
ar
X

iv
:m

at
h/

06
04

62
6v

2 
 [

m
at

h.
A

T
] 

 1
6 

Se
p 

20
06

Contemporary Mathematics

Rational Homotopy Theory:

A Brief Introduction
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Abstract. These notes contain a brief introduction to rational homotopy
theory: its model category foundations, the Sullivan model and interactions
with the theory of local commutative rings.
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Introduction

This overview of rational homotopy theory consists of an extended version of
lecture notes from a minicourse based primarily on the encyclopedic text [18] of
Félix, Halperin and Thomas. With only three hours to devote to such a broad
and rich subject, it was difficult to choose among the numerous possible topics to
present. Based on the subjects covered in the first week of this summer school,
I decided that the goal of this course should be to establish carefully the founda-
tions of rational homotopy theory, then to treat more superficially one of its most
important tools, the Sullivan model. Finally, I provided a brief summary of the ex-
tremely fruitful interactions between rational homotopy theory and local algebra,
in the spirit of the summer school theme “Interactions between Homotopy Theory
and Algebra.” I hoped to motivate the students to delve more deeply into the
subject themselves, while providing them with a solid enough background to do so
with relative ease.

As these lecture notes do not constitute a history of rational homotopy theory,
I have chosen to refer the reader to [18], instead of to the original papers, for the
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2 KATHRYN HESS

proofs of almost all of the results cited, at least in Sections 1 and 2. The reader
interested in proper attributions will find them in [18] or [24].

The author would like to thank Chris Allday, Luchezar Avramov, Srikanth
Iyengar, Mike Mandell and Jonathan Scott, as well as the anonymous referee, for
their helpful comments on an earlier version of this article.

Basic notation and terminology. We assume in this chapter that the reader
is familiar with the elements of the theories of simplicial sets and of model categories.
As references we recommend [13] or [25] or the chapter of these lecture notes by
Paul Goerss [20].

In this chapter, sSet and Top are the categories of simplicial sets and of topo-
logical spaces, respectively. Furthermore, | · | : sSet → Top denotes the geometric
realization functor, while S• : Top → sSet denotes its right adjoint, the singular
simplices functor.

If K is a simplicial set, then C∗(K) and C∗(K) denote its normalized chain
and cochain complexes, respectively. If X is a topological space, then the singular
chains and cochains on X are S∗(X) := C∗

(
S•(X)

)
and S∗(X) := C∗

(
S•(X)

)
.

A morphism of (co)chain complexes inducing an isomorphism in (co)homology

is called a quasi-isomorphim and denoted
≃
−→.

A graded vector space is said to be of finite type if it is finite dimensional in
each degree. A CW-complex is of finite type if it has finite number of cells in each
dimension.

Given a category C and two objects A and B in C, we write C(A, B) for the
class of morphisms with source A and target B.

1. Foundations

For the sake of simplicity, we work throughout these notes only with simply
connected spaces. Many of the results presented hold for connected, nilpotent
spaces as well.

1.1. Rationalization and rational homotopy type. Let H̃∗ denote re-
duced homology.

Definition 1.1. A simply connected space X is rational if the following, equiv-
alent conditions are satisfied.

(1) π∗X is a Q-vector space.

(2) H̃∗(X ; Z) is a Q-vector space.

(3) H̃∗(ΩX ; Z) is a Q-vector space.

To prove the equivalence of these conditions, one begins by observing that
H∗(K(Q, 1); Fp) ∼= H∗(pt.; Fp) for all primes p. An inductive Serre spectral sequence
argument then shows that H∗(K(Q, n); Fp) ∼= H∗(pt.; Fp) for all primes p and all
n ≥ 1. The equivalence of conditions (1) and (2) for an arbitrary X then follows
from an inductive argument on the Postnikov tower of X . On the other hand, the
equivalence between conditions (2) and (3) can be easily verified by a Serre spectral
sequence argument.

Example 1.2. For any n ≥ 2, let ιn,k denote the homotopy class of the inclusion
of Sn as the kth summand Snk of

∨
k≥1 Snk . The rational n-sphere is defined to be
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the complex

(Sn)0 :=

( ∨

k≥1

Snk

) ⋃( ∐

k≥2

Dn+1
k

)
,

where Dn+1
k+1 is attached to Snk ∨ Snk+1 via a representative Sn → Snk ∨ Snk+1 of

ιn,k − (k + 1)ιn,k+1. The rational n-disk is then

(Dn+1)0 := (Sn)0 × I/(Sn)0 × {0}.

