the isotropy subgroup at » €
g* of the co-adjoint action g — Adj-1 of G on g* and let g, = {£ €
g|(ad £)*v = 0} be its Lie algebra; (ad £)*v-n = p([£, n]). It is well-known
that the set © = {» € g*|dim(g,) is minimal} is Zariski open, hence open
and dense in g* and that for any » € O, g,, G, are abelian ([10], [35]). For
any v € g* we have

Ry {(ad £)*v| £ € g} = {u € g*|ulg, = 0O}

For any » € g*, the map g — Ad}-1» gives an injective immersion
G/G, — g* whose image is the co-adjoint orbit G-» C ¢*. Endow G-v
with the manifold structure given by this immersion. This topology is in
general finer than the one induced by g* and these coincide if and only if
the induced topology is locally compact. This happens for instance when
the co-adjoint action is proper, e.g. when G is compact.

1.2. Let g denote the underlying vector space of g and denote by
S = G a4 X g the semidirect product of G with the abelian Lie group g by
the adjoint representation g — Ad, of G on g. S is a Lie group with com-
position law (g1, £1)(g2, &) = (g182, &1 t+ Ad, &), identity element
(e, 0), and inverse (g, S)_l = (g_l, —Adg—n.f). Its Lie algebra ¢ is the
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semidirect product g,q4 X g of g with g by the ad-representation of g on g,
(ad £)(n) = [£, n]. The bracket in § is

(1.2) [(&1,m1), (52, )] = ([&1, &1, [£1, m2] + [0, £2D),

and the adjoint action of .S on 8 is given by

(1.3) Ad(g (&, m) = (AdgE, Adgn + [§, Adg&D.

Thus the Ad* and ad* actions of S and 8 and ¢* are

(14 Adf p-1(s, ») = (Adf e — (ad D*AdF-1p), AdZ-1v),
1.5 (ad(&, 7))*(u, ») = ((ad &)*u + (ad n)*», (ad §)*»),

forge G, & 3, C€g, u, v € gk
If k denotes a bilinear, symmetric, non-degenerate, bi-invariant (i.e.
k([&, 0], ©) = (&, [, ¢]) for all £, 9y, ¢ € g) two-form on g, the two-form

(1.6) ks ((§1, 1), (2, m2)) = k(&y, m2) + k(£2, 1)

satisfies the same properties on 8. Note that k X « is not bi-invariant.

The tangent bundle 7G is a Lie group with composition law (v, w,)
= TRy (vy) + ToLy(w,), inverse v, = —T,(Ly—1 ° Ry-1)(v;), and iden-
tity 0, € T,G. The space coordinate map p (see 1.4.) is a Lie group iso-
morphism of 7G with S.

1.3. The Kirillow-Kostant-Souriau theorem states that any co-
adjoint orbit G-u C g* is symplectic with form

1.7) w, (p)((ad £)*p, (ad n)*n) = —u([£, nl)

for £, n € g, u € G-u. Marsden and Weinstein [26] showed that G-u is
symplectically diffeomorphic to the reduced manifold J~'(x)/G,, where
G, = {g € G| Ad,~1p = p} is the isotropy subgroup at u of the co-adjoint
action, and J: T*G — g%, J(a,) = T¥R,(cy), Ry(h) = hg, is the momen-
tum map of the lift to 7*#G of the left-translation L, on G. Moreover, us-
ing theorem 4.3.3. of [1], it can be easily shown that the co-adjoint orbit
G-u is symplectically embedded onto a subbundle over G/G, of
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T*G/G,) endowed with the non-canonical symplectic form w, + dé,,
where wy is the canonical symplectic form of the co-tangent bundle and &,
is the pull-back to T*(G/G,) of a certain one-form on G/G, which we
now describe: J~!(u) = graph(a,), where o, = u ° T,R,—1 is a right-
invariant one-form on G, invariant under G , and thus induces a one-form
on G/G,. This embedding is a diffeomorphism if and only if g u =g

If £, f':g — R, the Hamiltonian vector field of f| G- u and the Poisson
bracket of £| G-, f'|G-p are

(1.8) X;16.,(8) = ad(df()*u
(1.9) {f1Gp,f'|G-u}®@) = —w(ldfw), df ®)))

where df (), df'(u) € g** = g. In the case of 8%, the dual of the semidirect
product 8, these formulas become

(1.10) @) (m, P)((ad(E, M)*(, ¥), (ad(¢’, 9")*(m, »))
= —u(& &D — vUE 2D — v(n, £'D
(L1D)  Xy5.0 (8, ¥) = ((ad(d 1 f (, ¥))*u + (ad(d,f (&, 9)))*¥
+ (ad(d1f(u, »)))*v)
(1.12)  {fIS(u, ), f'|S -, )} = —uld1f(m, ¥), dof '(m, DD
= wldf(w, »), dof '(m, WD)
= Wldaf(m, »), dyf'(, P)])
where d;f(%, ), i = 1, 2 denote the partial derivatives of df (i, 7).
If g carries a bilinear, symmetric, non-degenerate, bi-invariant two-
form «, then co-adjoint and adjoint orbits are diffeomorphic, and thus any

adjoint orbit G -£ is symplectic with form

(1.13) w:(E)[n, £1, [¢, D = —«([n, ¢, E)

for £ € G-£. The formulas for the Hamiltonian vector field and Poisson
bracket are
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(1.14) X;)6.:(8) = —[(grad £)(®), ]

1.15)  {f|G-£,f'|G-£}(E) = —«([(grad /)(E), (grad £ )(E)], E)

where grad denotes the k-gradient, i.e. df(£)(n) = k((grad £)(£), n) for any

£, ne€q.
For the semidirect product 8, the two-form «, gives the formulas

(1.16) W&, D, ), (1, EI, [E ), &, D
= —l6y, §11 m — w6y, $51, ) — wlla §11, 6)
(117) X/, )
= —((grad, /)&, m), £, [(grad, £)(E m), m] + [(grad, £)(E, n), £1)
(1.18) {£.£/}(&, ) = —«(&, [(grad, £)(E, m), (grad, £)(E, M)
— (£, [(grad, £)E, n), (grad, £(E, DD
— «(n, [(grad, £)(E, m), (grad, £(E, M),

where (grad;, grad,) denotes the usual gradient with respect to x X «;
note that the gradient with respect to «; is (grad,, grad,).

1.4. Throughout this paper it will be computationally convenient to
realize TG and 7*G as G X g and G X g* respectively. We shall say that

MTG -G Xg  Nv) =(g, T, L;'(v) v, €T,G

0:TG - G X g o(ve) = (g, TeRg_l(vg)) vy € T,G

>

:T*G — G X g* Na,) = (g, T.L¥a,)) o, € T,G

:T*G — G X ¢* play) = (g, T.RXa,) o € T,G

ol

define the body (A, ) and space (p, p) coordinates on 7G and T*G
respectively. The canonical one () and two forms (o = —d6) of T*G have
the following expressions in body coordinates:
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(1.19) (g, W(vg, p) = WTpLg-1(vy)),
(1.20) w(g, w((vg, p), (g, 0) = —p(ToLy=1(wg) + o(ToLg=1(vg))
+ w(TyLg-1(vg), ToLg-1(wp)])

forg € G, u, p, 0 € g%, vy, wy € T,G. ([1], Propositon 4.4.1)

If H: T*G — Ris a left-invariant Hamiltonian on 7#G, i.e. H ° T*L,
= H for all g € G, the expression of the Hamiltonian vector field X g in
body coordinates is W\ Hg)g, p) = X(g, w), p, ad*(dH(u))-n), where
g — X(g, p) is a family of left-invariant Hamiltonian vector fields on G
depending smoothly on p € g* and Y(p) = ad*(dH(n))-p is known as the
cotangent Euler vector field ([1] Section 4.4, [37] Section 2). It is shown in
Ratiu [37] that Y|G-u is Hamiltonian and that it corresponds to the
reduction of Xy to J_l(p,)/Gﬂ ~ G-pu (see (1.8)). Since the motion of the
reduced Hamiltonian system determines uniquely the motion of the
original Hamiltonian system on level sets of the momentum map ([1],
page 305), it follows that all the mechanical information is carried by the
cotangent Euler vector field Y:g* — g*.

Assume G has a left-invariant metric { , ) and that E:7G — R is an
arbitrary left-invariant energy function. Taking on 7G the symplectic
structure induced from 7%G by ( , ), the expression of the canonical one

(©) and two-forms (@ = —dO) in body coordinates are ([1], Proposition
4.4.2)

(1'21) e(g’ g)(vg’ () = (Tng_l(vg)a £>e

(1.22)

g, H((vg, ), wg, M) = =& TeLg—1(wp)d e + <, T,Le—1(vg)),
+ <£9 [Tng_l(vg)a Tng_l(Wg)]>e'
Let E: TG — R be an arbitrary left-invariant energy function and assume
that X is a second order equation on 7G. Its expression in body coor-

dinates is given by (A Xp)(g, £) = (T.L,(%), &, Y(£)), where Y:g — g,
called the Euler vector field is characterized by

(1.23) Y, ny =& ql, &
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for any &, 5 € g. Since the last formula determines Y uniquely in terms of
{, ), and is independent of E, it follows that the geodesic sprays of left-
invariant metrics are the unique left-invariant vector fields on TG which
are also second order ([1], Section 4.4).

