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1. The Shifted convolution Problem (SCP)

Given ¢(z) a primitive modular form of some level D and nebentypus yp, and Hecke-
eigenvalues \,(n) the Shifted convolution problem consists in estimating non trivially the
following kind of sums: for h # 0,

S(g,li, b k) = Y Ag(m)Ay(n)V (m,n)

lim—Ilon=nh

where [;,l; > 1 and (for simplicity) V is smooth compactly supported in [M,2M] x [N,2N]
(for application one needs [, [, to be as large as (very) small power of M + ). The trivial

bound for this sum is
E(g, ll, lQ, h) <<€ (]\4]\[)E HlaX(Z\47 N)

In many applications M and N are about the same size:
The Shifted Convolution Problem (SCP): Find § > 0 s.t.

2(97 I, I, h) = Main Term(h) + O(]wl—é)7

here Main Term(h) is a main term (non-zero only if ¢ is an eisenstein series) and the remaining
terms is an error term.

Remark. If 4 = 0 this sum is essentially a Rankin/Selberg type partial sum and can be evaluate
by standard (contour shift methods) from the analytic properties of L(g X g, s).



The interesting case is when h # (. The problem goes back to Ingham with

9(2) = (‘fs (2, 8)jsmj2 = 24" log(€"y/4m) + 4y Y 7(n) cos(2mna) Ko(2mny)

n>1

with 7(n) = }_,, 1 is the divisor function. In that case the SCP is know as the Shifted Divisor

Problem.
Ingham (1927):

ZT 7(n+ h) ~ Cst(h)Nlog® N, N — 400

Remark. If h = 0,
Z 7(n)? ~ CstNPs(log N) + O(NY?), N — 40
n<N
P; a polynomial of degree 3.
Estermann (1931): Using Kloostermann’s non trivial bound of Kloostermann’s sums

> r(n)r(n+ h) ~ Pylog N)N + O(N'7V/) N — +o0

n<N

where P, is a polynomial of degree 2. Weil’s bound allows to improve the error term sub-
stantially and stronger results have been obtained by Motohashi, Jutila, Tatakjan/Vinogradov
using automorphic forms.



2. The Subconvexity Problem (ScP)

The SCP is a rather technical looking problem but it has quite substantial applications.
Given L(7, s) an automorphic representation, the L-function of 7 is given by the product of
the (finite) local L-factors

L(m,s) = H L(m,,s) = Z Ar(n)n >,

and is completed by a factor at oo

Loo(m,8) = [ [ T(s = i), Trls) = 7/1(3).

1=1

A(m,s) := Ly(m,s)L(m, s) has meromorphic continuation to C and satisfies the functional
equation

A(m, 8) = w(m)g' > 2A (7,1 — 5)
here |w,| = 1 and ¢, > 1 is the arithmetic conductor. One defines the analytic conductor of 7
(Iwaniec/Sarnak) as the following function which plays the role of a normalizing factor and a
way to measure the ”size” of 7:

d

Q?T(S) = qr H(l + |S T Mﬂ,iD'

1=1



The subconvexity problem address the question of the size of L(m, s) when s is on the crit-
ical line. Unconditionally one has the following bound which is a consequence of the func-
tional equation (and of the general theory of L-functions of pairs, plus an additional tricks of
Iwaniec)

Convexity Bound: Ve > 0, and for Res = 1/2,
L(m, s) < Qn(s)"/ .

One expects that 1/4 above can be replaced by 0 (GLH) and the SCP ask simply for any non-
trivial improvement over the convexity bound.
Subconvexity Problem (ScP): Find 0 > 0 (absolute) such that

L7, s) < Q(s)/*°.

Remarkably, this problem is meaningful (cf. Sarnak lectures in april).



Many instances of the ScP are now solved for the case of GL, GL, and G L, X G Ly L-functions
and ALL can be reduced to an instance of the SCP . Even, if some cases ad-hoc methods are
more efficient, (ie. Burgess method for L(, s) for example) these are not available in general

and reduction to the SCP via the method of families and moments is so far the most robust
method.



