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State of the Union (of Geometric Objects)

Pankaj K. Agarwal, János Pach, and Micha Sharir

ABSTRACT. Let C be a set of geometric objects inRd. The combinatorial complexity
of the union ofC is the total number of faces of all dimensions on its boundary. We
survey the known upper bounds on the complexity of the union of n geometric objects
satisfying various natural conditions. These bounds play acentral role in the analysis of
many geometric algorithms, and the techniques used to attain these bounds are interesting
in their own right.

1. Introduction

Let C = {C1, . . . , Cn} be a set ofn geometric objects, such as disks or convex poly-
gons in the plane, or balls, cylinders, or convex polyhedra in three and higher dimensions.
Let U(C) =

⋃n
i=1 Ci denote the union of the objects inC. The combinatorial complexity

(or complexity for brevity) ofU(C) is the number of faces of all dimensions on its bound-
ary; see below for a formal definition. Several combinatorial and algorithmic problems
in a wide range of applications, including linear programming, robotics, solid modeling,
molecular modeling, and geographic information systems, can be formulated as problems
that seek to calibrate the complexity of the union of a set of objects, or to compute their
union. We begin by reviewing some of these applications.

Linear programming. Given a familyC = {C1, . . . , Cn} of n halfspaces inRd, we
want to maximize a linear function over

⋂n
i=1 Ci. Since the maximum (if it exists) is

achieved at the boundary of the common intersection, the problem can be reformulated
as minimizing a linear function over the boundary of

⋃n
i=1 Ci, whereCi is the (closed)

halfspace complementary toCi; see Figure 1. The worst-case running time of the simplex
algorithm, as well as many other naı̈ve solutions to linear programming, is proportional to
the total number of vertices ofU(C). According to McMullen’s Upper Bound Theorem
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Figure 1. An instance of two-dimensional linear programming: (a) Theshaded region denotes the feasible region
Tn

i=1 Ci; (b) The shaded region denotes
Sn

i=1 Ci.

[101, 102], this number cannot exceed
(

n− ⌈d/2⌉
⌊d/2⌋

)

+

(

n− 1 − ⌈(d− 1)/2⌉
⌊(d− 1)/2⌋

)

,

with equality for polytopes that are dual to cyclic or any other simplicial neighborly poly-
topes. Regarding the dimensiond as a constant, an assumption that we will follow through-
out this survey, we can write this bound asΘ(n⌊d/2⌋).

Robotics. Assume that we have a robot systemB with d degrees of freedom, i.e., we
can represent each placement ofB as a point inRd. We call the space of all placements
the configuration spaceof B. Suppose the (say, three-dimensional) workspace ofB is
cluttered with a familyO = {O1, . . . , Om} of obstacles whose shapes and locations are
known. B is allowed to move freely in a motion that traces a continuouspath in the
configuration space, butB has to avoid collision with the obstacles. For eachOi, letCi ⊆
R

d be the set of placements ofB at which it collides with the obstacleOi. Ci is referred to
as theC-obstacle(or expanded obstacle) induced byOi. SetC = {C1, . . . , Cm}. Thefree
configuration spaceF = R

d \ U(C) is the set of allfreeplacements ofB, i.e., placements
at whichB does not intersect any obstacle.

For instance, letB be a convex polygonal object withr vertices that is only allowed
to translate inR2. LetO = {O1, . . . , Om} be a set ofm convex polygonal obstacles in
R

2. Fix a reference pointo (the origin) withinB. A placement ofB can be represented
by specifying thex- andy-coordinates ofo. B intersects an obstacleOi if and only if o
belongs to the “expanded obstacle”Ci = Oi ⊕ (−B), where⊕ denotes theMinkowski
sum, i.e.,

Ci = {x− b | x ∈ Oi, b ∈ B}.
Hence,F = R

2 \ U(C); see Figure 2.
Going back to the general case, letZ ∈ R

d be a given initial free placement ofB.
Then the set of all free placements ofB that can be reached fromZ via a collision-free
continuous motion corresponds to the connected component of F containingZ. The prob-
lem of determining whether there exists a collision-free path from an initial configuration
I to a final configurationF is equivalent to determining whetherI andF lie in the same
connected component ofF.

This close relationship between union of regions and motionplanning has been a major
motivation for studying the former problem, and has led to considerable work on various
aspects of the union problem [11, 70, 94, 112, 114]. The complexity ofU(C) serves as a
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Figure 2. The space of free placements of the robotB is the complement of the union of the expanded obstacles
Ci. It has two connected components in this example.

trivial lower bound for the running time of many motion-planning algorithms that compute
the entire free space. However, in view of the preceding discussion, there is also con-
siderable interest in bounding the combinatorial complexity of, and constructing, a single
connected component of the complement ofU(C) [69, 114].

(a) (b)

Figure 3. Representing (chain A of) the protein 1A22 as the union of a set of balls: (a) atoms are drawn using
van der Waals radii, and (b) the solvent accessible model.

Molecular modeling. A molecule can be modeled as the union of a family of balls, where
the radius of each ball depends on the atom that it models and the position of each ball
depends on the molecular structure. In thevan der Waals model, a molecule is a fam-
ily of possibly overlapping balls, where the radius of each ball is determined by the van
der Waals radius of the corresponding atom in the molecule; see Figure 3 (a). Lee and
Richards [92] proposed another model, calledsolvent accessiblemodel, which is used to
study the interaction between the protein and solvent molecules. A protein is modeled as
a family of balls in this model as well, but the balls representing solvent molecules are
shrunk to points and the balls representing atoms in the protein are inflated by the radius
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of the solvent molecule [110]. See Figure 3 (b). Even though these models ignore vari-
ous additional (electrical or chemical) properties of molecules, they have been useful in a
variety of applications. Many problems in molecular modeling can be formulated as prob-
lems related to geometric, combinatorial, or topological properties of the union of balls.
See [48, 71, 100] for more details.

Constructive solid geometry. Constructive solid geometry (CSG), a widely used tech-
nique in computer aided design (CAD) and computer graphics,is a method for representing
a complex object as a Boolean function of simple objects (called primitives); see Figure 4.
Often CSG provides a rather simple representation of a visually complex object, using a
clever Boolean representation. A challenging problem in this area is to compute the bound-
ary representation of the complex object from the given Boolean function, which basically
reduces to the problem of computing the union or intersection of two (or more) objects.
Much work has been done in CSG on developing simple, robust, efficient algorithms for
computing the boundary representation. See [64, 91] for more details.

Figure 4. Representing a complex object as a Boolean function of primitives. The figure is taken from [1].

Proximity problems. LetP andQ be two finite point sets inRd. Thedirected Hausdorff
distancefromP toQ, denoted byh(P,Q), is

h(P,Q) = max
p∈P

min
q∈Q

‖p− q‖,

where‖ · ‖ denotes the Euclidean norm, but other metrics can also be considered. The
Hausdorff distancebetweenP andQ is H(P,Q) = max{h(P,Q), h(Q,P )}. It is a
widely used metric to measure similarity between two point sets. LetB(x, r) denote the
ball of radiusr centered atx. Thenh(P,Q) ≤ r if and only ifP is contained in the union
⋃

q∈QB(q, r). Hence, the decision problem of computing the Hausdorff distance, i.e.,
testing whetherH(P,Q) ≤ r, can be formulated as point location in the union of a set of
congruent balls (or, more generally, of translates of ther-ball of the given norm) [9, 77, 78].

Small-sizeε-nets. Given a point setP , an admissible collectionR of ranges(subsets of
P ), and a parameterε > 0, anε-net of (P,R) is a subsetN ⊆ P with the property that
any range inR that contains at leastε|P | points ofP contains at least one point ofN . By
now,ε-nets are a standard tool used in the design and analysis of geometric algorithms; see
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[97, 104] for more general definitions and for applications ofε-nets. If theVC-dimension
of the range space, see [30] for the definition, has a finite valueδ (in geometry, this is
the case when the ranges have simple shape, such as halfspaces, balls, tetrahedra, etc.),
there existε-nets of size(cδ/ε) log(δ/ε), for some absolute constantc [30, 76, 88]. A
challenging question is to identify the situations in whichthe logarithmic factor can be
removed or replaced by a smaller factor. See, e.g., Matoušek et al. [99] for a result of
this type, for the case when the ranges are halfplanes in the plane or halfspaces in three
dimensions. Clarkson and Varadarajan [35] have shown that if the complexity of the union
of anyr ranges inR is sufficiently close toO(r), then the above general bound on the size
of the smallestε-net for (a certain dual version of)(P,R) can be improved.

Conflict-free colorings. A coloring of a familyC of regions in the plane is calledconflict-
free if for each pointp ∈ U(C), there is at least one region containingp whose color is
unique among those of the regions inC that containp. This definition was motivated by a
frequency allocation problem for cellular telephone networks [56]. Minimizing the number
of frequencies used by the system requires minimizing the number of colors in a conflict-
free coloring of the transmission ranges of the base-stations. Alon and Smorodinsky [12]
have shown that whenever the familyC has the property that the complexity of the union
of anyr ranges inC isO(r), there is a conflict-free coloring using onlyO(log3D) colors,
whereD denotes the maximum number of regions inC intersecting any region ofC. For
other results on conflict-free coloring that exploit the complexity of the union of the regions
to be colored, see Har-Peled and Smorodinsky [75].

These examples illustrate the wide scope of problems that can be formulated in terms
of, or are closely related to, the union of a collection of geometric objects. Before proceed-
ing further, we formalize our notation and introduce additional terminology.

Preliminaries and notation. We assume that each objectCi in the given collectionC is
a (real) semi-algebraic set.1 In many cases we will also assume that eachCi has constant
description complexity,2 which is the case, e.g., for balls, cylinders, or tetrahedra. How-
ever, we will also consider objects of non-constant description complexity, such as convex
polyhedra. In many planar instances, we will even relax the semi-algebraic condition, by
considering fairly arbitrary curves with the main restriction that each pair of them intersect
in a constant number of points.

Eachfaceof U(C) (or, more precisely, of∂U(C)) is a maximal connected (relatively
open) subset of∂U(C) that lies in the intersection of the boundaries of a fixed subset of
objects, and avoids all other objects ofC. As usual, we refer to faces of dimension0 and
1 asverticesandedges(or elementary arcs), respectively. Thecombinatorial complexity
of U(C), denoted byκ(C), is the total number of faces, of all dimensions, that appearon
∂U(C). Note that, in certain cases, this notion of a face is too “liberal”: if the boundary
of an objectC ∈ C is not a single algebraic surface, we typically regard each maximal
connected portion of it that lies on a single surface (variety) as a separate “face” (this is the
case, e.g., for convex polygons or polyhedra). In this case one may want to define a face
of U(C) to be a maximal connected region that lies in the intersection of a fixed subset of
faces of individual objects inC (and avoids all other such faces and objects). In such cases,

1A subset ofRd is called areal semi-algebraic setif it can be described as a finite Boolean combination of
polynomial inequalities.

2A semialgebraic set hasconstant description complexityif it can be described in terms of a constant num-
ber of polynomials inequalities, with a constant bound on the number of variables and on the degrees of the
corresponding polynomials.
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we will continue to use the notationκ(C) to denote the combinatorial complexity ofU(C)
under this refined definition of a face. It will be clear from the context which of the two
quantities we are denoting byκ(C).