If g carries a bilinear, symmetric, non-degenerate, bi-invariant two
form k, there exists a unique linear x-symmetric isomorphism I:g — g
such that «(/-, -) = (-, -). (1.23) becomes [Y(§¢) = [I&, £] and thus put-
ting L = I, the change of variables n = I¢ defines a vector field

(1.24) Z(n) = [, Ln]
which is Hamiltonian on G-y with Hamiltonian n — (1/2)x(n, Ly).

2. Co-adjoint orbits of semidirect products as reduced manifolds and
the Euler-Poisson equations. This section shows how generic co-adjoint
orbits S-(u, ») C 8* naturally arise as reduced manifolds in 7#G = G X
g* and represents a generalization of a result of Marsden and Weinstein
[26]. Hamiltonian vector fields on these orbits generalize the classical
Euler-Poisson equations.

2.1. Two linear functionals (ng, o) on the Lie algebra g determine
three symplectic manifolds.

(1) The co-adjoint orbit (S -(ug, ), “’(uowo)) of § in 8%*.

(2) Let v € g* be fixed and G, = {g € G|Ad}-1vy = v} its isotropy
subgroup under the co-adjoint action. G, acts freely and properly on G X
g* by (h, (g, &) ~ (hg, ). The infinitesimal generator of this action
defined by £ € g, = {{ € g|(ad $)*vy = 0} is (g, @) — (T R,(§€), 0) and
thus this action has a momentum map J:G X g* — gif given by ([1,
Theorem 4.2.10]) J(g, «)-& = 0(g, al(T,R,(£), 0) = (Adf-1a)(§), i.e.

J(g, @) = (Ad1a)]g,,.

Since the isotropy group at any (g, «) of the G, -action is trivial, J has no
critical points ([S, Theorem 1]).

Let ug € g*, denote ug = po| g, € g5, and form the reduced symplec-
tic manifold (J _l(ﬁo)/(G,,o)ﬁo, 0). The symplectic form o is uniquely deter-
mined by i*w = w*g, where i:J '(zy) « G X g* is the inclusion and
] Wug) = J _l(ﬁo)/(GVO);o the canonical projection.

(3) For py € g the one-form oy (g) = po ° TgR,—1 (R, = right
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translation) on G is right-invariant and (GVO)—,;0~left-invariant thus induc-
ing a one-form on the quotient G/(G,));,. Denote by &; its pull-back to
T%G/(G,));,) and form the symplectic manifold (TYG/(G))z,), wo +
déy; ), where w is the canonical symplectic form on TG/(G,)z,) (see
1.3.).

The first goal of this section is to relate these three symplectic mani-

folds.

2.2. ThemapF:G X g* — g* X GA‘ vo, F(g, o) = (a, Ad¥vy) induces
a smooth map F([g], o) = («, Ai‘lg‘vo), F:G/(G,)z, X g% — g* X G-»,.
Remark that if (G,,O),—L0 = G,,O, F is a diffeomorphism. Let M(ug, vy) =
{(1, ») € 8*| there exists g € G such that v = Ad#-1vo, (Ad#u)| 8y, = Mo} C
8*. A straightforward verification shows that

FU™ ' () /(G,),,) = FU (o)) = M(iy, v).

LemMA 2.1 M(pg, vo) = S+(uo, vo) for any pg € g* satisfying u|g,,
= po-

Proof Let u € g* satisfy u | 8y, = Ho- Then by (1.1) there exists { € g
such that u = pugy — (ad {)*»y, and (1.4) shows that S-(u, vo) = S+ (uo, vo).

It is straightforward to check that S-(u, v¢) S M(ny, vy) for any u €
g* satisfying u | g,, = ko and hence Ula,,=iigS (s v0) S M(pig, vo). Con-
versely, if (u, v) € M(uo, vo), then there exists g € G such that » = Ad}-1»,
and (Ad¥u)|g,, = po- Put p” = Adfy, notice that 1’18y, = Ho, and that
(Ad¥F-1p’, Adf-1vg) = (u, »), ie. (u, ») € S-(u’, »y) by (1.4) and thus
Mg, v0) = U 1, =S+ (1, v0). Mg, v9) = 8- (u, vo) for plg, = o fol-
lows now from the first step in the proof, v

Lemma 2.2, F:(U 7 (@) (G, )z 0) — (S-(no, ¥0), 6y vp)) is @ sym-
plectic covering map.

Proof. Since o is defined by i#*w = =*g, the relation £ FO (o) = O
is equivalent to (F|J_1(ﬁ0))*w(,£0,,,o) = *w.
The formulae

To(Ad*a)(v,) = ad(T,L,-1(v,))*Ad¥a

To(Ad*_,0)(v,) = —(ad T,R,~1(v,)}*Ad% 1a
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forg € G, o € g¥, ve € T,G imply
(o) F)vg, B) = (B, (ad ToL,~1(v,))*Adgv)
Tigea)vg, B) = —((ad TyRy-1(v)*AdF-100) | g, + (Adg-18) g,

2.1)
TigU (1)) = Ker(T (g 00J) = {(v,, B) € T,G X o*[(AdZ-18)|g,,

= ((ad TyR,-1(v,)*Ad# 1) | g, }.
Thus if (g, «) € T~ 1(uy), (vgs B), (Wg, ¥) € Ty )T~ (1)) we have
(F¥w, 008, ) (vg, B), (wg, 7))
= Wgp(es AdFo)(B, (ad TyLy—1(v,))*Ad#s),
(7, (ad TyLy-1(w,))*Adzvy)).
Put ¢ = ToLo-1(vy), &' = TyLy,-1(w,). Determine 7, 7’ € g from the equa-
tions
(ad Adyn)*vg = Adg-18 — Ad¥-i(ad £)*a
= Ad§-18 — (ad Ad,£)*Ad 1o
(ad Adgn)*vg = Ad¥-1y — Ad}-i(ad £')*a
= Adf-1y — (ad Ad ¢ )*Ad¥- 1
which is possible by (2.1) and (1.1). Then (1.5) shows that
(B, (ad ToLy-1(vy))*Adfvg) = (ad(£, n)*(cr, Adiv,)
(7, (ad ToLg-1(w))*Adgre) = (ad(¢’, ") (ct, Adv,).

Thus by (1.10) we have
(P 18> ) (s B), O, ¥) = —allE, £]) — AdSng(I£, 17])

- Ad;‘VO([n’ S,])'
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But
Adfvo([n, £']) = (ad Ad,n)*»- Adgé’
= Ad-18-AdE" — Ad#-i(ad £)*a-Ad,E’
= BE) — alt, £
= B(TgLy—1(wg)) — o[£, £7]).
Similarly
Addvo([E, 1) = —ATeLe-1(v,)) + o[£, £])
and hence

F*w,,0)(g, (vg, B), (W, 7))
= “B(TeLe-1(wg)) + YTyLy-1(v)) + al[TyLy-1(v,), ToLg—1(wy)])

i.e. F¥w, .. = o by (1.20).

The formula for T', . F, (2.1), and (1.5) prove that F and hence
FiJ_l(l—to)/(Gyo)ﬁo — M(ug, vo) = S‘(#Oafo) is a surjective submersion,
and hence an open mapping ([9]). Since F is symplectic, it is an immersion
and thus locally injective, i.e. Fis a symplectic covering map. v

Recall from 1.1. that there exists an open dense set © < g¢* such that
if v € O, G, is abelian. Thus

{(o, ¥ 1(G, )z, = G, } 2 (g% X 0) U ({0} X g¥)

and hence the condition Gz, = G,, under which Fisa symplectic dit-
feomorphism is generic.

TueorREM 2.3.  Let pg, v € 6%, 1o = polg,,-

(A) The reduced symplectic manifold (J~'(uy)/ Gy, 0) is a
symplectic covering of the coadjoint orbit (S-(u, vy), W(u,v,)) and symplec-
tically embeds onto a subbundle over G/(G, )z of (T MGGz, wo +
dég), for any p € g* satisfying p|g,, = u = Ho.

(B) Under the generic assumption (Gvo)ﬁo = G,, the three manifolds
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(8- (1y 0), () (J_I(EO)/G,,O, 0), and (TXG/G, ), wy + déy) are sym-
Pplectically diffeomorphic for any u € g* satisfying | 8y, = B = Ho.

Proof. (A) The first part is lemma 2.2. The second part follows
from theorem 4.3.3. of [1] provided oy has values in J~1(5z,). But this is
immediate since the expression of aﬁ(g) in body coordinates is )\(aﬁ( g)) =
(g, Ad¥u) (see 1.4) and thus J(g, Ad¥p) = ﬁlg,,o = up. A

(B) This follows directly from (A), the fact that now F is a diffeo-
morphism, and theorem 4.3.3 of [1]. O

Remarks. (1) If g carries a bilinear, symmetric, bi-invariant, non-
degenerate two-form, all results above can be easily reformulated in terms
of adjoint orbits of S on §. If g is semisimple, the generic set includes the
open dense set {regular semisimple elements of a} X g.