3. Solving the SCP I: the )-symbol method
We recall that we wish to evaluate

S(g, bl k) = Y A(m)Ag(n)V (m,n).

lim—lan=h
The main issues is to have a manageable expression for the condition
llm—lgn—h:().
A possibility is to use additive characters:
1
Ocin = . Z e(an/c)
a(c)

and for |n| < ¢,

5c|n — 511:07

so has a priori a good expression, but the problem is that is requires characters of large con-
ductor compared with the size of the variable, and this is not admissible.
Building on the fact that the set of divisors of an integer is symmetric

c|n < (n/c)|n so that either c or n/c < v/n,

Iwaniec has given an expression of ¢, in terms of additive characters of modulus < +/n.



We consider for R > 1/2 and a smooth function w such that
w € CX([-R,—R/2]U[R/2, R]), (so that w(0) = 0), w even, » w(d) =
d>1

then

and one detects the condition d|n via add1t1ve characters, this leads to
Op—p = Z Ac(n)r(n;c

where

Adx) = Z é(w(ck) — w(z/ck)) and r(n; c) = Z e(an/c)

k>1 a(c)
(a,c)=1

is the Ramanujan sum. Set N = R?/2, one see that for [n| < N, A.(n) = 0 unless ¢ <

R < /N, thus one has an expression of 9, in terms of additive character of much smaller
modulus.



Duke/Friedlander/Iwaniec used the §-symbol method to solve the SCP : from the expression
for the 0-symbol the shifted convolution sum equals

S0k = 3 z (=

e (LM)Y2  a(c)

(a,c)=1
x Z X llam 3 (228 \ ()Y (. m)Au(lam — Ion — B)

C

n

Next the m and n sums are transformed by means of a Voronoi type summation formula; for
example if ¢ holomorphic of weight &, and for (a,c) = 1 and D|c

CZAg(n)e(n%) (n) = 2mi"x,(a Z)\ ng) /000 I/V(gg)Jk_l(47T\C/@Maj

n>1 n>1




If g has level one (so that the condition D|c is always valid) an application of this formula to
each variable transform (g, [1, [3, h) into a sum of the form

Z Z Ayl )S(=lym + lyn, —h; C)V(m, n,c)

c<(LM)Y/2 m,n

where S(—lym + lyn, —h; c) is the standard Kloostermann sum and V' (m,n,c) is a double
Bessel transform. In general (when ¢ is an Eisenstein series) other terms occurs coming from

the constant term. The resolution of the SCP comes from the analysis of V' and from Weil’s
bound
S(=hm + lyn, —h; ¢) <. (—hm + Ln, —h, c)/2c/***

Remark. Any bound for the Kloostermann sum with 1/2 + ¢ replaced by § < 1 would be
sufficient to solve the SCP .



4. Application to the ScP

By means of the method of moments and the amplification method,
Duke/Friedlander/Iwaniec reduced several instances of the ScP to the SCP above: this
enabled them to prove

Theorem. (Duke/Friedlander/Iwaniec) Fix g of level 1, then for any Dirichlet character  of level
q or for any holomorphic form f of level q with trivial nebentypus, one has for Res = 1/2,

L(X X g, 8)7 L(f X g, S) <<g,]<;f q1/2_57
for some absolute § > 0. In particular, taking g = E’'(z,1/2) one has
L(f,s)" = L(f x g,5) g, %",

The limitation to level 1 is here because of the condition D|c in the Voronoi summation for-
mula. One can establish more general (but much more messy) summations formulas for g of
any level and these yield to

Theorem. (Kowalski/Michel/Vanderkam, Michel) Fix g of any level D, then for any Dirichlet
character x of modulus q or for any holomorphic form f of level q such that the conductor of the
nebentypus of ; is less than ¢'/*? for some 3 > 0, then, for Res = 1/2 one has

L(x % g,8), L(f % g,8) <gp, ¢/,

for some positive §(3) > 0.