The study of the union of geometric objects falls into the broad topic ofarrange-
mentsof geometric objects, which has been studied since the seminal paper by J. Steiner in
1826 [117], and which has received much attention in the last quarter century. Slightly
modifying the traditional definition, thearrangementof a finite collectionC of (full-
dimensional) geometric objects inRd, denoted asA(C), is the decomposition ofRd into
relatively open connected faces of dimensions0, . . . , d induced byC, where eachfaceis a
maximal connected set of points lying in the intersection ofthe interiors of a fixed subset
of C and of the boundaries of another fixed subset, and avoids all other sets ofC. As above,
if the boundaries of the objects ofC do not have constant description complexity, the ar-
rangement itself is refined accordingly. Note thatU(C) is a substructure ofA(C), in the
sense that each face ofU(C) is also a face ofA(C). U(C) typically contains in its interior
many faces ofA(C), but they are ignored in the analysis of its complexity. As such,κ(C)
is bounded by the combinatorial complexity ofA(C), which, in the worst case, isΘ(nd)
if the objects inC are semi-algebraic sets of constant description complexity [10]. In the
worst case, the asymptotic bound onκ(C) can indeed beΘ(nd). This is the case, for exam-
ple, whenC is a family ofn large and flat “plates” inRd, each being the region enclosed
between a pair of parallel and sufficiently close hyperplanes. See Figure 5 for a simple pla-
nar variant involving triangles. However, ifC satisfies certain natural conditions,κ(C) may
be smaller. For example, the case of halfspaces, mentioned above, yields the particularly
favorable boundΘ(n⌊d/2⌋) on κ(C). The challenge is thus to identify classes of objects
for which the bound onκ(C) is substantially smaller thanΘ(nd). As we shall see, in most
of the cases that we will review here,κ(C) is close toO(nd−1). Easily constructed nearly
matching lower bounds indicate that this is the best “order of magnitude” one can hope for
in most of these favorable instances.

We will occasionally use the shorthand notationO∗(f(n)) to denote bounds of the
form Cεf(n) · nε, which hold for anyε > 0, where the constant of proportionalityCε

depends onε, and typically tends to∞ asε decreases to0.

Figure 5. n pairwise crossing triangles withΘ(n2) intersection points on the boundary of their union.

The rest of the survey is organized as follows. We review the known results on the
complexity of the union of planar objects in Section 2, and ofthree-dimensional objects
in Section 3. We also sketch proofs of some of the main results. We then briefly review
in Section 4 the (very few) known results in higher dimensions. Section 5 discusses the



STATE OF THE UNION (OF GEOMETRIC OBJECTS) 7

relationship between the union of objects and generalized Voronoi diagrams, and gives a
brief review of the recent progress in the analysis of the complexity of these diagrams. We
conclude in Section 6 with a short discussion of the topic andof its relatives.

2. Union of Planar Objects

In this section we review the known results on the union of geometric objects in the
plane. The study of the union of planar objects goes back to atleast the early 1980s, when
researchers were interested in the union of rectangles or disks, motivated by VLSI design,
biochemistry, and other applications [26, 82, 89, 109]. However, the early work focused
on computing the union or its measure, rather than bounding its complexity.

2.1. Union of pseudo-halfplanes.Let F = {f1, . . . , fn} be a set ofn totally defined
continuous univariate functions. For eachfi, let Ci be the set of points lying on one of
the sides of (i.e., above or below) the graph offi. We refer toCi as apseudo-halfplane.3

If Ci lies below (resp., above)fi, it is called alower (resp.,upper) pseudo-halfplane. Set
C = {C1, . . . , Cn}. If eachfi is a linear function, then∂U(C) is the boundary of a convex
polygon, soκ(C) is linear. For more general functions, the bounds onκ(C) are more
involved, and are related to lower and upper envelopes, defined as follows.

The lower envelopeof a collectionF of functions, as above, denoted byLF, is the
pointwise minimum of the functions inF, i.e.,

LF(x) = min
1≤i≤n

fi(x).

Theupper envelopeis defined as the pointwise maximum ofF, i.e.,

UF(x) = max
1≤i≤n

fi(x).

If eachCi is a lower pseudo-halfplane, thenU(C) is the region lying below the upper enve-
lope ofF. Similarly, if eachCi is an upper pseudo-halfplane, thenU(C) is the region lying
above the lower envelope ofF. A fundamental observation (see [114]) is that if the graphs
of any pair of functions inF intersect in at mosts points, for any fixed constants, then
the graph of the lower or upper envelope ofF consists of at mostλs(n) elementary arcs,
whereλs(n) is the maximum length of an(n, s) Davenport-Schinzel sequence; see [114]
for more details. Lettingα(n) denote the extremely slowly growing inverse Ackermann
function, the best known bounds onλs(n) are

λ1(n) = n,

λ2(n) = 2n− 1,

λ3(n) = Θ(nα(n)),

λ4(n) = Θ(n · 2α(n)),

λ2s+2(n) = n · 2Θ(αs(n)) for s > 1,

λ2s+3(n) = nα(n)O(αs(n)) for s ≥ 1.

The case when some of the regions ofC are lower pseudo-halfplanes and some are
upper pseudo-halfplanes is not that much harder. LetF− (resp.,F+) denote the subset of
those functions inF that bound lower (resp., upper) pseudo-halfplanes inC. ThenU(C)
is the complement of thesandwich region, consisting of those points that lie above the

3The notion of pseudo-halfplanes can be extended to regions bounded by any (not necessarilyx-monotone)
unbounded connected curve that separates the plane (see, e.g., [67]), but we will not consider such extensions
here.
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Figure 6. Functions inF− (resp.,F+) are drawn with dashed (resp., solid) lines. The sandwich region between
UF− andLF+ , the complement ofU(C), is shaded.

upper envelopeUF− and below the lower envelopeLF+ . See Figure 6. It is known (and
easy to show) that the complexity of the sandwich region is proportional to the sum of the
complexities ofUF− and ofLF+ . We thus have the following result.

THEOREM2.1. LetC be a set ofn pseudo-halfplanes such that the boundaries of any
pair of them intersect in at mosts points. Thenκ(C) = O(λs(n)).

2.2. Regions with few pairwise boundary intersections.LetC = {C1, C2, . . . , Cn}
be a family ofn simply connected regions in the plane, each bounded by a simple closed
Jordan curve. Assume, for simplicity, that these curves arein general position, i.e., any
two of them cross only a finite number of times (two curvesγ1 andγ2 are said tocross
each other at a point, ifγ1 passes from one side ofγ2 to the other at this point), no two
curves touch or overlap each other, and no three curves pass through a common point.4

In this subsection we consider the case in which the boundaries of any pair of regions
in C cross in a small number of points, and derive linear, or near-linear bounds for the
complexity of their union.

Union of pseudo-disks. If the boundaries of any two distinct regions inC cross at most
twice, thenC is called a family ofpseudo-disks. See Figure 7. In this especially favorable
case, we have the following result.

(a) (b)

Figure 7. (a) A family of pseudo-disks. (b) Another family ofn pseudo-disks with6n − 12 elementary arcs on
the boundary of its union.

4One can extend the general position assumption to other instances and to higher dimensions; see [114].
A perturbation-based argument [114] shows that the asymptotic upper bound onκ(C) is not affected by the
general-position assumption in most cases.
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THEOREM 2.2 (Kedemet al. [81]). Let C = {C1, C2, . . . , Cn} be a family ofn ≥
3 pseudo-disks in the plane. Then the boundary ofU(C) consists of at most6n − 12
elementary arcs, and this bound is tight in the worst case.

C1

C2

C5

p1

p4

p5

p6

p8
C8

p2

p3

C3

C7

p7
C6

C4

Figure 8. The proof of Theorem 2.2 for disks.

We present the proof of Theorem 2.2 for the case of circular disks. (A more direct
proof for the union of circular disks based on the so-calledlifting transform, which extends
to higher dimensions, is given in Section 4.) Assign to eachCi its center,pi, and connect
pi to pj by a straight-line segment if and only if∂Ci and∂Cj cross each other, and at least
one of their crossing points belongs to∂U(C); see Figure 8. It is easy to verify that no two
segments in the resulting geometric graphG cross each other, i.e.,G is planar. Indeed,
suppose there were a pair of intersecting segments, say,pipj andpkpl. The disks centered
atpi, pj (resp.,pk, pl) intersect on the boundary of the union at a pointvij (resp.,vkl). Let
ℓ be the bisector ofvij andvkl. We haved(pi, vkl) > d(pi, vij), for otherwisevkl would
have lied insideCi, and thus not on the union boundary, contrary to assumption.Similarly
d(pj , vkl) > d(pj , vij), d(pk, vij) > d(pk, vkl), andd(pl, vij) > d(pl, vkl). Hence,pi and
pj lie on one side ofℓ (the one containingvij ), andpk andpl lie on the other side. Thus
pipj andpkpl are disjoint, as asserted.

Hence,G has at most3n−6 edges, each of which corresponds to at most two vertices
of ∂U(C). Consequently, the number of crossings on∂U(C), and hence the number of
elementary arcs, is at most6n − 12. In other words, thecomplexityof U(C) is at most
linear inn. A lower-bound construction (which can also be realized using normal disks),
in which the number of elementary arcs is exactly6n− 12, is shown in Figure 7(b). The
proof for the case of general pseudo-disks also uses planarity, and follows as a special case
of the proof of a more general result (Theorem 2.5), given later in this section.

We conclude the discussion on pseudo-disks by giving two examples of pseudo-disks
that arise in practice. First, recall the example of translational motion planning in the plane.

LEMMA 2.3 (Kedemet al. [81]). Let O1, O2 be two disjoint convex objects in the
plane, and letB be another convex object in the plane. Then the boundaries ofthe
Minkowski sumsC1 = O1 ⊕B andC2 = O2 ⊕B cross at most twice.
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O1

C1

C2

O2

B

θ

θ

Figure 9. The proof thatC1 andC2 have only two common outer tangents.

PROOF. We argue thatC1 andC2 have exactly two common outer tangents, from
which the lemma follows easily. For a convex objectC and for eachθ ∈ [0, 2π), define
f(C, θ) to be the signed distance from the origino to the unique tangentτ(C, θ) to C at
orientationθ, which hasC lying to its left; f(C, θ) is positive (resp., negative) ifo lies to
the left (resp., right) ofτ(C, θ). It easily follows from the definition of Minkowski sums
that

f(C1, θ) = f(O1, θ) + f(B, θ)

f(C2, θ) = f(O2, θ) + f(B, θ).

See Figure 9. Hence,τ(C1, θ) = τ(C2, θ), i.e.,C1 andC2 have a common outer tangent
at orientationθ, if and only if τ(O1, θ) = τ(O2, θ), i.e.,O1 andO2 have a common outer
tangent at orientationθ. SinceO1 andO2 are disjoint, they have exactly two common outer
tangents, and the claim follows. �

Lemma 2.3 in conjunction with Theorem 2.2 implies that ifO = {O1, . . . , On} is a
set ofn ≥ 3 pairwise-disjoint convex obstacles andB is a convex “robot” translating in
the plane, then∂F, the boundary of the free space, has at most6n− 12 elementary arcs. If
B and the obstacles are convex polygons, so thatB hask vertices, and the total number of
obstacle vertices iss, thenF hasO(kn+ s) vertices, of which at most6n− 12 are convex
(intersection) vertices ofF.

Another commonly occurring example of pseudo-disks is the case ofhomothets. Let
B be a convex object in the plane, and for1 ≤ i ≤ n, letCi be a homothetic copy ofB,
i.e.,Ci = λiB + xi for arbitrary parametersλi > 0 andxi ∈ R

2. SetC = {C1, . . . , Cn}.
It is known thatC is a family of pseudo-disks. (The simple proof shows, as above, that
each pair of homothets inC have at most two common outer tangents.) Hence,∂U(C) has
at most6n− 12 elementary arcs.

Allowing three intersections. What happens if we somewhat weaken the condition in
Theorem 2.2, by assuming that the boundaries of any two members of C cross at most
threetimes, rather than twice? At first glance this problem seems to be foolish because two
closed curves in general position can cross only anevennumber of times. However, by a
slight modification we obtain a meaningful question with a somewhat surprising answer.

THEOREM2.4 (Edelsbrunneret al.[46]). Let{γ1, γ2, . . . , γn} be a family ofn simple
curves in general position in the upper halfplaney ≥ 0. Assume that the endpoints of each
curve are on thex-axis, and that any two curves cross at most three times. LetCi denote the
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bounded region enclosed byγi and thex-axis (see Figure 10 (a)). Thenκ(C) = O(nα(n)),
and this bound is asymptotically tight.

