Representation of planar graphs by segments

H. de Fraysseix!, P.O. de Mendez! and J. Pach?

Abstract. Given any bipartite planar graph G, one can assign vertical and horizontal
segments to its vertices so that (a) no two of them have an interior point in common, (b)
two segments have a point in common if and only if the corresponding vertices are adjacent

in G.
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1. INTRODUCTION

Let C be a collection of compact sets in the plane. The intersection graph (contact
graph) of C is defined as a graph on the vertex set C, where two members Cy,Cs € C are
connected by an edge if and only if they have a pont in common (they touch each other,
respectively). The problem of characterizing the intersection and contact graphs of various
classes of geometric objects has a vast literature. Many results of this type have direct
applications in VLSI design, in the complexity theory of algorithms and in the theory of
(nearly) perfect graphs (cf. [MP], [G], [GJ]). A particularly useful and attractive theorem
of Koebe [K] states that any planar graph is isomorphic to the contact graph of a suitable
collection of disks. However, it is not known whether every planar graph can be realized
as the intersection graph of a collection of segments.

The aim of this note is to show that any bipartite planar graph can be represented as
the contact graph of a set of segments. We say that two segments cross each other if they

have an interior point in common.

Theorem. The vertices of any bipartite planar graph can be represented by noncrossing
vertical and horizontal segments in the plane so that two segments have a point in common

if and only if the corresponding vertices are adjacent.

A multigraph is an undirected graph which may have multiple edges. It is called 2-
connected if it does not fall into two or more components by the deletion of a vertex. A
bipolar orientation of a multigraph from a vertex s to a vertex t is an orientation of the

edges with the following properties:

(a) there are no oriented cycles,
(b) s and t are the unique source (point of in-degree 0) and the unique sink (point of

out—degree 0), respectively.

It is well known and easy to prove that a multigraph has a bipolar orientation from s

to ¢ if and only if it becomes 2-connected by the addition of the edge st ([LEC], [A], [L]).



Furthermore, it is clear that such an orientation exists if and only if the vertices of the
multigraph can be linearly ordered so that s and ¢ are the smallest and largest elements,
respectively, and any other vertex has at least one smaller and at least one larger neighbor.
In the literature an ordering with these properties is usually called an st-ordering ([ET],

[E], [T], [TT], [RT], [R], [MRY]).

2. PROOF OF THEOREM

Let G be a bipartite planar map of n vertices, colored with black and white. By adding
O(n) “dummy” edges and vertices, if necessary, one can assume that every face of G is
a quadrilateral. Let b, w,b’, w’ denote the vertices of the external face listed in clockwise
order, and suppose that b is colored black.

For each internal face f of G, connect its two black vertices by an edge within f. The
collection of these edges is a multigraph G on the set of black vertices. Let G, be defined
similarly on the set of white vertices of G. Observe that every edge of Gy, is crossing exactly
one edge of G,,, and vice versa. (See Fig. 1.)

It is easy to see that G becomes 2-connected by the addition of the edge bb’, hence Gy
has a bipolar orientation CTZ from b to b’. This induces a ‘dual’ orientation G_w> of G, as

follows. For any internal face bywibawy of G (in clockwise order), let
N —
W03 € Gy <= b1bs € Gy,

—
Lemma 1. G, is a bipolar orientation of G, from w to w'.

PROOF. First we show that CTw> is acyclic. Assume for the sake of contradiction that there
is a minimal cycle in GTU,) with (say) clockwise orientation. Then all edges of C?Z would
leave the region enclosed by this cycle, implying that it contains b (the only source of CTZ)
in its interior, a contradiction.

Suppose next that GT; has a source wy # w,w’. Let wowi, Wows, ..., wowy;, be the

edges incident to wy, listed in clockwise order. (Note that the vertices w; are not necessarily
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distinct.) Each wow, belongs to a face of G, and the other diagonals of these faces form
a cycle in CTZ, which is impossible. Similarly, GTw) cannot have a sink different from w and
w'.

In order to exclude that w’ is the source and w is the sink of CTU,) , consider the internal
face f of G sitting on the edge bw. Since b is the cource of (72, the black diagonal of f
cannot be oriented towards b. By the definition of GTU,) , this implies that the white diagonal
of f is not oriented towards w. Thus w cannot be a sink. O

Let bp = b < by <by < - <bp =V, wo=w< w; <wy <-+< w, =w be
st—orderings of the black and white vertices of G' consistent to the bipolar orientations EZ

_) .
and Gy, i.e.,
bib; e Gy =1 <j and wyw; € Gy =1 <J.
Let z and y be real functions on the set of black and white vertices, respectively, such
that

z(bo) < z(b1) < -+ < z(bg), y(wo) < y(wy) < -+ < ylwy).