5. Jutila’s variant of the /-symbol method

A technical problem with the d-symbol method is that one cannot impose much constraints on
the moduli c of the exponential sums. Elaborating a variant of Kloostermann’s method, Jutila
could settle this question: the starting point of the method is the identity

5n:0:/ e(nz)dx.
[0,1]

Jutila’s method consists in approximating the characteristic function of the unit interval [0, 1]
by an average of characteristic function of (overleaping) intervals of length some small pa-
rameter 20 > 0 centered at rational points of the form a/c with 1 < a < ¢, (a,c¢) = 1 where ¢
belong to some subset C of the integers < C. He showed that for any sufficiently dense subset
C C [1, C], the function 9,y well approximated by the average

1 an
%(n) = {(a,c)=1,1<a<c ceC} Z Z 6(7”5(”)

ceC a(c)
(a,c)=1

with

5
when Cislargeand C2 < 6 < CL.



This variant was used by Harcos to provide a simplified method for the ScP for twisted L-
function L(x ® g,s): by selecting the frequencies satisfying ¢ = 0(Dl;l,) (the set of such
c is dense enough since D is fixed and [;/, are small) appearing in the approximation to
Ot,m—1,n—n=0, he could avoid the advanced forms of Voronoi summation formulas and stick
with the simplest one.

We will see later some other advantages of this method.



6. Solving the SCP II: Spectral methods

In the sixties, Selberg suggested a spectral method to handle shifted convolution sums. One
suppose that ¢ is n holomorphic cusp form of weight £ and one consider the ['q(Dl;l,)-
invariant function on the upper-half plane

V(2) = (Smly2)"2g(2)(Smlyz)*2g(2).
Let Uy (z, s) be the non-holomorphic Poincare series
Un(z,s) = Z (Smyz)’e(hResyz),
YEL L\

which is absolutely convergent for tes > 1 and has meromorphic continuation to C. By the
unfolding method one finds that

I(s) := /F\HV(z)Uh(z, s)du(z) = (V,U;) = lll{é;)i;]:l_ 1)D(9,ll, lo, h; s)

where

D(g b, by his) = > Agm)r(m)(

llm—ZQn:h

\/ lllgmn )k_l 1
(

llm + lgn llm + lzn)s.



D(g by his) = > Agm)r(m)(

llm—lgn:h

\/ l1l2mn )k_l 1
(

llm + lgn llm + lgn)s.

This series is absolutely convergent for ftes > 1 and since the shifted convolution sums
¥.(g, 11,15, h) can be expressed as inverse Mellin transforms involving D(s). An analytic con-
tinuation of D(s) beyond the trivial range and a non trivial bound are sufficient to solve the
SCP .

Theorem. (Sarnak) D(s) extends analytically to Res > 1/2 + 6 and for any ¢ > 0, and
Res > 1/2+0+¢

D(S) <<€ /l1l2|8|3|h|1/2+0+5—§)%es7

where 0 is an approximation to the Ramanujan/Petersson conjecture for Maass forms of weight
0.

Remark. By Kim/Shahidi and Kim/Sarnak, § = 7/64 is available, however any fixed § < 1/2
would be sufficient for solving the SCP .



Some advantages

e This result retrieves the subconvexity bounds for L(f x ¢,s) and L(x X g,s), when g
is holomorphic, with much stronger subconvexity exponents. Using it, Sarnak and then
liu/Ye solved the ScP for Rankin/ Selberg L-functions L(f X g,s) when g is fixed and
when the spectral parameter of f goes to 400 (probably this is accessible to the d-symbol
method too).

e The quality of the subconvexity exponents is directly linked with the progress on the Ra-
manujan/Petersson conjecture.

