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State of the Union (of Geometric Objects)

Pankaj K. Agarwal, Janos Pach, and Micha Sharir

ABSTRACT. Let C be a set of geometric objects B. The combinatorial complexity
of the union ofC is the total number of faces of all dimensions on its boundafye
survey the known upper bounds on the complexity of the union geometric objects
satisfying various natural conditions. These bounds plagrdral role in the analysis of
many geometric algorithms, and the techniques used tmdttase bounds are interesting
in their own right.

1. Introduction

LetC = {C1,...,C,} be a set oh geometric objects, such as disks or convex poly-
gons in the plane, or balls, cylinders, or convex polyhedithree and higher dimensions.
LetU(€) = .-, C; denote the union of the objects & The combinatorial complexity
(or complexity for brevity) ofl(C) is the number of faces of all dimensions on its bound-
ary; see below for a formal definition. Several combinataaiad algorithmic problems
in a wide range of applications, including linear programgyirobotics, solid modeling,
molecular modeling, and geographic information systeras,lie formulated as problems
that seek to calibrate the complexity of the union of a sethjéats, or to compute their
union. We begin by reviewing some of these applications.

Linear programming. Given a familyC = {C,...,C,} of n halfspaces iR¢, we
want to maximize a linear function ovéd;_, C;. Since the maximum (if it exists) is
achieved at the boundary of the common intersection, thblgmo can be reformulated
as minimizing a linear function over the boundarylgf_; C;, whereC; is the (closed)
halfspace complementary €;; see Figure 1. The worst-case running time of the simplex
algorithm, as well as many other naive solutions to lingagpmming, is proportional to
the total number of vertices df(C). According to McMullen’'s Upper Bound Theorem
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(@ (b)

Figure 1. An instance of two-dimensional linear programming: (a) Shaded region denotes the feasible region
Ni~, C;; (b) The shaded region denotef*_, C;.

[101, 102, this number cannot exceed

(" )+ (a0,

with equality for polytopes that are dual to cyclic or anyeatlsimplicial neighborly poly-
topes. Regarding the dimensidas a constant, an assumption that we will follow through-
out this survey, we can write this bound@gn 4/2)).

Robotics. Assume that we have a robot systésnwith d degrees of freedom, i.e., we
can represent each placementidhs a point inR?. We call the space of all placements
the configuration spacef B. Suppose the (say, three-dimensional) workspacB s
cluttered with a familyd = {0, ..., O,,} of obstacles whose shapes and locations are
known. B is allowed to move freely in a motion that traces a continupath in the
configuration space, bu® has to avoid collision with the obstacles. For eathlet C; C
R? be the set of placements Bfat which it collides with the obstact;. C; is referred to
as theC-obstacleg(or expanded obstaclénduced byO,. SetC = {C4, ..., C,,}. Thefree
configuration spac& = R? \ U(C) is the set of alfree placements of3, i.e., placements
at which B does not intersect any obstacle.

For instance, leB be a convex polygonal object withvertices that is only allowed
to translate inR2. LetO = {O4,...,0,,} be a set ofn convex polygonal obstacles in
R2. Fix a reference point (the origin) within B. A placement of3 can be represented
by specifying ther- andy-coordinates ob. B intersects an obstact®; if and only if o
belongs to the “expanded obstacle; = O; ® (—B), where® denotes thévlinkowski
sumi.e.,

Ci:{x—b|x€Oi,beB}.
HenceF = R? \ U(C); see Figure 2.

Going back to the general case, letc R¢ be a given initial free placement d3.
Then the set of all free placements Bfthat can be reached frotd via a collision-free
continuous motion corresponds to the connected compofé&htontainingZ. The prob-
lem of determining whether there exists a collision-frethfeom an initial configuration
I to a final configuratiorf” is equivalent to determining whethérand F' lie in the same
connected component &f

This close relationship between union of regions and mqilanning has been a major
motivation for studying the former problem, and has led tosiderable work on various
aspects of the union problerh, 70, 94, 112, 114 The complexity ofU(C) serves as a
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Figure 2. The space of free placements of the robbis the complement of the union of the expanded obstacles
C;. It has two connected components in this example.

trivial lower bound for the running time of many motion-ptang algorithms that compute
the entire free space. However, in view of the precedingudision, there is also con-
siderable interest in bounding the combinatorial comyeaf, and constructing, a single
connected component of the complemerit(¢€) [69, 114.

(a) (b)

Figure 3. Representing (chain A of) the protein 1A22 as the union oftatballs: (a) atoms are drawn using
van der Waals radii, and (b) the solvent accessible model.

Molecular modeling. A molecule can be modeled as the union of a family of balls,rehe
the radius of each ball depends on the atom that it modelsteng@dsition of each ball
depends on the molecular structure. In tle der Waals modeh molecule is a fam-
ily of possibly overlapping balls, where the radius of eacll s determined by the van
der Waals radius of the corresponding atom in the molec@e;Rgure 3 (a). Lee and
Richards 2] proposed another model, callsdlvent accessiblmodel, which is used to
study the interaction between the protein and solvent nutdsc A protein is modeled as
a family of balls in this model as well, but the balls reprasensolvent molecules are
shrunk to points and the balls representing atoms in thespratre inflated by the radius
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of the solvent moleculel[l(. See Figure 3 (b). Even though these models ignore vari-
ous additional (electrical or chemical) properties of ncoles, they have been useful in a
variety of applications. Many problems in molecular modglcan be formulated as prob-
lems related to geometric, combinatorial, or topologicalgerties of the union of balls.
See A8, 71, 10pfor more details.

Constructive solid geometry. Constructive solid geometry (CSG), a widely used tech-
nigue in computer aided design (CAD) and computer graptiesmethod for representing
a complex object as a Boolean function of simple objectdddadrimitives); see Figure 4.
Often CSG provides a rather simple representation of a llisaamplex object, using a
clever Boolean representation. A challenging problemisdbea is to compute the bound-
ary representation of the complex object from the given Banlfunction, which basically
reduces to the problem of computing the union or intersaatibtwo (or more) objects.
Much work has been done in CSG on developing simple, robffatieat algorithms for
computing the boundary representation. S&g P1 for more details.

Figure 4. Representing a complex object as a Boolean function of pviesi. The figure is taken frond].

Proximity problems. Let P and(Q be two finite point sets iiR?. Thedirected Hausdorff
distancefrom P to @, denoted byi(P, @), is

h(P = ma i -
(P,Q) gleggzrggl\p qll,

where|| - || denotes the Euclidean norm, but other metrics can also bsidened. The
Hausdorff distancébetweenP and @ is H(P,Q) = max{h(P,Q),h(Q,P)}. Itis a
widely used metric to measure similarity between two pogéiss LetB(z, ) denote the
ball of radiusr centered at. Thenh(P, Q) < rif and only if P is contained in the union
Uyeq B(g; 7). Hence, the decision problem of computing the Hausdortadis, i.e.,
testing whethed (P, ) < r, can be formulated as point location in the union of a set of
congruentballs (or, more generally, of translates ofttell of the given norm)9, 77, 7§.

Small-sizes-nets. Given a point sef?, an admissible collectiof® of ranges(subsets of
P), and a parameter > 0, ane-netof (P, R) is a subsefV C P with the property that
any range iR that contains at least P| points of P contains at least one point 6f. By

now,e-nets are a standard tool used in the design and analysi®pfejdc algorithms; see
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[97, 104 for more general definitions and for applicationszenfets. If theVC-dimension

of the range space, se8(] for the definition, has a finite valué (in geometry, this is
the case when the ranges have simple shape, such as hadfspalig tetrahedra, etc.),
there exists-nets of size(cd/e) log(d /), for some absolute constan{30, 76, 8. A
challenging question is to identify the situations in whibtle logarithmic factor can be
removed or replaced by a smaller factor. See, e.g., Makoasal.[99] for a result of
this type, for the case when the ranges are halfplanes inléme pr halfspaces in three
dimensions. Clarkson and Varadaraj&g][have shown that if the complexity of the union
of anyr ranges iR is sufficiently close t@(r), then the above general bound on the size
of the smallest-net for (a certain dual version of)P, R) can be improved.

Conflict-free colorings. A coloring of a familyC of regions in the plane is callezbnflict-
freeif for each pointp € U(C), there is at least one region containingvhose color is
uniqgue among those of the regionsdrihat contairp. This definition was motivated by a
frequency allocation problem for cellular telephone nekgd56]. Minimizing the number
of frequencies used by the system requires minimizing thebar of colors in a conflict-
free coloring of the transmission ranges of the base-statidlon and SmorodinskylP]
have shown that whenever the fam@lyhas the property that the complexity of the union
of anyr ranges irC is O(r), there is a conflict-free coloring using onfy(log® D) colors,
whereD denotes the maximum number of region<imtersecting any region af. For
other results on conflict-free coloring that exploit the gdexity of the union of the regions
to be colored, see Har-Peled and Smorodin3lg}. [

These examples illustrate the wide scope of problems thebedormulated in terms
of, or are closely related to, the union of a collection of gedric objects. Before proceed-
ing further, we formalize our notation and introduce additl terminology.

Preliminaries and notation. We assume that each obj&ct in the given collectiort is

a (real) semi-algebraic stln many cases we will also assume that eégthas constant
description complexity,which is the case, e.g., for balls, cylinders, or tetrahedtaw-
ever, we will also consider objects of non-constant desioricomplexity, such as convex
polyhedra. In many planar instances, we will even relax #raisalgebraic condition, by
considering fairly arbitrary curves with the main restiact that each pair of them intersect
in a constant number of points.

Eachfaceof U(C) (or, more precisely, 0DU(C)) is a maximal connected (relatively
open) subset oPU(C) that lies in the intersection of the boundaries of a fixed stib§
objects, and avoids all other objects@fAs usual, we refer to faces of dimensiomnd
1 asverticesandedgedqor elementary arcs respectively. Theombinatorial complexity
of U(C), denoted by (C), is the total number of faces, of all dimensions, that appear
OU(C). Note that, in certain cases, this notion of a face is tocefit’: if the boundary
of an objectC' € € is not a single algebraic surface, we typically regard eaelximal
connected portion of it that lies on a single surface (vg)ias a separate “face” (this is the
case, e.g., for convex polygons or polyhedra). In this casemay want to define a face
of U(C) to be a maximal connected region that lies in the interseaifa fixed subset of
faces of individual objects if (and avoids all other such faces and objects). In such cases,

1A subset ofR¢ is called areal semi-algebraic sef it can be described as a finite Boolean combination of
polynomial inequalities.

A semialgebraic set ha®nstant description complexitfyit can be described in terms of a constant num-
ber of polynomials inequalities, with a constant bound o mamber of variables and on the degrees of the
corresponding polynomials.
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we will continue to use the notatiot(C) to denote the combinatorial complexity tfC)
under this refined definition of a face. It will be clear fronetbontext which of the two
quantities we are denoting ®(C).