(2) Assume now that G,, = G. Then S-(ng, vp) = G-py X {ro} and
it is easy to see that for any (u, ») € S-(ug, vo), £~ (u, ») = ([e], w), i.e. £
is a diffeomorphism and we recovered the Marsden-Weinstein theorem
([26], [1, page 303]), which states that J _I(Ho)/Gﬂo is symplectically dif-
feomorphic to the co-adjoint orbit G “Wo-

(3) The map F:G X g* — g* X g* has the following interpretation
([12], [13]). S acts on the right on G X g* by (g, {), (h, ) — (hg, Adg,"a
+ Ad¥ad $)*Adfv), (g, O €S, (h, ) € G X ¢*, with infinitesimal
generator (&, MNexgh, a) = (T,L,(%), (ad £)*a + (ad 7)*AdFr,) for
(&, n)es Itis readily verified that this action is symplectic admitting an
Ad*-equivariant (on the right) momentum map which is F. Starting from
this observation, Marsden [13] gives an alternate proof of Lemma 2.2 us-
ing general facts about collective Hamiltonians [12].

(4) The above theorem and proof have a word by word generalization
to the case when § is the semidirect product of G with a vector space V on
which G is linearly represented. In this form (with G = § O(n), V = sym-
metric traceless matrices) the theorem appears already in Ratiu [39]. The
present paper will not use this straightforward generalization.

(5) In general d&,—L # 0. If u = 0 then oy itself vanishes; this is im-
portant for a large class of completely integrable systems ([3], [4], [34],
[39D). For G = SO(3) a quite unpleasant computation using Euler angles
shows that da; = 0 ([13], [40]).

2.3. The geometric result in theorem 2.3 has a mechanical counter-
part. Assume (Gvo)ﬁo = G,, and that the Hamiltonian H:G X g* — Ris
G,,o-invariant, ie. H(g, a) = H(hg, o) for all h € G,,O. Then H induces a
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Hamiltonian system on the reduced manifold ([1, Section 4.3], [25, Sec-
tion 5], [26]) and thus by Foneon S (ug, vo) whose expression is H(a,
Ad¥vy) = H(g, o), for (Ad;,"—mz)lg,,0 = uo. Regarding », as variable
parameter, H, defines a function on $* whose Hamiltonian equations on
each co-adjoint orbit of § in &* are the generalized cotangent FEuler-
Poisson equations (1.11). The original mechanical problem is thus em-
bedded in a larger one, in which ‘“the axis of symmetry” », becomes a
variable parameter.

Assume now that H defines a simple mechanical system ([1, Section
4.5], [41]), i.e. H(g, u) = K(u) + U(g), where K(u) = (1/2){p, p) is the
expression in body coordinates of the kinetic energy K(a,) = (1/2)<ay,
Q) of the left-invariant metric { , » on G in cotangent formulation and
the potential U is a real-valued function on G. If U is G, -invariant, it in-
duces a map V:G-»y — R, V(») = U(g) for v = Adf-1v,. The equations
of motion (1.11) become in this case the cotangent Euler-Poisson equa-
tions

o= (ad({p, ->)*u + (ad(@V(@))*v
2.2)
p = (ad({p, ->)*

where (u, -) € g** = g. Note that on the manifold T*(G/(G,);,) (see
theorem 2.3.B), the kinetic energy is induced from the kinetic energy of
the metric ( , ) on G and the potential energy is induced from the G, -
invariant effective potential ([41]) V3 (g) = U(g) + K(az(g)) = U(g) +
K(u » ToR,-1) ([1, theorem 4.5.6]). Thus on the manifold T*(G/(G,,o)ﬁo)
the motion can be regarded as taking place under the combined influence
of a potential V;; and a field potential o;. In case of the heavy rigid body,
oy represents the gravitational field potential (Section 4).

In applications one encounters matrix equations, i.e. equations in g,
not in g*. It is therefore important to reformulate the above results on ad-
joint orbits of 8. The basic assumption is that g carries a bilinear, sym-
metric, non-degenerate, bi-invariant two-form k. For example, if g is
semisimple, x is some multiple of the Killing form. Let I:g — g be the
k-symmetric, positive isomorphism given by «(I-, -) = (-, -) and L =
I lie. «(-, -) = (L-, -). The expression of the above Hamiltonian on g*
via the isomorphism é* = 8 defined by «, (see (1.6)) is H(&, ) =
(172)k(Ln, ) + V(&). Hamilton’s equations of motion on adjoint orbits of
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S in ¢ (the counterpart of (2.2)) are the Euler-Poisson equations, equal by
(1.17) to

(2.3 £=1[& Ly, 9= [n Lyl + [£ (grad V)(£)]

Such equations appear for example in the study of the magnetohydro-
dynamics of an incompressible, inviscid, ideal conducting fluid in a com-
pact region of R? with smooth boundary and its analogue in SO(n) (where
V(&) = (1/2)x(LE, &) ([45D).

If V is linear there exists a unique x such that V = «(x, -) and thus
equations (2.3) become the classical Euler-Poisson equations

2.4) £=1[¢Lnl, 1=1[g Lyl + [£ x].

Summarizing, Hamiltonian systems on a Lie group G with energy of
the form kinetic plus potential, the kinetic energy defined by a left-
invariant metric and the potential invariant under some isotropy subgroup
of the (co-)adjoint action, naturally generalize to Hamiltonian systems on
orbits of the semidirect product S. It is thus not surprising that a variety of
completely integrable systems have been found to have for phase space ad-
joint orbits of S in §; see [3], [4], [15], [40], [33], [34], [39]. In applications
it is usually easier to work with the generalized Hamiltonian systems on
orbits of S rather than with the original one; see the prior references and
Section 4, Section 5.

2.4. In the sequel the complete integrability of a certain Euler-
Poisson equation on so(N) will be discussed. We shall prove below a
general involution theorem on adjoint orbits of S on 8. Of course the
theorem naturally lives on duals, but this is the form to be used later on
(see Section 4).

THEOREM 2.4. Let g be a Lie algebra carrying a bilinear, sym-
metric, bi-invariant, non-degenerate two form. Let f, g:g — R satisfy

[(grad f)(§), &1 = O, [(grad g)(£), &] = O for all & € g and denote f (&, 1) =
SE+ an + a2e), go(&, 1) = g(& + by + %), for € € g fixed, o, 6 € R. Then
the Poisson bracket {f,, g;} vanishes on all adjoint orbits of S in 8.

Proof. Since
(grad, £,)(&, n) = a(grad f)(& + an + a®e)

(grad; £.)(£,7) = (grad f)(§ + an + o),
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for o # 6, writing

(a + B)E + aby = (®/(a — BNE + b + 8%€) — (B%/(a — B))(E + an + o%€)
we get from (1.18)
{fa’ gB}(g’ 77)

= —kl((a + B + aby, [(grad £)(& + an + o), (grad g)(¢ + by + 8%6)])
= (a*/(a — O)x([£ + 8y + 8%, (grad g)(¢ + 8y + £%6)],
(grad f)(§ + an + o))
+ (8/(a — O)k([£ + an + o€, (grad £)(E + an + a%e)],
(grad g)(¢ + & + 8%¢) = 0.
By continuity {f,, g¢} = 0holds for « = § too. O

3. Hamiltonian structures and Kac-Moody Lie algebras. This sec-
tion is a brief review of Hamiltonian structures, Kac-Moody Lie algebras
and the Kostant-Symes involution theorem with special emphasis on the
semidirect product 8. The concepts and formulas of this section will be ap-
plied to prove the complete integrability of certain Euler-Poisson equa-
tions in the rest of the paper.

3.1. Let M be a smooth manifold and F(M), X (M) the algebra of
smooth functions, respectively the Lie algebra of smooth vector fields on
M. A Hamiltonian (Poisson, or cosymplectic) structure ([21], [22], [24])
on M is

(i) a bracket {, } on F(M) making F(M) into a Lie algebra,

(i) a Lie algebra anti-homomorphism X:(F(M), {, }) — (XM),
[, D) given by X;(g) = —{f, g}, L.e. X{s5p = —[X), X,].

For f € F(M), X is called the Hamiltonian vector field of the
Hamiltonian f, and { , } the Poisson bracket.

Since X/(p), {f, g}(p), p € M depend only on df,, dg,, the Hamilto-
nian structure defines a contravariant antisymmetric two-tensor field A on
M by A(p)(df,, dg,) = {f, g}(p). The following has a straightforward
proof ([38]).
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PropositioN 3.1. The Hamiltonian structure (M, { , }, X) defines
a contravariant antisymmetric two-tensor field A on M. If k denotes the
minimal dimension of its kernel and n = dim(M), the set @ = {p €
M|dim 3C(p) = n — k} is open in M, where 3C(p) = span{X,(p)|f €
F(M)}. If there exists a dense set in M on which dim JC(p) = constant,
this set is necessarily included in Q. Finally, @ is foliated by symplectic
manifolds, called the generic symplectic leaves of the Hamiltonian struc-
ture.

The last statement follows by the Frobenius theorem applied to the
(n — k)-dimensional involutive distribution JC on Q.

A submanifold N C M is invariant if g € N implies X/(q) € TN for
all f € F(M). Clearly N is in this case itself Hamiltonian.