Let

X(r) :=

( ∨

1≤k≤r

Snk

) ⋃( ∐

2≤k≤r−1

Dn+1
k

)
.

It is clear that for all r, Snr is a strong deformation retract of X(r), which implies
that Hk X(R) = 0 if k 6= 0, n. Furthermore, the homomorphism induced in reduced
homology by the inclusion X(r) →֒ X(r + 1) is multiplication by r + 1. Since
homology commutes with direct limits and (Sn)0 = lim

→
X(r),

H̃∗

(
(Sn)0; Z) =

{
Q : k = n
0 : else.

Definition 1.3. A pair of spaces (X, A) is a relative CW0-complex if X =⋃
n≥1 X(n), where

(1) X(1) = A;
(2) for all n ≥ 1, there is a pushout

∐
α∈Jn

(Sn)0

incl.

��

∐
α
fα

// X(n)

��∐
α∈Jn

(Dn+1)0 // X(n + 1);

(3) X has the weak topology, i.e., U ⊂ X is open in X if and only if U ∩X(n)
is open in X(n) for all n.

The pairs
(
(Sn)0, S

n
)

and
(
(Dn+1)0, D

n+1
)

are the fundamental examples of
relative CW0-complexes.

Note that if A is a rational space and (X, A) is a relative CW0-complex, then
X is rational as well.

Definition 1.4. Let X be a simply connected space. A continuous map ℓ :
X → Y is a rationalization of X if Y is simply connected and rational and

π∗ℓ ⊗ Q : π∗X ⊗ Q −→ π∗Y ⊗ Q ∼= π∗Y

is an isomorphism.

Observe that a map ℓ : X → Y of simply connected spaces is a rationalization
if and only if H∗(ℓ; Q) is an isomorphism and Y is rational.

The inclusions of Sn into (Sn)0 and of Dn+1 into (Dn+1)0 are rationalizations.
The rationalization of an arbitrary simply connected space, as constructed in the
next theorem, generalizes these fundamental examples.
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Theorem 1.5. Let X be a simply connected space. There exists a relative
CW-complex (X0, X) with no zero-cells and no one-cells such that the inclusion
j : X → X0 is a rationalization. Furthermore, if Y is a simply connected, rational
space, then any continuous map f : X → Y can be extended over X0, i.e., there is
a continuous map g : X0 → Y , which is unique up to homotopy, such that

X
f

//

j
  B

BB
BB

BB
B Y

X0

g

>>}}}}}}}}

commutes.

Proof. We provide only a brief sketch of the proof. We can restrict to the
case where X is a 1-reduced CW-complex. The rationalization X0 can then be
constructed as a CW0-complex with rational n-cells in bijection with the n-cells of
X , for all n. The attaching maps of X0 are obtained by rationalizing the attaching
maps of X . The complete proof can be found in [18, Theorem 9.7]. �

Continuing in the same vein, one can show that such a cellular rationalization
is unique up to homotopy equivalence, relative to X .

Given a continous map ϕ : X → Y between simply connected spaces, we let
ϕ0 : X0 → Y0 denote the induced map between their rationalizations, the existence
and uniqueness (up to homotopy) of which are guaranteed by Theorem 1.5.

Definition 1.6. The rational homotopy type of a simply connected space X
is the weak homotopy type of its rationalization X0.

Definition 1.7. A continuous map ϕ : X → Y between simply connected
spaces is a rational homotopy equivalence if the following, equivalent conditions are
satisfied.

(1) π∗(ϕ) ⊗ Q is an isomorphism.
(2) H∗(ϕ; Q) is an isomorphism.
(3) H∗(ϕ; Q) is an isomorphism.
(4) ϕ0 : X0 → Y0 is a weak homotopy equivalence.

To simplify computations, it is common in rational homotopy theory to restrict
to the class of spaces defined by the following proposition, the proof of which is in
[18, Theorem 9.11].

Proposition 1.8. For any simply connected space X, there is a CW-complex
Z and a rational homotopy equivalence ϕ : Z → X such that

(1) H∗(X ; Q) is of finite type if and only if Z is of finite type; and
(2) if dimQ H∗(X ; Q) < ∞, then H∗(X ; Q) = H≤N (X ; Q) if and only if Z is

a finite CW-complex of dimension at most N .

Definition 1.9. A simply connected space X is of finite rational type if con-
dition (1) of Proposition 1.8 is satisfied.

