The Motion of the Free n-dimensional
Rigid Body

TUDOR RATIU

§1. Introduction. This paper deals with the complete integrability of the
equations of motion of a free n-dimensional rigid body about a fixed point.
The Euler vector fields on a Lie algebra and its dual are reviewed in §2.
Euler’s equations of motion for the n-dimensional free rigid body about a
fixed point as a Hamiltonian system on adjoint orbits of so(n) are derived
in §3 and Manakov’s constants of the motion are given. Inspired by the
proof of the Kostant-Symes involution theorem, §4 gives a Lie algebraic
proof of the involution of Manakov’s integrals. Based on work of Kupershmidt,
Manin, Adler and van Moerbeke, a Hamiltonian structure different from the
one defined by the decomposition of so(n) in its adjoint orbits is given in
§5 and Lenard type recursion relations between the two families of Hamiltonian
vector fields are found. This enables us to give a second proof—entirely
similar to the one for the Korteweg-de Vries equation—of the involution
of Manakov’s integrals. §6 deals with another set of integrals of the Euler
equations found earlier by Mishchenko. Finally, §7 extends a matrix equation
of Dubrovin to a Hamiltonian system on adjoint orbits of s/ (n) which, when
restricted to so(n), gives the rigid body equations; Manakov and Mishchenko
type integrals are shown to be in involution.

When this present work was completed, B. Kupershmidt and V. Kac
mentioned the announcement [17] and the paper [18] respectively of which
we were not aware. There, Mishchenko and Fomenko generalize the rigid
body equations to any semi-simple Lie algebra in the spirit of our §7 and
prove complete integrability. Our proofs of involution are however different
but the independence in which we used crucially the Lenard relations, turns
out to be very similar to their proof; we refer the reader to [18, Section
4] for this proof. For an algebraic geometrical proof of independence and
the linearization of the flow, see Adler-van Moerbeke [3].

I want to express my gratitude to P. van Moerbeke for his encouragement
and support during the work on this paper. Many thanks to J. Marsden for
discussions, a critical reading of the manuscript and suggestions. Conversations
with M. Adler, B. Kupershmidt, R. Palais, G. Schwartz and J. Wolf as well
as the referee’s comments and bibliographical additions ([6], [7], [23], [2])
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are greatly appreciated. Finally, I take the opportunity to thank Brandeis
University where most of this work was done.

§2. The Euler vector fields. In this section we give a quick review of
the tangent and cotangent Euler vector fields on arbitrary Lie algebras (see
Arnold [2]). Almost all statements in this section are proved either in Abraham,
Marsden [1, Chapter 4], or in Ratiu [20]; we shall give the specific reference
each time.

If G is a finite dimensional Lie group and g its Lie algebra, the tangent
bundle TG can be identified with G X g in two ways:

MTG— Gxg, NMv)=@T.L.'(v,), Vv,€T.G
p: TG__) G X g’ p(vg) = (g’ TeRg_l(vg))’ vg € TgG

where L., R,: G— G, L, (h) = gh, R (h) = hg are left and right translations
by g € G. \(v,) and p(v,) are said to represent the vector v, € T,G in
body and space coordinates respectively. The transition from body to space
coordinates is given by the map p ° \™'

(- N')gE =(gAd 5, gEG £€q.

Ad, = T,(L, ~ R,-): g — g is the ad_]omt action of G on g. Similarly
the cotangent bundle T*G is isomorphic in two ways, by X and p, to
GXxag*

X: T*G— Gx g* Ne) =@ T*L,(a,), o E€TIG
p:T*G—>Gxg* b)) =@ T!R(@,) o E€T.G

As before, we shall say that )_\((xg), p(a,) represent o, in body and space
coordinates respectively. We have

G N)Ew =@ Ad; (W), gEG pEGY

where Ad; - is the co-adjoint action of G on g*.

On T*G with canonical symplectic form , consider the left invariant
Hamiltonian H: T*G — R. The expression of the Hamiltonian vector field
X,, with flow F, is given by (\, X,,)(gw) = (X(gn)m, Y (1)), where g +
X (8 ) is a famlly of left-mvarlant vector fields on G depending smoothly

onp € g*and ¥: g* — g*, called the cotangent Euler vector field, equals

"l
t=0

for all w. € g*, m € g; here x(¢t) = v*(F,(n)) and v*: T*G — G is the
canonical projection. X« H is a Hamiltonian vector field on (G X g*, \,0,)
with Hamiltonian X, H and has flow H,(v) = F,(v) ° T, L, «- This is the content
of Theorems 4.4.5 and 4.4.6 in [1] in cotangent formulation.

We shall simplify (1.1). Clearly dx/dt|,_, = (T* = X,,)(n), so that picking

dx

(LD Y- n= |:_Jt—
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a canonical chart in TG around p € TG = g%, p = (0,p) and denoting
by (x,v,4(x,v),B(x,v)) the local representative of X,(v,), v, = (x,v), we
have AO,p) € g, BO,p) € g* and for any « € TG, « = (0,@),
a(Tt™ » X,)(n) = a« - AQ,p). Let i: g* — T*G be the inclusion so that
T,iis in the local chart (0,a) +> (0,p,0,). Since w, is in the local chart
equal to w,(X,V)(x,v,¢,,8,),(x,v,¢,,8,)) = B,(e;) — B,(e;), we conclude
that d(H|g")(W) *© a = (@H(p) ° T,i)0) = oW Xy@),T,i(0) =
@, (0,)((0, 2,4 (0,p), B(0,)),(0,1,0,0)) = o - A(0,p). We showed hence that
dx/dt|,_, = d(H|g*)(n) with the right hand side interpreted as an element
of g = g**. Hence

(1.2) Y(n) = ad™(d(H|g*)(w)) - 1

for all p € g*.
Recall that by the Kirillov-Kostant-Souriau theorem any co-adjoint orbit
G - p has a canonical symplectic structure o, given by

(1.3) w, (B)((@d W)™, (ad ) i) = —i([n,{])

for m,{ € g, b = Ad;-i(n) € G - p; we shall soon explain this in the
more general framework of reduction. We used here the fact that the tangent
space at L to G - p equals T,(G - n) = {(ad £§)*p:( € g}. Moreover,
if £,f’: ¢* — R are smooth, the Hamiltonian vector field of |G - w is
given by