Assign to any black vertex b; (0 <14 < k) a vertical segment V; with endpoints

(w600, ming ) and (00, e (w)).

biwj eG bi’w]
Similarly, for any white vertex w; (0 < j <), let H; denote the horizontal segment
whose endpoints are

(,min =) and (a0, w)).

bi’ijG bZH)JEG

Note that the combinatorial structure of the arrangements of the segments V; and H;
depends only on the st-orderings of the black and white vertices but not on the actual
values of the functions z and y. It is also clear by the above definitions that, if b; and w;

are adjacent, then (z(b;),y(w;)) € V; N H;.



Lemma 2. No two segments V; and Hj; have an interior point in common. Further-
more, the segments V; (0 < i < k),H; (0 < j < l) subdivide the rectangle bounded by

Vo, Ho, Vi, Hy into smaller rectangles.

ProoF. By induction on the number vertices (segments) n =k + [ + 2.

If G has 4 vertices (bg = b,wp = w,b; = b',w; = w') then there is nothing to prove.
Assume that n > 5, and that we have already established the lemma for all bipartite planar
maps of at most n — 1 vertices, whose faces are quadrilaterials.

Suppose without loss of generality that G has at least 3 black vertices, i.e., k > 2.
Obviously m is a (possibily multiple) edge of c_:b). Let wj, < --- < wj, (t > 2) denote
the common neighbors of bx_1 and b in G. For any 1 < r <1, bg_1wj, brwj,,, is a face
of G containing the edges m € C_T'Z and m € GTU,) .

Let G* denote the bipartite planar map obtained from G by identifying by with bg_1,
and deleting w;, for every 1 < r < t. Thus, for any face of G except of by_1w;, brw;, ., (1 <

r < t), there will be a corresponding face in G*. According to this rule, we obtain the

— —
following oriented multigraphs from Gy and G,,:

V(c?,,):{bo,...,bk_l},c?b:(EZ—{bi—b;eaﬁ})u{bib—k_l’:b,-_bk’ec:andi;ék—1}

V(@):V(Gw)—{wjr:1<r<t}, G_:,):G_w)—{wjrwjr“} :1§r<t}.

ot

Obviously, G and G_i are consistent with the orderings of the black and white vertices
of G (restricted to V(Gﬁb) and V(CTZ])), respectively), hence they are bipolar orientations.
Moreover, they are dual to each other (in the sense specified before Lemma 1).

Applying the induction hypothesis to G*, we obtain that the corresponding segments
V¥ and HY (1 <k-1,5 # jrfor1 < r < t) have no interior points in common, and

they define a tiling of the rectangle bounded by Vi, Hy, Vi, H with smaller rectangles.

Observe that
V=V, forevery 0<i<k—1,

H; = H; for every j such that w;b; & G



Consider now the set of white vertices adjacent to by_; in G*. They induce an oriented

o

. = .
path P = (wp, = wo, Wh,, - - ., W, = wy) in both G,, and G, which passes through w;,

and wj,. Furthermore, in G

to both bi_1 and by if h, = j1 or h,. = j¢,
wp,, is adjacent only to bg_1 if j1 < hy < g4,
only to b if h, < 71 or hy > 3;.

Let us modify the arrangement of segments V;*, HY, as follows.

(i) Replace the rightmost vertical segment V;* | = [(z(bg—1,y(wo)), (z(br—-1,y(wi))]
by its subsegment Vi_1 = [((bk—1,y(wj,)), (x(bk—1), y(wj,))]-
(ii) Add to the arrangement Vi = [(z(bg), y(wo)) , (x(br), y(wy))].
(iii) For every h, < j; or h, > j;, extend H. 1, bo the right until it hits V. The resulting
segment is clearly Hyp, .

(iv) Add to arrangement ¢ — 2 new horizontal segments Hj,, ..., H.

js—, connecting Vi_1

and Vj.
The final configuration is clearly isomorphic to the arrangement of segments V;, H,
and forms a tiling of the rectangle bounded by Vj, Hy, Vi, H; with smaller rectan-
gles. g
To complete the proof of the theorem, it remains to show that if V;NH; # 0 then b,w; €
G. By Lemma 2, V; and H; cannot have an interior point in common. Suppose without
loss of generality that the upper endpoint of V; belongs to Hj, i.e., bilzful?écGy(wh) = y(wj).

Since all values of y are distinct, we conclude that b,w; € G, as required.

3. CONCLUDING REMARKS

Our theorem immediately implies the following result of Hartman, Newman and Ziv

[HNZ].

Corollary.. The vertices of any bipartite planar graph can be represented by vertical and

horizontal segments in the plane so that two segments cross each other if and only if the



corresponding vertices are adjacent.

Notice that there is an unusual kind of duality between the bipartite planar map G and
the tiling described in Lemma 2. There is a one-to—one correspondence between the faces
of G and the rectangles of this tiling such that if bywpb;w; is a face of G then the sides of

the corresponding rectangle belong to the segments V,, Hy, V; and H;.
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