The study of the union of geometric objects falls into thedardopic ofarrange-
mentsof geometric objects, which has been studied since the s¢paper by J. Steiner in
1826 [117, and which has received much attention in the last quagatury. Slightly
modifying the traditional definition, tharrangementof a finite collectionC of (full-
dimensional) geometric objects R, denoted asi(€), is the decomposition dk? into
relatively open connected faces of dimensions ., d induced by, where eaclfaceis a
maximal connected set of points lying in the intersectiothefinteriors of a fixed subset
of € and of the boundaries of another fixed subset, and avoidghalt eets of. As above,
if the boundaries of the objects 6fdo not have constant description complexity, the ar-
rangement itself is refined accordingly. Note th&L) is a substructure ofi(C), in the
sense that each face tfC) is also a face ofi(C). U(C) typically contains in its interior
many faces of4(C), but they are ignored in the analysis of its complexity. Ashsu:(C)
is bounded by the combinatorial complexity.4fC), which, in the worst case, i@ (n?)
if the objects inC are semi-algebraic sets of constant description complgkd]. In the
worst case, the asymptotic boundit) can indeed b&®(n). This is the case, for exam-
ple, whenC is a family ofn large and flat “plates” irR¢, each being the region enclosed
between a pair of parallel and sufficiently close hyperptaisze Figure 5 for a simple pla-
nar variant involving triangles. However,@fsatisfies certain natural conditiongC) may
be smaller. For example, the case of halfspaces, mentidmmeayields the particularly
favorable bound®(nl?/2]) on x(€). The challenge is thus to identify classes of objects
for which the bound om(C) is substantially smaller tha®(n?). As we shall see, in most
of the cases that we will review here(C) is close toO(n?~1). Easily constructed nearly
matching lower bounds indicate that this is the best “ordenagnitude” one can hope for
in most of these favorable instances.

We will occasionally use the shorthand notation(f(n)) to denote bounds of the
form C. f(n) - n¢, which hold for anye > 0, where the constant of proportionality.
depends on, and typically tends tac ase decreases t0.

Figure 5. n pairwise crossing triangles witB (n2) intersection points on the boundary of their union.

The rest of the survey is organized as follows. We review thewkn results on the
complexity of the union of planar objects in Section 2, andhoée-dimensional objects
in Section 3. We also sketch proofs of some of the main resuWlts then briefly review
in Section 4 the (very few) known results in higher dimensio®ection 5 discusses the
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relationship between the union of objects and generalizzdno6i diagrams, and gives a
brief review of the recent progress in the analysis of the glexity of these diagrams. We
conclude in Section 6 with a short discussion of the topicafrits relatives.

2. Union of Planar Objects

In this section we review the known results on the union ofngewic objects in the
plane. The study of the union of planar objects goes backl&aat the early 1980s, when
researchers were interested in the union of rectanglessks dnotivated by VLSI design,
biochemistry, and other application2d, 82, 89, 10p However, the early work focused
on computing the union or its measure, rather than boundsngpimplexity.

2.1. Union of pseudo-halfplanesLet¥ = {f1,..., f,} be a set of. totally defined
continuous univariate functions. For eagh let C; be the set of points lying on one of
the sides of (i.e., above or below) the graphfafWe refer toC; as apseudo-halfpland
If C; lies below (resp., above)), it is called alower (resp.,uppel) pseudo-halfplane. Set
C={Cy,...,C,}. Ifeachf; is alinear function, theAU(C) is the boundary of a convex
polygon, sox(C) is linear. For more general functions, the boundsxgfi) are more
involved, and are related to lower and upper envelopes, ek fis follows.

The lower envelopef a collection of functions, as above, denoted by, is the
pointwise minimum of the functions iff, i.e.,

Ly(z) = 1I§nzl£n fi(z).
Theupper envelopés defined as the pointwise maximumd®fi.e.,

Ug(x) = 1§?§Xn fi(x).

If each(; is a lower pseudo-halfplane, th&ltC) is the region lying below the upper enve-
lope ofF. Similarly, if eachC; is an upper pseudo-halfplane, tHé() is the region lying
above the lower envelope 6% A fundamental observation (seEld) is that if the graphs

of any pair of functions irff intersect in at most points, for any fixed constant then
the graph of the lower or upper envelope®tonsists of at most;(n) elementary arcs,
where)(n) is the maximum length of afn, s) Davenport-Schinzel sequencee 114

for more details. Lettingy(n) denote the extremely slowly growing inverse Ackermann
function, the best known bounds ag(n) are

Ai(n) = n,

A2(n) = 2n-—1,

Xo(n) = O(na(n)),

M(n) = ©(n-290),
Aogya(n) = n- 20(e*(n)) fors > 1,
Aasra(n) = na(n)?@ ™) fors > 1.

The case when some of the regionstére lower pseudo-halfplanes and some are
upper pseudo-halfplanes is not that much harderJle{resp.,J ) denote the subset of
those functions irff that bound lower (resp., upper) pseudo-halfplane8.imhenl(C)
is the complement of theandwich regionconsisting of those points that lie above the

3The notion of pseudo-halfplanes can be extended to regimmsded by any (not necessaritymonotone)
unbounded connected curve that separates the plane (ged6d), but we will not consider such extensions
here.
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Figure 6. Functions ind— (resp.,F 1) are drawn with dashed (resp., solid) lines. The sandwiglorebetween
Ug- andLg4+, the complement of((C), is shaded.

upper envelop&l ;- and below the lower envelodey+. See Figure 6. It is known (and
easy to show) that the complexity of the sandwich regionapprtional to the sum of the
complexities ofUs- and ofLs+. We thus have the following result.

THEOREMZ2.1. LetC be a set of: pseudo-halfplanes such that the boundaries of any
pair of them intersect in at mostpoints. Then(C) = O(\;(n)).

2.2. Regions with few pairwise boundary intersectionsLet® = {C,Cs, ..., C,}
be a family ofn. simply connected regions in the plane, each bounded by desiclgsed
Jordan curve. Assume, for simplicity, that these curvesrageneral positioni.e., any
two of them cross only a finite number of times (two curggesand~, are said tocross
each other at a point, i, passes from one side of to the other at this point), no two
curves touch or overlap each other, and no three curves jpamsgh a common poirit.

In this subsection we consider the case in which the boueslafiany pair of regions
in C cross in a small number of points, and derive linear, or hieaar bounds for the
complexity of their union.

Union of pseudo-disks. If the boundaries of any two distinct regions@cross at most
twice, thenC is called a family ofpseudo-disksSee Figure 7. In this especially favorable
case, we have the following result.

(a) (b)

Figure 7. (a) A family of pseudo-disks. (b) Another family af pseudo-disks witlin — 12 elementary arcs on
the boundary of its union.

4One can extend the general position assumption to othexnioss and to higher dimensions; s&&4.
A perturbation-based argumertt14] shows that the asymptotic upper bound ©fC) is not affected by the
general-position assumption in most cases.
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THEOREM 2.2 (Kedemet al.[81]). LetC = {C1,Cs,...,C,} be a family ofn >
3 pseudo-disks in the plane. Then the boundar§((f) consists of at modin — 12
elementary arcs, and this bound is tight in the worst case.

Figure 8. The proof of Theorem 2.2 for disks.

We present the proof of Theorem 2.2 for the case of circulsksdi (A more direct
proof for the union of circular disks based on the so-cdliftidg transform which extends
to higher dimensions, is given in Section 4.) Assign to e@glts centerp;, and connect
p; to p; by a straight-line segment if and onlyd”; andoC); cross each other, and at least
one of their crossing points belongsddtl(C); see Figure 8. Itis easy to verify that no two
segments in the resulting geometric graptcross each other, i.e is planar. Indeed,
suppose there were a pair of intersecting segmentspgayandp,p;. The disks centered
atp;, p; (resp.pg, pi) intersect on the boundary of the union at a peigt(resp.vy;). Let
¢ be the bisector of;; andwvy;. We haved(p;, vi) > d(pi,vij), for otherwisevy; would
have lied inside”;, and thus not on the union boundary, contrary to assumpSonilarly
d(pj, vkl) > d(pj, vij), d(pk, vij) > d(pk, vkl), andd(pl, Uij) > d(pl, vkl). Hencepi and
p; lie on one side of (the one containing;;), andp, andp;, lie on the other side. Thus
p;p; andpyp; are disjoint, as asserted.

Hence G has at mossn — 6 edges, each of which corresponds to at most two vertices
of OU(C). Consequently, the number of crossings@i(C), and hence the number of
elementary arcs, is at mo8t — 12. In other words, theomplexityof U(C') is at most
linear inn. A lower-bound construction (which can also be realizesgisiormal disks),
in which the number of elementary arcs is exaétty— 12, is shown in Figure 7(b). The
proof for the case of general pseudo-disks also uses ptarand follows as a special case
of the proof of a more general result (Theorem 2.5), giveerlat this section.

We conclude the discussion on pseudo-disks by giving twangkes of pseudo-disks
that arise in practice. First, recall the example of tratisteal motion planning in the plane.

LEMMA 2.3 (Kedemet al.[81]). Let Oy, 02 be two disjoint convex objects in the
plane, and letB be another convex object in the plane. Then the boundarigheof
Minkowski sumg’, = O; @ B andCy = Oy @ B cross at most twice.
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Figure 9. The proof that”; andC have only two common outer tangents.

PROOF We argue that”; and Cy have exactly two common outer tangents, from
which the lemma follows easily. For a convex objétiand for eact¥ € [0, 27), define
f(C,0) to be the signed distance from the origino the unique tangent(C, 0) to C at
orientationd, which hasC' lying to its left; f(C, ) is positive (resp., negative) if lies to
the left (resp., right) of-(C, 0). It easily follows from the definition of Minkowski sums
that

f(Clae) = f(01a0)+f(3?9)

See Figure 9. Hence(C1,60) = 7(Cs,0), i.e.,C; andCs have a common outer tangent
at orientatiord, if and only if 7(O4,0) = 7(02, §), i.e.,0, andO, have a common outer
tangent at orientatiof. SinceO; andO,, are disjoint, they have exactly two common outer
tangents, and the claim follows. O

Lemma 2.3 in conjunction with Theorem 2.2 implies thadit= {O4,...,0,} is a
set ofn > 3 pairwise-disjoint convex obstacles aftis a convex “robot” translating in
the plane, thedF, the boundary of the free space, has at nast 12 elementary arcs. If
B and the obstacles are convex polygons, so thhask vertices, and the total number of
obstacle vertices is, thenF hasO(kn + s) vertices, of which at mogtn — 12 are convex
(intersection) vertices df.

Another commonly occurring example of pseudo-disks is temfhomothetsLet
B be a convex object in the plane, and foK i < n, let C; be a homothetic copy aB,
i.e.,C; = \;B + z; for arbitrary parameters; > 0 andx; € R2. SetC = {C},...,C,}.
It is known thatC is a family of pseudo-disks. (The simple proof shows, as abthat
each pair of homothets i@ have at most two common outer tangents.) Hedt&C) has
at most6én — 12 elementary arcs.

Allowing three intersections. What happens if we somewhat weaken the condition in
Theorem 2.2, by assuming that the boundaries of any two mendfe® cross at most
threetimes, rather than twice? At first glance this problem seentetfoolish because two
closed curves in general position can cross onlgeennumber of times. However, by a
slight modification we obtain a meaningful question with enswhat surprising answer.

THEOREM?2.4 (Edelsbrunnest al.[46]). Let{~1,72,...,7,} be afamily of. simple
curves in general position in the upper halfplape- 0. Assume that the endpoints of each
curve are on the:-axis, and that any two curves cross at most three timesCLéénote the
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bounded region enclosed hyand thez-axis (see Figure 10 (a)). Ther{C) = O(na(n)),
and this bound is asymptotically tight.

1 1 2 32 4 3 5 5 467 67
@) (b)

Figure 10. (a) Union of 3-intersecting regions. (b) The curieit switches from one input curve to another
at hollow circles, and the filled circles denote the vertiothe U(C) that are not switching points df; ¥ =
(1,1,2,2,3,3,4,4,4,5,4,6,6,7,7).