(1.4) X6, (1) = ad™ (df (L))
and the Poisson bracket of /|G - n and f'|G - p by
1.5) {£1G - . f'1G - p}®) = —m(ldf (@), df" (D)])

where df (i), df’ (i) are thought of as elements of g = g**; formulas (1.4)
(1.5) are proved in Ratiu [20]. From (1.2) and (1.4) we draw the following
conclusion. If H: g% — R, its extension by left-translations defines a left-in-
variant Hamiltonian vector field on T* G whose Euler vector field on ¢* when
restricted to an arbitrary co-adjoint orbit is itself Hamiltonian with Hamiltonian
H|G - p. The question naturally arises to what extent does the Euler vector
field determine the motion. In order to understand this, a short review on
momentum maps and the Marsden-Weinstein reduction procedure [15] are
necessary; for proofs see [1], §4.2, 4.3.

Let G be a Lie Group with Lie algebra g, exponential map exp: g — G,
P a smooth manifold and ®:G X P — P a smooth action of G on P.
E,(p)=d/dt|,_,P(exp(tt),p),p € P, £ € g,t € R willdenote the infinitesimal
generators of this action. If G -+ p = {®(g,p):g € G} denotes the G-orbit
through p € P, its tangent space at p is T,(G - p) = {£,(p):£ € g}. Later
on three actions will be important.

—The action of G on itself by left-multiplication L: G X G— G, L(g,h) =
gh; its infinitesimal generator is £;(g) = T, R, (§), where R, (k) = kg denotes
right multiplication in G by g;
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—The adjoint action Ad: G X ¢ — g given by Ad, = T,(R,-, ° L,);
its infinitesimal generator is £, = ad(£), where (ad & = [§,m], [ , ] denoting
the Lie bracket in g;

—The co-adjoint action of G on g* is the dual of the adjoint action and
is given by g +> Ad;_,; its infinitesimal generator is £,. = —(ad £)*.

Let (P,w) be a symplectic manifold and ®: G X P — P a symplectic action,
i.e. ®; w = o for all g € G. The map J: P — a* is a momentum mapping
for this action if

T,J(v,)  §€= 0, (P)sV,)

for every £ € g, p € P, v, € T,P. Denoting by J(#): P - R the map
defined by J(£)(p) = J(p) - &, the definition above says that £, is a Hamiltonian
vector field on P with Hamiltonian J(§), i.e. X e = Ep for all § € g. We
shall call (P, w,®,J) a Hamiltonian G-space. Since not every locally Hamiltonian
vector field is globally Hamiltonian, not every action admits a momentum
map. However, if a momentum map exists, it is uniquely determined up
to constants in g*.

Momentum maps are important since they give conserved quantities. More
precisely, if H: P — R is a G-invariant Hamiltonian of (P,w,®,J), i.e.
H - ®, = H forall g € G, then Jis constant on the flow of the Hamiltonian
vector field X,,.

The momentum map J: P — g* is said to be Ad*-equivariant if
J(®,(p)) = Ad;_.J(p)forallp € P, g € G. In this case it is shown that

(J©®, @) = J [gm]

for all £,m € g, where { , } denotes the Poisson bracket in P.

The following criterion gives a formula for the momentum mapping for
exact symplectic manifolds. Assume w = —d6 and that ®;6 = 6 for all
g € G. ThenJ: P— g*, J(p) - £ = (i,,0)(p) is an Ad*-equivariant momentum
map for the action ®. Here i,, denotes the interior product of a form with
the vector field £,. Two special cases of this theorem will be important.

—P = T*Q with the canonical symplectic structure, when G acts on Q.
The lift ®"": G X T*Q — T*Q, ®, = T*®,, has a momentum mapping
J: T*Q— g*

J,) E=o, £(q)
forallg € Q, 0, ET;Q, & E g.

—P = TQ endowed with the symplectic structure induced from T*Q via
a pseudo-Riemannian metric ( , ) on Q. Let G act on Q by isometries and
lift this action to TQ by ®”: G X TQ — TQ, ®, = T®,. ®" has a momentum
mapping J: TQ — g* given by

Jv,) - €= (v,,E,(@),
forallg € Q,v, € T,Q, £ € g. Particular examples are:
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a) Q (Rn"")’ (S,Q) € G X Q +-) s + q € Q’ §Q(¢I) = g
for{ € g= R” the momentum map of ®"" is J(q,p) =
b) Q0 =G, (D = L, £;(8) = T,R,(§); the action <D has a momentum

map J(a,) = (T R,)(a,) for g € G, o, € T; G.

Let (P,0,®,J) be a Hamiltonian G-space with Ad*-equivariant momentum
map. Denote by G, = {g € G:Ad;- n = u} the isotropy subgroup of the
co-adjoint action at . € g*. Assume that p is a regular value for J so
that J~'(n) is a (dim P — dim G)-dimensional submanifold of P. By Ad*-
equivariance, G, acts on J ~'(n). Assume that this action is proper and free
so that P, = J "(u)/Gu, the G, -orbit space of J ~!(n), is a smooth
(dim P — dim G — dim G, )-dimensional manifold with the canonical projection

w,:J O P, a surjective submersion. The theorem of Marsden and
Weinstein [15] states then that P, has a umque symplectic structure w,
satisfying w) w, = i’ w, where i, J "(w) — P is the canonical 1nclu51on
P, is called the reduced phase space

Under all the hypotheses above, let H: P— R be a G-invariant Hamiltonian.
Then the flow F, of X,, leaves J ' () invariant (since J is a conserved quantity)
and commutes with the G, -action on J ™' () (since @) X, = X,) so it induces
canonically a flow H,: P, — P, defined by w, * F, = H, - =,. Then the
theorem of Marsden and Weinstein [15] asserts that H, is a Hamiltonian
flow on P, with the Hamiltonian H, induced by H, ie. H, -7, = H ° i,
and Hamiltonian vector field X, on P, which is -related to X T~ (p.)
ie. Tm, »~ X, = X, ° 7w, . H, is called the reduced Hamzltoman and X,
the reduced Hamtltoman vector field. Let us denote by { , }" the Ponsson
bracket of P,. Then if f,g: P —» R are G-invariant, { f,g} is G-invariant
and {f,g}, = {/,.8,}". In particular if f,g Poisson commute in P, then they
Poisson commute in P,. Thus the flow of the reduced system completely
determines the motion of the original Hamiltonian system on J~'(uw); for
an algorithm see [1, page 305]. Moreover, if one wishes to prove complete
integrability, it suffices to show it on P, for all p € g*\S, where
U 7 '(w) has dense complement in P.