We can now finally specify clearly the subject presented in these notes.

Rational homotopy theory is the study of rational ho-

motopy types of spaces and of the properties of spaces

and maps that are invariant under rational homotopy

equivalence.
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For further information on rationalization, the reader is refered to Section 9 of
[18].

1.2. The passage to commutative cochain algebras. We show in this
section that the category of rational homotopy types of simply connected, finite-type
spaces and of homotopy classes of maps between their representatives is equivalent
to an appropriately defined homotopy category of commutative differential graded
algebras over Q.

The algebraic category and its homotopy structure. We begin by a rather careful
introduction to the algebraic category in which the Sullivan model of a topological
space lives.

A commutative differential graded algebra (CDGA) over Q is a commutative
monoid in the category of non-negatively graded, rational cochain complexes (cf.,
[20]). In other words, a CDGA is a cochain complex (A∗, d) over Q, endowed with
cochain maps

η : Q −→ (A∗, d),

called the unit, and

µ : (A∗, d) ⊗Q (A∗, d) −→ (A∗, d) : a ⊗ b 7→ a · b,

called the product, such that

(1) µ is graded commutative, i.e., if a ∈ Ap and b ∈ Aq, then a ·b = (−1)pqb ·a;
(2) µ is associative; and
(3) µ(η ⊗ IdA) = IdA = µ(IdA ⊗ η).

Observe that since µ is a morphism of chain complexes, the differential on a CDGA
satisfies the Leibniz rule, i.e., if a ∈ Ap and b ∈ Aq, then

d(a · b) = da · b + (−1)pa · db.

Let r ∈ N. A CDGA A is r-connected if A0 = Q and Ak = 0 for all 0 < k < r+1.
A morphism of CDGA’s f : (A∗, d, µ, η) → (Ā∗, d̄, µ̄, η̄) is a cochain map such

that fµ = µ̄(f ⊗ f) and fη = η̄. The category of CDGA’s over Q and their
morphims is denoted CDGAQ.

To simplify notation, we frequently write either A or (A, d) to denote (A∗, d, µ, η).
Furthermore, henceforth in these notes, the notation ⊗ means ⊗Q.

In rational homotopy theory, CDGA’s with free underlying commutative, graded
algebra play an essential role. Given a non-negatively graded vector space V =
⊕i≥0V

i, let ΛV denote the free, commutative, graded algebra generated by V , i.e.,

ΛV = S[V even] ⊗ E[V odd],

the tensor product of the symmetric algebra on the vectors of even degree and of
the exterior algebra on the vectors of odd degree. Given a basis {vj | j ∈ J} of V ,
we often write Λ(vj)j∈J for ΛV . We also write ΛnV to denote the set of elements
of ΛV of wordlength n.

A homomorphism of commutative, graded algebras ϕ : ΛV → A is determined
by its restriction to V , as is any derivation of commutative, graded algebras δ :
ΛV → A. In particular, the differential d of a CDGA (ΛV, d) is determined by its
restriction to V .

More generally, the following class of CDGA morphisms is particularly impor-
tant in rational homotopy theory.
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Definition 1.10. A relative Sullivan algebra consists of an inclusion of CDGA’s
(A, d) → (A⊗ΛV, d) such that V has a basis {vα | α ∈ J}, where J is a well-ordered
set, such that dvβ ∈ A⊗ ΛV<β for all β ∈ J , where Vβ is the span of {vα | α < β}.
A relative Sullivan algebra is minimal if

α < β =⇒ deg vα ≤ deg vβ .

A (minimal) relative Sullivan algebra (ΛV, d) extending (A, d) = (Q, 0) is called a
(minimal) Sullivan algebra.

Remark 1.11. If V 0 = 0 = V 1, then (ΛV, d) is always a Sullivan algebra and
is minimal if and only if dV ⊂ Λ≥2V , the subspace of words of length at least two.

Example 1.12. The CDGA (Λ(x, y, z), d), where x, y and z are all of degree 1
and dx = yz, dy = zx and dz = yx, is an example of a CDGA with free underlying
graded algebra that is not a Sullivan algebra.

Recall from Example 1.7 and (a slight modification of) Example 3.4(1) in [20]
that the category Ch

∗(Q) of non-negatively graded cochain complexes over Q ad-
mits a cofibrantly generated model category structure in which

(1) weak equivalences are quasi-isomorphisms;
(2) fibrations are degreewise surjections; and
(3) cofibrations are degreewise injections, in positive degrees.