Note that if eachy; is anz-monotone curve, then Theorem 2.4 follows from Theo-
rem 2.1. However, as seen in Figure 10 (a), nonmonotone sumnay cause holes in the
union (i.e., bounded components of the complement of ther)nwhich makes the proof
of the above theorem less obvious and quite technical. Tdwf pf Edelsbrunneet al.[46]
proceeds by constructing a cuiv¢hat starts at-oo on thex-axis and proceeds to the right,
always following one of the;, consistently with its orientation, possibly switchingsat
intersection points, but never visiting a point more thaneexcept for those intersection
points which are not switching points; those are illusiias filled circles in Figure 10 (b),
and are visited twice), and eventually endingtato on thez-axis. The curvd® traces
each arc ol((C) exactly once, consistently with the orientation of the esponding input
curve, and all holes of((C) lie outsideT’, i.e.,I" can be continuously deformed within
U(C), so as to coincide with the-axis; see Figure 10 (b). The proof then continues by la-
beling each elementary arc bfthat appears 08l (C) with the curve to which it belongs,
producing a sequence of labels. One can then show that if one removes every synfbol o
Y which is equal to its predecessor, then the remaining semguisran(n, 3) Davenport-
Schinzel sequence, and thus its lengt®{&«(n)). One can also show that the number of
deleted labels i®(na(n)), which completes the proof of Theorem 2.4. The details can be
found in [46).

Beyond three intersections.If we allow the boundaries of two objects ihto cross at
mostfourtimes, therl((€) can have quadratic complexity. As illustrated in Figuren®re

is a family of n triangles in which every pair intersect in precisely fouiings, and all
4(2) intersection points belong to the boundary of their unioowidver, Whitesides and
Zhao [L22 discovered that by excluding certain types of crossingaben the members
of C, it is still possible to prove a linear upper bound on the ctaxipy of U(C) even if
the boundaries of pairs of members ®fmay intersect in more than two points. More
precisely, a familyC of simply connected regions bounded by simple closed curves
general position in the plane is callkéadmissiblgwith & even) if for any pailC;, C; € C,

(i) C;\ C;andC; \ C; are connected, and
(i) 0C; andoC; cross in at mosk points.

See Figure 11. Theorem 2.2 is a special case of the followiagrem (withk = 2).
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THEOREM 2.5 (Whitesides and Zhad 22). LetC = {C1,Cs,...,C,} be ak-
admissible family ol > 3 simply connected regions in general position in the plane.
ThendU(C) consists of at most(3n — 6) elementary arcs, and this bound cannot be

improved.

Cq
Cy

C1

(a) (b)

Figure 11. A pair of regions belonging to a (a)-admissible family, (b) nonadmissible family’( \ C> is
disconnected).

PROOF We sketch the proof given irlpg (see also 10§). As usual, it suffices
to bound the number of vertices Uf(C). For everyC; that contributes at least one arc to
oUu(C), we fix a pointp; in the interior of such an arc. For any péiy, C; € Cthat generate
a vertexg on 9U(C), we draw an edge;; betweernp; andp;, as follows. Starting from
p;, follow 0C; to ¢ (in any direction), and from there follo@C; to p; (in any direction);
note that the edge, may self-intersect. Lek/ be the resulting (drawing of the) graph; see
Figure 12.

Figure 12. The union of pseudo-disks via a planarity argument. Eachtpgiis labeled as, and pointsy;; are
labeled asj. Heree(1, 2) ande(3, 4) cross each other six times.

We claim that any two edges &f that are notincident to the same vertex cross an even
number of times. We sketch the proof of this claim for the caiseseudo-disksk = 2).
Lete;; andey, be two edges off, where the first (resp., second) edge passes through an
intersection point;; (resp. gx,) of the boundaries of’;, C; (resp.,Cy, C¢), which lies on
the boundary of the union. Each of the poinis, qx, splits its respective edge into two
“half-edges.” We claim that any pair of half-edges crosswamenumber of times, that is,
either twice or not at all. If this were not the case, then thie half-edges would cross
exactly once, and then the pseudo-disk property is easdliy s2imply that one endpoint
of each half-edge must lie in the interior of the other ohj&dtich is impossible, since
each half-edge starts and ends at a point on the boundarg ahibn. This argument also
applies to any eveh > 2, exploiting condition (i) above.
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A remarkable result by Chojnacki (alias Hanard¥] rediscovered by Tuttel21] (see
also P and [10§ for a new proof), states that if a graghcan be drawn in the plane so
that any two of its edges not incident to the same vertex aiassven number of times,
thend is planar. Hence, we can conclude tltais planar, so it has at mo3t. — 6 edges.
That is, there are at mo3t — 6 pairs{C;, C;;} contributing vertices ta((C), and each of
them can contribute at moktsuch vertices. O

Counting regular vertices. If 9C; andoC) intersect in precisely two points, then we call
these intersection pointegular;, otherwise their intersection points are calleegular.
See Figure 13(a). A vertex df(C) is regular if it is a regular intersection point, and
irregular otherwise. I is a set of pseudo-disks, then all verticeld®) are regular. A
natural way to generalize Theorem 2.2 is to obtain sharp é®on the number of regular
vertices inl(C) even if the boundaries of some pairs of object8 intersect at more than
two points.

(@) (b)

Figure 13. (a) Regular (filled circles) and irregular (hollow circlegrtices of a planar union. (b) A union of
convex polygons with quadratically many regular vertices.

Let C be a family ofn > 3 regions in general position in the plane, and/&t) and
I(C) denote, respectively, the number of regular and irregudstices ofU/(C). Pach and
Sharir [L0g have shown that if the objects are convex then

(1) R(C) < 2I(C) + 6n — 12.

This result is sharper than Theorem 2.2, in the sense thagstablishing the upper
bound6n — 12 on the number of elementary arcs (or the number of intei@eqints) on
oU(C), one does not have to insist that all boundary intersectantg of pairs of objects
of € be regular. It suffices to require that all verticesldiC) be regular. The extension of
the above result to nonconvex regions remains elusive:

OPEN PROBLEM 1. Is it true that for every se€ of n simply connected regions in
general position in the plane, one h&C) < 21(€) + 6n — 12?

It is not hard to show that the coefficient 6{C) in (1) cannot be replaced by any
constant smaller tha2 Moreover, in generak(C) can bed(|C|?) = ©(n?) in the worst
case, as is illustrated in Figure 13(b), unless we limit thmher of times the boundaries
of a pair of curves irC are allowed to cross each other (this number is not boundexd by
constant in Figure 13(b)). However, we cannot expelih@ar upper bound even under
such an assumption (unless we deal with pseudo-disks): ijonawe can construct a
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@ (i)

Figure 14. The lower-bound construction for the number of regularigeg on the union of rectangles and disks.

family € of n disks and rectangles in general position in the plane gaigfR(C) =
Q(n*/3), as follows. Take a system @f/2 lines andn/2 points with©(n*/?) incidences
between them04. Fix two sufficiently small parametefs < ¢ < &’ < 2¢. Shift each
line by distances and2e¢, and create a sufficiently long rectangle bounded by theeghif
copies. Expand each point into a disk of raditis See Figure 14. With an appropriate
choice ofz, €', the resulting family of rectangles and disks k&$:*/?) regular vertices on
the boundary of its union.

For the special case of rectangles and disks, this boungispetically tight [L7]. If
Cis a set ofn simply connected regions so that the boundaries of any p#iem intersect
in at mosts points, for some constart> 0, then there exist$ = §(s) > 0 such that({(C)
hasO(n?~9) regular vertices17]. Recently, the bound has been improvedito(n?/3),
where the constant of proportionality dependsd¢and on the hidden > 0), if the objects
in C areconveq60]. See also%8] for some related results.

OPENPROBLEM 2. LetC be a set of simply connected regions in general position in
the plane, so that the boundaries of any pair of them intérseat most some constant
number,s, of points. Obtain a sharp bound aR(C), which depends only on (and s),
and not on/ ().

2.3. Union of fat objects. The construction depicted in Figure 5, showing that the
union ofn triangles may havquadraticcomplexity, uses extremely narrow triangles. On
the other hand, as we saw in Section 2.2, the complexity o@itien ofn circular disks
or (axis-parallel) squares is linear, thereby raising thesgion whether the union of “fat”
objects has small complexity. In the last fifteen years thisstion has been answered in the
affirmative under various notions of fatnedS[ 50, 52, 53, 98, 1(7In fact, these results
have motivated the study of faster geometric algorithmsafeariety of applications, for
fat objects in two and three dimensions; s&gf, 37, 80, 90, 115, 116In this section we
review the known results on the complexity of the union ofdfi@nar objects, starting with
the simplest case of fat triangles.

Union of fat triangles. For any fixeda > 0, a triangle is called-fatif each of its angles
is at leastv. MatouSeket al.[98] have proved that the complexity of the unionof-
fat triangles isO(n loglogn), for any fixeda > 0. Their proof is based on showing that
every family@ of n a-fat triangles in the plane determines at most a linear nuiofdeles
namely, bounded components of the complemeft(@). The strongest known bound on
the number of holes (in terms of its dependenceis the following.
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THEOREMZ2.6 (Pach and Tardo&07]). Any familyC of n a-fat triangles in the plane
determines)((n/a)log(1/«)) holes. This bound is tight, up to the logarithmic factor, in
the worst case.

We sketch a proof of the above theorem, with a larger constigptoportionality (in
terms ofa), using the following lemma, which follows from a more gealeecent result
of de Berg B#6.

LEMMA 2.7. Let G, be a set ofy, -fat triangles inR?, and letC, be another set of
as-fat triangles inR?. Thenx(C) = O(k(C1)/a1 + K(C2)/a2).

T A A

Figure 15. Replacing a fat triangle by three canonical triangles.

PROOF OFTHEOREM 2.6 (XETCH): We first replace each trianglé € C by three
(a/2)-fat triangles contained id\, by bending the edges at inwards, as depicted in
Figure 15, so that the directions of the edges of the newdlénbelong to the family of
the O(1/«) so-called‘canonical” directions ja/2, j = 0,1, ... During the bending, the
holes of the uniomxpand so their number can decrease only when two holes merge into a
common hole. However, this can happen only when the bendiegss through a triangle
vertex, which can happen only once per vertex, and thus @spliat the number of holes
can go down by at mosin.

Thus, we obtairO(1/a?) canonical familiesof (a/2)-fat triangles with fixed edge
directions, so that each family consistshmimothetic trianglesLet n; denote the number
of triangles in theth family. It suffices to bound the number of holes in the urnbthese
families. Each hole in the union can be charged to its leftmegex. Since any vertex of
the union is also a vertex of the union of juato families it suffices to establish a linear
upper bound on the complexity of the union of two canonicalifes.

As stated in Section 2.2, the union of homothetic triangkeslimear complexity, so the
union of all members of ainglecanonical family ha$)(n) complexity. Next, consider
the union of two families, say, andj. Since the triangles in each family afe/2)-fat
and homothetic to each other, by Lemma 2.7, the complexith@funion of triangles in
familiesi andj is O((n; +n;)/a). Summing over all pairs of families, we obtain that the
complexity of the union of new triangles&(n/a?), thereby implying that the number of
holes inU(C) is O(n/a?). O

Theorem 2.6 can be used to establish a more general upped lbf@utne number of
holes determined by a family of triangles with given angles.