Remark. The exponents given by the - symbol method can be obtained by taking 6 = 1/4
(Selberg-Gelbart/Jacquet bound).This is not a coincidence : the proof by Selberg of § =
1/4 used Weil’s bound for Kloostermann sums.

e This method is purely automorphic, smooth and generalizable to number fields (so far
the J-symbol method does not) cf. the works of Petridis/Sarnak and Cogdell/Piatetski-
Shapiro/Sarnak.

e Even over Q, with a supplementary input, this method enable to solve subconvexity prob-
lems not accessible to the 0-symbol type method (see below).



But one drawback...

e There are still some (hopefully purely technical) problems when g is a Maass form. In that
case, D(s) is given by changing the term

I \ k-1 1
Gmtan) 1

llm + ZQTL llm + lgn)s
into
( V\&@mn\ )Qitg < F (S—|—2itg 1+ 212, S—i—l. (lﬁlm\ — |€2n| 2 1
[6im)| + |€an)] MU0 2 T 2 N gml + [bn]” T (J6m| + [n])

In some important cases it is unclear how to relate (g, l1,ls, h) to D(g,li, 12, h;s). In
particular, for the moment one has not solved the ScP for L( f, s) by this method when the
level of f gets large. We will see how to get around this problem.



7. Sketch of the proof of Sarnak’s theorem

The method consists in expanding spectrally U, (2, s) and V (2): If {¢;} denotes an orthonor-
mal Hecke-eigen basis of Maass forms for I['y(DI;l,), one has by Plancherel

(V,U,) = Z(V, ©;){(v;,U,) + Eisenstein Spectrum.
J

The Poincare series captures the fourier coefficients of ¢;:

(s> Un) = Loo(ps )|/~ p;(h),

from the factor L (y;, s) it follows that D(s) is holomorphic for Res > 1/2 4 6. If ¢, is a

primitive form
’h|9—1/2€7rtj/2

Dyl

to conclude one a bound for (V/, ;) with an exponential decay in ¢, is needed (to compensate
the exponential factor e™i/?> above). The exponential decay was established in full general-
ity by Sarnak; later Bernstein/ Reznikov and Krotz/Stanton gave other proofs by different
representation theoretic methods:

pi(h) = £p;(1)AI72X;(|A]) <

(V, ;) = /(%mllz)m?(z)(%mlﬂ)kﬁg(z)%(z)du(z) </ Dhly(1 + [t;]) e,



8. The ScP for primitive nebentypus

An instance of the ScP that we have not addressed so far is the case where the varying form
f, has nebentypus with large conductor. This problem cannot be addressed by the methods
given so far. In the case of principal L-functions Duke/ Friedlander/Iwaniec proved the very
difficult

Theorem. (Duke/Friedlander/Iwaniec) There exists 0 > 0 such that for f a primitive form of
level q with primitive nebentypus, one has for ftes = 1/2

L(f,s) <z, ¢
The proof uses a very difficult variant of the SCP proven earlier by D/F/I. Using the spectral

method, the ScP could be solved for the following type of Rankin/Selberg L-functions:

Theorem. (Michel) There exists 6 > 0 such that for f a primitive form of level q with non-trivial
nebentypus, and g a primitive holomorphic cusp form one has for Jtes = 1/2

L(f % g,8) <09 077"



Proof. (Sketch) We note x the nebentypus of f and ¢, its conductor. This instance of the ScP
is essentially the consequence of the following variant of the SCP

Z G(h7 X)Z(ga lla l27 h) < M2_5

where M ~ N ~ g. Note first that when ¢, ~ ¢, the individual resolution of the SCP
for >(g, 11,15, h) is not sufficient to solve this variant, even under the maximal admissible
cancellation Y(g, [, Iy, h) < M?'/? because the Gauss sum equals Y(h)G(1; x) has size ,/q, ~

M2, One has to exploit the oscillation of the Gauss sums. For this the spectral method is
better adapted: expressing ¥.(g, l1,l3, h) in terms of D(g, [y, [, h, s) and expanding spectrally
the series, one see that the resolution amounts to show that