The set of generating acyclic cofibrations is

J = {jn : 0 → D(n) | n ≥ 1}

where

D(n)k =

{
Q : k = n − 1, n
0 : else

and d : D(n)n−1 → D(n)n is the identity map. The set I of generating cofibrations
consists of the inclusions

in : S(n) → D(n) for n ≥ 1 and i0 : 0 → S(0), i′0 : S(0) → 0,

where

S(n)k =

{
Q : k = n
0 : else.

Consider the pair of adjoint functors

Λ : Ch∗(Q) ⇄ CDGAQ : U,

where Λ is the “free commutative cochain algebra” functor satisfying Λ(C, d) =
(ΛC, d̄), where d̄ is the derivation extending d, and U is the forgetful functor. It
is not difficult, as indicated in Example 3.7 in [20], to show that this adjoint pair
satisfies the hypotheses of Theorem 3.6 of [20].

There is thus a cofibrantly generated model structure on CDGAQ, with gen-
erating cofibrations and acyclic cofibrations

I = {Λin, Λi′0 | n ≥ 0} and J = {Λjn | n ≥ 1},

where Λ(0) := Q. Let I − cell denote the smallest class of morphisms in CDGAQ

that contains I and that is closed under coproducts, cobase change and sequential
colimits. It is easy to see that I−cell is exactly the class of relative Sullivan algebras.
In this model structure on CDGAQ, weak equivalences are quasi-isomorphisms,
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and fibrations are degreewise surjections. Cofibrations are retracts of relative Sul-
livan algebras. All CDGA’s are fibrant, and the Sullivan algebras are the cofibrant
CDGA’s.

The next result, which is the Lifting Axiom of model categories in the specific
case of CDGAQ, is an important tool in rational homotopy theory.

Proposition 1.13 (The Lifting Lemma). Let

(A, d)

i

��

f
// (B, d)

p

��
(A ⊗ ΛV, D)

g
// (C, d)

be a commuting diagram in CDGAQ, where i is a relative Sullivan algebra and p is
a surjection. If i or p is a quasi-isomorphism, then g lifts through p to an extension
of f , i.e., there exists a CDGA map h : (A⊗ΛV, D) → (B, d) such that hi = f and
ph = g. Furthermore, any two lifts are homotopic relative to (A, d).

We can describe homotopy of CDGA morphisms with source a Sullivan algebra
in terms of the following path objets. Let I denote the CDGA D(1), where the
generators of degrees 0 and 1 are called t and y, respectively. Let ε0 : I → Q and
ε1 : I → Q denote the augmentations specified by ε0(t) = 0 and ε1(t) = 1.

Proposition 1.14. Let (ΛV, d) be a Sullivan algebra. Two CDGA morphisms
f, g : (ΛV, d) → (A, d) are homotopic if and only if there is a CDGA morphism
H : (ΛV, d) → (A, d) ⊗ I such that (IdA ⊗ ε0)H = f and (IdA ⊗ ε1)H = g.

A careful, degree-by-degree version of the proof of the Small Object Argument
(Theorem 3.5 in [20]) establishes the following useful result.

Proposition 1.15. Any morphism f : (A, d) → (B, d) in CDGAQ can be
factored as

(A ⊗ ΛU, D)

p

&&MMMMMMMMMM

(A, d)

i

≃

88qqqqqqqqqq
f

//

j
&&MMMMMMMMMM

(B, d)

(A ⊗ ΛV, D)

q

≃

88qqqqqqqqqq

where i and j are relative Sullivan algebras, and p and q are surjections.

If we are willing to sacrifice surjectivity of q, we can obtain minimality of j,
again via a degree-by-degree construction.

Proposition 1.16. Any morphism f : (A, d) → (B, d) in CDGAQ can be
factored as

(A, d)
f

//

ι
&&MMMMMMMMMM

(B, d)

(A ⊗ ΛW, D)

ϕ

≃

88qqqqqqqqqq
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where ι is a relative Sullivan algebra and ϕ is a quasi-isomorphism. In particular,
if H0 A ∼= Q, H1 A = 0 and H∗ B is of finite type, then W is of finite type and
W = W≥2.

Definition 1.17. The quasi-isomorphism ϕ : (A ⊗ ΛW, D)
≃
−→ (B, d) is a

relative Sullivan minimal model of f : A → B. A Sullivan minimal model of the

CDGA (B, d) is a relative Sullivan minimal model ϕ : (ΛW, d)
≃
−→ (B, d) of the unit

map η : (Q, 0) → (B, d).