1 1 2 3 2 4 3 5 5 4 6 7 6 7

1

1
2

4

4

6

7

7

5
4 6

2

3 4

3

(a) (b)

Figure 10. (a) Union of 3-intersecting regions. (b) The curveΓ; it switches from one input curve to another
at hollow circles, and the filled circles denote the verticesof theU(C) that are not switching points ofΓ; Σ =
〈1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 4, 6, 6, 7, 7〉.

Note that if eachγi is anx-monotone curve, then Theorem 2.4 follows from Theo-
rem 2.1. However, as seen in Figure 10 (a), nonmonotone curves may cause holes in the
union (i.e., bounded components of the complement of the union), which makes the proof
of the above theorem less obvious and quite technical. The proof of Edelsbrunneret al.[46]
proceeds by constructing a curveΓ that starts at−∞ on thex-axis and proceeds to the right,
always following one of theγi, consistently with its orientation, possibly switching arcs at
intersection points, but never visiting a point more than once (except for those intersection
points which are not switching points; those are illustrated as filled circles in Figure 10 (b),
and are visited twice), and eventually ending at+∞ on thex-axis. The curveΓ traces
each arc ofU(C) exactly once, consistently with the orientation of the corresponding input
curve, and all holes ofU(C) lie outsideΓ, i.e., Γ can be continuously deformed within
U(C), so as to coincide with thex-axis; see Figure 10 (b). The proof then continues by la-
beling each elementary arc ofΓ that appears on∂U(C) with the curve to which it belongs,
producing a sequenceΣ of labels. One can then show that if one removes every symbol of
Σ which is equal to its predecessor, then the remaining sequence is an(n, 3) Davenport-
Schinzel sequence, and thus its length isO(nα(n)). One can also show that the number of
deleted labels isO(nα(n)), which completes the proof of Theorem 2.4. The details can be
found in [46].

Beyond three intersections.If we allow the boundaries of two objects inC to cross at
mostfour times, thenU(C) can have quadratic complexity. As illustrated in Figure 5, there
is a family of n triangles in which every pair intersect in precisely four points, and all
4
(

n
2

)

intersection points belong to the boundary of their union. However, Whitesides and
Zhao [122] discovered that by excluding certain types of crossings between the members
of C, it is still possible to prove a linear upper bound on the complexity of U(C) even if
the boundaries of pairs of members ofC may intersect in more than two points. More
precisely, a familyC of simply connected regions bounded by simple closed curvesin
general position in the plane is calledk-admissible(with k even) if for any pairCi, Cj ∈ C,

(i) Ci \ Cj andCj \ Ci are connected, and
(ii) ∂Ci and∂Cj cross in at mostk points.

See Figure 11. Theorem 2.2 is a special case of the following theorem (withk = 2).
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THEOREM 2.5 (Whitesides and Zhao [122]). Let C = {C1, C2, . . . , Cn} be a k-
admissible family ofn ≥ 3 simply connected regions in general position in the plane.
Then∂U(C) consists of at mostk(3n − 6) elementary arcs, and this bound cannot be
improved.

a( ) b )(

C1

C2
C2

C1

Figure 11. A pair of regions belonging to a (a)4-admissible family, (b) nonadmissible family (C1 \ C2 is
disconnected).

PROOF. We sketch the proof given in [106] (see also [108]). As usual, it suffices
to bound the number of vertices ofU(C). For everyCi that contributes at least one arc to
∂U(C), we fix a pointpi in the interior of such an arc. For any pairCi, Cj ∈ C that generate
a vertexq on ∂U(C), we draw an edgeeij betweenpi andpj , as follows. Starting from
pi, follow ∂Ci to q (in any direction), and from there follow∂Cj to pj (in any direction);
note that the edgeei may self-intersect. LetH be the resulting (drawing of the) graph; see
Figure 12.

e12

e34

1

2

3

4

34

Figure 12. The union of pseudo-disks via a planarity argument. Each point pi is labeled asi, and pointsqij are
labeled asij. Heree(1, 2) ande(3, 4) cross each other six times.

We claim that any two edges ofH that are not incident to the same vertex cross an even
number of times. We sketch the proof of this claim for the caseof pseudo-disks (k = 2).
Let eij andekℓ be two edges ofH , where the first (resp., second) edge passes through an
intersection pointqij (resp.,qkℓ) of the boundaries ofCi, Cj (resp.,Ck, Cℓ), which lies on
the boundary of the union. Each of the pointsqij , qkℓ splits its respective edge into two
“half-edges.” We claim that any pair of half-edges cross an even number of times, that is,
either twice or not at all. If this were not the case, then the two half-edges would cross
exactly once, and then the pseudo-disk property is easily seen to imply that one endpoint
of each half-edge must lie in the interior of the other object, which is impossible, since
each half-edge starts and ends at a point on the boundary of the union. This argument also
applies to any evenk > 2, exploiting condition (i) above.
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A remarkable result by Chojnacki (alias Hanani) [34] rediscovered by Tutte [121] (see
also [96] and [108] for a new proof), states that if a graphG can be drawn in the plane so
that any two of its edges not incident to the same vertex crossan even number of times,
thenG is planar. Hence, we can conclude thatH is planar, so it has at most3n− 6 edges.
That is, there are at most3n− 6 pairs{Ci, Cj} contributing vertices toU(C), and each of
them can contribute at mostk such vertices. �

Counting regular vertices. If ∂Ci and∂Cj intersect in precisely two points, then we call
these intersection pointsregular; otherwise their intersection points are calledirregular.
See Figure 13(a). A vertex ofU(C) is regular if it is a regular intersection point, and
irregular otherwise. IfC is a set of pseudo-disks, then all vertices ofU(C) are regular. A
natural way to generalize Theorem 2.2 is to obtain sharp bounds on the number of regular
vertices inU(C) even if the boundaries of some pairs of objects inC intersect at more than
two points.

(a) (b)

Figure 13. (a) Regular (filled circles) and irregular (hollow circles)vertices of a planar union. (b) A union of
convex polygons with quadratically many regular vertices.

Let C be a family ofn ≥ 3 regions in general position in the plane, and letR(C) and
I(C) denote, respectively, the number of regular and irregular vertices ofU(C). Pach and
Sharir [106] have shown that if the objects inC are convex then

(1) R(C) ≤ 2I(C) + 6n− 12.

This result is sharper than Theorem 2.2, in the sense that, for establishing the upper
bound6n− 12 on the number of elementary arcs (or the number of intersection points) on
∂U(C), one does not have to insist that all boundary intersection points of pairs of objects
of C be regular. It suffices to require that all vertices ofU(C) be regular. The extension of
the above result to nonconvex regions remains elusive:

OPEN PROBLEM 1. Is it true that for every setC of n simply connected regions in
general position in the plane, one hasR(C) ≤ 2I(C) + 6n− 12?

It is not hard to show that the coefficient ofI(C) in (1) cannot be replaced by any
constant smaller than2. Moreover, in generalR(C) can beΘ(|C|2) = Θ(n2) in the worst
case, as is illustrated in Figure 13(b), unless we limit the number of times the boundaries
of a pair of curves inC are allowed to cross each other (this number is not bounded bya
constant in Figure 13(b)). However, we cannot expect alinear upper bound even under
such an assumption (unless we deal with pseudo-disks): For any n, we can construct a



14 PANKAJ K. AGARWAL, JÁNOS PACH, AND MICHA SHARIR

(i) (ii)

Figure 14. The lower-bound construction for the number of regular vertices on the union of rectangles and disks.

family C of n disks and rectangles in general position in the plane satisfying R(C) =
Ω(n4/3), as follows. Take a system ofn/2 lines andn/2 points withΘ(n4/3) incidences
between them [104]. Fix two sufficiently small parameters0 < ε < ε′ < 2ε. Shift each
line by distancesε and2ε, and create a sufficiently long rectangle bounded by the shifted
copies. Expand each point into a disk of radiusε′. See Figure 14. With an appropriate
choice ofε, ε′, the resulting family of rectangles and disks hasΘ(n4/3) regular vertices on
the boundary of its union.

For the special case of rectangles and disks, this bound is asymptotically tight [17]. If
C is a set ofn simply connected regions so that the boundaries of any pair of them intersect
in at mosts points, for some constants > 0, then there existsδ = δ(s) > 0 such thatU(C)
hasO(n2−δ) regular vertices [17]. Recently, the bound has been improved toO∗(n4/3),
where the constant of proportionality depends ons (and on the hiddenε > 0), if the objects
in C areconvex[60]. See also [58] for some related results.

OPEN PROBLEM 2. LetC be a set of simply connected regions in general position in
the plane, so that the boundaries of any pair of them intersect in at most some constant
number,s, of points. Obtain a sharp bound onR(C), which depends only onn (ands),
and not onI(C).

2.3. Union of fat objects. The construction depicted in Figure 5, showing that the
union ofn triangles may havequadraticcomplexity, uses extremely narrow triangles. On
the other hand, as we saw in Section 2.2, the complexity of theunion ofn circular disks
or (axis-parallel) squares is linear, thereby raising the question whether the union of “fat”
objects has small complexity. In the last fifteen years this question has been answered in the
affirmative under various notions of fatness [13, 50, 52, 53, 98, 107]. In fact, these results
have motivated the study of faster geometric algorithms, for a variety of applications, for
fat objects in two and three dimensions; see [3, 6, 37, 80, 90, 115, 116]. In this section we
review the known results on the complexity of the union of fatplanar objects, starting with
the simplest case of fat triangles.

Union of fat triangles. For any fixedα > 0, a triangle is calledα-fat if each of its angles
is at leastα. Matoušeket al. [98] have proved that the complexity of the union ofn α-
fat triangles isO(n log logn), for any fixedα > 0. Their proof is based on showing that
every familyC of n α-fat triangles in the plane determines at most a linear number of holes,
namely, bounded components of the complement ofU(C). The strongest known bound on
the number of holes (in terms of its dependence onα) is the following.
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THEOREM2.6 (Pach and Tardos [107]). Any familyC ofn α-fat triangles in the plane
determinesO((n/α) log(1/α)) holes. This bound is tight, up to the logarithmic factor, in
the worst case.

We sketch a proof of the above theorem, with a larger constantof proportionality (in
terms ofα), using the following lemma, which follows from a more general recent result
of de Berg [36].

LEMMA 2.7. Let C1 be a set ofα1-fat triangles inR
2, and letC2 be another set of

α2-fat triangles inR
2. Thenκ(C) = O(κ(C1)/α1 + κ(C2)/α2).

Figure 15. Replacing a fat triangle by three canonical triangles.

PROOF OFTHEOREM 2.6 (SKETCH): We first replace each triangle∆ ∈ C by three
(α/2)-fat triangles contained in∆, by bending the edges of∆ inwards, as depicted in
Figure 15, so that the directions of the edges of the new triangles belong to the family of
theO(1/α) so-called“canonical” directions jα/2, j = 0, 1, . . . During the bending, the
holes of the unionexpand, so their number can decrease only when two holes merge into a
common hole. However, this can happen only when the bending sweeps through a triangle
vertex, which can happen only once per vertex, and thus implies that the number of holes
can go down by at most3n.

Thus, we obtainO(1/α2) canonical familiesof (α/2)-fat triangles with fixed edge
directions, so that each family consists ofhomothetic triangles. Letni denote the number
of triangles in theith family. It suffices to bound the number of holes in the unionof these
families. Each hole in the union can be charged to its leftmost vertex. Since any vertex of
the union is also a vertex of the union of justtwo families, it suffices to establish a linear
upper bound on the complexity of the union of two canonical families.

As stated in Section 2.2, the union of homothetic triangles has linear complexity, so the
union of all members of asinglecanonical family hasO(n) complexity. Next, consider
the union of two families, say,i andj. Since the triangles in each family are(α/2)-fat
and homothetic to each other, by Lemma 2.7, the complexity ofthe union of triangles in
familiesi andj isO((ni + nj)/α). Summing over all pairs of families, we obtain that the
complexity of the union of new triangles isO(n/α3), thereby implying that the number of
holes inU(C) isO(n/α3). �

Theorem 2.6 can be used to establish a more general upper bound for the number of
holes determined by a family of triangles with given angles.