RES

Let us carry out the reduction process for the lift to 7*G of the left
multiplication on G. Recall that this action has the momentum map J: T*G —
a*, J(a,) = (T, R)(,). Each n € g* is clearly a regular value of J and
J ') = {o, € T* G:a, © T,R, = p} = graph of the right-invariant one-
form whose value at eis . Thus the isotropy subgroup G, of the co-adjoint
actlon acts on J ' () by left-translations on the base pomt and we get that
J- (p,)/Gu =~ G/G, = G - n C g% the diffeomorphism being given by
m, (1 ° TR,-1) + Ad; (). Thus the co-adjoint orbits are symplectic manifolds
of g*. Computing the symplectic form on G - p induced by the above
diffeomorphism one gets formula (1.3); see [1, page 303]. If H: T*G —
R is left-invariant, i.e. H - T*L, = H for all g € G, its reduction H,
to G - p is given by H, = H|G - w. Thus the restriction of the Euler
vector field to G - p coincides with the reduction of the original Hamiltonian
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system and we conclude that ¥ characterizes the motion. Moreover, because
J~'(w) = graph of u - TR,-i, it follows that in order to prove complete
1ntegrab111ty of X,, it sufﬁces to show it for Y|G - w for almost all
nE g

We pass now to the tangent formulation of the same results. The reason
for doing this, is that in concrete examples one encounters matrix equations,
i.e. equations in a Lie algebra, and in order to apply the previous results
one has to identify g* with g by means of a non-degenerate two-form on
g. As it will turn out, one has to work simultaneously with two such forms,
one of them bi-invariant, if g is reductive. This will force us to slightly
modify the Euler vector field and a change of sign will be introduced.

Let G be a Lie group, g its Lie algebra, ( , ) a left-invariant metric on
G, and E: TG — R an arbitrary left-invariant smooth energy function. Taking
on TG the symplectic structure induced from TG by ( , ), the Hamiltonian
vector field X, on TG is a left-invariant second-order equation on G. Its
expression in body coordinates is given by (A« X;)(8,&) = (T, L,(£),§, Y (§)),
g € G, £ € g, where Y: g — g, called the Euler vector field, is characterized
by

(1.6) (Y(®m) = ([&m].€)

for any & m € q. Since the last formula determines Y uniquely in terms
of (, ) and is independent of E, it follows that the geodesic sprays of
left-invariant metrics are the unique left-invariant Hamiltonian vector fields
on TG which are also second order equations; the energy function is obtained
by left-translating K (§) = (1/2)(&,€). This is the content of [1, Theorems
4.4.5, 4.4.6] in tangent formulation.

If g has a bilinear, symmetric, non-degenerate form ( , ) invariant under
the Ad-action (i.e. (Ad § Ad,m) = (§m)), then there exists a unique linear,
( , )-symmetric, positive 1somorphlsm J: g = g such that (J -,-) = (-,").
It is also easy to see—using Ad-invariance of ( , )—that for any & € q,
ad & g — q, (ad &(m) = [Em] is ( , )-skew-symmetric and thus the defining
equation for Euler’s vector field becomes

1.7 TJY® = [J&d

or in terms of integral curves,

(1.8) Jo = [J&g].

Denoting L = J~', equation (1.8) becomes

(1.9) M =—[Lnm]

and we defined a vector field Z(n) = —[Lm,q] on g equivalent to Y by

the change of variables q = J&. We shall prove below that Z is Hamiltonian
on each adjoint orbit.

The bi-invariant, symmetric, non-degenerate, two-form (-,-) defines an
equivariant diffeomorphism between co-adjoint and adjoint orbits, inducing
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thus a symplectic structure on the adjoint orbits G - ¢ Denote by £ = Ad, ¢
an arbitrary element of the adjoint orbit G - § through & The tangent space
at{ € G- gis T:(G - & = {[n,€]Im € g} and the symplectic form o,
is

(110) wg(g)( ["I,E] ’ [g’gl) = —([Tbg] ’g)

where (-,-) is a bi-invariant pseudo-metric on G. If f: ¢ — R is smooth,
denote by grad f the gradient of f with respect to (-,-), i.e. df(§) - m =
(grad f(£),m). The Hamiltonian vector field X, on G - § is given by

(1.11) X/16.¢(B) = — [(grad f)(§),&].

Finally, if f’: ¢ — R is another smooth function on g, the Poisson bracket

of f|G - & f'|G - &is
(1.12) {f1G - &1'1G - (&) = —(I(grad f)(E),(grad f")(E)] . E).

(1.11) replaces (1.2); note the change in sign introduced by (-, -). The function
H(m) = (1/2)(Lx,m) has gradient Ly and thus X, ;.. (M) = —[L",7], which
equals Z|G - v. Thus to prove the complete integrability of the geodesic
spray of ( , ), it suffices to show it for Z|G - m for all regular semi-simple
elements y € g (if g is semi-simple). That is exactly what we shall do in
this paper for the groups so(n) and s/ (n).

§3. Derivation of the rigid body equation as a Hamiltonian system on adjoint
orbits of so(n). The problem under consideration is the free rotation of a
rigid body about a fixed point, which we assume to be the origin in R".
“‘Rigid”’ means that the distances between the points of the body are unchanged
during the motion. Let f(z,x) denote the position of the particle of the body
at time ¢ which was at x at time zero; rigidity means that f(¢,x) = A(?)x,
where A(¢) is an orthogonal matrix. We assume the motion to be smooth.
Since f(0,x) = A(0)x = x for every x € R", 4(0) = identity matrix, so
that A(¢) € SO(n).