It is very convenient to know that (relative) Sullivan minimal models are unique
up to isomorphism, which is an immediate consequence of the following proposition.

Proposition 1.18. Suppose that

(A, d)

i

��

f

∼=
// (B, d)

j

��
(A ⊗ ΛV, D)

f̂

≃
// (B ⊗ ΛW, D)

is a commuting diagram in CDGAQ, where i and j are minimal relative Sullivan

algebras, f is an isomorphism and f̂ is a quasi-isomorphism. Then f̂ is also an
isomorphism.

The proof of this proposition reduces to showing that if a CDGA endomorphism
of a minimal relative Sullivan algebra (B ⊗ ΛW, D) that fixes B is homotopic to
the identity, then it is equal to the identity.

The functors. We now explain the passage from topology to algebra, starting
with the relationship between simplicial sets and CDGA’s.

Definition 1.19. The algebra of polynomial differential forms, denoted A∗
•, is

the simplicial CDGA given by

A
∗
n =

(
Λ(t0, ..., tn; y0, ..., yn)/Jn, d

)
,

where deg ti = 0 and dti = yi for all i and Jn is the ideal generated by {1 −∑n
i=0 ti,

∑n
j=0 yj}. The faces and degeneracies are specified by

∂i : A
∗
n −→ A

∗
n−1 : tk 7→





tk : k < i
0 : k = i

tk−1 : k > i

and

si : A
∗
n −→ A

∗
n+1 : tk 7→





tk : k < i
tk + tk+1 : k = i

tk+1 : k > i.

The terminology used in this definition is justified by the following observa-
tion. Let ΩDR(∆n) be the cochain algebra of smooth forms on ∆n, the standard
topological n-simplex. Then

ΩDR(∆n) = C∞(∆n) ⊗A0
n

A
∗
n,

where the cochain algebra morphisms induced by the topological face inclusions
and degeneracy maps agree with ∂i and si.
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Definition 1.20. Let A∗ : sSet → CDGAQ be the functor specified by
A∗(K) = sSet(K, A∗

•), with product and differential defined objectwise. For any
topological space X , let APL(X) := A∗

(
S•(X)

)
, which we call the CDGA of

piecewise-linear de Rham forms on X .

Since A∗(K) is a commutative algebra for every simplicial set K, while C∗(K; Q)
usually is not, we cannot expect to be able to define a natural quasi-isomorphism
of cochain algebras directly from the former to the latter. However, as explained
below, there is a cochain map between them that is close to being an algebra ma

Given f ∈ An(K), i.e., f : K → An• , and x ∈ Kn, write

f(x) = f̂(x)dt1 · · · dtn,

so that f̂(x) ∈ Q[t1, ..., tn], the ring of polynomials in t1, ..., tn with coefficients in
Q. Define a graded linear map

∮
: A∗(K) → C∗(K; Q) by

( ∮
f
)
(x) =

∫

∆n

f̂(x)dt1 · · · dtn.

Theorem 1.21 (The Polynomial Stokes-De Rham Theorem). The map
∮

is a
map of cochain complexes, inducing an isomorphism of algebras in cohomology.

The proof of this theorem, which can be found in [10], Theorem 2.2 and Corol-
lary 3.4, proceeds by methods of acyclic models.

Theorem 1.21 can in fact be strengthened: as proved in Proposition 3.3 in [10],
the cochain map

∮
is actually a strongly homotopy multiplicative map, in the sense

of, e.g., Gugenheim and Munkholm [21].
To compare the homotopy theory of CDGA’s and of simplicial sets via the

functor A∗, we need A∗ to be a member of an adjoint pair. We construct its
adjoint as follows.

Definition 1.22. Let K• : CDGAQ → sSet be the functor specified by
K•(A) = CDGAQ(A, A∗

•), with faces and degeneracies defined objectwise.

Let sCDGAQ denote the category of simplicial CDGA’s. Given any CGDA A
and any simplicial set K, we can form a simplicial CDGA, denoted A × K, where
the underlying graded CDGA is the tensor product of copies of A, indexed over the
simplices of K. Furthermore, there are natural isomorphisms

CDGAQ

(
A, sSet(K, A∗

•)
)
∼= sCDGAQ(A × K, A∗

•)
∼= sSet

(
K,CDGAQ(A, A∗

•)
)
,

i.e.,
CDGAQ

(
A,A∗(K)

)
∼= sSet

(
K,K•(A)

)
.

