Halving lines and perfect cross-matchings

János Pach1 and József Solymosi2
Mathematical Institute of the
Hungarian Academy of Sciences
H-1364 Budapest, P.O.B. 127

Abstract

It is shown that a set P of $2n$ points in general position in the plane admits a perfect matching with pairwise crossing segments if and only if it has precisely n halving lines. As a consequence, one can give a $O(n \log n)$-time algorithm which decides whether there exists such a matching in P and, if so, finds it.

1 Preliminaries

Let $P = \{ p_1, p_2, \ldots, p_{2n} \}$ be a set of $2n$ points in the plane in general position, i.e., no three points are collinear. A line p_ip_j is said to be a halving line of P if both open half-planes bounded by p_ip_j contain precisely $n - 1$ points. The number of halving lines of P is denoted by $h(P)$.

Taking an arbitrary line through any point of P and turning it around by at most 180 degrees, it always arrives at a position where it becomes a halving line. Thus, we have $h(P) \geq n$, and equality holds, e.g., when P is the vertex set of a convex $2n$-gon.

It is an intriguing open problem to determine the asymptotic behavior of $h(n) = \max_P h(P)$, where the maximum is taken over all $2n$-element sets in general position in the plane. It is known that

$$c_1 n \log n \leq h(n) \leq c_2 n^{4/3}$$

for suitable constants $c_1, c_2 > 0$ (see [L], [EL], [D]). This function plays an important role in the analysis of many algorithms in computational geometry (cf. [E]).

1Supported by NSF grant CR-94-24398, PSC-CUNY Research Award 663472, and OTKA-T-020914.

2Supported by the DIMATIA Center, Prague.
We say that two segments cross if they have an interior point in common. Let \(c(P) \) denote the maximum number of pairwise crossing segments \(p_i p_j \) whose endpoints belong to \(P \). Obviously, \(c(P) \leq n \) holds for every \(2n \)-element set \(P \). If \(c(P) = n \), we say that \(P \) has a perfect cross-matching. This is the case, for example, when \(P \) is the vertex set of a convex \(2n \)-gon.

Let \(c(n) = \min_P c(P) \), where the minimum is taken over all \(2n \)-element sets in general position in the plane. We have

\[
c(n) \geq c_3 \sqrt{n},
\]

for some positive constant \(c_3 \), but there is no sublinear upper bound known for \(c(n) \) (see [A],[P]). In fact, in [A] it was shown that every \(2n \)-element set in general position has an at least \(c_3 \sqrt{n} \)-element subset which not only admits a perfect cross-matching, but also satisfies a much stronger condition. In this strong sense the result is best possible [V]. It looked difficult to improve the lower bound on \(c(n) \), because we had no good characterization of perfectly cross-matchable sets.

The aim of this note is to give such a good characterization and to design an efficient algorithm which decides whether a set admits a perfect cross-matching.

2 Characterization of perfectly cross-matchable sets

In this section, we would like to point out a simple relation between \(c(P) \) and \(h(P) \): the first quantity attains its maximum if and only if the second attains its minimum. More precisely, we have the following.

Theorem 1. A set of \(2n \) points in general position in the plane admits a perfect cross-matching if and only if it has precisely \(n \) halving lines.

Proof: Suppose first that \(P = \{p_1, p_2, \ldots, p_{2n}\} \) has a perfect cross-matching (i.e., \(n \) pairwise crossing segments) \(\overline{p_{2i-1}p_{2i}} \), \(1 \leq i \leq n \). The extension of each of these segments is a halving line, because each of them separates the two endpoints of all other segments \(\overline{p_{2i-1}p_{2i}} \). We will show that \(P \) has no other halving lines.