THEOREM 2.8 (Pach and Tardos [107]). Let C = {C1, C2, . . . , Cn} be a family of
n > 1 triangles in the plane, and letαi denote the smallest angle ofCi, for 1 ≤ i ≤ n.
Suppose0 < α1 ≤ α2 ≤ · · · ≤ αn, and letk ≤ n be the largest integer satisfying
∑k

i=1 αi < π. ThenC determinesO(nk log k) holes. Furthermore, there exists a family
C′ = {C′

1, C
′
2, . . . , C

′
n}, whereC′

i is congruent toCi andC′ determinesΩ(nk) holes.
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PROOF. Note that eachCi, for k < i, isπ/(k + 1)-fat, so the union ofCk+1, . . . , Cn,
denoted byU′, hasO(nk log k) holes. AddingC1, . . . , Ck to U′ creates at mostO(nk)
new holes. �

If we considerinfinite wedges(i.e., convex cones) rather than triangles, then the same
bound holds not only for the number ofholes, but also for thecomplexityof the union. The
following result strengthens some earlier bounds in [13, 52].

THEOREM 2.9 (Pach and Tardos [107]). Let C be a family ofn wedges in the plane
with angles0 < α1 ≤ α2 ≤ · · · ≤ αn < π. Let k ≤ n be the largest integer satisfying
∑k

i=1 αi < π. If k ≥ 2, thenκ(C) isO(nk log k). Furthermore, there exists a family ofn
wedges with anglesα1, α2, . . . , αn, which determinesΩ ((π − αn)nk) holes.

By plugging Theorem 2.6 in the proof given in [98], one obtains the following bound
on the complexity of the union of fat triangles.

THEOREM 2.10. For any fixedα > 0, the boundary of the union ofn α-fat triangles
in the plane consists of at mostO((n/α) log logn log(1/α)) elementary arcs.

Matoušeket al. [98] have also proved that if, in addition to being fat, all triangles
have roughly the same size (i.e., the ratio between any pair of diameters is bounded by a
constant), then their union has linear complexity. On the other hand, by slightly modify-
ing theΩ(nα(n)) lower-bound construction for the lower envelopes ofn segments [123],
one can constructn equilateral triangles (but of very different sizes), whoseunion has a
slightly superlinear (i.e.,Ω(nα(n))) complexity. Here, as above,α(n) denotes the inverse
Ackermann function (and unrelated to the fatness parameter). We conclude the discussion
on fat triangles by mentioning an obvious open problem.

OPEN PROBLEM 3. What is the maximum complexity of the union ofn α-fat trian-
gles?

Union of fat convex objects.Extending the notion of fatness to more general objects, we
call a convex objectC in the planeα-fat, for α ≥ 1, if there exist two disksD,D′, such
thatD ⊆ C ⊆ D′, and the ratio between the radii ofD′ andD is at mostα. See Figure 16.
Note that this extends the definition of fatness for triangles: anα-fat triangle is easily seen
to beα′-fat as a convex object, for a suitableα′ ≥ 1, and vice versa. Efrat and Sharir [53]
have shown that the complexity of the union ofn simply shaped convexα-fat objects in
the plane isO∗(n), where the constant of proportionality also depends on the maximum
number of intersections between any pair of boundaries. Theproof uses both the bound
on the complexity of the union of fat triangles, and the boundon the number of regular
vertices of the union; see (1).

We also remark that the complexity of the union ofn arbitrary convexpolygonswith
a total ofs vertices isΘ(n2 + sα(n)) [19], whereα(n) is the inverse Ackermann function.

Union of fat non-convex objects.There are other, more general, notions of “fatness” that
extend to non-convex objects, and for which the combinatorial complexity of the union of
n “fat” planar objects remainsO∗(n). For instance, call a possibly non-convex objectC
α-roundif for each pointp ∈ ∂C, there exists a diskD ⊆ C of radiusα diam(C) such that
p ∈ ∂D; see Figure 16. Informally,α-round objects cannot have convex corners, nor can
they have very thin bottlenecks (but they can have reflex corners). Efrat and Katz [51] have
shown that the complexity of the union ofn α-round objects isO(λs(n) logn), wheres is
a constant that depends on the description complexity of theinput objects (and the constant
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Figure 16. Fat-like planar objects with near-linear union complexity.

of proportionality depends onα). This result has been further extended by Efrat [50] to
so-called(α, β)-covered objects: An objectC is (α, β)-coveredif for each pointp ∈ ∂C,
there exists anα-fat triangleT that hasp as a vertex, is contained inC, and each of its
edges is at leastβ diam(C) long; see Figure 16. Thus, these objects are not necessarily
smooth, but their corners cannot be too sharp. Efrat [50] has shown that ifC is a collection
of n (α, β)-covered objects, each pair of whose boundaries intersect in at mosts = O(1)

points, thenκ(C) = O(λs+2(n) log2 n log logn). The bound was recently improved by de
Berg [36] to O(λs+2(n) log2 n). See also [90, 115, 116] for other related results.

3. Union of Objects in Three Dimensions

3.1. Overview. Starting in the mid 1990s, research on the complexity of the union of
geometric objects has shifted to the study of instances in three and higher dimensions. As
mentioned in the introduction, the maximum complexity of the union ofn simply shaped
objects inR3 is Θ(n3), and this bound can already be attained by flat boxes. There are very
few particularly favorable cases for which the union complexity is linear inn, including
the cases of halfspaces and of axis-parallel unit cubes [28, 32]. In general, though, the
goal is to find classes of objects for which the maximum complexity of the union is nearly
quadratic. Indeed, in most of the cases studied so far (as will be reviewed below), the
complexity of the union can be quadratic (and sometimes slightly super-quadratic) in the
worst case. This is the case, e.g., for balls, cubes, congruent cylinders, fat tetrahedra, and
halfspaces bounded byxy-monotone surfaces of constant description complexity.

As the evidence discovered so far suggests, there are several important classes of ob-
jects inR

3 whose union has at most nearly-quadratic complexity, in complete analogy with
the planar situation. One such class is the class offat objects, where, as in the planar case,
a compact convex objectC is calledα-fat if the ratio between the radii of the smallest
enclosing ball and of the largest inscribed ball ofC is at mostα. Other notions of fatness,
such asα-roundness, have also been extended toR

3 [18]. A prevailing conjecture is that
the maximum complexity of the union of such fat objects is indeed at most nearly qua-
dratic. Such a bound has however proved quite elusive to obtain for general fat objects,
and this has been recognized as one of the major open problemsin computational geometry
[39, Problem 4]. Nevertheless, considerable progress towardsestablishing this bound has
recently been made, as we will shortly review.

As in the plane, another candidate class of objects with small union complexity are
Minkowski sums of pairwise disjoint convex objects with a fixed convex object. In the
plane, this class was handled by showing that its members arepseudo-disks, and then
by applying the general linear bound of [81] (Theorem 2.2). However, the analysis of the
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union of such Minkowski sums is considerably harder inR
3 (because they are not “pseudo-

balls”—see below), and there are only a few (albeit important) instances for which a near-
quadratic bound has been established [11, 20]; see Section 3.4.

A third class of objects with small union complexity arepseudo-halfspaces, i.e., re-
gions lying above or below anxy-monotone surface (the graph of a continuous totally
defined function). This extends the class of pseudo-halfplanes, and was one of the first
classes to be studied.

We note that extending the notion of pseudo-disks to three dimensions does not seem
to lead to any new insights. A family of regions inR3 is said to consist ofpseudo-balls, if
the boundaries of any two members intersect in a single closed curve, and the boundaries of
any three members intersect in at most two points. It is trivial to show that the complexity
of the union of a collectionC of n pseudo-balls isO(n2), by considering the portion of
the union boundary on the boundary of each member ofC separately, and by applying
Theorem 2.2. Hence, in particular, the complexity of the union ofn balls inR

3 isO(n2);
it is easy to construct examples where the union hasΘ(n2) vertices, even with unit balls,
and even when the unit balls all have a common point; see [29]. Somewhat surprisingly,
Minkowski sums of disjoint convex bodies with a fixed convex object are not pseudo-balls;
see a more detailed discussion below.

3.2. Union of pseudo-halfspaces.Let F = {f1, . . . , fn} be a family ofn continuous
totally defined bivariate functions (inx, y). As in Section 2.1, we refer to the region lying
below (resp., above) the graph offi as the lower (resp., upper)pseudo-halfspacebounded
by that graph. For each1 ≤ i ≤ n, letCi be one of these two pseudo-halfspaces, and letC

denote the collection{C1, . . . , Cn}.
Sharir [113] (see also [72]) has proved that if each function infi is of constant descrip-

tion complexity, then the complexity of the lower or upper envelope ofF isO∗(n2). This
immediately implies that if all theCi’s are lower (or all are upper) pseudo-halfspaces, then
their union hasO∗(n2) complexity. Agarwalet al. [8] have established anO∗(n2) bound
on the complexity of the sandwich region between the lower and upper envelopes of two
respective families of a total ofn bivariate functions, each of constant description complex-
ity. The proof is based on the following interesting result:Let F andG be two collections
of a total ofn bivariate functions, as above, and letMF (resp.,MG) denote theminimiza-
tion diagramof F (resp.,G), namely, thexy-projection of the lower envelope ofF (resp.,
G). Then theoverlayof the two minimization diagrams hasO∗(n2) complexity.5 Note that
we make no assumption on any relation betweenF andG. Also, the result continues to
hold when one or both diagrams are replaced by the respectivemaximization diagram, i.e.,
thexy-projection of the respective upper envelope. This impliesthe following result.

THEOREM3.1 (Agarwalet al.[8]). LetC be a set ofn pseudo-halfspaces inR3, each
of which is a semi-algebraic set of constant description complexity. Then the complexity of
U(C) isO∗(n2).

We note that both bounds, of [113] for lower or upper envelops, and of [8] for their
sandwich region, continue to hold when the given functions are onlypartially defined.

3.3. Union of convex polyhedra.As already remarked, an easy extension of the pla-
nar construction shown in Figure 5 shows that the maximum complexity of the union ofn

5The new vertices of the overlay are intersection points between edges ofMF and edges ofMG . A naive
upper bound on the number of these vertices would beO∗(n4), given that each separate diagram hasO∗(n2)
edges [113].
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(axis-aligned or arbitrarily aligned) boxes (or wedges, ortetrahedra) inR3 is Θ(n3); see
Figure 17. Moreover, we can easily adapt this construction to show that the maximum
union complexity of threenonconvexpolyhedra with a total ofs facets isΘ(s3). A natural
question is whether a similar lower bound also exists for thecomplexity of the union of
convex polyhedra, i.e., a bound that is cubic in the number offacets. The following result
by Aronovet al. [21] answers this question in the negative, and calibrates, more or less,
the true maximum complexity of such a union.

Figure 17. Union ofn plates inR
3, which can be viewed as thin boxes, withΘ(n3) complexity.

THEOREM3.2 (Aronovet al.[21]). The complexity of the union ofn convex polyhedra
in R

3 with a total ofs facets isO(n3 + sn logn). This complexity can beΩ(n3 + snα(n))
in the worst case.

It is interesting to note that the above bound is cubic only inthe number of polyhedra,
but it is only linear in s. (Compare with the boundO(n2 + sα(n)), mentioned above, for
the case of convex polygons in the plane [19].) The cubic term disappears in the special
case where the polyhedra inC are Minkowski sums of pairwise-disjoint convex polyhedra
with another fixed convex polyhedron—see the following subsection for details.

The proof of Theorem 3.2, given in [21], is rather technical; we highlight two of its
key ingredients that are useful in some other contexts too. We note that techniques for
analyzing the union of objects inR3 (and in higher dimensions) are rather scarce; we
will mention some of these techniques as we encounter instances in which they can be
exploited.

Special quadrilaterals and special cubes—Junctions in theunion. Let C be a family
of n convex polyhedra with a total ofs facets, and letC1, C2, C3 be three members ofC
with the following property: There exists a facetF1 of C1, such thatQ = F1 ∩ C2 ∩ C3

is a quadrilateral, having two opposite edges on∂C2 and two opposite edges on∂C3, and
no other member ofC intersectsQ. In this case, we callQ a special quadrilateral; see
Figure 18.