THEOREM 2.8 (Pach and Tardo407]). LetC = {C4,Cs,...,C,} be a family of
n > 1 triangles in the plane, and let; denote the smallest angle 6§, for 1 < i < n.
Supposd) < a1 < as < --- < ap, and letk < n be the largest integer satisfying
Zle a; < m. ThenC determines)(nk log k) holes. Furthermore, there exists a family
e ={Cy,C%,...,Cl}, whereC! is congruent ta”; andC’ determine$2(nk) holes.
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PROOF Note that eacld;, for k < 4, is7/(k + 1)-fat, so the union o€ 41, ..., Cy,
denoted by, hasO(nk log k) holes. AddingCi,...,Cy to W creates at mosD(nk)
new holes. O

If we considelinfinite wedgegi.e., convex cones) rather than triangles, then the same
bound holds not only for the numberlobles but also for theeomplexityof the union. The
following result strengthens some earlier boundsli, [53.

THEOREM 2.9 (Pach and Tardo407]). LetC be a family ofn wedges in the plane
with anglesd) < a1 < ay < --- < «,, < 7. Letk < n be the largest integer satisfying
Zle a; < 7. If k> 2, thenk(C) is O(nklog k). Furthermore, there exists a family of
wedges with angles;, as, . . ., a,, which determine® ((w — «a, )nk) holes.

By plugging Theorem 2.6 in the proof given ig], one obtains the following bound
on the complexity of the union of fat triangles.

THEOREM2.10. For any fixeda > 0, the boundary of the union af a-fat triangles
in the plane consists of at maSt{(n/«a) log logn log(1/a)) elementary arcs.

Matouseket al. [98] have also proved that if, in addition to being fat, all triges
have roughly the same size (i.e., the ratio between any paiameters is bounded by a
constant), then their union has linear complexity. On thephand, by slightly modify-
ing theQ(na(n)) lower-bound construction for the lower envelopesifegments]23,
one can construet equilateral triangles (but of very different sizes), whasgon has a
slightly superlinear (i.e Q(na(n))) complexity. Here, as above(n) denotes the inverse
Ackermann function (and unrelated to the fatness paramétésr conclude the discussion
on fat triangles by mentioning an obvious open problem.

OPEN PROBLEM 3. What is the maximum complexity of the uniomak-fat trian-
gles?

Union of fat convex objects. Extending the notion of fatness to more general objects, we
call a convex objec€ in the planen-fat, for a > 1, if there exist two diskd, D’, such
thatD C C' C D’, and the ratio between the radii Bf andD is at mostx. See Figure 16.
Note that this extends the definition of fatness for triangina-fat triangle is easily seen
to beo’-fat as a convex object, for a suitaklé > 1, and vice versa. Efrat and ShariJ
have shown that the complexity of the unionrosimply shaped convex-fat objects in
the plane isD*(n), where the constant of proportionality also depends on tagimmum
number of intersections between any pair of boundaries. prbef uses both the bound
on the complexity of the union of fat triangles, and the boondhe number of regular
vertices of the union; see (1).

We also remark that the complexity of the unionoérbitrary convexpolygonswith
a total ofs vertices isO (n? + sa(n)) [19], wherea(n) is the inverse Ackermann function.

Union of fat non-convex objects. There are other, more general, notions of “fatness” that
extend to non-convex objects, and for which the combinakeamplexity of the union of

n “fat” planar objects remain®*(n). For instance, call a possibly non-convex objéect
a-roundif for each pointp € 0C, there exists adisk C C of radiusa diam(C') such that

p € 9D; see Figure 16. Informallyy-round objects cannot have convex corners, nor can
they have very thin bottlenecks (but they can have reflexarsjn Efrat and Katzg1] have
shown that the complexity of the union ofo-round objects i€ (A, (n) log n), wheres is

a constant that depends on the description complexity dhihg objects (and the constant
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) ¢

round round not round

fat and convex

(a, B)-covered

Figure 16. Fat-like planar objects with near-linear union complexity

of proportionality depends on). This result has been further extended by Ef&dj fto
so-called(«, 3)-covered objects: An obje€t is («, 3)-coveredif for each pointp € 9C,

there exists am-fat triangleT that hasp as a vertex, is contained ifi, and each of its
edges is at least diam(C') long; see Figure 16. Thus, these objects are not necessarily
smooth, but their corners cannot be too sharp. E&éitifias shown that i€ is a collection

of n («, 3)-covered objects, each pair of whose boundaries intersesitmosts = O(1)
points, then:(€) = O(As12(n) log? nloglogn). The bound was recently improved by de
Berg [36] to O(\s42(n)log® n). See alsog0, 115, 11§for other related results.

3. Union of Objects in Three Dimensions

3.1. Overview. Starting in the mid 1990s, research on the complexity of thieruof
geometric objects has shifted to the study of instancesr@ethnd higher dimensions. As
mentioned in the introduction, the maximum complexity a# timnion ofn. simply shaped
objects inR? is ©(n?), and this bound can already be attained by flat boxes. Thereay
few particularly favorable cases for which the union comjiieis linear inn, including
the cases of halfspaces and of axis-parallel unit cub8s33. In general, though, the
goal is to find classes of objects for which the maximum coxiptef the union is nearly
quadratic. Indeed, in most of the cases studied so far (ddbwiteviewed below), the
complexity of the union can be quadratic (and sometime$jiguper-quadratic) in the
worst case. This is the case, e.g., for balls, cubes, congoyénders, fat tetrahedra, and
halfspaces bounded hy-monotone surfaces of constant description complexity.

As the evidence discovered so far suggests, there are saup@atant classes of ob-
jects inR? whose union has at most nearly-quadratic complexity, inglete analogy with
the planar situation. One such class is the cladatafbjects, where, as in the planar case,
a compact convex object is calleda-fat if the ratio between the radii of the smallest
enclosing ball and of the largest inscribed ball’dfs at mostw. Other notions of fatness,
such asx-roundnesshave also been extendedRd [18]. A prevailing conjecture is that
the maximum complexity of the union of such fat objects iseied at most nearly qua-
dratic. Such a bound has however proved quite elusive tarofdageneral fat objects,
and this has been recognized as one of the major open prolll@msputational geometry
[39, Problem 4]. Nevertheless, considerable progress towestdblishing this bound has
recently been made, as we will shortly review.

As in the plane, another candidate class of objects with lsumébn complexity are
Minkowski sums of pairwise disjoint convex objects with aefixconvex object. In the
plane, this class was handled by showing that its memberpsaedo-disks, and then
by applying the general linear bound &1] (Theorem 2.2). However, the analysis of the
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union of such Minkowski sums is considerably hardeRin(because they are not “pseudo-
balls"—see below), and there are only a few (albeit impditarstances for which a near-
guadratic bound has been establishEl R(J; see Section 3.4.

A third class of objects with small union complexity gseeudo-halfspacese., re-
gions lying above or below amy-monotone surface (the graph of a continuous totally
defined function). This extends the class of pseudo-hal§daand was one of the first
classes to be studied.

We note that extending the notion of pseudo-disks to threeedsions does not seem
to lead to any new insights. A family of regionsit¥ is said to consist ofseudo-ballsif
the boundaries of any two members intersect in a single dlogese, and the boundaries of
any three members intersect in at most two points. It isatita show that the complexity
of the union of a collectior® of n pseudo-balls i€)(n?), by considering the portion of
the union boundary on the boundary of each membet sEparately, and by applying
Theorem 2.2. Hence, in particular, the complexity of theoardfrn balls inR? is O(n?);
it is easy to construct examples where the union@as?) vertices, even with unit balls,
and even when the unit balls all have a common point; 86 Fomewhat surprisingly,
Minkowski sums of disjoint convex bodies with a fixed convéjext are not pseudo-balls;
see a more detailed discussion below.

3.2. Union of pseudo-halfspacesLetF = { f1,..., f,} be a family ofn continuous
totally defined bivariate functions (in, y). As in Section 2.1, we refer to the region lying
below (resp., above) the graph fifas the lower (resp., uppgsseudo-halfspadeounded
by that graph. For each< i < n, let C; be one of these two pseudo-halfspaces, and let
denote the collectiofCy, ..., Cy}.

Sharir [L13 (see alsoT2]) has proved that if each function ify is of constant descrip-
tion complexity, then the complexity of the lower or uppevelope ofF is O* (n?). This
immediately implies that if all th€’;’s are lower (or all are upper) pseudo-halfspaces, then
their union hag)*(n?) complexity. Agarwalet al.[8] have established af* (n?) bound
on the complexity of the sandwich region between the lower @per envelopes of two
respective families of a total ef bivariate functions, each of constant description complex
ity. The proof is based on the following interesting resukt ¥ and§ be two collections
of a total ofn bivariate functions, as above, and Ity (resp.,Mg) denote theninimiza-
tion diagramof J (resp.,5), namely, thery-projection of the lower envelope &f (resp.,
G). Then theoverlayof the two minimization diagrams ha@* (n?) complexity® Note that
we make no assumption on any relation betwgeand§. Also, the result continues to
hold when one or both diagrams are replaced by the respentix@nization diagrani.e.,
thexy-projection of the respective upper envelope. This impliesfollowing result.

THEOREM3.1 (Agarwalet al.[8]). LetC be a set of, pseudo-halfspaces iR?, each
of which is a semi-algebraic set of constant descriptionglexity. Then the complexity of
U(R) is O*(n?).

We note that both bounds, 013 for lower or upper envelops, and o3][for their
sandwich region, continue to hold when the given functioesomly partially defined.

3.3. Union of convex polyhedra.As already remarked, an easy extension of the pla-
nar construction shown in Figure 5 shows that the maximumpdexity of the union ofn

5The new vertices of the overlay are intersection points betwedges ol/5 and edges of\/g. A naive
upper bound on the number of these vertices wouldt¢n*), given that each separate diagram txgn?)
edges 113.
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(axis-aligned or arbitrarily aligned) boxes (or wedgestairahedra) irR? is ©(n?); see
Figure 17. Moreover, we can easily adapt this constructioshiow that the maximum
union complexity of thre@onconveyolyhedra with a total of facets is9(s*). A natural
guestion is whether a similar lower bound also exists fordbmplexity of the union of
convex polyhedra, i.e., a bound that is cubic in the numbéaiadts. The following result
by Aronov et al.[21] answers this question in the negative, and calibrateserptess,
the true maximum complexity of such a union.

Figure 17. Union of n plates inR3, which can be viewed as thin boxes, wé{n?) complexity.

THEOREM3.2 (Aronovet al.[2]]). The complexity of the union afconvex polyhedra
in R? with a total of s facets isO(n? + snlogn). This complexity can b@(n3 + sna(n))
in the worst case.

It is interesting to note that the above bound is cubic onthanumber of polyhedra,
but it is onlylinearin s. (Compare with the boun@(n? + sa(n)), mentioned above, for
the case of convex polygons in the plaid€][) The cubic term disappears in the special
case where the polyhedra@are Minkowski sums of pairwise-disjoint convex polyhedra
with another fixed convex polyhedron—see the following satisn for details.

The proof of Theorem 3.2, given ir2{], is rather technical; we highlight two of its
key ingredients that are useful in some other contexts toe. ndte that techniques for
analyzing the union of objects iR3 (and in higher dimensions) are rather scarce; we
will mention some of these techniques as we encounter iosgim which they can be
exploited.