ZX << M1/2 5
h~M

which is interpreted as the ScP for L(x;, s) which was proved before ! Similarly the contri-
bution of the continuous spectrum amounts essentially to the ScP for L(x;, s)! []



9. A unification of the / and the spectral methods

It seems difficult to use the §-symbol method alone to solve the above variant of the SCP (when
f has a nebentypus with large conductor). On the other hand it is (so far) difficult to solve
the SCP by the spectral method when the fixed form ¢ is a Maass form. Fortunately, there is
a way to combine both approaches: one express each ¥(g, [1, [, h) as a sum of Kloostermann
sum using Jutila’s variant of the J-symbol method by selecting the frequencies ¢ = 0(Dl;l5):
one gets this way

>(g, 11, 1o, h) Z Z)\ —lym + len, —h; c)‘N/(m,n, c)

c¢=0(Dlyly) m,n

then one can use Kuznetzov type formulas backwards to express the above sums in term of
Fourier coefficients of modular forms on ['y(DI,l,) getting

~
~

2.2 —lim + an) py(— )V i, (1, )

+ FEisenstein spectrum + Discrete Series Spectrum.

Then one incorporate, the sum over & and reduce the problem to the ScP for the L(X X ¢;, 5)
and for the twisted L-functions of Eisenstein and Discrete series. We expect to prove the



Theorem. (Michel/Harcos-in progress) There exist 0 > 0 such that for any primitive form g
(cuspidal or Eisenstein) and for any primitive cuspidal f of level q with non-trivial nebentypus,
one has

L(f X g, S) <<g,foo q1/276-

In particular this would generalize the D/F/I theorem for L(f,s) in the g-aspect assuming
only that x is non- trivial.



10. The SCP and uniformity w.r. the parameters of ¢

So far g was considered as fixed. One may wonder how much one can solve of the SCP when
one allows the parameters of g to get closer than the main variables M, N. Here we consider
more specifically the uniformity w.r. to the level D). Some examples of this type are know
already:

Example 1. (D/F/I) Let x be a primitive character of modulus D. Let M; = My, = N; = Ny =
v D and V(z,y, z,t) be smooth compactly supported on [1/2, 1]*, then

mima—ninz

= MT(h) + O(D'""/12%)

where MT'(h) is an explicit main term. This can be related to a SCP once one has remarked
that the arithmetic function ), = ~(m,) is the m-fourier coefficient of an Eisenstein se-
ries of level D and nebentypus y. This example is in some sense the model for the (much
more complicated) SCP solved by D/F/I to handle the ScP for L(f,s) and f with primitive
nebentypus.



The second example comes from the Gross/Zagier type formulas

Example 2. (Michel/Ramakrishnan) Let ¢, D be primes, such that ¢ is inert in K :=
Q(v/—D). Let xx be the Legendre character associated to K, For 1) a character of Pic(Oy) set
ro(n)=> Nijq(A)=n X(A), the r,(n) are Fourier coefficients of a modular form g, of weight 1,

level D and nebentypus . One has

D/q

D1/2L g % f,l 2
ZTx(D — qn)ry,(n) = 0y—,"MT + Z (<}< - /2)
" fesi(a) )

and since the ScP is know for L(g, X f,1/2), the above sum equals

D/q

ZT D —qn) =6,—,,’MT + O,(D'™).

In particular when y = Y, is the trivial character it shows that the class number is well
approximated by a shifted convolution sum.



11. Uniform SCP and uniform bounds for triple prod-
ucts.

To deal with the problem of uniformity in g for the SCP (hence for the ScP ), we use the
spectral method. So in the sequel we assume that g is an holomorphic cusp form. Our main
objective is to solve new cases of the ScP for Rankin/Selberg L-function L(f X g, s).