Aronov et al. [20, 21] have introduced this notion, and have shown that, for arbitrary
collectionsC as above, the complexity of the union ofC is O∗(n2 + Q(n, s)), where
Q(n, s) is an upper bound on the number of special quadrilaterals in any subcollection of
C. They have then shown that, for collectionsC of Minkowski sums of pairwise disjoint
convex polyhedra with another fixed polyhedron,Q(n, s) = O(ns). (The case of arbitrary
polyhedra has been analyzed using a different approach.)
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special quadrilateral

F1

C2

C3

F1

Figure 18. A special quadrilateral in the union of polyhedra.

Pachet al. [105] have extended this notion to that ofspecial cubes, where a special
cube is an intersection of three members ofC, which has the combinatorial structure of a
cube, where each of the three intersecting polyhedra contributes a pair of opposite facets to
the intersection, and no other member ofC meets the “cube”. Pachet al.. have shown that
the union complexity ofC is proportional to roughlyn2 plus the number of special cubes
in any subcollection ofC.

Thus, the problem of bounding the complexity of the union reduces to that of bounding
the number of special quadrilaterals or cubes. This has beendone for special quadrilaterals,
in the context of Minkowski sums of pairwise-disjoint convex polyhedra with another fixed
polyhedron, in [20], using a fairly intricate topological argument, and for special cubes, in
the context of arbitrarily aligned nearly congruent cubes in [105], using a plane sweeping
argument.

Charging schemes.This technique can be used in a variety of scenarios. Here we sketch
in a special case how it can be applied to convex polyhedra.

Let C be a family ofn convex polyhedra inR3, each with a constant number of facets,
and consider the problem of bounding the complexity ofU(C). Clearly, the number of
vertices ofU(C) that are vertices of some member ofC or that are double-intersection
points, lying on an edge of some member and on a facet of another, isO(n2). Therefore,
we have to bound the number of triple-intersection points onthe boundary ofU(C), i.e.,
points that belong to the boundaries of three distinct members ofC. Assuming that the sets
are in general position, no point can belong to the boundaries of more than three distinct
members.

Consider the arrangementA induced by the boundaries of the polyhedra inC. Define
thelevelof a vertex of this arrangement to be the number of members ofC that containv in
their interior. The number of triple-intersection vertices at leveli is denoted byVi = Vi(C).
We have to boundV0(C), that is, the number of triple-intersection vertices at level 0.

Each vertexv of the union is incident to three edges of the arrangementA, each lead-
ing awayfrom the union boundary; that is, each such edge is containedin the intersection
segment of two of the facets containingv, and leads into the interior of the third polyhe-
dron. We follow each of these edges, and chargev to the three vertices that are the other
endpoints of these edges. See Figure 19.

The favorable situation is when all three charged vertices are triple-intersection ver-
tices at level1. In this case, each of them can be charged at most three times (see Fig-
ure 19), so the number of charging verticesv of this kind is at mostV1(C), the number
of triple-intersection vertices at level1. The case where one of the charged vertices is not
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v

Figure 19. The charging scheme. The three dashed edges emanating fromv lead into the interior of the union.

a triple intersection is easy, because there are onlyO(n2) such vertices (in the entire ar-
rangement), and each is charged only a constant number of times, so there can be at most
O(n2) charging verticesv of this kind.

Let us denote byV ∗
0 (C) the number of verticesv at level0 for which at least one of

the charged vertices is a triple intersection vertex that also lies at level0. We thus obtain
the inequality

V0(C) ≤ V1(C) + V ∗
0 (C) +O(n2).

The main difficulty is in obtaining a nearly quadratic bound on V ∗
0 (C). In general, this is

impossible: for instance, when the members ofC are large and thin plates that form a grid,
one can easily check thatV0(C) = V ∗

0 (C) = Θ(n3). Suppose, however, that we are in a
favorable situation, and have somehow managed to show thatV ∗

0 (C) = O∗(n2). Then we
get

V0(C) ≤ V1(C) +O∗(n2).

Let R be a random subset ofC, obtained by removing one element uniformly at random.
An easy probabilistic argument shows that

E(V0(R)) =
n− 3

n
V0(C) +

1

n
V1(C).

Combining this with the preceding inequality, and writingV0(m) for the maximum value
of V0(C) for |C| = m, we obtain

1

n
V0(C) ≤ 1

n
V1(C) +O∗(n)

= E(V0(R)) − n− 3

n
V0(C) +O∗(n)

≤ V0(n− 1) − n− 3

n
V0(C) +O∗(n),

or
n− 2

n
V0(n) ≤ V0(n− 1) +O∗(n).

Dividing this by(n−1)(n−2), we obtain a telescoping recurrence that solves toV0(n) =
O∗(n2). If the overhead termV ∗

0 (C) is strictlyO(n2), the recurrence solves toO(n2 logn).

The above scheme is a special instance of a technique developed by Tagansky [118,
119], built upon earlier cruder charging schemes. As already noted, the real challenge is to
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boundV ∗
0 (C). One way of doing so is to apply the charging scheme repeatedly, where in

the next stage we want to bound the number of level-1 edges of the arrangement with both
endpoints at level0, by charging them to more complex local structures that havethree
level-0 vertices connected by two level-1 edges, and so on. This multi-stage scheme ends
when the overhead term is the number of special quadrilaterals defined above (or can be
pushed further until the overhead term counts the number of special cubes). See [105, 118]
for details.

An interesting feature, hidden in this quick review, is thatthe only bottleneck in the
analysis is to bound the number of special quadrilaterals. In contrast, it is relatively easy
to give a quadratic upper bound for the number of “special polygons” with more than four
vertices, where such a polygonQ is the intersection of a facet of one member ofC with
two other members ofC, so that no fourth member ofC meetsQ; see e.g. [61].

3.4. Robots with three degrees of freedom: Complexity of thefree space.A spe-
cial class of problems that involve unions in three dimensions arises in motion planning
for robots with three degrees of freedom. Recall that in thiscase theconfiguration space,
which represents all possible placements of the given robotB, is 3-dimensional, and each
obstacleO in the physical environment (the workspace ofB) generates anexpanded ob-
stacle(or C-obstacle)O∗, which is the locus of all placements ofB at which it intersects
O. The free portionF of the configuration space is then the complement of the unionof
the C-obstacles.

In this subsection we review several results that arise in this context. As already dis-
cussed in the general setting, the naive bound on the complexity of F is cubic in the number
of possible contacts between features ofB and features of the obstacles. In many instances,
this bound can be attained, but there are several special cases where better, nearly quadratic,
bounds can be established.

Let B be a robot with three degrees of freedom, so that each placement of B can be
parametrized by three real parameters. For simplicity, letus assume that the configuration
space, the set of all placements ofB, is the real Euclidean spaceR

3. Two special cases of
such a robot that we consider are: a planar object that is allowed to translate and rotate amid
obstacles inR2, and a three-dimensional object allowed only to translate amid obstacles in
R

3. Bounding the complexity ofF in the former case was one of the first applications that
led to the study of the union of objects inR3 [94, 95].

B

ρ

x

y

o θ

(a, b)
B

O1

O2

O3

(a) (b)

Figure 20. (a) Representation of a placement ofB. (b) A triple contact.
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Translation and rotation in 2D. Let B be a convex polygon inR2 that is allowed to
translate and rotate in the plane amid a setO = {O1, . . . , On} of obstacles with pairwise-
disjoint interiors, each of which is a convex polygon, with atotal ofs vertices. To parame-
trize the configuration space, we fix a pointo ∈ B and a rayρ emanating fromo and rigidly
attached toB. A placement ofB is then parametrized by a point(a, b, tan(θ/2)) ∈ R

3,
where(a, b) are the coordinates ofo andθ is the counterclockwise angle from thex-axis
to ρ; see Figure 20(a).6 A placement ofB is freeif B does not intersect any obstacle at this
placement, andsemi-freeif B makes contact with one or more obstacles at this placement
but does not intersect the interior of any obstacle. A generic contact between the bound-
aries ofB and an obstacle can be represented by a pair(σ, ω) whereσ is a vertex ofB and
ω is an edge of the obstacle, orσ is an edge ofB andω is a vertex of the obstacle.

For each obstacleOi, letCi denote the corresponding expanded obstacle, which is the
set of placements at whichB intersectsOi; Ci is a semi-algebraic set whose complexity de-
pends on that ofB andOi. As noted, puttingC = {C1, . . . , Cn}, we haveF = R

3 \U(C),
and∂F is the locus of all semi-free placements. A vertex ofF formed by the intersection
of the boundaries of three expanded obstacles corresponds to a placement ofB at which
it makes three distinct contacts with the obstacles, while not penetrating into any obstacle
(see Figure 20(b)); these placements are referred to ascritical semi-free placements or
critical verticesof F. It can easily be argued that ifB is a polygon withk vertices then the
complexity ofF is proportional tok2s2 plus the number of critical vertices.

B

Figure 21. A nonconvex polygon withΩ(k3s3) critical semi-free placements.

If B is a nonconvex polygon, thenF can haveΩ(k3n3) critical vertices, as shown
in Figure 21 [73]. However, the bound improves considerably whenB is convex. For
instance, ifB is a line segment, then, as shown in several early works (around the mid
1980s),F has onlyO(s2) vertices [27, 95]. In a recent work in progress, Agarwalet al.[2]
have improved the bound toO(ns); this improved bound holds even if the obstacles inO

are not pairwise disjoint. In fact, if the obstacles are pairwise disjoint, then the number
of critical vertices ofF is onlyO(n2 + s), though the number of vertices ofF formed by
the intersection of the boundaries of a pair of expanded obstacles (edge-face intersection
points) can beΘ(ns).

The main (and fairly old) result for this scenario is:

6Clearly, this is not a faithful representation, because it excludes the orientationθ = ±π. Nevertheless, we
use it to simplify the presentation.
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THEOREM 3.3 (Leven and Sharir [94]). If B is a convexk-gon, then the complexity
of F isO(ksλ6(ks)).

Since the number of combinatorially different contacts betweenB and the obstacles
is Θ(ks), the bound in Theorem 3.3 is nearly quadratic in the number ofcontacts. Here
is a brief sketch of the analysis in [94]. Let φ be a (vertex-edge or edge-vertex) contact
between the boundaries ofB and of an obstacle, and letΓφ ⊆ R

3 denote the set of all
placements ofB at which the contactφ is made;Γφ is a two-dimensional algebraic surface
patch. For each contactφ, we define a familyCφ of O(ks) pseudo-halfplanes inΓφ,
where each pseudo-halfplaneh represents placements at whichφ is made and another
contactφ′ is “violated”—φ′ is made at placements on∂h, andB and the corresponding
obstacle intersect at placements withinh. The boundaries of any pair of these pseudo-
halfplanes intersect in at most six points. The main observation in the analysis is that if
B and the obstacles are in general position and if the complexity of F is Ω(k2s2), then
at least a constant fraction of the vertices ofC are vertices ofU(Cφ), over all contacts
φ. By Theorem 2.1,κ(Cφ) is O(λ6(ks)), for eachφ, and thus the complexity ofF is
O(ksλ6(ks)). The details of the proof can be found in [94].

Combining this overall approach with a few new observations, and performing a more
careful analysis, Agarwal and Gujgunte, in a recent work in progress [4], have improved
the bound on the complexity ofF toO(ksλ6(kn)).

Van der Stappenet al. [116] have studied the case in which the obstacles are fat, and
have proved a linear bound on the complexity ofF, under certain reasonable assumptions.
We refer the reader to their paper for more details.

Translational motion planning in R
3. LetB be a convex object inR3 that is allowed to

translate amid a setO = {O1, . . . , On} of n obstacles, each of which is a convex polytope.
We fix a pointo ∈ B and represent a placement ofB by specifying the coordinates(x, y, z)
of o. As mentioned in the introduction, the expanded obstacleCi generated byOi is now
the Minkowski sumOi ⊕ (−B) of Oi and the reflected image−B of B, and, as usual,
F = R

3 \ U(C), whereC = {C1, . . . , Cn}. This has led to the extensive study of the
complexity of (and algorithms for constructing) the union of a family C of Minkowski
sums of this kind inR3.