Assume, in order to obtain a contradiction, that (say) \(p_1 p_3 \) is also a halving line. We may suppose without loss of generality that \(p_1 p_2 \) is horizontal, \(p_2 \) is to the right of \(p_1 \), and that \(p_{2i} \) is below and \(p_{2i-1} \) is above \(p_1 p_2 \), for every \(2 \leq i \leq n \). Since each segment \(\overline{p_{2i-1}p_{2i}} \) (\(3 \leq i \leq n \)) has to cross \(\overline{p_1p_2} \), if \(\overline{p_{2i-1}p_{2i}} \) has an endpoint to the left of \(p_1 p_3 \), then its other endpoint must lie to the right of \(p_1 p_3 \). However, both \(p_2 \) and \(p_4 \) are on the right-hand
side of \(p_1p_3\). This implies that the number of points to the right of \(p_1p_3\) exceeds by at least 2 the number of points to the left of it, contradicting our assumption that \(p_1p_3\) is a halving line.

Suppose next that \(P\) has precisely \(n\) halving lines. Since there is at least one halving line through every point \(p_k\), we obtain that there must be exactly one. Thus, we can assume without loss of generality that the complete list of halving lines is \(p_{2i-1}p_{2i}\) (\(1 \leq i \leq n\)). We will show that the segments \(p_{2i-1}p_{2i}\) (\(1 \leq i \leq n\)) are pairwise crossing.

Assume, for contradiction, that \(p_1p_2\) and \(p_3p_4\) have no interior point in common. By renumbering the points if necessary, we may also suppose that \(p_1p_2\) is horizontal, \(p_2\) is to the right of \(p_1\), \(p_3p_4\) is entirely above the line \(p_1p_2\), and that \(p_3\) is closer to \(p_1p_2\) than \(p_4\) is. Notice that a minor counterclockwise turn around \(p_3\) will bring the line \(\ell = p_3p_4\) into a position, where there are precisely \(n\) points on its right-hand side. (Indeed, \(p_4\) will be added to the set of points to the right of \(p_3p_4\).) If we continue to turn \(\ell\) around \(p_3\) in the counterclockwise direction, we arrive at a position where \(\ell\) becomes parallel to \(p_1p_2\), i.e., it becomes horizontal. At that moment, there are at most \(n - 2\) points above \(\ell\) (these points form a subset of the set of all points different from \(p_3\) which lie above the halving line \(p_1p_2\)). Hence, there is an intermediate position \(\ell = p_3p_k\) for some \(k \neq 4\), in which the number of points on the right-hand side of \(\ell\) is precisely \(n - 1\). This means that \(p_3p_k\) is a halving line which does not appear in the complete list of halving lines, \(p_{2i-1}p_{2i}\) (\(1 \leq i \leq n\)). Contradiction. \(\Box\)

Actually, this argument also yields the uniqueness of the perfect cross-matching.

Theorem 2. Any set of points in general position in the plane admits at most one perfect cross-matching.

Proof: As we have shown, every perfect cross-matching of \(P\) consists of exactly those segments between two points of \(P\), whose extensions are halving lines of \(P\). \(\Box\)

3 Algorithm

The above characterization of perfectly cross-matchable sets allows us to design an \(O(n \log n)\)-time algorithm which decides whether a set of \(2n\) points satisfies this property and, if so, finds a perfect cross-matching for it.

Let \(P\) be a \(2n\)-element point set in general position in the plane, which is the union of two \(n\)-element sets, \(P_1\) and \(P_2\), separated by a straight line (say, by the \(y\)-axis). For any non-vertical line \(\ell\), let \(P_1(\ell^+)\) (resp. \(P_1(\ell^-)\))
denote the set of points in P_i lying above (resp. below) ℓ. A line ℓ not passing through any point of P is called a \emph{ham-sandwich cut} for P, if
\[|P_1(\ell^+)| = |P_2(\ell^-)| = [n/2]. \]

It was shown by Megiddo [M] that one can always find such a line ℓ in $O(n)$ steps (see also [LM]).