Let M, {, }, X), M, {, }’, X’) be two Hamiltonian structures on
the same manifold M and M C F(M). A bijective map ®: M — I satis-
tying X, = X/ is called Lenard relations in M. Remark that {f, g}’ =
—X/(g) = —Xop(g) = {¥f, g} = {f, $g} so that M commutesin { , } if
and only if it commutes in { , }’. By abuse of language, in the literature
Xgr = X/ are often called Lenard relations themselves, due to the fact that
& has been discovered in this form as a recursion relation for the integrals
of the KdV equation by Lenard.

3.2. Hamiltonian structures on M with non-degenerate Poisson
bracket (i.e. {f, g} = 0 for all g € F(M) implies f = constant on con-
nected components of M) coincide with symplectic structures of M. This
theorem is due to Jost [16]; see also [38] for a proof.

Let g be a Lie algebra. A whole family of Hamiltonian structures is
defined on g* by

3.1 {fs gle(w) = —¥(u)([df (w), dg(w)])
3.2) X7 () = (ad(df (u))*¥(u)
where ¥:g* — g* is a smooth map satistying the following identity
(d¥(w)-(ad O*¥ (W) [n, £] + (d¥(u)-(ad N*¥(u))-[£, ]
+ (d¥(u)-(ad E)*F () [5, 7] = 0

for all £, 5, { € g, u € g*. If ¥ = identity, one gets the Kirillov-Kostant-
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Souriau structure on g* and (3.1), (3.2) become (1.9), (1.8). This structure
is determined actually by the decomposition of g* in co-adjoint orbits. The
set @ of proposition 3.1 is in this case open and dense and coincides with O
of 1.1.

If ¥(u) = v for all u € g*, one obtains the modified Kirillov-Kostant-

Souriau structure on g*.

Assume g carries a bilinear, symmetric, non-degenerate, bi-invariant
two-form k. Then all Hamiltonian structures above induce isomorphic
structures on g. For example, the Kirillov-Kostant-Souriau structure on g
is given by (1.14), (1.15), and if g is semisimple, @ = regular semisimple
elements in g, whereas for ¢ € g fixed, the modified Kirillov-Kostant-
Souriau structure on g is defined by

3.3) {f, g}(&) = —«([(grad f)(£), (grad g)(§)], €)
3.4 () = —[(grad £)(&), €].

Define the Euler-Poisson structure on g* X g* (g X g) as the Kirillov-
Kostant-Souriau structure on 8* (8); it is hence given by (1.11), (1.12)
(respectively by (1.17), (1.18)) and determined thus by the co-adjoint (ad-

joint) orbits in 8* (8). For o € g*, € € g fixed, the modified Euler-Poisson
structures on g* X g* and g X g are given respectively by

(3.5 {f,8}alp, v) = —adld f(p, v), drg(p, »))
— alldrf(p, v), d1g(, »)])
— uldrf(w, v), drg(p, v)])

X7 (u, v) = (ad(drf (u, V)))*a, (ad(d f (g, v))) ¥ + (ad(dyf(p, )))*v)
(3.6

forf, g:g* X g* — R, p, v € g%, d,f(u, v), d;g(u, v) €g,i = 1, 2 and
(3.7) {f,8}(&,m) = —«(e, [grad, f(£, n), grad, g(§, n)])
- K(G, [gradl f(Ey 77)9 gradz g(Ey 77)])

- K(ﬂ, [gradl f(£9 77)’ gradl g(E’ 77)])
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Xfe(E’ 7]) = ([7]’ gradl f(gs 71)] + [61 gradz f(gv 77)]’ [6’ gradl f(gy 77)])
3.8

forf, g:g X g — R, &, n € g. The set @ depends on « (on e respectively)
and has to be determined case by case.

We shall prove below that the two above modified Hamiltonian struc-
tures on g and g X g are induced by an orbit decomposition in an infinite-
dimensional Lie algebra.

3.3. If g is a Lie algebra, let § denote the vector space of all formal
finite sums £ = I,z £,h" with the usual addition and scalar multiplica-
tion on components. § becomes a Lie algebra with respect to the bracket

3.9 Yen, gt =X( X , h".
( ) [nEZ E” PEZ p ] reZ <n+p=r [E" 7]p]>
The Lie algebra g is called the Kac-Moody extension of g ([3], [29], [31],
[32D).

Assume that « is a bilinear, symmetric, bi-invariant, non-degenerate
two-form on g and let k£ € Z. Define i, on § X § by

(310) Ek(ngz gnhn, pZG:Z ﬂphp> - n+§=k K(En’ np)'

R, is clearly bilinear, symmetric and bi-invariant. It is also easy to see that
% (£, ) = 0 for all 7 € g implies £ = 0, but that g, does not induce an
isomorphism between § and §*, i.e. k; is only weakly non-degenerate.
Thus not every real-valued function on § has a gradient and the Kirillov-
Kostant-Souriau structure is defined only on G(g) = {f € F(@)|f has a
gradient} by formulas (1.14), (1.15).

3.4. We recall the Kostant-Symes involution theorem; for proofs
see Kostant [19], Symes [44], Ratiu [38], Adler-van Moerbeke [3].

Let 4 be a Lie algebra and assume ¢ = & @ w, where £ is a vector
subspace and « a Lie subalgebra of 4. Let « be a bilinear, symmetric, bi-
invariant, weakly non-degenerate two-form on 4. Assume that ¢ = £+ @
«"; this is automatic if « is non-degenerate on g. The Kirillov-Kostant-
Souriau structure on £ induced from »* can be expressed only in terms of
elements of 4 in the following way:

@11 {flk*, g|h*}(&) = —«([IL,(grad f£)(&), IL,(grad g)(&)], £)
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3.12) X2 (8) = —T,. ([T (grad /)(£), £)),

forf,g€Gy), E€h" MM, 19 =, Iiig — R, TLpuig — R, I 1 0g — wt de-
note the canonical projections defined by the splittings ¢4 = & @ w, and
g = &' @ n'. Assume that either 1) £ is a subalgebra of 4, or 2) [#, ] &
k. Then if f is ad-invariant, i.e. [(grad f)(§), £] = O for all £ € 4, (3.12)
becomes

[II,(grad £)(§), &1, in case 1

(3.13) Xpee () = {
—[I1,(grad £)(£), ], in case 2.

Moreover, the Kostant-Symes involution theorem states that in hypothe-

ses 1 or 2, if f, g are both ad-invariant on g4, then they commute in the

bracket of &+, i.e. {f|#*, g|#*} = 0. All the above statements remain

unchanged if #* is replaced with an invariant submanifold of £*.

3.5. We return to the Kac-Moody extension § of g and remark that
§=X @ N, where X = {Z7_, &,h"| &, € g, finitely many &, # 0}, 9N =
{E,2_ E,h"|£, € g, finitely many &, # 0} are Lie subalgebras of §. For
k= —1,wehave X* = X, N+ = N and thus§ = X+ @ 9*. Con-
sider for ¢ € g fixed the submanifolds R, = {¢ + eh|£ € g} C X*, Q, =
{¢ + nh + eh?|E, n € g} C X*. I f € G, denote (grad f)(E) =
T.ezfh", for £ € §. Using (3.11), (3.13), it is easily verified that R,, Q, are
invariant submanifolds of 3 *. We shall deal now only with Q,, the proofs
for R, being identical. The Kirillov-Kostant-Souriau structure on X * in-
duces a Hamiltonian structure on Q, given by

(.14 {f10Q.,g103E) = —«le, [f—2,8-1]) — ke, [f—1,8-5])
- K(TI, [f-—l’ g—l])
(3.15) X108 = [n, f1] + [, f=2] + [e, f—1 1R

for £ ¢ Q..

Q. is canonically diffeomorphic to ¢ X g by (¢ + gk + eh?) =
(&, m). If f:9 X g — R, note that f » ¥ € G(§) and grad(f - y)§) =
grad;f(¢, ph~! + grad,f(&, n)h % Then (3.14), (3.15) imply that
v S gl = (W¥1Q., v*2| Q. ), X = X0, 1.€. the modified Euler-
Poisson structure of g X ¢ and the Hamiltonian structure of Q, are
isomorphic.
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ProrositiON 3.2. The invariant submanifold Q. (R,.) of X * with
respect to the Kirillov-Kostant-Souriau structure is isomorphic to ¢ X g
with the modified Euler-Poisson structure (to g with the modified Kirillov-
Kostant-Souriau structure).

Remark that this proposition proves in a different way that the
modified structures are indeed Hamiltonian.

4. The N-dimensional Lagrange and heavy symmetric top. This
section is devoted to Euler-Poisson equations in so(N) X so(N). It is
shown that they can be written in Lax form in the Kac-Moody extension
so(N) of so(N) if and only if they describe the motion of the free,
Lagrange, or heavy symmetric top. The right number of conserved quan-
tities is found and three different Lie algebraic proofs of their involution in
both Euler-Poisson structures of so(N) X so(N) is given. Lenard relations
in the familiar form of recursion relations are established.

4.1. We start by recalling briefly the free N-dimensional rigid body
problem [37]. On the Lie algebra so(N) define the inner products « and
{,Ybyk(d, B) = —(1/2)Tr(AB), (A, B) = «(L(A), B), where L:so(N)
— so(N) is the positive k-symmetric isomorphism with inverse L) =
CJ + CJ, J = diag(Jy, ..., Jy) a fixed diagonal matrix satisfying J; + J;
> 0 fori # j. The Hamiltonian M — (1/2)k(M, L(M)) defines on adjoint
orbits in so(N) the equations of motion M = [M, L(M)] which is the Euler
vector field of the geodesic spray of the metric ( , ) on SO(N). These
equations are derived from physical principles in Ratiu [37] and they
represent the motion of the free N-dimensional rigid body about a fixed
point, the origin of R"., The N(N — 1)/2 positive numbers J; + Jyi #j
are the principal moments of inertia of the body.