Special quadrilaterals and special cubes—Junctions in thenion. Let C be a family
of n convex polyhedra with a total of facets, and let’;, Cs, C3 be three members @
with the following property: There exists a facEt of C, such that) = F; N Co N Cs
is a quadrilateral, having two opposite edgesiar and two opposite edges a3, and
no other member of intersectsy. In this case, we call) a special quadrilateral see
Figure 18.

Aronov et al.[20, 2] have introduced this notion, and have shown that, for eahyjt
collectionsC as above, the complexity of the union 6fis O*(n? + Q(n,s)), where
Q(n, s) is an upper bound on the number of special quadrilateraleyrsabcollection of
C. They have then shown that, for collectiof®f Minkowski sums of pairwise disjoint
convex polyhedra with another fixed polyhedr@ns, s) = O(ns). (The case of arbitrary
polyhedra has been analyzed using a different approach.)
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@ special quadrilateral
1 P

Figure 18. A special quadrilateral in the union of polyhedra.

Pachet al.[105 have extended this notion to that sfpecial cubeswhere a special
cube is an intersection of three member£pfvhich has the combinatorial structure of a
cube, where each of the three intersecting polyhedra dués a pair of opposite facets to
the intersection, and no other memberCGaieets the “cube”. Packt al. have shown that
the union complexity of is proportional to roughly:? plus the number of special cubes
in any subcollection of.

Thus, the problem of bounding the complexity of the unionueas to that of bounding
the number of special quadrilaterals or cubes. This has eeafor special quadrilaterals,
in the context of Minkowski sums of pairwise-disjoint corymlyhedra with another fixed
polyhedron, in 20], using a fairly intricate topological argument, and foesfal cubes, in
the context of arbitrarily aligned nearly congruent cubefliog, using a plane sweeping
argument.

Charging schemes.This technique can be used in a variety of scenarios. Her&ketels
in a special case how it can be applied to convex polyhedra.

Let C be a family ofn convex polyhedra ifiR?, each with a constant number of facets,
and consider the problem of bounding the complexity@€). Clearly, the number of
vertices ofU(C) that are vertices of some member ®for that are double-intersection
points, lying on an edge of some member and on a facet of andgh@(n?). Therefore,
we have to bound the number of triple-intersection pointshenboundary oll(C), i.e.,
points that belong to the boundaries of three distinct memtC. Assuming that the sets
are in general position, no point can belong to the boundarfienore than three distinct
members.

Consider the arrangementinduced by the boundaries of the polyhedr&irDefine
thelevelof a vertex of this arrangement to be the number of membetslvdt contairv in
their interior. The number of triple-intersection verticat level is denoted by; = V;(C).
We have to bound; (), that is, the number of triple-intersection vertices atléx

Each vertex of the union is incident to three edges of the arrangemertach lead-
ing awayfrom the union boundary; that is, each such edge is contamgg intersection
segment of two of the facets containingand leads into the interior of the third polyhe-
dron. We follow each of these edges, and charge the three vertices that are the other
endpoints of these edges. See Figure 19.

The favorable situation is when all three charged verticgestrgple-intersection ver-
tices at levell. In this case, each of them can be charged at most three tsaesg-
ure 19), so the number of charging vertieesf this kind is at most/ (€), the number
of triple-intersection vertices at levél The case where one of the charged vertices is not
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Figure 19. The charging scheme. The three dashed edges emanating fead into the interior of the union.

a triple intersection is easy, because there are 6rly?) such vertices (in the entire ar-
rangement), and each is charged only a constant number e$ tiso there can be at most
O(n?) charging vertices of this kind.

Let us denote by (C) the number of vertices at level0 for which at least one of
the charged vertices is a triple intersection vertex the des at level. We thus obtain
the inequality

Vo(€) < V4(@) + V5 (C) + O(n?).
The main difficulty is in obtaining a nearly quadratic boundig"(C). In general, this is
impossible: for instance, when the memberg afre large and thin plates that form a grid,
one can easily check th&}(C) = Vi (€) = O(n?). Suppose, however, that we are in a
favorable situation, and have somehow managed to showh@@) = O*(n?). Then we
get

Vo(@) < Vi(@) 4+ O*(n?).

Let R be a random subset €f obtained by removing one element uniformly at random.
An easy probabilistic argument shows that

n—3

B(15(R)) = " 215(€) + - VA (©).

Combining this with the preceding inequality, and writiig(m) for the maximum value
of V,(C) for |€| = m, we obtain

1 1

~Vo(€) < —Vi(€) +0%(n)

n—3

= E(W®) -

Vo(€) + O%(n)

< Von—1) -3

Vo(€) + 0 (n),
or 9
i ; Vo(n) < Vo(n — 1)+ O*(n).

Dividing this by (n — 1)(n — 2), we obtain a telescoping recurrence that solvdgta) =
O*(n?). Ifthe overhead terriy; (€) is strictly O(n?), the recurrence solves @(n? logn).

The above scheme is a special instance of a technique dedelypTaganskyl[18,
119, built upon earlier cruder charging schemes. As alreadgache real challenge is to
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boundVj;(€). One way of doing so is to apply the charging scheme repeatetere in

the next stage we want to bound the number of ldvetiges of the arrangement with both
endpoints at level, by charging them to more complex local structures that haee
level-0 vertices connected by two levéledges, and so on. This multi-stage scheme ends
when the overhead term is the number of special quadrilatdefined above (or can be
pushed further until the overhead term counts the numbegyexfial cubes). Sed 5, 118

for details.

An interesting feature, hidden in this quick review, is ttteg only bottleneck in the
analysis is to bound the number of special quadrilateralohtrast, it is relatively easy
to give a quadratic upper bound for the number of “speciaygoahs” with more than four
vertices, where such a polyga@p is the intersection of a facet of one memberCoivith
two other members df, so that no fourth member &f meetsQ); see e.g.§1].

3.4. Robots with three degrees of freedom: Complexity of th&ree space.A spe-
cial class of problems that involve unions in three dimensiarises in motion planning
for robots with three degrees of freedom. Recall that in tlaise theconfiguration space
which represents all possible placements of the given réhds 3-dimensional, and each
obstacleO in the physical environment (the workspaceR) generates aaxpanded ob-
stacle(or C-obstacle))*, which is the locus of all placements &fat which it intersects
O. The free portiori¥ of the configuration space is then the complement of the uoion
the C-obstacles.

In this subsection we review several results that ariseigidbntext. As already dis-
cussed in the general setting, the naive bound on the coibypddX is cubic in the number
of possible contacts between feature®aind features of the obstacles. In many instances,
this bound can be attained, but there are several speces vdeere better, nearly quadratic,
bounds can be established.

Let B be a robot with three degrees of freedom, so that each platerhé&3 can be
parametrized by three real parameters. For simplicityyéeassume that the configuration
space, the set of all placements®fis the real Euclidean spa@. Two special cases of
such a robot that we consider are: a planar object that iwatldo translate and rotate amid
obstacles ifR?, and a three-dimensional object allowed only to translatelabstacles in
R3. Bounding the complexity dF in the former case was one of the first applications that
led to the study of the union of objectsik¥ [94, 95.

T 2

(a) (b)

Figure 20. (a) Representation of a placement®f (b) A triple contact.
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Translation and rotation in 2D. Let B be a convex polygon ifR? that is allowed to
translate and rotate in the plane amid aGet {Oq, ..., O,,} of obstacles with pairwise-
disjoint interiors, each of which is a convex polygon, wittotal of s vertices. To parame-
trize the configuration space, we fix a painge B and a rayp emanating frono and rigidly
attached taB. A placement ofB is then parametrized by a poifit, b, tan(6/2)) € R?,
where(a, b) are the coordinates efandd is the counterclockwise angle from theaxis

to p; see Figure 20() A placement ofB is freeif B does not intersect any obstacle at this
placement, andemi-freef B makes contact with one or more obstacles at this placement
but does not intersect the interior of any obstacle. A genawntact between the bound-
aries of B and an obstacle can be represented by a(paiv) whereo is a vertex ofB and

w is an edge of the obstacle, @iis an edge of3 andw is a vertex of the obstacle.

For each obstacl@;, let C; denote the corresponding expanded obstacle, which is the
set of placements at whidB intersects);; C; is a semi-algebraic set whose complexity de-
pends on that o8 andO;. As noted, puttin® = {C1, ..., C,}, we haveF = R3\ U(C),
andJF is the locus of all semi-free placements. A vertexXfdibrmed by the intersection
of the boundaries of three expanded obstacles corresporaplacement o3 at which
it makes three distinct contacts with the obstacles, whilepenetrating into any obstacle
(see Figure 20(b)); these placements are referred tisal semi-free placements or
critical verticesof IF. It can easily be argued that#f is a polygon withk: vertices then the
complexity ofF is proportional tak?s? plus the number of critical vertices.

Figure 21. A nonconvex polygon witl2(k3s3) critical semi-free placements.

If B is a nonconvex polygon, theli can have2(k*n?) critical vertices, as shown
in Figure 21 [F3. However, the bound improves considerably wheris convex. For
instance, ifB is a line segment, then, as shown in several early works ardlue mid
1980s)F has onlyO(s?) vertices 7, 95. In a recent work in progress, Agarwet al.[2]
have improved the bound 1@(ns); this improved bound holds even if the obstacle®in
are not pairwise disjoint. In fact, if the obstacles are wae disjoint, then the number
of critical vertices ofF is only O(n? + s), though the number of vertices Bfformed by
the intersection of the boundaries of a pair of expandedacles (edge-face intersection
points) can b&(ns).

The main (and fairly old) result for this scenario is:

6CIearIy, this is not a faithful representation, becausedtees the orientatiod = +m. Nevertheless, we
use it to simplify the presentation.
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THEOREM 3.3 (Leven and Sharii9f]). If B is a convexc-gon, then the complexity
of Fis O(ksA¢(ks)).

Since the number of combinatorially different contactsamein B and the obstacles
is ©(ks), the bound in Theorem 3.3 is nearly quadratic in the numbeoaotacts. Here
is a brief sketch of the analysis i84]. Let ¢ be a (vertex-edge or edge-vertex) contact
between the boundaries &f and of an obstacle, and 1€, C R* denote the set of all
placements oB at which the contact is made]’, is a two-dimensional algebraic surface
patch. For each contagt we define a familyC, of O(ks) pseudo-halfplanes iy,
where each pseudo-halfplaherepresents placements at whighis made and another
contact¢’ is “violated"—¢’ is made at placements @i, and B and the corresponding
obstacle intersect at placements within The boundaries of any pair of these pseudo-
halfplanes intersect in at most six points. The main obgemvan the analysis is that if
B and the obstacles are in general position and if the contgleXiF is 2(k%s?), then
at least a constant fraction of the vertices@ére vertices ofll(C,), over all contacts
¢. By Theorem 2.1x(Cy) is O(Xs(ks)), for each¢, and thus the complexity df is
O(ksX¢(ks)). The details of the proof can be found 8¢].

Combining this overall approach with a few new observatjansl performing a more
careful analysis, Agarwal and Gujgunte, in a recent workriogpess 4], have improved
the bound on the complexity @ to O(ksAg(kn)).

Van der Stappeet al.[116 have studied the case in which the obstacles are fat, and
have proved a linear bound on the complexityfoiinder certain reasonable assumptions.
We refer the reader to their paper for more details.