We assume that the mass distribution of the body is described by a positive
measure p. on R” whose support is not in a one-dimensional subspace. Thus,
the kinetic energy of the body is given by

1 .
K@) = ’y S ILf @0l du.(x)

where ||-|| denotes Euclidean norm on R”. A short computation gives f(2,x) =
Q. (1)f (t,x), where Q_(f) = p(4(t)) € so(n) is the vector A(f) € T, 0 S0(n)
expressed in space coordinates. Thus the integrand of K (¢) is |[4()~'Q,
OADOX*. But A1)™'Q,()A4(1) = Ad,,-1Q,() = MA() = Q) is the
expression of the vector 4 () in body coordinates. Thus the kinetic energy
has the form:
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1
K@= Py S l@x]* du ().

For A, B € so(n),

(4,B) = S Ax - Bx dp(x)
R"

defines an inner product on so(n), where x - y denotes the usual dot-product

on R” (i.e. x - x = |x|*). Thus

1
K@= Py (Q(0,2(0)).

(+,+) defines by left translations a left invariant metric on SO(n) whose
geodesic spray is the Hamiltonian vector field of the free rigid body motion
about a fixed point.

Define on so(n) the following bilinear Ad-invariant form:

1
(4,B) = = —Tx(4B).

The motivation for this choice comes from the well-known case n = 3 where
one uses in the derivation of the Euler equations the dot product on R’
which is invariant under the usual action of SO(3) on R’. This usual action
is equivariant to the adjoint action of SO(3) on so(3) under the standard
isomorphism of R® with so(3):

0 —x5 x,
X=(X,%,%)+>X=]| X, 0 —x
—X, X 0

A straightforward computation shows that x - y = —(1/2)Tr(Xy) whence the
above choice of ( , ) on so(n).

Thus to write Euler’s equations we have to determine the operator
J: so(n) = so(n) given by the condition

1
(JA,B) = —-—2—Tr((.7A)B) = (4,B) = S Ax - Bx dp(x).

R’l
Let e, denote the matrix all of whose entries are zero except the (i, j) entry
which is 1. The above condition can be rewritten as

1
’y Tr((JA)B) = S ABx - x dp(x).

R”

Put B = e, — e, and get for the left-hand side, using antisymmetry of JA,
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(1/2)Te((JA)(e, — e,)) = (1/2)(JA), — (J4),) = (JA),,, where (J4), denotes
the ( j,i) entry of JA. As for the right hand side, remark first that Ae,x =
(4,,x x,) so that denoting

1i J’ m J

Ty = S XX dp(x), X = (X,...,%,)
R"

we have J, = J,, and

S Ae;x dp(x) = S (2 A x ,xk> du(x) = i S A -

Similarly

S de,xdp(x) = > J Ay
Rn

k=1

so that finally

(jA)ji = E ijAki - 2 JikAkj = 2 (ijAki + Ajk"ki)
k=1 k=1 k=1

= (J4 + AJ),
where J = (J,,). Thus
JA4 = AJ + JA.

Since J is symmetric, there is a g € SO(n) such that D = gJg ' is diagonal.
Define a measure v on R by v(x) = w(g~'x) and an operator J: so(n) —
so(n) by J(4) = gl(g ' Ag)g"; Jis a linear, ( , )-symmetric, positive
isomorphism. We have after a short computation

J(4) = AD + DA,

and

J(4),B) = S Ax - Bx dv(x)

R”

Thus there is a new orthonormal basis of R” having the same orientation
as the initial one in which the operator J is diagonal. Choose hence this
coordinate system which is completely determined by the mass distribution
of the body as the initial one in R” and obtain

JA = AJ + JA
forJ = diag(x,, s\,,). Since e, — e, for i < j is a basis of so(n), the relations
J (e, — €)=\ + N)e, — ) 1mply that the canonical basis of so(n)

is a bas1s of elgenvectors of J. In particular \, + \, > 0 since J is positive
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definite. By analogy with the case n = 3, the n(n — 1)/2 numbers A, +
\,, i # j are called the principal moments of inertia.
We have proved the following.

Theorem 3.1. Given a rigid body in R” there exists an orthonormal basis
in R" completely determined by the mass-distribution of the body in which
the equations of motion of the free rigid body about a fixed point (the origin)
have the form

3.1 M= [M,Q]

where M, Q) € so(n), M = QJ + JQ, for J a diagonal matrix J = diag()\é,...,)\,,)
satisfying N\, + N\, > 0 for i # j. These equations are Hamiltonian on each
adjoint orbit of so(n) defined by initial conditions with Hamiltonian H(M) =
(1/2)(M, Q) = —(1/HTr(M Q).

The second part of this theorem follows from the last remarks of §1.

For n = 3 we regain the usual Euler equations. If x, y € R*> and x X y
denotes their cross-product, then (x X y)~ = [&,§]. Let I: R> > R® be the
linear map defined by

Ix)" = J% = *J + JR.
Note that if e, = (1,0,0), e, = (0,1,0), e; = (0,0,1), then & = —(e,; — e,,),
é, = (e; — &,), & = —(e,, — &), so that (Ie;)” = (A, + X,)é,, (Ig,)" =
(\, + N\)é,, (Ie))” = (\, + \,)é, and hence I: R> - R’ is a 3 x 3
diagonal matrix
I =diag(\, + A;,N, + N,N + ),) = diag(,,1,,1,).
Thus Euler’s equations become
(Ix)" = (Ix) X x

or

Lx, == L)x,x, =0

Lx, = (@ = I)xx, =0

L, =@, —I)xx, =0
with I,, I,, I, principal moments of inertia. That’s why we defined in so(n),

N, + X\, i # j, as principal moments of inertia, in analogy with this classical
3-dimensional case.

Remarks. 1) The n-dimensional Euler equations, though not in the above
form, appear for the first time in Weyl [23, Chapter 1, Section 6]; I owe
this information to the referee.

2) The equations of the rigid body motion under the influence of gravity
(the Euler-Poisson equations) have been also generalized to arbitrary Lie
algebras independently in [6], [7], [21]. They turn out to be Hamiltonian
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vector fields on (co-)adjoint orbits of a semi-direct product.