We denote by ¢ the level of f, D the level of ¢ and we assume that both nebentypus are
trivial. To simplify the discussion, we assume that ¢, D are primes (which reduce to the two
most extreme cases ¢ = D and (¢, D) = 1). The conductor of L(f x g, s) is then Q = [q, D]*.
By the amplification method the ScP for L(f X g, s) reduces essentially to the following SCP

:M=N=,Q
Zr(h; 4, D)2(g, Iy, by, h) < [q, D]>°

ho£0

for some § > 0, uniformly for [;l, < Q100 gay;



12. Bounds for triple products

Applying the spectral method to the given SCP lead inexorably to the question of the depen-
dence in D of the triple product (V, ¢;). Sarnak’s method gives the following estimate for
T>1

> (Vieple™V? <. (DT) (i) T3 D2,

|t|<T
It is not difficult to work out the dependence in D for the method of Bernstein/Reznikov-

Krotz/Stanton; this has been done by Kowalski (the argument are general and not arithmetic):
one gets the stronger estimate

Z [V, SOJ‘H@W'M/Z <, (DT)g(lllQ)TkHD:z/z_

|t;|<T

Neither of these bounds use strongly the arithmetic nature of the situation: it is likely however
that the dependency can be much improved.



Indeed assuming /;/, = 1, that ¢; is a primitive form, formulas of Kudla/Harris, Gross/Kudla,
Bocherer/Schultze-Pillot and Watson relate the triple products to the central value of the triple
product L-function L(g X g X ¢;, s) more precisely (the precise relation in that case is due to

T. Watson)
Ag X g X ;,1/2)
A(sym?m,, 1)2A(sym2p;, 1)

(v, 90J> 9 92
‘@gﬂ<<D

The triple product L-function in that case has conductor D® and splits as

L(g x g x f,s) = L(sym®g x f,s)L(f,s).

One can then represent these central values by sums of length ~ D*(1+ |¢,|)® and ~ D'?(1 +
|t;]) respectively use Cauchy/Schwarz and the large sieve inequality of modular forms to get
a good bound. By generalization of this to the case [;/, arbritrary, one is led to the following
conjecture

Conjecture 1.

Z ’(Va Spj>‘67r|tj|/2 <. (DT)e(1112)100000Tk+1D5/4.

|t;]<T
(100000 should possibily be replaced by 1 but thisq is not important); in fact a new technique
of Bernstein/Reznikov suggest that the exponent 9/8 < 5/4 could be accessible.



Using these bounds, as well as known cases of subconvexity for L-function of lower degree,
one obtain the following:

Theorem. (Michel/Iwaniec) Assume that (q, D) are prime and distinct. Set D = ¢", if n <
(1/2—0)/(1/2 + 0), there exists 5(n) > 0 such that

L(f x g,5) < (¢D)"*™°.
Assuming Conjecture 1, if n < (1/2 — 0)/(1/4 + 60), there exists §(n) > 0 such that
L(f X 9,5) < (qD)"**
Note that for § = 7/63,
(1/2—0)/(1/2+0) =25/39 < 1 while(1/2 —6)/(1/44 0) = 25/23 > 1,

hence Conjecture 1 would be sufficient to solve the ScP when f and g are both holomorphic
have coprime and prime levels of arbitrary size .



When ¢ = D however a problem arise: for h = ¢ the Ramanujan sum degenerate to ¢(q)
and the Fourier coefficient of the Eisenstein series Fy(z,1/2 + it) at the cusp 0 is not small;
moreover the triple product (V, ¢;) is essentially equal to the symmetric square L(sym?*g, 1/2+
it). It follows that, under Conjecture 1 the ScP for L(f x g,s) follows from the ScP for
L(sym?g, s). More precisely

Theorem. Assume conjecture (1). Given g holomorphic of prime level q with trivial nebentypus,
suppose there exist 6 > 0 such that L(sym?g, s) < |s|'°°¢'/?~? on the critical line, then for any
primitive f of level q with trivial nebentypus, there exists &' > 0 such that L(f x g, s) < ¢"/*7%.

Ironically, our investigation started with the objective of solving the ScP for L(sym?g, s) by
solving it for L(g X g, s) = ((s)L(sym?g, s) as a special case of L(f X g, s).
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