In the planar case, the crucial property of such a collectionof Minkowski sums was
that each pair of boundaries cross at most twice, so the collection is a family of pseudo-
disks. The corresponding property inR3 (assuming general position) is that each pair of
boundaries intersect in a single connected closed curve [81]. However, a triple of bound-
aries can intersect in an arbitrarily large number of points, which makes the analysis of the
union complexity considerably harder than in the plane. Near-quadratic bounds have been
established for only a few special cases, summarized in the following theorems. (In each
part,s effectively denotes the overall complexity of the individual Minkowski sums inC,
but its precise definition is slightly different in each case.)

THEOREM 3.4 (Halperin and Yap [74]). If B is a cube, the complexity ofU(C) (and
thus ofF) isO(s2α(s)), wheres denotes the overall number of faces of the original poly-
topes inO.

THEOREM 3.5 (Aronov and Sharir [20]). If B is a convex polytope, the complexity of
U(C) is O(ns log n), wheres denotes the overall number of faces of the polytopes inC.
There exist constructions where the union complexity isΩ(nsα(n)).

THEOREM 3.6 (Agarwal and Sharir [11]). If B is a ball, the complexity ofU(C) is
O∗(s2), wheres is the total number of faces of the polytopes inO. In particular takingO
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to be a set ofn lines inR
3, the complexity of the union ofn congruent infinite cylinders in

R
3 isO∗(n2).

The proofs of these theorems are rather different, and each of them is very technical.
The proof of Theorem 3.4 is based on ideas similar to those used by Leven and Sharir [94].
The proof of Theorem 3.5 is a special case of the analysis of the union of arbitrary convex
polyhedra, given in [21], where the main new ingredient is an intricate topologicalargu-
ment that shows that the number of special quadrilaterals inthe union isO(ns). The proof
of Theorem 3.6 is the most involved; it uses a rather complicated charging scheme, and is
based on several geometric observations that reduce the problem to that of bounding the
complexity of sandwich regions between upper and lower envelopes of bivariate functions.
These results lead to a few natural questions that remain elusive:

OPEN PROBLEM 4. What is the maximum complexity of the union ofn congruent
cones or tori?

OPEN PROBLEM 5. What is the maximum complexity of the union ofn cylinders of
different radii?

Although the upper bound for all these cases is conjectured to beO∗(n2), no subcubic
upper bounds are known to date.

3.5. Union of fat objects. Similar to the planar case, a compact convex objectC
is calledα-fat, for some constantα ≥ 1, if the ratio between the radii of the smallest
enclosing ball and of the largest inscribed ball ofC is at mostα. In this subsection we
review some of the recent (and slightly less recent) developments in the analysis of the
complexity of the union of fat objects inR3.

Union of axis-aligned cubes.We begin by considering the simple case of axis-aligned
cubes.

THEOREM 3.7 (Boissonnatet al. [28]; see also [32]). The complexity of the union of
n axis-aligned cubes inR3 is O(n2). The bound reduces toO(n) if the cubes are of the
same (or nearly the same) size. Both bounds are tight in the worst case.

PROOF. This result is sufficiently simple to allow us to provide a complete proof. We
only need to count the number of vertices of the union that areincident to three facets of
three distinct respective cubes; the number of all other vertices (of the entire arrangement
of the cube boundaries) is onlyO(n2). Letv be such a vertex, incident to facetsF1, F2, F3

of three distinct respective cubesC1, C2, C3, so thatC1 is the largest cube among them.
Follow the intersection segmentF2 ∩ F3 from v into C1. This segment has to end within
C1, at a point that lies on an edge ofC2 orC3, and on the remaining facetF3 or F2. The
number of such terminal points is clearly onlyO(n2), and each of them can be encountered
in such a tracing from only a constant number of verticesv of the union. Hence, the number
of these vertices, and thus the complexity of the union, isO(n2). The proof for congruent
cubes is also simple, but we omit it. �

Union of arbitrary nearly congruent cubes. If the cubes are not axis-parallel, the prob-
lem becomes much harder. Pachet al. [105] have studied the case in which the cubes
have equal (or “almost equal”) size, and have shown7 that the complexity of their union is

7We do not highlight this result, because it is now subsumed bythe more recent result of Ezra and
Sharir [63], which we will shortly present.
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O∗(n2). The key observation in their analysis is that one can lay outa regular grid, where
the size of its cells is somewhat smaller than that of the given cubes, so that (a) each cube
meets only a constant number of cells, and (b) no two oppositefacets of a cube meet the
same cell. This allows us to consider the union separately ineach cell, and to observe
that the union within each cell becomes a union of unbounded halfspaces, (right-angle)
dihedral wedges, and (orthant-like) trihedral wedges. Theanalysis thus reduces to that of
bounding the complexity of the union of such wedges. The maintechnical ingredient in
the analysis of [105] is:

THEOREM 3.8 (Pachet al. [105]). The complexity of the union ofn α-fat dihedral
wedges isO∗(n2), where the constant of proportionality depends on (the hiddenε and on)
α.

Pachet al.were not as successful in analyzing the complexity of the union of α-fat
trihedral wedges (wedges whose solid angle is at leastα), for any constantα > 0, and
managed to establish a nearly quadratic bound only when the wedges are “substantially
fat”, a case that includes wedges formed at a vertex of a cube (i.e., an orthant), but not
wedges formed at a vertex of a regular tetrahedron.

A major observation in the analysis of [105] is that, for any triple ofα-fat dihedral
wedges, there are many directionsu, such that a plane orthogonal tou cuts each of the
three wedges in a cross-section which is itselfα′-fat, for someα′ > 0 that depends onα.
This allows the analysis to proceed by sweeping the given wedges by a plane, considering
only those wedges that meet the plane in fat cross-sections,and by analyzing critical events
when the boundaries of three of the swept wedges become concurrent. Finding such a good
sweeping direction for triples of trihedral wedges is harder; in general this is impossible
unless the wedges are really “substantially fat”. The analysis then combines the study of
special cubes (as reviewed above) with some other tricks, toconclude that the complexity
of the union of such wedges is nearly quadratic.

To recap, the technique of [105], powerful as it was, could not handle cubes of arbi-
trary sizes (the grid reduction does not work then), nor could it handle other kinds of fat
polyhedra (for which the wedges formed at their vertices arenot sufficiently fat); even the
special case of regular tetrahedra remained open. Both of these shortcomings have recently
been overcome by Ezra and Sharir [63], who have obtained a nearly quadratic bound for
the complexity of the union ofn arbitrary fat tetrahedra. We will review this result below,
and we note that it immediately implies a nearly quadratic bound for the union complexity
of n arbitrary cubes inR3 (of arbitrary sizes).

Union of fat tetrahedra and of cubes. We say that a tetrahedron isα-fat if each of its
solid angles is at leastα. This definition is compatible with the other standard definitions
of fatness. Specifically, the ratio between the radii of the smallest enclosing ball and the
largest inscribed ball of anα-fat tetrahedron is at mostα′ = O(1/

√
α). Conversely, if this

ratio is at mostα′ for some tetrahedron, then it must beα-fat withα = Ω(1/(α′)2).
To simplify the presentation, let us assume for the moment that we are given a col-

lection C of n α-fat tetrahedra ofnearly equal size, meaning that the diameters of the
tetrahedra inC are within some constant ratio of each other. Then there is aneasy grid-
based argument, similar to the one used for nearly equal cubes, to reduce the analysis of
their union to that of the union ofα-fat trihedral wedges, namely, trihedral wedges whose
solid angles are at leastα (see Figure 22). Specifically, assume, for simplicity, thatall the
diameters lie in the interval[1, c], for a fixed constantc. We lay out a grid of sufficiently
small (but constant) cell size, so that (a) for any tetrahedron τ of C and any grid cell∆,
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trihedral
dihedral

W

W

Figure 22. An α-fat trihedral wedge and anα-fat dihedral wedge.

at most three facets ofτ meet∆, and (b) each tetrahedron inC crosses onlyO(1) grid
cells. Hence, within each grid cell∆, we need to bound the complexity of the union of
somen∆ α-fat trihedral wedges(which can also degenerate further to dihedral wedges or
halfspaces).

Suppose that we have a bound ofO∗(m2) on the complexity of the union ofm α-
fat trihedral wedges, with a constant of proportionality that depends onα. This bound,
combined with the above reduction, implies that the complexity of the union ofn nearly-
equalα-fat tetrahedra is

∑

∆O
∗(n2

∆) = O∗(n2). The case of nearly equal cubes is now
an easy corollary of this result.

The analysis in [63] applies also to the case in which the tetrahedra have arbitrary sizes
(diameters). It is somewhat involved, and we sketch here only some of its highlights. To
simplify the presentation, we only consider the case of fat trihedral wedges. LetC be a
family of n α-fat trihedral wedges. The main technical tool in the analysis of [63] is the
following lemma.

LEMMA 3.9 (Ezra and Sharir [63]). LetR be a set ofr planes inR
3, and letW be an

arbitrary trihedral wedge.

(i) The number of cells ofA(R) that meet all three facets ofW is onlyO(r).
(ii) If we triangulation a cell ofA(R) into tetrahedra using the Dobkin-Kirkpatrick

hierarchical decomposition scheme[40], then at mostO(log r) tetrahedra in the
triangulation can meet all three facets ofW .

See Figure 23(b) for an illustration. The lemma applies to any, not necessarily fat,
trihedral wedge. Note also that the planar version of the lemma is trivial: In an arrange-
ment ofr lines in the plane, at mostone cellcan meet all three edges of a given triangle
(Figure 23(a)). As another trivial variant in the plane, thenumber of cells that meet both
sides of awedgeisO(r).

Lemma 3.9 suggests the following recursive decomposition scheme. Take a random
sampleR of r planes that support the facets of the wedges ofC. Construct the arrange-
mentA(R) and decompose each of its cells into tetrahedra, using the Dobkin-Kirkpatrick
scheme. We obtain a decompositionΞ of R

3 intoO(r3) tetrahedra, with the property that
for each wedgeW of C, the number of tetrahedra that meet all three facets ofW is only
O(r log r). Hence, on average, each tetrahedron is crossed by at mostO

(

n
r2 log r

)

wedges
of C with this property. Moreover, the standard theory of randomsampling [76] allows
us to assume thatR has the property that each of the tetrahedra ofΞ is crossed by the
boundaries of at mostO

(

n
r log r

)

wedges ofC. To recap, we obtainO(r3) subproblems,
each involving at mostO

(

n
r log r

)

wedges, of which, on average, onlyO
(

n
r2 log r

)

are
trihedral wedges, and the rest are dihedral wedges (or halfspaces).
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(a) (b)

Figure 23. (a) In the plane, only one cell of the arrangement can meet allthree edges of a given triangle. (b) In
R

3, as many asO(r) cells can meet all three facets of a given trihedral wedge (a schematic view from the apex
of the wedge).

To obtain the asserted near-quadratic bound, the analysis in [63] applies the decompo-
sition repeatedly, takingr to be a sufficiently large constant, and involves a rather careful
counting of the vertices that are not passed down the recursion. Instead of reconstruct-
ing this somewhat involved analysis, let us consider the following simpler quick-and-dirty
approach. If we chooser =

√
n, we obtainO(n3/2) subproblems, each involving some

numberm of trihedral wedges (which is only logarithmic on average),andO∗(n1/2) di-
hedral wedges. The number of vertices of the union that are formed by three dihedral
wedges isO∗((n1/2)2) = O∗(n) (Theorem 3.8; [105]), and the number of vertices that
lie on the boundary of at least one trihedral wedge isO∗(mn) (using a rough quadratic
bound for each trihedral wedge separately). Summing over the tetrahedra, and using the
fact that them’s sum toO(nr log r) = O∗(n3/2), yields the overall bound ofO∗(n5/2)
for the complexity of the union. With the more careful analysis in [63], this bound drops
toO∗(n2).