The dimension of the generic adjoint orbit in any semi-simple Lie algebra
g is equal to dimg — rankg. If ¢ = so(n), rankg = [n/2] where [n/2]
is the biggest natural number less than or equal to n/2. Thus the dimension
of the generic adjoint orbit of so(n) is equal to n(n — 1)/2 — [n/2].

The first step towards the complete integrability of (3.1) was done by
Manakov [13] who observed that (3.1) can be written as

(3.2 M+ J*N) = [M+T>NQ+ J\]

for any parameter \, concluding thus that the functions (1/2k)Tr(M + J> )\) ,
k = 2, ..., n are constant on the flow of (3.2). (This is clear, since if X =
[X,Y], Tr X* are constant on its flow.) Thus, denoting by ¢ +> M(¢) the
flow of (3.1), t - M(¢) + J>\ is the flow of (3.2) and hence the coefficients
of \ in the expansion of (1/2k)Tr(M + J>\)* will be constant on the flow
of (3.1). We count now the coefficients leading to non-zero Hamiltonian
vector fields. First, note that the coefficient of \’ is identically zero whenever
k — j = odd. Second, the coefficient of \* is (1/2k)Tr J* = constant, so
it yields a zero Hamiltonian vector field. Third, the coefficient of A\°

(1/2k)Tr M* = constant on the orbit; this is an orbit invariant and hence
leads again to a zero Hamiltonian vector field. Thus (1/2k)Tr(M + J>\)* has
[(k — 1)/2] coefficients leading to Hamiltonian vector fields not vanishing
identically on the orbit and hence the total number of conserved quantities
isequal to 2;_, [(k — 1)/2] = (1/2)(n(n — 1)/2 — [n/2]) as an easy compu-
tation shows. Let c,; be the coefficient of N in (1/2k)Tr(M + J>N)*, k =
2, ..., n; the constants of the motion {c,,} are called the Manakov integrals
and their number equals half the dimension of the generic orbit making them
candidates for the generically independent integrals in involution of (3.1).

§4. Involution of Manakov’s integrals. In this section a Lie algebraic
interpretation will be given to a modification of Manakov’s equation (3.2)
which together with a Lax equation trick will enable us to prove the involution
of Manakov’s integrals c, ;. Observe that a typical c,; is (1/2k) times the trace
of a sum of products of M and J* in which all combinations with (k — j)
M’sandjJ*s occur. Let now I' = J — ((1/m)Tr J)I, A = J*> — ((1/n)Tr J?)I,
I = identity matrix. Both I', A € s/(n). Denote by dk the coefficient
of A in the expansion of (1/2k)Tr(M + AN)*. Agam, since M € so(n),
A is diagonal, d, , = 0 for k, j having different parity, d, , = (1/2k)Tr M ,
Cror Ay = (1/ 2k)Tr A*. In the explicit expression of c,,; replace every J
by A + ((1/m)Tr J*) and develop the products; obtain thus a linear combination
of terms, each term being a product containing (k — j) M’s and j A’s. Thus

J
G, = 2 Qi i a., €R.
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(Note that ““half”’ of the terms are zero.) Similarly

J
dkj = 2 bk,rck—r,j—-r’ bk,r € R.

r=0

This proves the first part of the following proposition.

Proposition 4.1. If ¢, (respectively d, ) denotes the coefficient of N in
(1/2K)Tr(M + J*N)* (respectzvely 1/ 2k)Tr(M + AN)"), then

Cy = 2 GG pjps a, €R

J
dkj = 2 bkrck—r,j—r’ bkr € R‘

Thus the family {c,,} is in involution iff {d,,} is. Also {c,,} are independent

iff {d,,} are.

Proof. The involution part is clear by the above expressions. As for
independence, since X, = X =X, = X, = O,

kk

Jj—1 _
- 2 akP Xdk—pJ—p’ Ay 2 k.r "'k ~rj—r

proving that if X (M ) is a basis of the tangent space to the SO(n) adjoint
orbit through M s0'is X, (M ) and conversely.

In view of this proposition it is enough to work only with d, ;. The following
is easy to prove.

Lemma 4.2. The equation M = [M,Q)] is equivalent to
@1 (M+ A\ = [M+ A\Q + TA].

Thus, by the same reasoning as at the end of §3 we conclude that d, |
are conserved along the flow of M = [M,Q]. Inspired by the proof of the
Kostant-Symes theorem we state the following (see Kostant [12], Symes
[22] for the original and Ratiu [20] for comments on and proofs of Kostant-
Symes type theorems).

Theorem 4.3. Let G be a Lie group with Lie algebra ¢, ¢ =¥ ® n, n
the Lie algebra of the closed subgroup N, Y a vector subspace of g, the
splitting satisfying [t,n] C t. Let ( , ) be a symmetric, bi-invariant, non-degen-
erate 2-form on g. Assume that f, g: @ — R Poisson commute on g, i.e.,

—([grad f(§), grad g(§)],§) = 0,  forall £ € g.

Assume that either
1) tis a Lie subalgebra, or
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2) 10, [T, (grad f(n),IT,(grad g)m)] = O, for all m € t*, where T1,, I,
are the canonical projections ¢ — n, @ — ¥ given by the splitting ¢ =
I ® n. Then

{f1¥, glt"}(m) = —([I1, (grad f)(m),I1, (grad g)m)] ,m) = 0
forallm € t*, ie. f|t*, g|t" Poisson commute in the bracket of t*.

Proof. Letm € t'. By hypothesis
0 = —((grad f)(n).(grad g)(n))

= {fIt", g|t"}(m) — (@1, [T, (grad f)(n).IT, (grad g)(m)] n).
The second term is zero in hypothesis (1) or (2). [ |

Remark. 1t can be shown that the Hamiltonian vector field X, ,. for
f: g — Ris given by

X o) = =M1, [T (grad f)(m);m], m € t".

See Ratiu [20] for a proof. This result will not be used here but it was
the key to the guess of the ‘‘right’’ involution theorem above for (3.1). Also,
this theorem naturally lives on duals ([7], [20]) but this is the form we
shall use here.