We therefore have an adjoint pair

A∗ : sSet ⇄ CDGA
op
Q : K•,

which Bousfield and Gugenheim proved to be a Quillen pair in Section 8 of [10].

Definition 1.23. The composite functor

CDGAQ

K•
%%K

KK
KKK

KK
KK

<−>
// Top

sSet

|−|

;;wwwwwwww

is called spatial realization.
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Let (ΛV, d) be any Sullivan algebra. Let η : Id → A∗ ◦ K• be the unit of the
adjoint pair above, and let ε : S• ◦ | − | → Id be the counit of the adjoint pair
(S•, | − |). Consider the commuting diagram

Q

��

// APL

(
< (ΛV, d) >

)

≃ APL(εK•(ΛV,d))

��
(ΛV, d)

η(ΛV,d)
// A∗

(
K•(ΛV, d)

)
.

Since (ΛV, d) is a Sullivan algebra and APL(εK•(ΛV,d)) is a surjective quasi-isomorphism,
the Lifting Lemma (Proposition 1.13) can be applied to this diagram, establishing
the existence of a CDGA morphism m(ΛV,d) : (ΛV, d) → APL

(
< (ΛV, d) >

)
,

unique up to homotopy, lifting η(ΛV,d).

Theorem 1.24. If (ΛV, d) is a simply connected Sullivan algebra of finite type,
then

(1) m(ΛV,d) : (ΛV, d) → APL

(
< (ΛV, d) >

)
is a quasi-isomorphism; and

(2) < (ΛV, d) > is a simply connected, rational space of finite type, such that
there is an isomorphism of graded, rational vector spaces

π∗

(
< (ΛV, d) >

)
∼= homQ(V, Q).

We refer the reader to Section 17 of [18] for the details of the proof of this
extremely important theorem.

To complete the picture, we need to specify the relationship between spatial
realization and homotopy of morphisms.

Theorem 1.25. Let (ΛV, d) and(ΛW, d) be simply connected Sullivan algebras
of finite type.

(1) Let f : (ΛV, d) → (ΛW, d) be a CDGA morphism. Then

(ΛV, d)

m(ΛV,d) ≃

��

f
// (ΛW, d)

m(ΛW V,d) ≃

��
APL

(
< (ΛV, d) >

) APL

(
<f>

)
// APL

(
< (ΛW, d) >

)

commutes up to homotopy.
(2) Two CDGA morphisms f, g : (ΛV, d) → (ΛW, d) are homotopic if and

only if < f > and < g > are homotopic.
(3) Let α : X → Y be a continuous map between simply connected CW-

complexes of finite type. If there is a homotopy-commutative diagram of
CDGA’s

(ΛV, d)

ϕ ≃

��

f
// (ΛW, d)

ψ

��
APL(Y )

APL(α)
// APL(X),
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then there is a homotopy-commutative diagram of topological spaces

X

β

��

α // Y

γ

��
< (ΛW, d) >

<f>
// < (ΛV, d) >

in which π∗(β) ⊗ Q and π∗(γ) ⊗ Q are isomorphisms.

Again, we refer the reader to Section 17 of [18] for the proof of this theorem.

Corollary 1.26. (1) Rational homotopy types of simply connected spaces
of finite rational type are in bijective correspondence with isomorphism
classes of minimal Sullivan algebras.

(2) Homotopy classes of continuous maps between simply connected, finite-
type rational spaces are in bijective correspondence with homotopy classes
of morphisms between simply connected, finite-type Sullivan algebras.

We are now ready to introduce one of the very most important tools in rational
homotopy theory.

Definition 1.27. The Sullivan minimal model of a simply connected topologi-
cal space of finite rational type is the unique (up to isomorphism) Sullivan minimal
model of its algebra of piecewise-linear de Rham forms

ϕ : (ΛV, d)
≃
−→ APL(X).

As a consequence of Theorems 1.24 and 1.25, if ϕ : (ΛV, d)
≃
−→ APL(X) is a

Sullivan minimal model, then there is an isomorphism of graded, rational vector
spaces

homQ(V, Q) ∼= π∗(X) ⊗ Q.

In other words, given a Sullivan minimal model of a space, we can read off the
nontorsion part of its homotopy groups from the generators of the model.