The above analysis can also be applied to the case of fat tetrahedra rather than wedges
(Lemma 3.9 obviously carries over to this case), but then considerably more effort is
needed to count vertices that are not passed down the main recursion. The analysis of
[63] culminates at the following result.

THEOREM 3.10 (Ezra and Sharir [63]). The complexity of the union ofn arbitrary
α-fat tetrahedra inR3 isO∗(n2), where the constant of proportionality depends onα.

Union of α-round objects. Let C be a family ofn α-round objects inR
3. That is, for

eachC ∈ C, any pointp ∈ ∂C is incident upon a ball of radiusα · diam(C) which is
fully contained inC. We first consider a special case of this problem, in which we further
assume that the diameter of each member ofC is between1 andD, for some constantD.
We may therefore assume that all the balls used in the definition of roundness are of the
same radiusα.

These assumptions are easily seen to imply that ifv is a vertex of the union, incident
upon the boundaries of three setsC1, C2, C3, then, with at least some constant probability,
a random directionu has the property that the line throughv at directionu intersects each
of the setsC1, C2, C3 in an interval of length at leastα′ = βα, for some sufficiently small
but constantβ > 0. We call a vertex satisfying the above property for a direction u a
u-feasiblevertex. To prove thatκ(C) is O∗(n2), it suffices to establish a near-quadratic
bound on the number ofu-feasible vertices for any fixed directionu. Suppose, without
loss of generality, thatu is thez-direction.
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v

Figure 24. Reducing the union of nearly equalα-round objects inR3 to sandwich regions.

PartitionR
3 into horizontal slabs of widthα′. For each slabσ, let C+

σ ,C
−
σ denote the

family of objects ofC that intersect the top and bottom boundaries ofσ respectively, clipped
to withinσ. Moreover, retain, for each objectC ∈ C−

σ , the portion of its top boundary con-
sisting of those pointsx ∈ σ for which the vertical segment fromx to the bottom boundary
of σ is fully contained inC. Apply a symmetric trimming process to the bottom boundaries
of the objects ofC+

σ . Putnσ = |C+
σ | + |C−

σ |. It can be checked that eachu-feasible vertex
that lies in the slabσ is a vertex of the sandwich region between (the trimmed portions
of) the upper envelope of the top boundaries of objects inC−

σ and the lower envelope of
the bottom boundaries of objects inC+

σ . See Figure 24. As mentioned in Section 3.2, the
number of vertices in the sandwich region isO∗(n2

σ). However,
∑

σ nσ = O(n), because
each object inC can cross onlyO(1) slabs. Thereforeκ(C) =

∑

σ O
∗(n2

σ) = O∗(n2).
The above argument fails when the diameters of the objects inC differ significantly.

This has been overcome by Aronovet al. [18], who have extended the nearly quadratic
bound to this case, using a somewhat more involved technique, which is also based on
reducing the problem to sandwich regions between envelopes.

THEOREM 3.11 (Aronovet al.[18]; Agarwal and Sharir [11]). LetC be a family ofn
3-dimensionalα-round objects of constant description complexity. Then the complexity of
U(C) isO∗(n2).

In spite of all the progress reviewed in this section, the following general question is
still open.

OPEN PROBLEM 6. What is the maximum complexity of the union ofn α-fat objects
of constant description complexity inR3? What if they are all convex?

4. Beyond Three Dimensions

In higher dimensions, the problem of bounding the complexity of the union of geomet-
ric objects becomes even more complicated, and only very fewresults are known, which
we duly review here.

Union of pseudo-halfspaces.As already mentioned in the introduction, the complexity
of the union ofn halfspaces (each bounded by a hyperplane) inR

d is O(n⌊d/2⌋). For
pseudo-halfspaces (regions lying above or below the graph of some continuous function of
constant description complexity), the bounds are not that small. As shown by Sharir [113],
the complexity of the lower (or upper) envelope ofn (d− 1)-variate functions of constant
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description complexity isO∗(nd−1). Hence, the union ofn pseudo-halfspaces, all of which
are lower (or all upper) isO∗(nd−1).

However, this is not known to hold in the mixed case, where some pseudo-halfspaces
are lower and some are upper, ind ≥ 5 dimensions. As in two and three dimensions,
we seek bounds on the complexity of the sandwich region between a lower and an upper
envelope, which turns out to be a hard problem ford ≥ 5. An O∗(n3) bound on the
complexity of the sandwich region inR4 was proved by Koltun and Sharir [86]. As in the
three-dimensional case, this is based on a nearly cubic bound, established in [86], on the
complexity of the overlay of two minimization and/or maximization diagrams, this time
of trivariate functions. These results yield a nearly cubicbound on the complexity of the
union ofn pseudo-halfspaces of constant description complexity inR

4. The problem of
whether sandwich regions have asymptotically smaller complexity than that of the entire
arrangement is still open ford ≥ 5.

OPEN PROBLEM 7. What is the maximum complexity of the union ofn pseudo-
halfspaces of constant description complexity inR

d, for d ≥ 5?

Linearization. The so-called linearization technique can be used to bound the complexity
of the union of certain classes of regions, by transforming these regions to halfspaces.
Specifically, letf(x, a) be a(d + p)-variate polynomial, withx ∈ R

d anda ∈ R
p. Let

a1, . . . , an ben points inR
p, and setF = {fi(x) ≡ f(x, ai) | 1 ≤ i ≤ n}; thusF is a

collection ofd-variate polynomials. For eachi, letCi be one of the two regionsfi ≥ 0 or
fi ≤ 0, and setC = {C1, . . . , Cn}. Suppose thatf(x, a) can be expressed in the form8

(2) f(x, a) = ψ0(a) + ψ1(a)ϕ1(x) + · · · + ψk(a)ϕk(x),

whereψ0, . . . , ψk arep-variate polynomials andϕ1, . . . , ϕk ared-variate polynomials. We
define the mapϕ : R

d → R
k by

ϕ(x) = (ϕ1(x), . . . , ϕk(x)).

Then the imageΓ = {ϕ(x) | x ∈ R
d} of R

d is ad-dimensional surface inRk (assuming
k ≥ d), and for anya ∈ R

p, f(x, a) maps to thek-variate linear function

ha(y1, . . . , yk) = ψ0(a) + ψ1(a)y1 + · · · + ψk(a)yk,

in the sense that for anyx ∈ R
d, f(x, a) = ha(ϕ(x)). The regionCi maps to one of

the two halfspaces bounded by the hyperplanehai
(more precisely, to the intersection ofΓ

with such a halfspace), which we denote byh+
ai

. Let H = {h+
ai

| 1 ≤ i ≤ n}. ThenU(C)
maps toU(H)∩Γ. SinceΓ is a surface of constant description complexity, the complexity
of U(C) is proportional to that ofU(H). We refer tok as thedimensionof the lineariza-
tion ϕ, and say thatF admits a linearization of dimensionk. Agarwal and Matoušek [7]
describe an algorithm that computes a linearization of the smallest dimension under cer-
tain mild assumptions. IfF admits a linearization of dimensionk, then the complexity of
U(C) is bounded by the complexity of the union ofn halfspaces inRk+1, and it is there-
foreO(n⌈k/2⌉). The most popular example of linearization is perhaps the so-calledlifting
transform(see Section 2.2 where it is mentioned for the planar case), which is constructed
from the polynomial

f(x, a) = (x1 − a1)
2 + · · · + (xd − ad)

2 − a2
d+1,

for x ∈ R
d anda ∈ R

d+1. The resulting lifting transformation itself is then

ϕ(x) = (x1, x2, . . . , xd, x
2
1 + · · · + x2

d).

8This can always be done by breakingf into its monomials, but thenk can be quite large.
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This mapsRd to the standard paraboloidΓ : xd+1 = x2
1 + · · · + x2

d in R
d+1, and a ball in

R
d is mapped to a halfspace inRd+1, which implies that the complexity of the union ofn

balls inR
d isO(n⌈d/2⌉).

Axis-aligned cubes.Boissonnatet al. [28] provide an upper bound ofO(n⌈d/2⌉) for the
union ofn axis-parallel cubes inRd, which improves toO(n⌊d/2⌋) when the cubes have
equal (or nearly equal) size. The complexity of the union ofn simply-shaped convex bodies
in R

d with a common interior pointo isO∗(nd−1), which follows from the observation that
the boundary of their union can be interpreted as the upper envelope ofn (d − 1)-variate
functions (in spherical coordinates abouto). A slightly refined bound for polyhedra inR3

with a common interior point was given in [78].
Koltun and Sharir [86] extended Theorem 3.11 toR4, by proving that the complexity

of the union ofn convexα-round objects inR4 with nearly equal diameters isO∗(n3).
These results have been further generalized by Aronovet al.[18] for (not necessarily con-
vex)α-round objects with arbitrary diameters. The only obstacleto obtaining analogous
results inR

d, for d ≥ 5, is our inability to establish sharp upper bounds on the complexity
of sandwich regions (as discussed above) ind ≥ 5 dimensions.

OPEN PROBLEM 8. What is the maximum complexity of the union ofn α-round ob-
jects of constant description complexity inR

d for d ≥ 5? What if their diameters are
almost the same?

5. Generalized Voronoi Diagrams

Voronoi diagrams are closely related to unions of geometricobjects, in the following
manner. LetC be a set ofn pairwise disjoint convex objects inRd, each of constant
description complexity, and letρ be a metric (or aconvex distance function[120]). For a
pointx ∈ R

d, let Φ(x) denote the set of objects ofC that are nearest tox, i.e.,

Φ(x) = {C ∈ C | ρ(x,C) ≤ ρ(x,C′) for eachC′ ∈ C}.
TheVoronoi diagramVorρ(C) of C under the metricρ (sometimes also simply denoted as
Vor(C)) is the partition ofRd into maximal connected regions of various dimensions, so
that, for each regionV , the setΦ(x) is the same for allx ∈ V . For each full-dimensional
region (cell),Φ(·) generally consists of a single siteC, and the cell is called the Voronoi
cell of C. For i = 1, . . . , n, let γi be the graph of the functionxd+1 = ρ(x,Ci), for
x ∈ R

d, and setΓ = {γi}n
i=1. Edelsbrunner and Seidel [49] made the rather obvious

observation thatVorρ(C) is theminimization diagramof Γ, that is, the projection ontoRd

of the lower envelope of the surfaces inΓ.
To see the connection between generalized Voronoi diagramsand unions of objects,

let C andρ be as above (say, for the 3-dimensional case). For an objectC ∈ C and a
parameterr ≥ 0, defineB(C, r) = {x ∈ R

3 | ρ(x,C) ≤ r}. For a fixedr, the union
Kr =

⋃

C∈C B(C, r) is the region consisting of all pointsx ∈ R
3 whose smallestρ-

distance from a site inC is at mostr. This in turn can be interpreted as a “cross-section” of
Vor(C)—it is in fact a level set at heightx4 = r of the lower envelope of the corresponding
collectionΓ. Moreover, for each siteCi ∈ C, the intersection of∂Kr with the Voronoi cell
of Ci is equal to the intersection of∂B(Ci, r) with that cell.

In general, if the metricρ is a norm or a distance function induced by some convex
objectB, that is,ρ(x, y) = min{λ | y ∈ x + λB}, the resulting “balls”B(C, r) are the
Minkowski sumsC ⊕ (−rB), for C ∈ C; the minus sign is superfluous ifρ is a metric
becauseB is centrally symmetric in this case. Thus the union of Minkowski sums of this
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kind is a substructure of the corresponding Voronoi diagram. Of course, this connection
also holds in any higher dimension.

One immediate conclusion is that the complexity ofVor(C) is at least as large as that
of Kr. In practice, establishing a tight bound on the latter complexity is a considerably
easier task, and in many instances the corresponding question concerning the complexity
of the entire Voronoi diagram is still open. For instance, consider the case in whichC is
a set of lines inR3, andρ is the Euclidean metric. Then the expanded sitesB(C, r), for
C ∈ C, aren congruent infinite cylinders inR3, of radiusr. As mentioned above, it has
been shown in [11] that the complexity of the unionKr of these cylinders isO∗(n2), but it
is a major open problem to establish a similar nearly quadratic bound on the complexity of
Vorρ(C) (see Open Problem 10). There are (a few known) cases in which the complexity
of the entire Voronoi diagram is an order of magnitude largerthan that ofKr. For example,
the complexity of the multiplicatively weighted Voronoi diagram of a point set in the plane
can have quadratic complexity [25], while the complexity ofKr in this case (which is the
union of disks) is only linear.