If N = 3 and the center of mass x is not the origin, the fixed point
about which the body of unit weight moves, a potential V(4) = «(x,
Ad,—-1€) must be added to the kinetic energy (1/2)x(M, L(M)) in the ex-
pression of the total energy and it represents the height of x over the
horizontal plane; e is the unit vector of the Oz-axis (see [40]). Since gravity
in RY is meaningless, we define the rigid body Hamiltonian in SO(N) X
so(N) by

1
E(4, M) = — kM, Q) + «(x, Ad-16), L@ =M,

for x, ¢ € so(N) fixed. The potential V is invariant under the isotropy
subgroup SO(N), of the adjoint action. On the reduced manifold (Section
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2) it has the expression V(I') = «k(x, I') for T' = Ad -1€ (see 2.3.) and is
thus linear in I'. The Euler-Poisson equations in so(N) X so(N) induced
by this Hamiltonian are by (2.4)

4.1) I'=1r, Ql, M=[M, Q]+ T, x],

for M = QJ + JQ, x a fixed matrix in so(N). The Hamiltonian of (4.1) is
HT, M) = (172)k(M, Q) + (T, x).

The Lagrange top is defined by « = J; = J5, § = J3 = -+ = Jy,
xi2 # 0, x; = Oforalli,j # 1, 2, i < j. The heavy symmetric top is de-
fined by o« = 6, x € so(IN) arbitrary. In this case J = ald, M = 2.0 and
(4.1) become

I' = [T, 9], 2.9 = [T, x].

For N = 3, due to the fact that the adjoint action of SO(3) on the two-
sphere in R® = s0(3) is transitive, the symmetric case reduces to a special
Lagrange top by an orthonormal change of basis [40]. For general N this is
no longer true.

4.2. In order to find integrals of motion, it is convenient to write
(5.1) in Lax form if possible. This trick due to Manakov [23] led to the
complete integrability of the free N-dimensional rigid body problem [27],
[3], [4], [37]. The following crucial observation is due for N = 3 to Ratiu
and van Moerbeke [40].

THEOREM 4.1. Assume x5 # 0. The Euler-Poisson equations (4.1)
can be written in the form

4.2) (T + Mh + Ch?)" = [T + Mh + Ch* Q + xh]
if and only if (4.1) describe the N-dimensional Lagrange or heavy sym-
metric top, in which case C = (a + £)x.
Proof. (4.2) is equivalent to(4.1) plus [C, x] = 0, [C, Q] + [M, x]
= 0. The second relation is equivalent to
Cie= (J; +JT)x;0 b0,
Cio = ;i + T)xu 04,
4.3) , i <j
Coi =i+ Ixwis,  k#16,j
ij = (; + Jj)ij, k#1i,j
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A somewhat lengthy but straightforward computation shows that (4.3) are
satisfied if and only if the matrices J, x have the Lagrange or heavy sym-
metric top restrictions in which case C = (a + 6)x. O

Remarks. (1) We could have assumed x; # 0 for another pair (Z, j)
# (1, 2) i < j. This would have lead to “another” Lagrange top, which,
after a change of basis is reduced to x;, # 0.

(2) If x = 0, then C = 0 and we get the free rigid body which is
known to be completely integrable ([3], [4], [27], [37]).

(3) From now on (4.2) becomes the basic equation and in all that
follows we shall not use the form of x or C. This enables us to treat the
Lagrange and symmetric top simultaneously.

4.3. Note that from (4.2) it follows that Te(I' + Mh + Ch?)* (and
Pi(T' + Mh + Ch?) if N = even, where Pf(X) = (det X)'/? is the Pfaffian)
are conserved along the flow of (4.2). If ¢+ » (I'(z), M(t)) denotes the flow
of (4.1), then clearly ¢t » I'(z) + M(t)h + Ch? is the flow of (4.2). Thus the
coefficients of % in the expansion of Tr(I' + Mh + Ch?)* (and PIT +
Mh + Ch?) if N = even) are conserved along the flow of (4.1). Note that
for k = odd all these coefficients vanish. It can be easily checked directly
(or use the Lenard relations in theorem 4.5) that the coefficients of 4°, &,
h?* (and h°, h, KV in case of the Pfaffian) give identically zero Hamilto-
nian vector fields in the Euler-Poisson structure of so(N) X so(N). Thus
the total number of non-trivial integrals is:

—iftN=2r+1

2r
L Gk—2= 2 = N(N — 1)/2 — [N/2]

k=even
—IfN=2r
2r—2
kZ_JZ Qk—2)+2r—2=22—2r=NN—1)/2— [N/2],
k=even

i.e. half the dimension of the generic symplectic leaf in the Euler-Poisson
structure of so(N) X so(N) (the generic adjoint orbit in the semidirect
product so(N) X so(N); see 1.2.).

For the classical case N = 3 there are two integrals, the coefficients of
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h? and h® for k = 2, and they are polynomials in the total energy and the
momentum of the body along its symmetry axis ([40], [3], [13]).

4.4. We shall interpret (4.2) as a Hamiltonian system on the in-
variant submanifold Q. C X, X = {£; £,h"| finitely many £, € so(N)
non-zero} (see 3.5.). By (3.13), the Hamiltonian of (4.2) must be an ad-
invariant function H such that Iy (grad H(T + Mh + Ch?) = —(Q +
xh).

In the case of the heavy symmetric top M = 2aQ, C = 2ax and thus

1 1
Q+xh=—2 M + Ch)=—2 (T + Mh + Ch*)R ™)
a a

which implies

for § E;)(TVS.

Let C be regular semisimple in so(N). A straightforward computation
shows that the set @ (proposition 3.1) for the modified Euler-Poisson
structure on so(N) X so(N) defined by C equals so(N) X so(N) and that
the dimension of the symplectic leaf is N(N — 1) — 2[N/2].

For the Lagrange top more care has to be taken with Q itself due to
the fact that in this case C is highly degenerate. By (3.15), for f € Q(S‘Z(TVS),
(grad f)T + Mh + Ch?) = L,q f.h", X;0.I' + Mh + Ch*) =
M, f_,]1 + [C, f—,] + [C, f—{]k. Note now that [C, f_,] has zero com-
ponents in the upper left 2 X 2 and lower right (N — 2) X (N — 2) blocks
and that «(C, [M, f_] + [C, f—3]) + «([C, f_;], M) = 0. Moreover, the
lower right (N — 2) X (N — 2) block of [M, f_;] + [C, f_,] is the bracket
of M,, the lower right (N — 2) X (N — 2) block of M, with an arbitrary
matrix in so(N — 2). This proves that Q. is decomposed in lower dimen-
sional invariant submanifolds of the form {I' + Mk + Ch?|(1/2)x(M, M)
+ k(C, I') = constant, M, = constant, M;, = constant, lower right-hand
(N — 2) X (N — 2) block of T" equals [M,, A], A € so(N — 2)}. Assuming
M, regular semisimple in so(N — 2), we see that the dimension of this in-
variant submanifold equals NN — 1) — 2 — (N — 2)(N — 3)/2 — [(N —
2)/2] = (N — 2)(N — 3)/2 — [(N — 2)/2] + 4N — 2). It is easy to see
that the set @ = {(I', M)| M, € so(N — 2) regular semisimple} of proposi-
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tions 3.1, is open, dense, and foliated by symplectic manifolds which are
the images under ¥ of the above invariant submanifolds (see 3.5.). Thus
the dimension of the generic symplectic leaf for the modified Euler-
Poisson structure defined by C is (N — 2)(N — 3)/2 — [N — 2)/2] +
4N — 2).

Remark that (4.1) trivially implies M, = constant, M, = constant.
Thus denoting by M the constant matrix having all entries zero except the
lower right (N — 2) X (N — 2) block which equals M,,

Q+ xh =

(M+Ch)+<1— 2a >

1
at 8 at+§

) M,
2a(a + B)x12

28 —
1
e+ (13

1 o < 2a>
et 1 —
a+gH:}c((F+Mh+Ch)h )+ g

M12 vy —2 < 26 >—-
T (T + Mh + ChHh ™2 + (1 — M
2a(a + B)x1, x(( B a+ 8

which implies the following formula for the Hamiltonian H of 4.2)

N D T < 2 > My, _2>
== Idh 1— Idh
HO =~k 1<5 et 8 + ot 8/ 2aa + Oxy

o)

where £ € so(N).

4.5. Denote by ug+1,/(T', M) (resp. p;(T', M)) the coefficient of Y
(resp. h') infi 4 (T, M) = (1/(k + 1)) Te(T + Mh,,, + Chi4 ) (resp.
in P(T', M) = PAT + Mh + Ch?))foran arbitrary parameter ;| (resp. k).
We shall prove now that u k+1,> P; are in involution in the Euler-Poisson
structure of so(N) X so(N).