We now start the actual proof of the involution of the d, ,, ;. First, define
d,.,; on s/(n) by the same formula, namely the coefficient of A’ in the
expression of (1/2(k + 1)Tr(4 + AN**', 4 € s/(n). Choose in the above
theorem g = s/(n), n = so(n), f = symmetric n X n matrices and (4,B) =
~(1/2)Tr(AB). Then n* = L ¥ =n, fn] Cc & [l Cn,g=1t@®n
and all conditions regarding g are satisfied. If A* denotes the transpose
of A, I1 (A) = (1/2)(4 — A%), II,(4) = (1/2)(4 + A4™).

Lemma 4.4. Denote by A, ; the coefficient of N in the expansion of
(4 + AN 4 x,; IS @ symmetric polynomial in A and its powers and contains
(k — j) factors of A € s/ (n). We have

1
(grad dkHJ)(A) =A4,,- (—n— TrA,w.) I

Proof. Differentiate both sides of the equality

k+1

Tr(4 + AN =D d, (AN

Jj=0

2k + 1)
with respect to 4 and obtain for any B € s/(n)

k
1 1
2 (grad d,,,,(4),B)\ = 2 4 (k Tr(4 + A)\)Hl) " B

Jj=0 +1
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k
= z (4., B\
j=0
But 4, ; is not of trace zero so we must project it off the center of g/ (n)
to get the desired result.

Recall that for k + 1 — j = odd, 4, ,, ,|so(n) is identically zero. Thus,
ifk+1—j=even, M € so(n), (grad d,,, (M) = A, , = symmetric
polynomial in M with k — j = odd numbers of factors 4 and hence 4, , €
so(n). In particular IT, 4, , = 0 and condition (2) of Theorem 4.3 is satisfied.
Thus if we know that on s/ (n), d,(’ , Poisson commute, by Theorem 4.3 it
follows that the family {dk .} is in involution on so(n). (Remark that the
Poisson bracket of the d, s for ¥ coincides with the Poisson bracket on
adjoint orbits of so(n) glven in §2 since 4, ;€ so(n) for k — j = odd.)

Assume for the moment that f,,,(4) = (1/2(k + )Tr(4 + A\, )
Poisson commute on s/ (n) for A,,, € R arbitrary. Then the Hamiltonian
vector field X, = would have as constants of the motion any f, , for any
N, €E R, ie. d,+l ,» the coefficients of \,,, in f,,,, would be constant
on the flow of X, and hence {d,H,J,ka} = 0 on s/(n). But since f,,, =
Dre AN (e implies that {d, ,, ;,d,,,,} = 0 on s/ (n).

Thus it remains to be shown that {f,+,,fk+,} = 0 on s/ (n) for any \, €
R, fi..(4) = (1/2(k + 1)Tr(4 + A\, ,)**". To prove this, remark first
that for N, = N, ,,, (grad f,,,)(4), (grad f,, )(4) commute and hence
{ferrsfoi1) = 0 on sZ(n). If now \,,, # \,,, let u, v € R be arbitrary
but such that \,,, + w = A, + v. Then {$,y} = 0 on s/ (n) where d(A4) =
(1/2(k + DTrA + My + WA = f,,(4) + (Tr Bu, W(4) =
1/2(Z+ D)TrA + (\,,, + VA =f ., (4) + (Tr C)v. Thus

0= {fk+l’f/+l} - {f,+,,Tl‘ B}p + {fk+l’Tr C}v + {Tr B,Tr C}pv.

Take for (p,v) the following four pairs (O,\.,., — M,,.), A\, — Ayps0),
SNy — Ay + 8, A, — A, + 5,5) where s € R, s # 0, is arbitrary
and get a 4 X 4 homogeneous system whose determinant is 2s(\,,, — \,,,)
Nesr — Ao — s)()\k+l - At s). If s =1 and Newr = Apq # £1
the determinant is nonzero and we have {f,,,,f..,} = 0 on s/(n). Now
for s # 1 and \,,, — \,,, # +s we have again {f,,,.f..,} = 0, ie.
{fes1fr21} = 0on s/(n) for any N, ,, \,,, € R.

We have proved

Theorem 4.5. The families of functions {c, ,} and {d, ,} are in involution
on so(n).

A direct proof of their independence and the linearization of the flow
of (3.1) is given in Adler-van Moerbeke [3].

§5. Lenard relations. Let M be a manifold and % (M), 2" (M) the algebra
of smooth functions, respectively the Lie algebra of smooth vector fields
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on M. We shall say that M is endowed with a Hamiltonian structure
(Kupershmidt-Manin [11], Manin [14]), if the following data are given:
(1) a bracket { , } on % (M) making .# (M) into a Lie algebra;
(2) A Lie algebra anti-homomorphism X: (# (M),{ , }) > (ZM),[, ])
given by X (g) = —{f.g}.
Forf € # (M), X, will be called the Hamiltonian vector field of the Hamiltonian
f. Thus condition (2) is

X = —[Xp X, ],

Hamiltonian structures are widely called Poisson or cosymplectic structures
too.

Examples. (1) If M is symplectic it carries a Hamiltonian structure defined
by the symplectic form. Moreover, by a theorem of Jost [8], there is a
bijective correspondence between Hamiltonian structures on M for which
the bracket is non-degenerate in the sense that if {f,g} = 0 for all g €
% (M) implies f is constant on connected components of M, and symplectic
structures on M.

(2) A whole family of Hamiltonian structures are defined on g* by the
bracket

{(£,8)e () = =¥ () - [df(n), dg(W)]

for f,g: ¢* — R, where ¥: g¢* — g* is a smooth map satisfying certain
conditions, and df(w), dg(n) are thought of as elements of g = g**. If
V¥ = id we obtain the Hamiltonian structure given by the decomposition
of g* in its co-adjoint orbits. Fixing v € g* and taking ¥(n) = v for all
i € g* yields a Hamiltonian structure responsible for Lenard relations. I
owe this example for general ¥ to the referee.

(3) The two particular examples of above translate on g in the following
two Hamiltonian structures we shall use in this paper. The Kirillov-Kostant-
Souriau structure on g is given by

{£.8}(®) = —(l(grad f)(€),(grad g)(€)],£)
X (€) = —I(grad f)(E):E].
Fix ¢ € g and put
{£.8}.(® = —([(erad £)(®), (grad g)(®)] .€)
X5 (®) = —[(grad f)(§)¢] -
Here ( , ) is a symmetric, bilinear bi-invariant two-form on g.