In the classical case, whenρ is the Euclidean metric and the objects inC are singletons
(points), the graphs of the distance functionsρ(x,Ci) can be replaced by a collection ofn
hyperplanes inRd+1, using a straightforward linearization technique, without affecting the
minimization diagram. Hence, the maximum possible complexity of Vor(C) isO(n⌈d/2⌉),
and this is tight in the worst case (see, e.g., [83, 111]). In more general settings, though, this
reduction is not possible, and the complexity of the Voronoidiagram can be much higher.
Applying the observation of [49], and the bounds in Section 4 on the complexity of lower
(or upper) envelopes, we obtain that, under reasonable assumptions onρ and on the objects
in C, the complexity of the Voronoi diagram isO∗(nd). While this bound is nontrivial
(the trivial one beingO(nd+1)), in general it is not expected to be tight. For example, in
the case of planar Voronoi diagrams, this bound is near-quadratic, but the complexity of
“almost every” planar Voronoi diagram is onlyO(n) (this is an easy consequence of Euler’s
formula for planar maps). Nevertheless, as mentioned above, for certain “pathological”
distance functions, the corresponding planar Voronoi diagram can indeed have quadratic
complexity [25].

Voronoi diagrams of points in R
3. As noted above, the complexity of the Euclidean

Voronoi diagram ofn points inR
3 is Θ(n2). It has been a long-standing open problem

to determine whether a similar quadratic or nearly quadratic bound holds inR3 for more
general objects and metrics (here the known bounds on the complexity of lower envelopes
only give an upper bound ofO∗(n3)). The problem stated above calls for improving this
bound by roughly another factor ofn. Since we are aiming for a bound that is “two orders
of magnitude” better than the complexity ofA(Γ), this appears to be a considerably more
difficult problem than that of bounding the complexity of lower envelopes. The only hope
of making progress here is to exploit the special structure of the distance functionsρ(x,C).

Boissonnatet al. [28] have shown that the maximum complexity of theL1-Voronoi
diagram of a set ofn points inR

3 is Θ(n2). Tagansky [118] has proved that the complexity
of the three-dimensional Voronoi diagram of point sites under a general polyhedral convex
distance function (induced by a polytope withO(1) facets) isO(n2 logn). The bound has
been improved by Icking and Ma [79] to Θ(n2).

Voronoi diagrams of lines in R
3. Let ρ be a convex distance function inR3 whose unit

ball is a convex polytope with a constant number of facets. (Recall that not every distance
functionρ is necessarily a metric—ρ fails to be symmetric if the defining polytope (its unit



STATE OF THE UNION (OF GEOMETRIC OBJECTS) 33

ball) is not centrally symmetric.) Chewet al. [33] have shown that the complexity of the
Voronoi diagram ofn lines inR

3 with respect toρ isO(n2α(n) log n). Clearly, theL1 and
L∞ metrics satisfy the above assumptions. In these special cases, the best known lower
bound for the complexity of the diagram isΩ(n2α(n)). Koltun and Sharir [87] extended
the theorem of Chewet al. [33] to arbitrary collections of pairwise disjoint line segments
and triangles, where the respective upper bounds on the complexity of the diagram are
O(n2α(n) logn) andO∗(n2). As already mentioned, despite some recent progress, little
is known about the complexity of the Euclidean Voronoi diagram of lines inR

3.

OPEN PROBLEM 9. What is the maximum complexity of the Euclidean Voronoi dia-
gram ofn lines (or line segments, or triangles) inR3?

If the input lines have a constant number of orientations, then the complexity of their
Euclidean Voronoi diagram isO∗(n2), as shown by Koltun and Sharir [85]. Dwyer [42]
has shown that the expected complexity of the (Euclidean) Voronoi diagram of a set ofn
randomly selected lines inR3 is only O(n3/2). For the general case, a recent work by
Everettet al.[57] sheds some light on the geometric and topological structure of trisectors
defined by a triple of lines in space.

Voronoi diagram of moving points in the plane. An interesting special case of gener-
alized Voronoi diagrams aredynamic Voronoi diagramsfor moving points in the plane.
Let C be a set ofn points in the plane, each moving along some line at some fixed veloc-
ity. The goal is to bound the number of combinatorial changesof the Euclidean diagram
Vor(C) over time. This dynamic Voronoi diagram can easily be transformed into a static
three-dimensional Voronoi diagram, by adding the timet as a third coordinate. The points
become lines inR3, and the “metric”9 is a distance function induced by a horizontal disk
(that is, the distance from a pointp(x0, y0, t0) to a lineℓ is the Euclidean distance from
p to the point of intersection ofℓ with the horizontal planet = t0). Cubic or nearly cu-
bic bounds are known for this problem, even under more general settings [65, 68, 113],
but subcubic bounds are known only in some very special cases[31, 84]. The expected
complexity of the dynamic Voronoi diagram ofn points movingrandomlyin the plane is
O(n3/2) [43].

OPEN PROBLEM 10. What is the maximum complexity of the dynamic (Euclidean)
Voronoi diagram ofn points moving in the plane at fixed velocities? What if all points
move at the same speed?

Voronoi diagrams in higher dimensions. Next, consider the problem of bounding the
complexity of generalized Voronoi diagrams in higher dimensions. As mentioned above,
when the objects inC aren points in R

d and the metric is Euclidean, the complexity
of Vor(C) is O(n⌈d/2⌉). As d increases, this becomes significantly smaller than the naive
O(nd+1) bound or the improved bound,O∗(nd), obtained by viewing the Voronoi diagram
as a lower envelope inRd+1. The same bound ofO(n⌈d/2⌉) has been obtained in [28] for
the complexity of theL∞-diagram ofn points inR

d; this bound too was shown to be
tight in the worst case. It was thus tempting to conjecture that the maximum complexity
of generalized Voronoi diagrams in higher dimensions is close ton⌈d/2⌉. However, this
conjecture was disproved by Aronov [16], who established a lower bound ofΩ(nd−1) for
a general setting. The sites in his construction can be chosen to be lower-dimensional
flats, and the distance can be chosn to be either Euclidean or apolyhedral convex distance

9This is not really a metric, because the distance between twopoints is defined only when they have the
samet-coordinate.
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function. It is interesting that the lower bound in Aronov’sconstruction depends on the
affine dimension0 ≤ k ≤ d − 2 of the sites: It isΩ(max {nk+1, n⌈(d−k)/2⌉}). For
d = 3, his lower bound does not contradict the conjecture made above, that the complexity
of generalized Voronoi diagrams should be at most near-quadratic in this case. Also, in
higher dimensions, the conjecture mentioned above is stillnot refuted when the sites are
singleton points. However, very little is known about this problem. For instance, the
following problem is still open.

OPEN PROBLEM 11. What is the maximum complexity of the Voronoi diagram of a
set of points inRd under polyhedral metrics or convex distance functions whose unit balls
haveO(1) facets?

Finally, for the general case, Aronov’s construction stillleaves a gap of roughly a fac-
tor of n between the best known upper and lower bounds, and thus suggests the conjecture
that the complexity of such diagrams isO∗(nd−1). This is still a major open problem:

OPEN PROBLEM 12. Is it true that, for a setC of n pairwise disjoint convex sites of
constant description complexity inRd, and for a metric (or convex distance function)ρ
whose unit ball has constant description complexity, the complexity ofVor(C) is always
O∗(nd−1)?

Medial axis. A special case of Voronoi diagrams is themedial axis. Here we are given a
regionC with a complex boundary, e.g., a (not necessarily convex) polyhedron with many
faces. We regard each feature of∂C (vertex, edge, face) as a separate site, and consider
the Voronoi diagram of these sites within the interior ofC. The lower-dimensional faces
of the diagram yield a “skeletal” representation ofC, which has several advantages in
practice [23]. A particularly difficult, and still open, special case is the following.

OPEN PROBLEM 13. Let C be a collection ofn balls in R
3. What is the maximum

complexity of the medial axis ofU(C)? What is the maximum complexity when all the balls
have the same radius?

In fact (see Amenta and Kolluri [15]), it suffices to bound the complexity of the
Voronoi diagram of the vertices ofU(C) within the union. Since the union may haveΘ(n2)
vertices in the worst case, and the complexity of the Voronoidiagram of that many points
in R

3 can in general be quadratic in their number, a naive upper bound on the complexity
of the medial axis isO(n4). However, the best known lower bound is only quadratic, and
closing the gap between the bounds is a challenging open problem.

Voronoi diagrams of regularly sampled points. Dwyer [41] has proved that the expected
size of the (Euclidean) Voronoi diagram of a set of uniformlydistributed random points
inside a ball inR

d is linear. Erickson [54, 55] has studied the complexity of the Voronoi
diagram of a point setP in R

3 in terms of thespreadof P , which is the ratio of the largest
and the smallest pairwise distances between the points ofP . Erickson has proved that the
complexity of the Voronoi diagram of a set of points inR

3 with spread∆ is O(∆3). He
has also proved that this bound is tight in the worst case, by showing anΩ(n3/2) lower
bound for a set ofn point nicely distributed on a cylinder, so that their spreadisO(

√
n).

Motivated by the problem of surface reconstruction from a set of sample points, a
considerable amount of work has been invested in bounding the complexity of the Voronoi
diagram of a set of regularly sampled points on a surfaceΓ in R

3. Golin and Na [66] have
shown that the expected complexity of the Voronoi diagram ofn uniformly distributed
random points on a fixed polyhedral surfaceΓ in R

3 isO(n log4 n) (where the constant of
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proportionality depends on the shape ofΓ). A setS ⊂ Γ is called an(ε, λ)-sampleif any
ball of radiusε centered at a point ofΓ contains at least one and at mostλ points ofS. Attali
and Boissonnat [22] have proved that ifS ⊂ R

3 is an(ε, λ)-sample on a fixed polyhedral
surface, then the size of its Voronoi diagram is linear. Attali et al. [24] have proved that
if S ⊂ R

3 is an(ε, λ)-sample of sizen on a generic (smooth) surface, then its Voronoi
diagram hasO(n logn) complexity. Roughly speaking, a surface isgenericif the points
on the surface at which one of the principal curvature is locally maximal, form a finite set
of curves with bounded length; spheres and cylinders are notgeneric surfaces. Note that
the assumption of genericity is probably crucial in the proof of [24], because of Erickson’s
lower-bound construction for points on cylinders [54]. Recently, Amentaet al. [14] have
proved that the complexity of the Voronoi diagram ofn nicely distributed points on a
convexp-dimensional polyhedron inRd isO(n(d−1)/p); see the original paper for details
on the sampling condition and other issues. We conclude thisdiscussion by mentioning
the following open problem:

OPEN PROBLEM 14. What is the maximum complexity of the Voronoi diagram of a
set ofn points regularly sampled on (or sufficiently near) a smooth manifold inR

d?

6. Discussion

In this survey we have reviewed the extensive work concerning the complexity of the
union of a family of geometric objects in two, three, and higher dimensions. We also
reviewed the state of the art concerning the complexity of generalized Voronoi diagrams in
three and higher dimensions.

However, we have not discussed algorithms for computing theunion of geometric
objects. Several deterministic divide-and-conquer, randomized divide-and-conquer, and
randomized incremental algorithms have been proposed to compute the union for a variety
of special cases [11, 59, 62]. Motivated by many applications, considerable work has
addressed related issues, such as computing the volume of the union of a set of geometric
objects, or computing certain geometric or topological properties of the union. It is beyond
the scope of this survey to review these results, and we referthe reader to [5, 45, 47, 48,
93, 103] and the references therein for a sample of such results.
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[98] J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl, Fat triangles determine linearly many
holes,SIAM J. Comput.23 (1994), 154–169.
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