By theorem 2.4, {fi 11, forr1} = 0 ({for1, P} = 0, it N = even) on
so(N) X so(N), for any parameters A k+1> Pot1, 1.€. foyy is constant on the
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flow defined by f; (and P) no matter what h, {, k4 (resp &) are. This
says that all u, ; ; are constant on the flow defined by f; ., (and P) for alli =

., 2k and k4 (resp. k). Hence {u+ 1, frx+1} = 0 ({uprq, P} = 0) for
any hy; and repeating the prior argument, {us 4, o1} = 0 (gt
pi} =0).

We prove now that u, ., p; are in involution also in the modified
Euler-Poisson structure of so(N) X so(N) determined by C (see 3.2).

On’gl(TV') define a trace functional by Tr(§) = Tr(¢_,), where the right-
hand side denotes the usual matrix trace of £ _; € gl(N). If one defines for £,
7 Egl(N) &7 =T,z (Ep+, » £pn, )", it is clear that [£, 7] = &7 — §£, and
that £h = hE for any £ Egl(N) Take g = so(N) and remark that i _ (£, 7) =
—(1/2)Tr(£5). The real-valued functions on so(N ), Jr+1, ,(E)
(1/(k + 1)Tr(£**1h ) are clearly ad-invariant on SO(N ) (since their gra-
dients with respect to i, equal —2£¥h /) and thus, by the Kostant-Symes
theorem (see 3.4.), they are in involution on the invariant submanifold
Qc = {T' + Mh + Ch?|T, M € so(N)} of X+ = XK. Since f - y =
Up+1,2%+1—)» it follows that all iy, ; ; are in involution in the modified Euler-
Poisson structure of so(N) X so(N) defined by C € so(N). If N = even, we
can recover the involution of the integrals defined by the Pfaffian in the
following way. Since all fj 1 ; commute and det(£) is a polynomial in the
powers of traces, we conclude that all fj ; ; will commute with det(£) and
hence with Pf(§) = det(§)"/ 2 also, i.e. fy4+1; and g; = coefficient of k' in
Pf(f) will commute on Q.. In particular g; commutes with det(£), hence
with Pf(§) i.e. it commutes with all ¢;. Since p; = g, ° { we conclude that for
N = even, uy 1y ;, p; all commute in the modified Euler-Poisson structure of
so(N) X so(N) defined by C.

THEOREM 4.2. The N(N — 1)/2 — [N/2] integrals {uj+,;|j = 2
2k +1,k=1,...,N— 2,k =odd}, it N = odd; {u,, p;lj =
B2k +1L,k=1,...,N—3,k=o0dd,i=2,...,N—1},iftN =
even, are in involution in both Euler-Poisson structures of so(N) X so(N).

4.6. We proceed to search for Lenard relations.

LemMaA 4.3. (a) Let U « be the coefficient of h' in the development
of T + Mh + Ch** in powers of h, k = odd. Then

—2Uy , forj =0, ...,2
gradluk+1,j =
0 R forj =2k + 1,2k + 2
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, forj = 0, 2k + 2

0
gradyuy ;= { % + 1

_2Uk,j—1’ fOI‘j

(b) If N = even, let P; € so(N) be defined by (grad PO + Mh +
Ch?) = £y P(T, M)h'. Then Py = Py_; = 0 and

p; s forf=0,...,N—2
grad,p; =

0 s forj=N—1,N

0 , forj=0,N
grad,p; = )

P, , forj=1,...,N—1

Proof. (a) The equalities involving zeros are obvious. For the rest,
write (1/(k + 1)Te(I' + Mh + Ch?)* ! = L2582 0y 4y (T, M)k and take
differentials of both sides; remark first that for k = odd, Uy; € so(N). The
factors —2 appear due to the definition x(4, B) = —(1/2)Tr(AB) for
A, B € so(N).

(b) Proceed as above taking the differential of the identity Pf(I" +
Mh + Ch*) = I/, p;j(T, M)h/, to obtain the identity

N . N+I ]
L (P, b/ + L «Byy, BN
Jj= Jj= ’

Itz

x(gradlpJ,A)hf + E K(gradzp,,B)h /
j

forany A, B € so(N). We conclude grad,; p; = P;,j =0, ..., N, grad,po =0

(known already since po(I', M) = (detT")'?), grad,p; = P LJ=1,...,N,
and Py = 0 (which is also implied by grad, py = 0 since p = (det C)l/z),

Py = grad;py = 0. v
Lemma 4.4. Let k = odd. Uy = T%, Up 5 = C,

[T, Upq]l + M, Up ol =0
M, Ug ] + [C, U 11 =0

[F, Uk,j] + [M, Uk,j—l] + [C, Uk,j—Z] = 0, fOVj = 2, ey 2k.
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If N =even, [I', Pj)] = 0, Py =0, Py_; = 0,
[T, P;] +[M,P,] +I[C,P5]=0, forj=2 ...,N
[T, Pi] + [M, Py] = 0.
Proof. The first two identities are obvious. The other equalities are
the coefficients of 4 in the trivial identities

[T + Mh + Ch?, (' + Mh + Ch®¥] =0,
N .
[1‘ + Mh + Ch?, L BT, M)hf] =0
=

(the last follows since Pf is Ad-invariant, i.e. [(grad Pf)(X), X] = 0). O

In order to simplify notations make the convention that any Uy, in-
volving an index j which is <0 or > 2k vanishes identically. For the rela-
tions involving the Pfaffian, the convention is that P; = 0 forj < 0, >
N — 2. Lemma 4.4 can be written as

[T, Uyl + [M, Uy ;-] + [C, Uy j—2] = 0,forj =0, ..., 2k + 2,k = odd
[T, P,] + [M,P;_;] + [C,P;_,] = 0,forj =0, ...,N
Uyo =Tk Uy 5 = C~.

(4.4

Consider now the modified Euler-Poisson structure on so(N) X so(XN)
defined by C. With the above conventions, (4.4) and Lemma 4.3 imply

Xy (O M) = —((—2U, ;1 T), [—2U,, T] + [—2U, -, M)

—(IM, —2Uy ;] + [C, —2U, ;—3], [C, —2Uy ;—,])
= —kaﬂ_j_z(r, M), forj=0,...,2k+2

X, (T, M) = —([P;—y, T1, [P;, T] + [P;—y, M])
= —(M, P,,] + [C, P;_3], [C, P;_,])

_ c . __
= —ij_z(I‘, M), forj =0, ..., N.
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(4.4), Lemma 4.3, and (3.8) clearly imply x¢ = kaﬂ w = XgN .

h+1,2k+1
= XSN = 0. We get thus the following Lenard relations.

THEOREM 4.5. With the convention that all vector fields involving
an index j which is <0 or >2k (and in the case N = even, ij = 0forj <
0,7 > N — 2) the following Lenard relations hold.

(a) If N = odd

4.5) X, = —x¢

Up+1, Uk+1,j—2

fork=odd,k=1,....N—1,j=0,...,2k + 4.
(b) If N = even
(4.6) X = —x¢

Uk+1, Uk +1,j—2

fork=odd,k=1,...,. N—2,j=0,...,2% + 4

.7 X5, = = X5,
forj=0,...,N+ 2.

Thus, in particularXukH 0o X"k+1 - X5k+1 nt1 X’(‘:k+1 ntr =0.
Since uy 4142 = TrC* = constant, we also have XuH”k+2 = 5k+1 .
= 0. Similarly, X, = X, = X =X$ = 0and since py = (det C)l/2

Po P PN Pn—1

= constant, X,,, = X5, = 0. In the terminology of 3.6. Blupr1,-2) =

—ug+1;, ®(pj—2) = —p;.
Let k, £ = odd. We have by (4.6)

luerip ey = =Xy et

= X0, )

= _{uk+l,j—2v u(’+1,i}C
_XEHL,-(ukH,j—z)

- X“(’+1,i+2(uk+1vj_2)

= {ugr1,j-2> Uer1,i+2) i.e.
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(4.8) {uk+1,jv u(’+1,i} = —{uk+1,j—z, Upr1,itc
4.9) {uk+1,ja Uppy,) = {uk+1,j—2, Uprtit2)

Similarly if N = even, we have

(4.10) {ri,p;} = —{pPi-2.pPj}c
(4.11) {pi,r;} = {pi-2, Pj+2}

Relations (4.8), (4.10) say that involution in {, } and {, }; are
equivalent. Relations (4.9), (4.11), and the prior remarks on vanishing
Hamiltonian vector fields give a second proof of the involution of the in-
tegrals u 1 ; (and p; if N = even): consecutive application of (4.9), (4.11)
comes to a stop as soon as eitherj = 0, 1, or{ = 0, 1, in which cases the
respective Poisson brackets vanish. We recovered theorem 4.2. The
phenomenon observed above is general: Lenard relations imply involution
in two Hamiltonian structures concomitently.

5. A completely integrable Euler-Poisson equation in s/(N; C) and
the N-dimensional heavy symmetric top. In this section an Euler-
Poisson equation in s/(N; C) is considered which induces on so(N) X so(N)
the equations of motion of a heavy symmetric top. Its complete in-
tegrability is shown.