Translational motion planning in R, Let B be a convex object ilR? that is allowed to
translate amid a s€t = {0, ..., O, } of n obstacles, each of which is a convex polytope.
We fix a pointo € B and represent a placement®by specifying the coordinatés, y, z)

of 0. As mentioned in the introduction, the expanded obstéaglgenerated by, is now
the Minkowski sumO; @ (—B) of O, and the reflected image B of B, and, as usual,
F = R?\ U(C), whereC = {C4,...,C,}. This has led to the extensive study of the
complexity of (and algorithms for constructing) the uniohaofamily € of Minkowski
sums of this kind irR3.

In the planar case, the crucial property of such a colleatibiinkowski sums was
that each pair of boundaries cross at most twice, so theatifeis a family of pseudo-
disks. The corresponding propertylR¥ (assuming general position) is that each pair of
boundaries intersect in a single connected closed c@ije However, a triple of bound-
aries can intersect in an arbitrarily large number of pgimisich makes the analysis of the
union complexity considerably harder than in the plane.rigedratic bounds have been
established for only a few special cases, summarized indlf@ing theorems. (In each
part, s effectively denotes the overall complexity of the indivadiMinkowski sums inC,
but its precise definition is slightly different in each case

THEOREM 3.4 (Halperin and Yap74]). If B is a cube, the complexity &f(C) (and
thus ofF) is O(s?a(s)), wheres denotes the overall number of faces of the original poly-
topes in0.

THEOREM3.5 (Aronov and SharirJ(Q)). If B is a convex polytope, the complexity of
U(C) is O(nslogn), wheres denotes the overall number of faces of the polytope in
There exist constructions where the union complexity(issa.(n)).

THEOREM 3.6 (Agarwal and Sharirl[l]). If B is a ball, the complexity df((C) is
O*(s?), wheres is the total number of faces of the polytope®inin particular taking©®
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to be a set of: lines inR?, the complexity of the union afcongruent infinite cylinders in
R3 is O*(n?).

The proofs of these theorems are rather different, and efittem is very technical.
The proof of Theorem 3.4 is based on ideas similar to those lng&even and Shari©].
The proof of Theorem 3.5 is a special case of the analysiseotittion of arbitrary convex
polyhedra, given in21], where the main new ingredient is an intricate topologargju-
ment that shows that the number of special quadrilaterdteimnion isO(ns). The proof
of Theorem 3.6 is the most involved; it uses a rather com@taharging scheme, and is
based on several geometric observations that reduce tieprdo that of bounding the
complexity of sandwich regions between upper and lower lepes of bivariate functions.
These results lead to a few natural questions that remasivetu

OPEN PROBLEM 4. What is the maximum complexity of the uniomofongruent
cones or tori?

OPEN PROBLEM 5. What is the maximum complexity of the uniomafylinders of
different radii?

Although the upper bound for all these cases is conjectarbe©* (n?), no subcubic
upper bounds are known to date.

3.5. Union of fat objects. Similar to the planar case, a compact convex obfeéct
is calleda-fat, for some constant > 1, if the ratio between the radii of the smallest
enclosing ball and of the largest inscribed ball(®fis at mosta. In this subsection we
review some of the recent (and slightly less recent) devetas in the analysis of the
complexity of the union of fat objects iR3.

Union of axis-aligned cubes.We begin by considering the simple case of axis-aligned
cubes.

THEOREM 3.7 (Boissonnakt al.[28]; see also32]). The complexity of the union of
n axis-aligned cubes iiR* is O(n?). The bound reduces 10(n) if the cubes are of the
same (or nearly the same) size. Both bounds are tight in thistwase.

PROOF This result is sufficiently simple to allow us to provide amgete proof. We
only need to count the number of vertices of the union thafrarielent to three facets of
three distinct respective cubes; the number of all otheiices (of the entire arrangement
of the cube boundaries) is oniy(n?). Letv be such a vertex, incident to facd®s, F», I}
of three distinct respective cubég, Cs, Cs, so thatC is the largest cube among them.
Follow the intersection segmeht N F5 from v into C;. This segment has to end within
C1, at a point that lies on an edge 6% or C3, and on the remaining facét or F»>. The
number of such terminal points is clearly orilfn?), and each of them can be encountered
in such a tracing from only a constant number of vertice$the union. Hence, the number
of these vertices, and thus the complexity of the unio)(is?). The proof for congruent
cubes is also simple, but we omit it. O

Union of arbitrary nearly congruent cubes. If the cubes are not axis-parallel, the prob-
lem becomes much harder. Paehal.[105 have studied the case in which the cubes
have equal (or “almost equal”) size, and have shoiluat the complexity of their union is

“We do not highlight this result, because it is now subsumedhgymore recent result of Ezra and
Sharir [63], which we will shortly present.
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O*(n?). The key observation in their analysis is that one can layaaegular grid, where
the size of its cells is somewhat smaller than that of thergagbes, so that (a) each cube
meets only a constant number of cells, and (b) no two opptaitets of a cube meet the
same cell. This allows us to consider the union separategath cell, and to observe
that the union within each cell becomes a union of unbounddf@dgaces, (right-angle)
dihedral wedges, and (orthant-like) trihedral wedges. dmalysis thus reduces to that of
bounding the complexity of the union of such wedges. The rteghnical ingredient in
the analysis of105 is:

THEOREM 3.8 (Pachet al.[105). The complexity of the union ef «-fat dihedral
wedges i£)* (n?), where the constant of proportionality depends on (the éiddand on)
.

Pachet al.were not as successful in analyzing the complexity of thewwif a-fat
trihedral wedges (wedges whose solid angle is at legsfor any constante > 0, and
managed to establish a nearly quadratic bound only when #uges are “substantially
fat”, a case that includes wedges formed at a vertex of a dube &n orthant), but not
wedges formed at a vertex of a regular tetrahedron.

A major observation in the analysis afQq is that, for any triple ofa-fat dihedral
wedges, there are many directiomssuch that a plane orthogonal tocuts each of the
three wedges in a cross-section which is itgéHfat, for somen’ > 0 that depends on.
This allows the analysis to proceed by sweeping the givergegdly a plane, considering
only those wedges that meet the plane in fat cross-sectiodd)y analyzing critical events
when the boundaries of three of the swept wedges becomerenturinding such a good
sweeping direction for triples of trihedral wedges is hardie general this is impossible
unless the wedges are really “substantially fat”. The asialthen combines the study of
special cubes (as reviewed above) with some other trickspnalude that the complexity
of the union of such wedges is nearly quadratic.

To recap, the technique 0105, powerful as it was, could not handle cubes of arbi-
trary sizes (the grid reduction does not work then), nor dauhandle other kinds of fat
polyhedra (for which the wedges formed at their verticesmaresufficiently fat); even the
special case of regular tetrahedra remained open. Botlesétbhortcomings have recently
been overcome by Ezra and Sha68], who have obtained a nearly quadratic bound for
the complexity of the union af arbitrary fat tetrahedra. We will review this result below,
and we note that it immediately implies a nearly quadratieritbfor the union complexity
of n arbitrary cubes iR? (of arbitrary sizes).

Union of fat tetrahedra and of cubes. We say that a tetrahedron dsfat if each of its
solid angles is at least. This definition is compatible with the other standard débnis
of fatness. Specifically, the ratio between the radii of thialest enclosing ball and the
largest inscribed ball of an-fat tetrahedron is at most = O(1/+/«). Conversely, if this
ratio is at most’ for some tetrahedron, then it must hefat with o = Q(1/(a’)?).

To simplify the presentation, let us assume for the momeatt e are given a col-
lection C of n a-fat tetrahedra ohearly equal sizemeaning that the diameters of the
tetrahedra inc are within some constant ratio of each other. Then there isaay grid-
based argument, similar to the one used for nearly equalssubeeduce the analysis of
their union to that of the union af-fat trihedral wedges, namely, trihedral wedges whose
solid angles are at least(see Figure 22). Specifically, assume, for simplicity, #iathe
diameters lie in the interval, ¢, for a fixed constant. We lay out a grid of sufficiently
small (but constant) cell size, so that (a) for any tetrabedrof C and any grid celA,
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dihedral

trihedral

Figure 22. An «-fat trihedral wedge and an-fat dihedral wedge.

at most three facets of meetA, and (b) each tetrahedron & crosses onlyO(1) grid
cells. Hence, within each grid cell, we need to bound the complexity of the union of
somena a-fat trihedral wedgegwhich can also degenerate further to dihedral wedges or
halfspaces).

Suppose that we have a bound@f(m?) on the complexity of the union of. a-
fat trihedral wedges, with a constant of proportionalitgttidlepends om. This bound,
combined with the above reduction, implies that the comipjeof the union ofn. nearly-
equala-fat tetrahedra i~ , O*(n4) = O*(n?). The case of nearly equal cubes is now
an easy corollary of this result.

The analysis in§3] applies also to the case in which the tetrahedra have arpiizes
(diameters). It is somewhat involved, and we sketch herg smine of its highlights. To
simplify the presentation, we only consider the case ofrfaetiral wedges. Le€ be a
family of n o-fat trihedral wedges. The main technical tool in the analp$ [63)] is the
following lemma.

LEMMA 3.9 (Ezra and Sharif]). LetR be a set of planes inR?, and letiV be an
arbitrary trihedral wedge.

(i) The number of cells oA (R) that meet all three facets &F is onlyO(r).

(i) If we triangulation a cell ofA(R) into tetrahedra using the Dobkin-Kirkpatrick
hierarchical decomposition scherfd#], then at mosO(log ) tetrahedra in the
triangulation can meet all three facets @f.

See Figure 23(b) for an illustration. The lemma applies tp, @ot necessarily fat,
trihedral wedge. Note also that the planar version of themtenis trivial: In an arrange-
ment ofr lines in the plane, at mosine cellcan meet all three edges of a given triangle
(Figure 23(a)). As another trivial variant in the plane, thenber of cells that meet both
sides of avedgeis O(r).

Lemma 3.9 suggests the following recursive decompositiieme. Take a random
sampleR of r planes that support the facets of the wedge8.oConstruct the arrange-
mentA(R) and decompose each of its cells into tetrahedra, using th&iBdirkpatrick
scheme. We obtain a decompositi®mf R? into O(r?) tetrahedra, with the property that
for each wedgéV of C, the number of tetrahedra that meet all three facetd’as only
O(rlogr). Hence, on average, each tetrahedron is crossed by aOr(g%ﬂog r) wedges
of € with this property. Moreover, the standard theory of randsampling [r6] allows
us to assume thak has the property that each of the tetrahedr&a$ crossed by the
boundaries of at mos? (% log r) wedges ofc. To recap, we obtai(r3) subproblems,
each involving at mos® (2 log r) wedges, of which, on average, ordy(Z; logr) are
trihnedral wedges, and the rest are dihedral wedges (orgaalés).
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(@) (b)

Figure 23. (a) In the plane, only one cell of the arrangement can me¢trae edges of a given triangle. (b) In
R3, as many a®)(r) cells can meet all three facets of a given trinedral wedgeltamatic view from the apex
of the wedge).

To obtain the asserted near-quadratic bound, the anatyg8]iapplies the decompo-
sition repeatedly, taking to be a sufficiently large constant, and involves a rathesfoar
counting of the vertices that are not passed down the remurdinstead of reconstruct-
ing this somewhat involved analysis, let us consider thiefohg simpler quick-and-dirty
approach. If we choose = \/n, we obtainO(n?/?) subproblems, each involving some
numberm of trihedral wedges (which is only logarithmic on averagg)d O*(n'/?) di-
hedral wedges. The number of vertices of the union that amdd by three dihedral
wedges is0*((n'/?)?) = O*(n) (Theorem 3.8; 105), and the number of vertices that
lie on the boundary of at least one trihedral wedg®igmn) (using a rough quadratic
bound for each trinedral wedge separately). Summing owetdtrahedra, and using the
fact that them’s sum toO(nrlogr) = O*(n®/?), yields the overall bound a®* (n°/?)
for the complexity of the union. With the more careful anayis [63], this bound drops
to O*(n?).