Lenard relations on a set of functions on g are identities which relate
the Hamiltonian vector fields in the two Hamiltonian structures of g. Such
relations were first discovered by Lenard for the Korteweg-de Vries integrals
of motion.

Return now to the notations of §4. For k — j = odd we remarked after
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the proof of Lemma 4.4 that if M € so(n), (grad 4, , ,J(M) = A, ; € so(n).
Thus ([4, ,,4,,],A) = 0. We have hence:

Proposition 5.1. For k — j = odd, d,
{ 3 }A'

A hence defines the Hamiltonian structure of Example 3 above on s7(n).
Since {d, ., ;|so(n)} commute in both brackets { , } and { , }, one expects
some relation between the corresponding Hamiltonian vector fields.

Lemma 5.2. Let M € s/ (n). Then
[M,(M + AN*] = MAg + AN+ ...+ A, _ N =r[N]
[(M + AN Al = By + BN+ ...+ B,_ \"'= B[\
and A[\] = B[\].

Proof. The first term in the development of [M,(M + AMN)*] is just
[M,M*] = 0, which proves that [M,(M + AMN)*] has no free term. Similarly
it is seen that [(M + AN)*,A] is a polynomial of degree k — 1. To prove
now that A4 [\] is identical to B[A] it suffices to show that f(A) — Ag(\)

is identically zero, where f(\) = [M,(M + AN*], g(\) = [(M + AN A].
We have

+1,;|50(n) commute in the bracket

FO) = AgN) = [M + ANM + AN*] =0. B
Restating the lemma we get
(5.1) [M’Ak,j] = [Ak,j—l’A]’ k = 1, vy B — 1’ J= 1, oo k‘

Now if M € so(n) and k — j = odd we get the Lenard relations for the
integrals {d, ,, ,}:

(5.2) XdkHJ(M) = [Ak,j——UA]
X:f\kn,j(M) = _[M’Ak,j-fl]'

We can now prove again, purely mechanically as in the case of the
Korteweg-de Vries equation, the involution of {d,,, ;: k — j = odd} on so(n).
Even though this proof'is easier than the one givenin §4, it has the disadvantage
of ignoring the whole underlying structure which actually makes it work.

Theorem5.3. {d, ., |k — j= 0dd} commute on so(n) in the Poisson bracket

{, )

Proof. Since ( , ) is bi-invariant, for f, g: so(n) > R, M € so(n), we
have

{f.8}(M) = ((grad /)M ), X, (M)) = —((grad g)(M), X, (M)).
Hence, for k — j, / — i odd, we obtain successively

{dk+l,j7d/+l,i}(M) = ((grad dk+l,j)(M)’Xd,+“ (M))
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~((grad d,.,, (M), [AA,, )
~([4,, AL A,

~(IM,A,,, 1.4, )

(4 kj+12 [A/,i—z Al

= (M4, ,..).4,,_)

= —(X,., (M) (grad d, ., ,)(M))
= (dy, 1 juar i }(M).

Now repeat this procedure until either j increases to reach k + 1 or i decreases
to reach 1 or 0. If first j reaches k + 1, then {d4,,,,d ., ,} =
{dk+l,k+1’d/+l,i—(k+l—j)} = 0 since d; ., = (1/2)(k + DTr A" = constant.
If first i reaches zero, then necessarily /is odd and as before {d, ,, ;,d, ., ,} =
(disr 08,010} = 0, since d,,,, = (1/2¢/ + 1)Tr M“*" = constant
on the orbit, i.e. X dyiro = 0. If first i reaches 1, then necessarily Zis even
and we have

{derpd i 3M) = {d, sy jri1od 00 J(M)
= (A4 jrim1:[A10,A])
—(IM, 4, ,,,],M")
= (A, 0 MM ]) =0. [ |

§6. Mishchenko’s integrals. Manakov’s integrals do not contain the Hamil-
tonian H(M) = (1/2)(M,Q) = —(1/4)Tr(M Q) of (3.1). In [16] Mishchenko
found a whole series of integrals of which H is the first one and proved
their generic independence; their number turns out to be half of the dimension
of the adjoint orbit in the case » = 4 and in this case only. Mishchenko’s
integrals are:

1 k
m, (M) = — " Tr 2 JPT'MI*PL(M);,  m,=H,L(M)=Q,
p=1
with gradients defined by the form ( , )
k
(grad m, ) (M) = E J* P L(M)J? ™" € so(n)
p=1

(since LJ*? MJ?™')y = J*? L(M)J”"") and Hamiltonian vector fields

k
6.1) M=X, M)= [M, > g L(M)JP"] )
prp=1
Using the relation Tr(J*~' MJ“ ™" L(N)) = Tr(J”~' L(M)J“ ™" N)) and the fact
that (3.1) is equivalent to M = [J,Q°], an easy computation shows that



626 T. RATIU

{m,,H} = 0. To prove however by this direct method that {m,,m,} = 0
is extremely laborious; it has been sketched by Dikii [4]. We shall prove
this here in a different way which is considerably easier.

Lemma 6.1. Equation (6.1) is equivalent to

k
6.2 M +J*N) = [M + 2\, 2 JPQIPT + m] .
p=1
This can be easily seen by showing that the coefficient of \ in the expansion
of the bracket in the right hand side vanishes.
Thus (1/2k)Tr(M + J>\)* are constant on the flow defined by (6.2), i.e.
c,.; are constant on the flow of X,, . This proves the first part of the following

Theorem 6.2. (i) Manakov’s and Mishchenko’s integrals Poisson commute.
(i) Mishchenko’s integrals Poisson commute.