5.1. On sl(N; C) with the bilinear, symmetric, non-degenerate, bi-

invariant two-form «(4, B) = —(1/2)Tr(AB), define the «k-symmetric
isomorphism L:sl(N; C) — sI(N; C) by L(A) = (a/U; + J;)) — (Ef\’=,
a;/2NJ))1d, where A = (a;) andJ = diag(/, ..., Jy),J; > Oforalli = 1,

..., N, is a fixed diagonal matrix. The Euler-Poisson equations for the
Hamiltonian H(A, B) = (1/2)x(B, L(B)) + (A, x), x € sli(N; C) a fixed
non-zero matrix, are by (2.4)

(5.1) A=1[A,LB), B=I[BLB)]+I[Axl

Remark that the restriction of this problem to so(N) X so(N) gives the
N-dimensional rigid body under gravity for which all J; > 0.
Following the ideas of Section 4, we expect (5.1) to be completely in-
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tegrable whenever there exists a constant matrix C € s/(N; C) such that the
equation

(5.2) (A + Bh + Ch?)" = [A + Bh + Ch%, L(B) + xh]

holds in the Kac-Moody extension of s{(N; C). This is equivalent to (5.1)
plus [C, x] = 0, [B, x] + [C, L(B)] = 0 for all B € si(N; C). A straightfor-
ward analysis of these conditions yields the following.

TreorEM S5.1. The Euler-Poisson equations (5.1) for x # 0 are
equivalent to (5.2) if and only if either

@ Ji=---=Jy=a>0,C = 2ax, B=24L(B), in case that some
off-diagonal entry of x is non-zero, or

(b) the relations

G = Jxa + Ve = Idxy + G — I)xe = 0

holds for all triplets (i, j, k) of distinct numbers 1 < i,j,k < N, and C is
given by

1
Cyi= _J—V'(JN + In—1)xww — XN—1,N—1) — ***

N—i
N

Vit1 T I Xi+ 1,41 — Xai)

1 — 1

+
N

Vi * - )i — Xi—1,i—1) + oo

1
+ F(JZ + ) X2 — x11)-

if x is diagonal.

As in Section 4 equation (5.2) is Hamiltonian on the invariant sub-
manifold Q¢ in the Kac-Moody extension si(N; C) of si(N; C) (see 3.4.)
and their Hamiltonian functions can be easily computed; they will not be
used in the sequel.

5.2. Both Hamiltonian systems have a family of integrals u; j» the
coefficients of &/ in (1/(k + 1))Te(A + Bh + Ch%**! which follow from
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(5.2), k =1, ..., N — 1. Their involution in both Hamiltonian structures
is shown exactly as in 4.5 and the Lenard relations

— _yC . _
5.3) X“k+1,j_ X“k+1,j~—2’ j=0,...,2k+4

where any vector field involving an index j which is <0 or >2k + 2 is
identically zero, are found as in 4.6. Since X100 Xugirrr Xugsrmar
vanish, the total number of integrals in involution is NZ12k = NN — 1),
equalling half the dimension of the generic symplectic leaf in the Euler-
Poisson structure of s/(N; C) X sl(N; C). Here and in all that follows

dimension is taken over the complex numbers.

THEOREM 5.2. The Euler-Poisson equations (5.1) with the condi-
tions of theorem 7.1 in si(N; C) X sl(N; C) for x, C € si(N; C) fixed ma-
trices having distinct eigenvalues, are completely integrable Hamiltonian
systems in both Euler-Poisson structures of si(N; C) X sl(N; C).

Proof. We still have to prove the independence of the vector fields
Xy ,;ona dense set. Let sgrad = (grad,, grad;) denote the gradient
with respect to ; (see (1.6)) and denote by 9 = {u,1;|k =1, ..., N —
1,j =0, ..., 2k + 2} the set of integrals of (5.2), @ = span{(sgrad f)(4,
B)|f € 9}, V = span{X/(A, B)|f € 9}, for a fixed pair (4, B). Through-
out this proof, brackets of pairs are taken in the semidirect product si(N;
C) .4 X si(N; C); see (1.2). Clearly dim(V) = N(N — 1), so we have to
show that on a dense set, dim(V) = N(N — 1). Assume that we know
dim(®) = (N + 2)(N — 1). Then the «,-orthogonal @* has dimension
dim(@*) = 2(N* — 1) — dim(®) < 2(N* — 1) — (N + )N — 1) =
N(N — 1). But

V+ ={(4",B’) €slN; C) X sl(N; C) | k,((A", B"), [(A, B), (sgrad f)(4, B)]
=0, forallfed}
= {(A’, B") € sl(N; C) X siN; C)|[(A",B"),(A,B)] € @*}
= ad( (@),

so that ad, p):V* — @* is surjective and we conclude that for A, B
regular semisimple elements in si(N; C)

dim(V+) = dim(@*) + dim(Ker(ad4 )| V*))
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< dim(@") + dim(Ker(ad 4 5))
SENN—D+2N— 1D =N+ 2N —1)
so that finally
dim(V) = 2(V* — 1) — dim(V+) = NN — 1).
Hence we reduced the problem to the proof of
(5.4 dim(®) = (N + 2)(N — 1)

on a dense subset of {(4, B)|A4, B regular semisimple}. Conjugating all
equations and gradients involved with a matrix in SL(N; C) which
diagonalizes C, and taking as new variables in (5.2) the conjugates of the
old ones, we can assume that in (5.2) C is diagonal; the entries of C are
hence distinct by hypothesis. The proof of (5.4) will consist of a series of
technical lemmas.

Let D, denote the vector space of matrices in s/(N; C) all of whose en-
tries are zero except on the /™ upper diagonal; thus D, = diagonal
matrices, ..., Dy_; = matrices with all entries zero except eventually the
(1, N)-entry, and dim(D,) = N — 1, dim(D;) = N — ifori = 1.

Lemma 5.3. Fori = 0,let T:D; — D, be a surjective linear map.
There exists an open dense set Z; C D, X D such that for (A, B) € Z,
SA,B:Di - Di+2’ SA,B = adA + adB o Tis surjective.

Proof. 1f A € D,, B € D have upper diagonals consisting of non-
zero entries only, then it is easy to see that ad,:D; — Dy, adp:D; —
D, are surjective. The set V = {B € D,|upper diagonal entries of B are
all # 0, the first (N — i — 2) X (N — { — 2) block in the matrix represen-
tation of adp ° T has all eigenvalues different from 0 and —1} is clearly
open and dense in Dy. Let U = {4 € D,|all entries of A on the second
diagonal are # 0}, U is open and dense in D, and thus U X Vs open and
dense in D, X D;. We claim that if (4, B) e U X V, S 4.p is surjective. To
see this, remark that the matrix of ad4:D; — D,,, has N — i columns and
N — i — 2 rows, the only non-zero entries being —Ai4; 34 ...,
—ApN—>n on the diagonal and 45, ..., A, —;—2N—; on the second upper
diagonal. Elementary transformations bring this matrix to one having
only 1, ..., 1 on the diagonal and all other entries equal to zero. Perform-
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ing the same elementary transformations on the matrix of adg o T, we still
have the determinant of the first (N — 7 — 2) X (N — i — 2)-block # 0.
Moreover, since —1 is not an eigenvalue of this square matrix, it follows
that the determinant of the first block in the matrix of ady + adg o T
transformed is # 0, i.e. ad, + adp ° T is surjective. v

LEmMA 5.4. Let (A, B) € D, X D; and Uy; € si(N; C) be the coeffi-
cient of h' in (A + Bh + Ch*)¥ minus (1/N)Tr(U)Id. {Uy x|k = 1,
.., N — 1} generates D and if all upper diagonal entries of B are # 0,
{Ue—11k =1, ..., N — 1} generates D,.
This is a classical result in invariant theory and can be proved in this
simple case by a direct verification.

LemMMA 5.5.  There exists an open dense set S C Dy X D such that
if (A, B) € 8, {Uyx—;(A,B)|k =1, ..., N — 1} generates D;.

Proof. Ifj = 0, 1 the statement is true by lemma 5.4. Assume in-
ductively that the lemma holds for alli < j,j = 1 on a set $;; we want to
prove that there exists an open dense set 8;,; C D, X D, such that for (4,
B) € 8;y1, {Ugu—j—1(A4, B)|k =1, ..., N — 1} generates D, . Define
T;:D;_y — D; by Tj(Uyg 3—j+1(A, B)) = Uy 5—;(A, B), k = [(j — 1)/2],

.., N — 1, with the convention that any U,; involving a negative index is
identically zero. By the inductive hypothesis, if (4, B) € 8y Dy =
span{Uy »—j+1(4, B)|k = 1, ..., N — 1}, D; = span{U; (A, B) |k
=1, ..., N — 1}, so that T; is a surjective linear map. Thus by Lemma
5.3for (4, B) € 8;+ = 8; N Zz,, the map Sifg:Dj—; — Djyy, S (X) =
[4, X] + [B, T;(X)] is surjective; 8, is clearly open and dense in D, X
D,. On the system of generators of D;_;, the Lenard relations (5.3) imply
that SUFWUp u—jr1A, B) = [A, Upp—js1]l + [B, Upn—;] =
—I[C, Ugx—j—1l, sothat {Uy »—;—1|k =1, ..., N — 1} generates D,
since for C having all eigenvalues distinct, ad¢:D;y; — D4 is an isomor-
phism. Thus, by induction it follows that for (4, B) € 8 = §y_; the state-
ment of the lemma holds. v

Since A, B strictly upper triangular imply U;(4, B) upper
triangular, by the lemma above there exists an open dense set J in the set
of pairs of strictly upper triangular matrices such that if (4, B) € 3,
{Uy (4, B)k=1,...,N—1,j=0, ..., 2k} generates the set of upper
triangular matrices; J is formed by all strictly upper triangular (4, B)
such that (4,, By) € 8, where A, € D,, B, € D, and the non-zero entries of
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A,, B, coincide with the corresponding entries of A, B. As in lemma 4.3 it
can be shown that

{—-ZU,CJ« , forj=0,...,2
graduy 41, =
Y ,  forj=2k+1,2% +2

0 , forj = 0, 2k + 2

gradyu41,; = { L
—2Uyj—y, forj=1,...,2 + 1.