The above analysis can also be applied to the case of fatéetrarather than wedges
(Lemma 3.9 obviously carries over to this case), but thersictamably more effort is
needed to count vertices that are not passed down the mairsiee. The analysis of
[63] culminates at the following result.

THEOREM 3.10 (Ezra and Sharii6B]). The complexity of the union ef arbitrary
a-fat tetrahedra inR? is O* (n?), where the constant of proportionality dependscon

Union of a-round objects. Let € be a family ofn a-round objects inR3. That is, for
eachC € @, any pointp € 9C is incident upon a ball of radius - diam(C) which is
fully contained inC'. We first consider a special case of this problem, in which uveher
assume that the diameter of each membe® f betweenl and D, for some constanb.
We may therefore assume that all the balls used in the definitf roundness are of the
same radius.

These assumptions are easily seen to imply thatsfa vertex of the union, incident
upon the boundaries of three sétg C,, C5, then, with at least some constant probability,
a random directiom has the property that the line througtat directionu intersects each
of the sets’, Cy, Cs in an interval of length at least’ = Sa, for some sufficiently small
but constant? > 0. We call a vertex satisfying the above property for a di@cti a
u-feasiblevertex. To prove thak(€) is O*(n?), it suffices to establish a near-quadratic
bound on the number af-feasible vertices for any fixed directian Suppose, without
loss of generality, thai is thez-direction.
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Figure 24. Reducing the union of nearly equalround objects ifR3 to sandwich regions.

PartitionR? into horizontal slabs of width/. For each slal, let €1, €~ denote the
family of objects ofC that intersect the top and bottom boundaries téspectively, clipped
to within o. Moreover, retain, for each obje€t € C_, the portion of its top boundary con-
sisting of those points € o for which the vertical segment fromto the bottom boundary
of ¢ is fully contained inC'. Apply a symmetric trimming process to the bottom boundarie
of the objects of}. Putn, = |CF| + |C, |. It can be checked that eackfeasible vertex
that lies in the slalr is a vertex of the sandwich region between (the trimmed posti
of) the upper envelope of the top boundaries of objects inand the lower envelope of
the bottom boundaries of objects@} . See Figure 24. As mentioned in Section 3.2, the
number of vertices in the sandwich regior(i$(n2). However,Y"_n, = O(n), because
each object ir€ can cross only)(1) slabs. Therefore(C) = > O*(n2) = O*(n?).

The above argument fails when the diameters of the objedisdiffer significantly.
This has been overcome by Aronev al.[18], who have extended the nearly quadratic
bound to this case, using a somewhat more involved techpighieh is also based on
reducing the problem to sandwich regions between envelopes

THEOREM3.11 (Aronovet al.[18]; Agarwal and Sharir]1]). LetC be a family ofz
3-dimensionak-round objects of constant description complexity. Thencibmplexity of
U(C) is O* (n?).

In spite of all the progress reviewed in this section, théofeing general question is
still open.

OPENPROBLEM 6. What is the maximum complexity of the uniomaf-fat objects
of constant description complexity R¢? What if they are all convex?

4. Beyond Three Dimensions

In higher dimensions, the problem of bounding the compjexithe union of geomet-
ric objects becomes even more complicated, and only veryréswits are known, which
we duly review here.

Union of pseudo-halfspacesAs already mentioned in the introduction, the complexity
of the union ofn halfspaces (each bounded by a hyperplanéydnis O(nl4/2l). For
pseudo-halfspaces (regions lying above or below the grapbroe continuous function of
constant description complexity), the bounds are not timatls As shown by Sharir]13,

the complexity of the lower (or upper) enveloperofd — 1)-variate functions of constant
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description complexity i©* (n4~1). Hence, the union of pseudo-halfspaces, all of which
are lower (or all upper) i©* (nd=1).

However, this is not known to hold in the mixed case, whereespseudo-halfspaces
are lower and some are upper,dn> 5 dimensions. As in two and three dimensions,
we seek bounds on the complexity of the sandwich region etadower and an upper
envelope, which turns out to be a hard problem dor 5. An O*(n?) bound on the
complexity of the sandwich region iR* was proved by Koltun and Shari8@. As in the
three-dimensional case, this is based on a nearly cubicdhastablished ing6], on the
complexity of the overlay of two minimization and/or maximation diagrams, this time
of trivariate functions. These results yield a nearly cuimeind on the complexity of the
union of n pseudo-halfspaces of constant description complexi®‘in The problem of
whether sandwich regions have asymptotically smaller derity than that of the entire
arrangementis still open fat > 5.

OPEN PROBLEM 7. What is the maximum complexity of the unionnopseudo-
halfspaces of constant description complexitiRih for d > 52

Linearization. The so-called linearization technique can be used to bdwedamplexity
of the union of certain classes of regions, by transformimgsé regions to halfspaces.
Specifically, letf (x,a) be a(d + p)-variate polynomial, withv € R? anda € RP. Let
a',...,a" ben points inR?, and setf = {f;(z) = f(x,a’) | 1 <i < n}; thusFis a
collection ofd-variate polynomials. For eaahlet C; be one of the two regiong > 0 or

fi <0,andset = {Cy,...,C,}. Suppose thaf(z, a) can be expressed in the fotm

) [z, a) = hola) + ¢r(a)pr(x) + - - + Yr(a)er(x),
whereyy, . . ., Yy, arep-variate polynomials ang, . . . , ¢, ared-variate polynomials. We
define the mag : R — R* by

o(x) = (p1(x), ..., or(x)).
Then the imagéd’ = {¢(z) | € R?} of R? is ad-dimensional surface iR* (assuming
k > d), and for anyu € RP, f(z, a) maps to the:-variate linear function

ha(y1, .- yk) = Yola) +P1(a)yr + - - + Yr(a)yr,

in the sense that for any € R?, f(x,a) = ha(¢(x)). The regionC; maps to one of
the two halfspaces bounded by the hyperplangmore precisely, to the intersection bf
with such a halfspace), which we denote/y. LetH = {h; |1 <i < n}. ThenlU(C)
maps tdll(H) NT. Sincel is a surface of constant description complexity, the comiple
of U(C) is proportional to that of((H). We refer tok as thedimensiorof the lineariza-
tion ¢, and say thaff admits a linearization of dimensidn Agarwal and Matousek7]
describe an algorithm that computes a linearization of thallest dimension under cer-
tain mild assumptions. ¥ admits a linearization of dimensidn then the complexity of
U(C) is bounded by the complexity of the unionofhalfspaces ilR***, and it is there-
fore O(n!*/21). The most popular example of linearization is perhaps theasiedlifting
transform(see Section 2.2 where it is mentioned for the planar cadaghas constructed
from the polynomial

f(z,a) = (21 — a1)2 +o 4 (xg — ad)2 — aiﬂ,
for z € R? anda € R*!. The resulting lifting transformation itself is then

(}O(I) = (x17x27"-7xd317%+"'+I§).

8This can always be done by breakifignto its monomials, but theh can be quite large.
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This mapsR? to the standard paraboloid: z441 = 2% + -+ + 22 in R4*1, and a ball in
R? is mapped to a halfspace Rf+!, which implies that the complexity of the union of
balls inR% is O(n!4/21),

Axis-aligned cubes. Boissonnakt al.[28] provide an upper bound a@d(n!%/?1) for the
union of n axis-parallel cubes iiR?, which improves taD(nl%/2]) when the cubes have
equal (or nearly equal) size. The complexity of the union eimply-shaped convex bodies
in R% with a common interior point is O* (n?~!), which follows from the observation that
the boundary of their union can be interpreted as the uppeiepe ofn (d — 1)-variate
functions (in spherical coordinates abeit A slightly refined bound for polyhedra iR?
with a common interior point was given ii7§].

Koltun and Sharir$6] extended Theorem 3.11 ®?, by proving that the complexity
of the union ofn convexa-round objects ifR* with nearly equal diameters i9* (n?).
These results have been further generalized by Arat@!/.[18] for (not necessarily con-
vex) a-round objects with arbitrary diameters. The only obstdclebtaining analogous
results inR?, for d > 5, is our inability to establish sharp upper bounds on the dekrity
of sandwich regions (as discussed above) in 5 dimensions.

OPEN PROBLEM 8. What is the maximum complexity of the uniomaf-round ob-
jects of constant description complexityltf for d > 5? What if their diameters are
almost the same?

5. Generalized Voronoi Diagrams

Voronoi diagrams are closely related to unions of geometbjects, in the following
manner. LetC be a set ofn pairwise disjoint convex objects iR, each of constant
description complexity, and lgt be a metric (or a&onvex distance functigi2q). For a
pointz € R?, let ®(x) denote the set of objects 6fthat are nearest tg, i.e.,

P(x) ={C € C|p(z,C) < p(x,C") for eachC’ € C}.

TheVoronoi diagramVor,(€) of € under the metrip (sometimes also simply denoted as
Vor(C)) is the partition ofR? into maximal connected regions of various dimensions, so
that, for each regiof’, the set®(x) is the same for alt € V. For each full-dimensional
region (cell),®(-) generally consists of a single sit& and the cell is called the Voronoi
cellof C. Fori = 1,...,n, letv; be the graph of the function,.1 = p(z,C;), for

r € RY, and sefl’ = {v;}7,. Edelsbrunner and Seidetg] made the rather obvious
observation thaVor,(C) is theminimization diagranof T', that is, the projection ont&?

of the lower envelope of the surfaceslin

To see the connection between generalized Voronoi diageansinions of objects,
let C and p be as above (say, for the 3-dimensional case). For an objeet C and a
parameter > 0, defineB(C,r) = {z € R3 | p(x,C) < r}. For a fixedr, the union
K, = UcceB(C,r) is the region consisting of all points € R3 whose smallesp-
distance from a site i@ is at mostr. This in turn can be interpreted as a “cross-section” of
Vor(€)—itis in fact a level set at height, = r of the lower envelope of the corresponding
collectionI'. Moreover, for each sit€; € G, the intersection o K,. with the Voronoi cell
of C; is equal to the intersection &B(C;, r) with that cell.

In general, if the metrip is a norm or a distance function induced by some convex
objectB, thatis,p(z,y) = min{\ | y € z + AB}, the resulting “balls'B(C, r) are the
Minkowski sum& & (—rB), for C € €; the minus sign is superfluous gfis a metric
becausds is centrally symmetric in this case. Thus the union of Mink&ixsums of this
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kind is a substructure of the corresponding Voronoi diagr&n course, this connection
also holds in any higher dimension.

One immediate conclusion is that the complexitpof(C) is at least as large as that
of K. In practice, establishing a tight bound on the latter camipy is a considerably
easier task, and in many instances the corresponding qoesincerning the complexity
of the entire Voronoi diagram is still open. For instancengider the case in whic8 is
a set of lines inR3, andp is the Euclidean metric. Then the expanded s&éS, r), for
C € @, aren congruent infinite cylinders i3, of radiusr. As mentioned above, it has
been shown in11] that the complexity of the uniof’,. of these cylinders i©*(n?), but it
is a major open problem to establish a similar nearly quadbaiund on the complexity of
Vor,(C) (see Open Problem 10). There are (a few known) cases in whécbdmplexity
of the entire Voronoi diagram is an order of magnitude latban that ofiC,.. For example,
the complexity of the multiplicatively weighted Voronoiagjram of a point set in the plane
can have quadratic complexit29], while the complexity ofK,. in this case (which is the
union of disks) is only linear.