2. Sullivan models

Since the CDGA APL(X) is huge and has a complicated product, rational
homotopy theorists prefer to carry out computations with the Sullivan minimal
model, which is free as an algebra, with only finitely many generators in each
dimension if X is of finite rational type. In this section, we provide a brief overview
of the power of the Sullivan model. We begin by providing a few explicit examples
of Sullivan minimal models. We then explore the relationship between topological
fibrations and the Sullivan model. In particular, we explain the slogan “the Sullivan
model of fiber is the cofiber of the Sullivan model” and illustrate its application.
A classical and essential numerical homotopy invariant, Lusternik-Schnirelmann
category, is our next subject: its elementary properties, how to calculate it using
the Sullivan model and its additivity. Finally, we present the beautiful and striking
rational dichotomy of finite CW-complexes, the proof of which depends crucially
on Lusternik-Schnirelmann category.

2.1. Examples and elementary construction. As a warmup and an aid to
developing the reader’s intuition, we calculate a few explicit examples of Sullivan
models. Here, a subscript on a generator always indicates its degree.
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Spheres. The Sullivan model of an odd sphere S2n+1 is

ϕ : (Λ(x2n+1), 0) −→ APL(S2n+1),

where ϕ(x) is any representative of the unique cohomology generator of degree
2n + 1. Since ϕ is obviously a quasi-isomorphism of CDGA’s, the nontorsion and
positive-degree part of π∗S

2n+1 is concentrated in degree 2n+1, where it is of rank
1.

On the other hand, the Sullivan model of an even sphere S2n is

ϕ : (Λ(y2n, z4n−1), d) −→ APL(S2n),

where dz = y2 and ϕ(y) represents the unique cohomology generator of degree 2n.
Since the square of ϕ(y) must be a boundary, there is an acceptable choice of ϕ(z).
Again, ϕ is clearly a quasi-isomorphism of CDGA’s, implying that the nontorsion
part of π∗S

2n is concentrated in degrees 2n and 4n − 1 and that it is of rank 1 in
each of those degrees.

Complex projective spaces. From the long exact sequences in homotopy of the
fibrations

S1 −→ S2n+1 −→ CPn

and

S1 −→ S∞ −→ CP∞,

and the computation above of π∗S
2n+1 ⊗ Q, we conclude that

π∗CPn ⊗ Q = Q · u2 ⊕ Q · x2n+1 and π∗CP∞ ⊗ Q = Q · u2.

Consequently, the Sullivan model of CPn is of the form

ϕ :
(
Λ(u2, x2n+1), d

)
−→ APL(CPn),

where dx = un+1, ϕ(u) represents the algebra generator of H∗(CPn; Q), which is a
truncated polynomial algebra on a generator of degree 2, and ϕ(x) kills its (n+1)st

power. The value of dx is nonzero since H∗(CPn; Q) is zero in odd degrees.
The Sullivan model for CP∞ is even easier to specify since there can be no

nontrivial differential. It is

ϕ : (Λ(u), 0) −→ APL(CP∞),

where ϕ(u) represents the algebra generator of H∗(CP∞; Q), which is a polynomial
algebra on a generator of degree 2

Products. Let (B,⊗) and (C,⊗) be monoidal categories. Recall that a functor
F : (B,⊗) → (C,⊗) is lax monoidal if for all B, B′ ∈ ObB, there is a natural
morphism F (B) ⊗ F (B′) → F (B ⊗ B′) that is appropriately compatible with the
associativity and unit isomorphisms in (B,⊗) and (C,⊗).

It is easy to see that APL is a lax monoidal functor, via the natural quasi-
isomorphism αX,Y , defined to be the composite

APL(X) ⊗APL(Y )
APL(p1)⊗APL(p2)
−−−−−−−−−−−−→ APL(X × Y ) ⊗APL(X × Y )

µ
−→ APL(X × Y ),

where pi is projection onto the ith component, and µ is the product on APL(X×Y ).
Given Sullivan models ϕ : (ΛV, d) → APL(X) and ϕ′ : (ΛV ′, d′) → APL(X ′),

the Sullivan model of the product space X × X ′ is given by

(ΛV, d) ⊗ (ΛV ′, d′)
ϕ⊗ϕ′

−−−→ APL(X) ⊗APL(X ′)
αX,X′

−−−−→ APL(X × X ′).
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Formal spaces. A space is formal if its rational homotopy is a formal conse-
quence of its rational cohomology, in the sense of the following definition.