Since sgrad uy41; = (gradyuy+y,j, gradjug 4 ;), we conclude that for (A4,
B) in an open dense set J in the set of pairs of strictly upper triangular
matrices ® = span{(sgrad u; . ;)4, B)|[k =1, ..., N—1,j=0, ...,
2k} has projection on the second factor equal to the set of upper
triangular matrices in s{(N; C), i.e.

dim(II,(®)) = (N — 1) + N(N — 1)/2.

We shall denote in all that follows by II;, II,, the projections on the first
and second factor respectively.

Carry out everything done so far for strictly lower triangular matrices
to conclude that there exists an open dense set 3’ in the set of pairs of
strictly lower triangular matrices such that if (4, B) € 3’, dim(II,(®")) =
(N — 1) + NN — 1)/2, where B’ = span{(sgrad u; 1 ; )4, B) |k = 1,
....,N—1,j=0, ..., 2k}. The set U = {(4, B)|A, B regular semisim-
ple, strictly upper triangular part of (4, B) € J, strictly lower triangular
part of (A, B) € 3’} is open and dense in sl(N; C) X si(N; C). Clearly
IL(®) N II,(®’) = diagonal matrices, so that for (4, B) € U

dim(span{(sgrad u; 4+, ;)XA4, B)|k =1, ...,N— 1,7 =0, ..., 2k})
= dim(® + ®) = dim(IL(®) + IL,(®")
= dim(I,(®)) + dim(II,(®") — dim(I,(®) N I,(B"))
=N — 1) + NN — 1).

Since (sgrad u; 41 % +1)(A, B) = (C* — ((1/N)TrC*)1d, 0),

span{(sgrad u; 4 %+1)A,B)|k =1, ..., N — 1} = Dy X 0.
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Remark that II;(®) < strictly upper triangular matrices, II;(®’) <
strictly lower triangular matrices, so that (8 + ®’) N (Dy X 0) = {0}
and thus since @ = span{(sgrad u; 1 ;)4,B)|k =1, ...,N—1,j =0,
..., 2k + 2}, for any (4, B) € U

dim(®) = dim(® + B’ + (Dy X 0)) = NN — 1) + (N — 1) + dim(D,)

=WN+2)N— 1.

Theorem 5.2. is proven. O

The flow of this Hamiltonian system can be linearized with the aid of
Theorem 1 of Adler-van Moerbeke [4] which is directly applicable in this
case. The algebraic curve Q(z, #) = det(A + Bh + Ch* — z1d) = O for C
= constant, having all eigenvalues distinct, has genus (N — 1)%. The coef-
ficients of Q(z, ) are polynomials in the integrals u; and thus they com-
mute. (N — 1)2 among them lead to independent linear flows on the Jaco-
bian of Q(z, #) = 0 (in the form of sums of Abelian integrals). N — 1 ad-
ditional independent flows are generated by conjugation with diagonal
matrices and can be taken in the form

(A + Bh + Ch?) = [A + Bh + Ch%, C*], k=1,...,N—1

Note that from this argument it follows once again that (5.2) is completely
integrable; see Adler-van Moerbeke [4, Section 3] for details.

5.3. Since the N(N — 1) Hamiltonian vector fields {Xuk . lJ(A, B)|k
=1,...,N—1,j=2,...,2k + 1} for (A, B) in a dense open set in the
generic N(N — 1)-dimensional symplectic leaf are tangent to this leaf and
generate the tangent space, they are necessarily independent. Thus, since
the above Hamiltonian system induces on so(N) X so(N) the
N-dimensional symmetric rigid body under gravity, if N = odd, we
conclude that the N(N — 1)/2 — [N/2] Hamiltonian vector fields
{Xqu‘J(I‘, M)k =odd, k=1, ...,N—2,j=2,...,2 + 1} are
generically independent. If N = even, since Pf is functionally generated
by traces of powers, we conclude that the Hamiltonian vector fields
{XukHJ(I‘, M), X, T, M)k =o0dd,k=1,...,N—3,j=2,...,N—
1,i =2, ..., N — 1} generically span the tangent space to the generic
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symplectic leaf and thus they must be independent. This and theorem 4.2
prove the following.

THEOREM 5.6. The symmetric N-dimensional rigid body under grav-
ity for x € so(N) having all eigenvalues distinct is a completely integrable
Hamiltonian system in both Euler-Poisson structures of so(N) X so(N).

The linearization of these flows follows again from the general
method in Adler-van Moerbeke [4]. If N = even, their method in example
2, Section 3 (the linearization of the free rigid body motion) can be applied
directly and the flows linearize on the Prym-variety of Q(z, 2) = det(I" +
Mh + Ch* — zId) = 0. If N = odd, C has always a zero eigenvalue and
the curve becomes singular. The way out is to introduce an arbitrary
parameter e in the diagonal form of C in place of the zero eigenvalue and
to linearize this new problem with the aid of the general Adler-van
Moerbeke method. One obtains then time in form of sums of Abelian in-
tegrals. Pick now from the basis of holomorphic differentials those which
in the limit ¢ — 0 remain holomorphic on Q(z, £) = 0. In the limit e — 0
one gets the curve Q(z, 2) = 0, time as sums of the remaining Abelian in-
tegrals, and the problem is thus linearized. This represents the direct ex-
tension of the method with which the flow of the 3-dimensional Lagrange
top has been linearized in [4] and [40].

Remark. It is clear that the techniques used throughout the paper
work for any semisimple complex Lie algebra and its real forms. The role
of the traces in finding the integrals of Euler-Poisson equations is taken by
a basis of the ring of invariants and our matrix computations are replaced
by formulations in terms of a root-space decomposition. Kostant [19],
Mishchenko, and Fomenko [27] have carried this out for other classical
systems: the non-periodic Toda lattice and the n-dimensional free rigid
body problem; see also Adler-van Moerbeke [3] for the periodic classical
and non-symmetric Toda systems.

5.4. We discuss now briefly the Lagrange top. C being in this case
highly degenerate, the above proofs do not work, except for N = 3, 4
where the generic independence of the integrals can be easily shown
directly [40, Section 2]. The solution for general N proceeds via a modified
version of the van Moerbeke-Mumford method [30]. Since this is done in
great detail in [40, Section 3] for N = 3 and the extension for general N
follows step by step this proof, we only point out a difference necessary in
the proof and presenting interest in itself.
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The unitary matrix

F0---0 V2 1/V2]
0---0 1/~V2 N2

1---0 0 0

L -

brings C in diagonal form. A straightforward computation shows that
I+ Mk B ig*
(5.9) UT'\T+Mh+ChHU=| —B¥ —w 0
B 0 13)
where (3 is an (N — 2)-column vector whose entries are y, + hx;, kK = 3,
o N xp = —(iMy, + My)/N2, y, = —(@Ty + Ty)/V2, 8% =y + hx
(T is complex conjugation of each component), and * denotes taking the

transpose; w = i(l'y, + Mph + Cph?); T, and M, are the (N — 2) X
(N — 2) matrices

IWNN I1N3 MNN MN3

f2: M2:

Pyv --- Ty M3y -+ Mgy

Let P diagonalize M, and conjugate the above resulting matrix by

P 0
V=
0 Id
This will affect only T,, M, and nothing else. Thus in (5.5) M, will be now
diagonal.
Performing the same operations on { + xA we get a matrix of the

same type as (5.1). We alter now the diagonal entries of this new matrix so
as to get 2a/(a + ) times the lower 2 X 2-block and 26/(« + 6) times the
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upper (N — 2) X (N — 2)-block in the coefficient of h°. This is always
possible since conjugation by a time-dependent diagonal matrix does not
modify the flow on the Jacobian. Another reason is that in any Lax equa-
tion L. = [L, A] conjugation with a time-dependent diagonal matrix alters
only elements of the diagonal of A, since (DLD™Y = [DLD™!, DAD ™!
— DD '] as a simple computation shows.

Conjugate now this resulting equation by V™! and U ™! call the new
variables again M, T', Q and observe that in this new equation (I' + Mh +
Ch?)" = [T + Mh + Ch?, Q + xh], C, x are unchanged and M = (a +
8)Q. In other words, after a time-dependent change of variables, the
Lagrange top reduces to a degenerate symmetric top. It is this flow which
is linearized with the method of Section 3 of [40], by putting € in the upper
(N — 2) X (N — 2)-diagonal, using Theorem 1 of Section 3 in [4] and
then letting e — 0; for details see [40, Section 3].
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