In the classical case, wheris the Euclidean metric and the object<iare singletons
(points), the graphs of the distance functi@iis, C;) can be replaced by a collection of
hyperplanesifR¢+!, using a straightforward linearization technique, withaffiecting the
minimization diagram. Hence, the maximum possible conilet Vor(€) is O(n!4/21),
and thisis tight in the worst case (see, e 83,[111). In more general settings, though, this
reduction is not possible, and the complexity of the Voratiagram can be much higher.
Applying the observation of49], and the bounds in Section 4 on the complexity of lower
(or upper) envelopes, we obtain that, under reasonablegsgns onp and on the objects
in G, the complexity of the Voronoi diagram ©*(n?). While this bound is nontrivial
(the trivial one being)(n9*t1)), in general it is not expected to be tight. For example, in
the case of planar Voronoi diagrams, this bound is near+giad but the complexity of
“almost every” planar Voronoi diagram is onfy(n) (this is an easy consequence of Euler’s
formula for planar maps). Nevertheless, as mentioned aldoveertain “pathological’
distance functions, the corresponding planar Voronoi diagcan indeed have quadratic

complexity 5.

Voronoi diagrams of points in R3. As noted above, the complexity of the Euclidean
Voronoi diagram ofn. points inR? is ©(n?). It has been a long-standing open problem
to determine whether a similar quadratic or nearly quadradiund holds ifR3 for more
general objects and metrics (here the known bounds on theleaity of lower envelopes
only give an upper bound @*(n?)). The problem stated above calls for improving this
bound by roughly another factor af Since we are aiming for a bound that is “two orders
of magnitude” better than the complexity 4{T"), this appears to be a considerably more
difficult problem than that of bounding the complexity of lemenvelopes. The only hope
of making progress here is to exploit the special structéiteedistance functionsg(x, C).

Boissonnatet al.[28] have shown that the maximum complexity of the-Voronoi
diagram of a set of points inR? is ©(n?). Tagansky 118 has proved that the complexity
of the three-dimensional Voronoi diagram of point sitesemralgeneral polyhedral convex
distance function (induced by a polytope wifti1) facets) isO(n? logn). The bound has
been improved by Icking and M&§] to ©(n?).

Voronoi diagrams of lines inR3. Let p be a convex distance function B* whose unit
ball is a convex polytope with a constant number of facetec@ that not every distance
functionp is necessarily a metricp-fails to be symmetric if the defining polytope (its unit
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ball) is not centrally symmetric.) Chewt al.[33] have shown that the complexity of the
Voronoi diagram of: lines inR3 with respect tg is O(n2a(n) log n). Clearly, theL; and
L., metrics satisfy the above assumptions. In these speciasctise best known lower
bound for the complexity of the diagramn2a(n)). Koltun and Sharir§7] extended
the theorem of Chewet al.[33] to arbitrary collections of pairwise disjoint line segnten
and triangles, where the respective upper bounds on the legitypof the diagram are
O(n?a(n)logn) andO*(n?). As already mentioned, despite some recent progress, littl
is known about the complexity of the Euclidean Voronoi dégrof lines inR3.

OPEN PROBLEM 9. What is the maximum complexity of the Euclidean Voronoi dia-
gram ofn lines (or line segments, or triangles) R¥?

If the input lines have a constant number of orientationsntthe complexity of their
Euclidean Voronoi diagram i©* (n?), as shown by Koltun and Shari83]. Dwyer [42]
has shown that the expected complexity of the (Euclidean)idi diagram of a set ot
randomly selected lines iR? is only O(n?/2). For the general case, a recent work by
Everettet al.[57] sheds some light on the geometric and topological streatfitrisectors
defined by a triple of lines in space.

Voronoi diagram of moving points in the plane. An interesting special case of gener-
alized Voronoi diagrams ardynamic Voronoi diagramfr moving points in the plane.
Let C be a set ofx points in the plane, each moving along some line at some figéuty
ity. The goal is to bound the number of combinatorial chargfabe Euclidean diagram
Vor(€) over time. This dynamic Voronoi diagram can easily be tramsakd into a static
three-dimensional Voronoi diagram, by adding the tinaes a third coordinate. The points
become lines ifk3, and the “metric® is a distance function induced by a horizontal disk
(that is, the distance from a poiptzo, yo, to) to a linef is the Euclidean distance from
p to the point of intersection of with the horizontal planeé = t;). Cubic or nearly cu-
bic bounds are known for this problem, even under more gésettngs p5, 68, 113
but subcubic bounds are known only in some very special d@e$84. The expected
complexity of the dynamic Voronoi diagram afpoints moving.andomlyin the plane is
O(n?®/?) [43].

OPEN PROBLEM 10. What is the maximum complexity of the dynamic (Euclidean)
Voronoi diagram ofn points moving in the plane at fixed velocities? What if alln®i
move at the same speed?

Voronoi diagrams in higher dimensions. Next, consider the problem of bounding the
complexity of generalized Voronoi diagrams in higher disiens. As mentioned above,
when the objects irf® aren points inR? and the metric is Euclidean, the complexity
of Vor(€) is O(n!4/?1). As d increases, this becomes significantly smaller than theenaiv
O(n*1) bound or the improved boun@;* (n?), obtained by viewing the Voronoi diagram
as a lower envelope iR“*!. The same bound @b (n/?/?1) has been obtained i2§] for
the complexity of theL.-diagram ofn points inR?; this bound too was shown to be
tight in the worst case. It was thus tempting to conjectuet the maximum complexity
of generalized Voronoi diagrams in higher dimensions iselton!/2!. However, this
conjecture was disproved by Arono¥€], who established a lower bound 9{n4~1) for

a general setting. The sites in his construction can be chtsée lower-dimensional
flats, and the distance can be chosn to be either Euclideapalylaedral convex distance

%This is not really a metric, because the distance betweerpbirtts is defined only when they have the
samet-coordinate.
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function. It is interesting that the lower bound in Aronoegnstruction depends on the
affine dimensiord < k < d — 2 of the sites: It isQ(max {n**+!, nl(¢=F)/211)  For

d = 3, his lower bound does not contradict the conjecture madeatioat the complexity
of generalized Voronoi diagrams should be at most near+gtiadn this case. Also, in
higher dimensions, the conjecture mentioned above isngttlirefuted when the sites are
singleton points. However, very little is known about thi®lpem. For instance, the
following problem is still open.

OPEN PROBLEM 11. What is the maximum complexity of the Voronoi diagram of a
set of points ifR¢ under polyhedral metrics or convex distance functions whost balls
haveO(1) facets?

Finally, for the general case, Aronov’s construction $¢ilves a gap of roughly a fac-
tor of n between the best known upper and lower bounds, and thussisdge conjecture
that the complexity of such diagrams(@s (n?~!). This is still a major open problem:

OPEN PROBLEM 12. Is it true that, for a set of n pairwise disjoint convex sites of
constant description complexity iR?, and for a metric (or convex distance functign)
whose unit ball has constant description complexity, thmmexity ofVor(C) is always
O* (nd—l)?

Medial axis. A special case of Voronoi diagrams is thedial axis Here we are given a
regionC' with a complex boundary, e.g., a (not necessarily convel)yaalron with many
faces. We regard each featured@f' (vertex, edge, face) as a separate site, and consider
the Voronoi diagram of these sites within the interior@f The lower-dimensional faces

of the diagram yield a “skeletal” representation @f which has several advantages in
practice R3]. A particularly difficult, and still open, special case Ieetfollowing.

OPEN PROBLEM 13. Let € be a collection of: balls in R3. What is the maximum
complexity of the medial axis tf(C)? What is the maximum complexity when all the balls
have the same radius?

In fact (see Amenta and Kollurilp]), it suffices to bound the complexity of the
Voronoi diagram of the vertices f(C) within the union. Since the union may hawén?)
vertices in the worst case, and the complexity of the Vorahagram of that many points
in R3 can in general be quadratic in their number, a naive uppendoun the complexity
of the medial axis i$)(n*). However, the best known lower bound is only quadratic, and
closing the gap between the bounds is a challenging opetemnob

Voronoi diagrams of regularly sampled points. Dwyer [41] has proved that the expected
size of the (Euclidean) Voronoi diagram of a set of uniforrdigtributed random points
inside a ball inR? is linear. Erickson$4, 59 has studied the complexity of the Voronoi
diagram of a point seP in R3 in terms of thespreadof P, which is the ratio of the largest
and the smallest pairwise distances between the points &frickson has proved that the
complexity of the Voronoi diagram of a set of pointsii with spreadA is O(A3). He
has also proved that this bound is tight in the worst case howing anQ(n3/2) lower
bound for a set of. point nicely distributed on a cylinder, so that their sprea@(/n).
Motivated by the problem of surface reconstruction from ticfesample points, a
considerable amount of work has been invested in boundagdmplexity of the Voronoi
diagram of a set of regularly sampled points on a surfageR?. Golin and Na §6] have
shown that the expected complexity of the Voronoi diagram afniformly distributed
random points on a fixed polyhedral surfdcen R? is O(n log* n) (where the constant of
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proportionality depends on the shapedf A setS C I'is called an(e, \)-samplef any
ball of radiuse centered at a point df contains at least one and at magioints ofS. Attali
and Boissonnatf?] have proved that it ¢ R? is an(e, \)-sample on a fixed polyhedral
surface, then the size of its Voronoi diagram is linear. i\t al. [24] have proved that
if S ¢ R?is an(e, \)-sample of sizex on a generic (smooth) surface, then its Voronoi
diagram hag)(nlogn) complexity. Roughly speaking, a surfacegsnericif the points
on the surface at which one of the principal curvature isllgcaaximal, form a finite set
of curves with bounded length; spheres and cylinders arg@éric surfaces. Note that
the assumption of genericity is probably crucial in the prafd 24], because of Erickson’s
lower-bound construction for points on cylindeg. Recently, Amentat al.[14] have
proved that the complexity of the Voronoi diagram wfnicely distributed points on a
convexp-dimensional polyhedron iR? is O(n(?~1)/?); see the original paper for details
on the sampling condition and other issues. We concludedib@ission by mentioning
the following open problem:

OPEN PROBLEM 14. What is the maximum complexity of the Voronoi diagram of a
set ofn. points regularly sampled on (or sufficiently near) a smoogmnifold in R??

6. Discussion

In this survey we have reviewed the extensive work concertiie complexity of the
union of a family of geometric objects in two, three, and ligkhimensions. We also
reviewed the state of the art concerning the complexity obgalized Voronoi diagrams in
three and higher dimensions.

However, we have not discussed algorithms for computinguthien of geometric
objects. Several deterministic divide-and-conquer, camided divide-and-conquer, and
randomized incremental algorithms have been proposedtpuote the union for a variety
of special casesl[L, 59, 62. Motivated by many applications, considerable work has
addressed related issues, such as computing the volume ohibn of a set of geometric
objects, or computing certain geometric or topologicajemies of the union. It is beyond
the scope of this survey to review these results, and we tieéereader to§, 45, 47, 48,
93, 103 and the references therein for a sample of such results.
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