Proof of (ii). Let ¢ be any Manakov integral. By the Jacobi identity and
(i) we conclude {{mk,mj},c} = 0. But the Hamiltonian vector fields corre-
sponding to the Manakov integrals span the tangent space of the generic
adjoint orbit and hence {m,,m,} = constant on the generic orbit. A simple
computation shows that {mj,mk} is a homogeneous function of degree 3
in M and thus {m,,m,} = 0 on the generic orbit so that {m,m,} = 0 on

so(n). [ |

§7. The extended Dubrovin equation. In the review article [5] of Dubrovin,
Matveev and Novikov the following matrix equation of Dubrovin is considered:

(7.1) [«,V] = [[+V],[4V]]

where - = diag(a,,...,a,), £ = diag(h,,...,b,) are constant diagonal matrices
and V is a matrix with zeros on the diagonal. Using algebraic geometry
and inverse scattering it is claimed that this equation is Hamiltonian and
completely integrable. We show here that it is a projection of a Hamiltonian
system on adjoint orbits of s/ (n), find its integrals and show they are in
involution.

It should be noted first that (7.1) leaves so(n) invariant. Also, following
Manakov [13], pute = J%, £=J, [2,V] = M, [£M] = Q to regain (3.1).
Thus the rigid body equation is the restriction to so(n) of Dubrovin’s equation.

In all that follows =, #will be assumed constant diagonal matrices in s/ (n),
2 having distinct entries. Let b denote the diagonal matrices in s/ (n) and
g the matrices with zeros on the diagonal in s/ (n). Then

sZ/(n)=>Dgq.

Given -, any matrix in g can be written in the form [z, V7] and thus (7.1)
is a differential equation in g. We shall add to (7.1) another trivial differential
equation in D and the resulting equation will be a Hamiltonian system in
sZ (n).
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For this purpose, let ( , ) be defined as before by (4,B) = —(1/2)Tr(4B).
Let the symmetric linear operator L: s/ (n) — s/ (n) be given by:
L|b: b— b arbitrary symmetric

b~ b,
(Llg)4) = ( a,,-),

a;, — aj

where 4 = (a;;) € g. Finally, define the Hamiltonian H (M) = (1/2)(M,L(M)),
M € s/(n) whose gradient with respect to ( , ) is (grad H)M) = L(M)
and Hamiltonian vector field X, (M) = [M,L(M)]. Note that if M =
D+ A, D € b, A € g, then Hamilton’s equations are

(D + A) = [D+ A,L(D) + L(4)] = [4,L(D)] + [D,L(4)] + [4,L(4)].
Since [0,0] = 0, [b,s7(n)] C g, [4,L(4)] € gforall 4 € g,
D=0, A=][A,L(4)] + [D,L(4)] + [4,L(D)].

Putting A = [2,V], D = 0, the second equation becomes Dubrovin’s equation

(7.1).
From now on we shall refer to
(71.2) M= [M,L(M)], M e s/(n)

as the extended Dubrovin equation whose complete integrability we now prove.
First, note that from the definition of L one has [z,L(4)] = [£4A4] for
all 4 € g and hence [-,L(M)] = [4M], M € s/(n), whence equation
(7.2) has the equivalent form

(7.3) M+ 2N) = [M+\LM)+ £\].
Thus the coefficients d,,,, of X in (1/2(k + 1)Tr(M + =N*"', k =
1, ..., n — 1 are conserved along the flow of (7.2) for each A € R since

(1/2(k + 1D)Tr(M + =\ "' is conserved along the flow of (7.3). There
are k + 2 coefficients, the first (1/2(k + 1)TrM**' and the last
(1/2(k + 1)Trz**" leading to identically zero Hamiltonian vector fields on
the adjoint orbit through M. Thus, the number of coefficients leading to
non-zero Hamiltonian vector fields is 3;_k = n(n — 1)/2.

On the other hand, the dimension of the generic adjoint orbit of s/(n)
is equal to (n> — 1) — (n — 1) = n(n — 1) and thus the integrals d,_
of above are candidates for a complete set of integrals in involution. Their
involution was proved already in §4.

Also, everything in §5 goes through. The Lenard relations are

Xd

ke+1,5 == :k+l‘j—l

and it follows from here again that the integrals 4, ,, ; are in involution in
the usual Poisson bracket { , } of s/(n) given by its adjoint orbits as well
as in the Poisson bracket { , }_. It should be mentioned here that { , }_

has also a different Lie algebraic interpretation: it is the Poisson bracket
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of a certain adjoint orbit of the one-tiered Kac-Moody Lie algebra of s/ (n)
with a certain trace functional as it is shown in Adler-van Moerbeke [3].
The independence of {d, , ;} follows essentially from the Lenard relations
above. Since our proof is very similar to the one in §4 of [18] we only
sketch it here briefly and refer the reader to the above paper for details.
One has to prove that for a regular semisimple element M the space generated
by X drr, (M) has dimension = n(n — 1)/2. For this it is sufficient to show
that the space generated by grad d,,,,(M) has dimension =
(1/2)(n — 1)(n + 2). Now conjugate M to an upper triangular matrix first,
an operation which does not change the dimension, and then show—using
the Lenard relations and the fact that 4, , is diagonal—that if M is upper
diagonal the estimate above holds and that if M is wupper triangular
grad d,,, ; (M) is too. Finally, note that the independence just shown gives
another proof (without the use of algebraic geometry) of the independence of
Manakov’s integrals for the n-dimensional rigid body problem.

The extended Dubrovin equation has also Mishchenko type integrals. They
are

l k
m, (M) = — Z—Tr > s M T LMY, m = H
p=1

with gradients

k l k
dm))M)=> £PLM”"' - |—T P LMY ) T
(gram)()Z (M) (n rz (M) )

and Hamiltonian vector fields

(7.4) M=X, (M)= [M, > /"""L(M)/"‘”].

Equation (7.4) is easily seen to be equivalent to

k

M+ \o) = [M + e, > LT LMY + /kx]
pr=1

since the coefficient of A\ in the right hand side is zero. Proceeding as in

§6 one shows {d..,,m.} =0, {m,m} = 0 on s/(n). We have proved

hence the following.

Theorem 7.1. The extended Dubrovin equation is a completely integrable
Hanmiltonian system on adjoint orbits of s/ (n). For = = J*, £ = J, this system
leaves so(n) invariant and its restriction to so(n) is the n-dimensional free
rigid body equation. Manakov’s and Mishchenko’s integrals for the rigid body
problem are restrictions to so(n) of similar integrals for the extended Dubrovin
equation.
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