Any matching of P that has a segment to the left of the y-axis, has another one to the right of it, and these two segments cannot cross. Thus, if there exists a perfect cross-matching for P, then all of its segments must cross the y-axis and, similarly, they must also cross the ham-sandwich cut ℓ. Consequently, a perfect cross-matching M for P is the union of a perfect cross-matching M_1 for $P_1(\ell^+) \cup P_2(\ell^-)$ and a perfect cross-matching M_2 for $P_1(\ell^-) \cup P_2(\ell^+)$. Let M_i^+ and M_i^- denote the \emph{upper envelope} and the \emph{lower envelope} (i.e., the pointwise maximum and pointwise minimum) of the lines supporting the segments of M_i, respectively ($i = 1, 2$). Clearly, M_i^+ and M_i^- are unbounded convex polygonal paths, with at most $[n/2]$ vertices each. (See Figure 1.)

![Figure 1.](image)

We need the following corollary of Theorem 2.
Claim. The set P admits a perfect cross-matching M if and only if the following conditions are satisfied.

1. $P_1(\ell^+ \cup P_2(\ell^-)$ admits a perfect cross-matching M_1 and $P_1(\ell^- \cup P_2(\ell^+)$ admits a perfect cross-matching M_2.

2. The convex hull $\text{conv} P_2(\ell^+)$ is above the polygonal path M_1^+, and $\text{conv} P_1(\ell^-)$ is below M_1^-. Similarly, $\text{conv} P_1(\ell^+)$ is above M_2^+, and $\text{conv} P_2(\ell^-)$ is below M_2^-. Then, we have $M = M_1 \cup M_2$.

Proof. We have seen before that if P admits a perfect cross-matching M, then it satisfies condition (1) and $M = M_1 \cup M_2$ holds. By Theorem 2, M_1 and M_2 are uniquely determined. To see that (2) is necessary, too, assume that (say) $P_2(\ell^+)$ has a point p below M_1^+. Then p lies below the supporting line of at least one segment $\overline{qq'} \in M_1$. Let p' denote the element of $P_1(\ell^-)$ connected to p in M_2. Then $\overline{pp'} \cap \overline{qq'} = \emptyset$, contradicting our assumption that any two segments of M cross.

Suppose next that conditions (1) and (2) are satisfied. Then $M = M_1 \cup M_2$ is a perfect cross-matching for P. Indeed, if there were two disjoint segments, $\overline{pp'} \in M_1$ and $\overline{qq'} \in M_2$, such that (say) $\overline{qq'}$ is below (resp. above) the line pp', then $\text{conv} P_2(\ell^+)$ would not lie above the polygonal path M_1^+ (resp. $\text{conv} P_1(\ell^-)$ would not lie below M_1^-), contradicting condition (2). □

Let M^+ and M^- denote the upper and the lower envelope of all lines supporting the segments of $M = M_1 \cup M_2$, respectively. Clearly, M^+ can be obtained as the upper envelope of M_1^+ and M_2^+, and M^- can be obtained as the lower envelope of M_1^- and M_2^-. It is well known that one can compute the union and the intersection of two convex polygons of at most n sides in time $O(n)$ ([PH], [S]). Thus, if we know $\text{conv} P_1(\ell^+), \text{conv} P_1(\ell^-), M_1^+$, and M_1^- for $i = 1, 2$, then in linear time we can determine $\text{conv} P_i(i = 1, 2), M^+$ and M^-. If any of the conditions of the Claim is not satisfied, we conclude that P does not admit a perfect cross-matching.

So one can use a divide-and-conquer algorithm to decide whether $P = P_1 \cup P_2$ admits a perfect cross-matching and, if yes, to compute it simultaneously with $\text{conv} P_i$ $(i = 1, 2), M^+$ and M^-. At each stage it takes linear time to find a ham-sandwich cut ℓ and to do the merge step.

We obtained the following.

Theorem 3. There is an $O(n \log n)$ time, $O(n)$ space algorithm which decides whether a set of $2n$ points in general position in the plane admits a perfect cross-matching and, if so, computes it.
Clearly, any decision tree that determines the perfect cross-matching of a planar point set of \(2n\) points (if it exists) has height \(\Omega(n \log n)\). In this sense Theorem 3 is asymptotically tight.

References