Definition 2.1. A rational CDGA A is formal if there is a zigzag of quasi-
isomorphisms of CDGA’s

A •
≃oo ≃ // H∗(A).

A space X is formal if APL(X) is a formal CDGA.

From the previous examples, we see that spheres and complex projective spaces
are formal. Furthermore, products of formal spaces are clearly formal. We can also
show that wedges of formal spaces are formal, as follows.

Given a set of augmented CDGA’s {Aj | j ∈ J}, let
∏↓
j∈J Aj denote their

fibered product, i.e., their categorical product in the overcategory CDGAQ ↓ Q.
Recall furthermore that for any family of well-pointed spaces {Xj | j ∈ J} there is
a weak equivalence ∨

j∈J

S•(Xj)
≃
−→ S•(

∨

j∈J

Xj),

which induces a quasi-isomorphism

A∗
(
S•(

∨

j∈J

Xj)
) ≃
−→ A∗

( ∨

j∈J

S•(Xj)
)
,

since A∗ is the the left member of a Quillen pair and therefore preserves weak
equivalences between cofibrant objects. It follows that

APL(
∨

j∈J

Xj) = A∗
(
S•(

∨

j∈J

Xj)
)
≃ A∗

(∨

j∈J

S•(Xj)
)

∼=
∏

j∈J

↓A∗
(
S•(Xj)

)
=

∏

j∈J

↓APL(Xj).

Since a fibered product of formal CDGA’s is clearly formal, we obtain that a wedge
of formal spaces is formal, too.

Further examples of formal spaces can be found in geometry. Given a com-
pact, connected Lie group G, let K denote the connected component of its neutral
element e, in the subgroup of elements fixed by a given involution. The quotient
G/K, which is a symmetric space, is then a formal space, as proved in [11]. Further-
more, Deligne, Griffiths, Morgan and Sullivan showed in [12] that compact Kähler
manifolds are also formal.

It is easy to construct an example of a nonformal CDGA. Let A = (Λ(u, v, w), d),
where |u| = |v| = 3 and |w| = 5 and where dw = uv. Then

Hn(A) =





Q : n = 0, 11

Q ⊕ Q : n = 3, 8

0 : else,

where the classes in degree 8 are represented by uw and vw and the class in degree
11 by uvw. If ϕ : A → H∗(A) is a CDGA map, then ϕ(w) = 0 for degree reasons,
which implies that ϕ(uw) = 0 = ϕ(vw), since ϕ is an algebra map. Consequently,
ϕ cannot be a quasi-isomorphism.
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2.2. Models of fiber squares. The Sullivan model is especially well adapted
to studying fibrations. In particular, as expressed more precisely in the next theo-
rem, “the Sullivan model of a fiber is the cofiber of the model.”

Theorem 2.2. Let p : E → B be a Serre fibration such that B is simply
connected and E is path connected. Let F denote the fiber of p. Suppose that B or
F is of finite rational type.

(1) Given a Sullivan model µ : (ΛV, d) → APL(B), let

(ΛV, d)
APL(p)◦µ

//

ι
''NNNNNNNNNNN

APL(E)

(ΛV ⊗ ΛW, D)

µ′

≃

77ooooooooooo

be a factorization of APL(p) ◦ µ as a relative Sullivan algebra, followed by
a quasi-isomorphism. Let (ΛW, D) = Q ⊗(ΛV,d) (ΛV ⊗ ΛW, D), and let

µ′′ : (ΛW, D) //APL(F ) denote the induced map. Then µ′′ is a quasi-
isomorphism, i.e., there is a commuting diagram in CDGAQ

(ΛV, d)

µ≃

��

ι // (ΛV ⊗ ΛW, D)

µ′≃

��

ρ
// (ΛW, D)

µ′′

��
APL(B)

APL(p)
// APL(E)

APL(j)
// APL(F )

where ρ is the quotient map and j is the inclusion ma
(2) Given a Sullivan model µ : (ΛV, d) //APL(B) and a Sullivan minimal

model µ′′ : (ΛW, d) //APL(F ) , there is a relative Sullivan algebra

ι : (ΛV, d) −→ (ΛV ⊗ ΛW, D)

such that (ΛW, d) ∼= Q⊗(ΛV,d) (ΛV ⊗ΛW, D) and a quasi-isomorphism of
cochain algebras

µ′ : (ΛV ⊗ ΛW, D) //APL(E)

such that the diagram in (1) commutes, i.e., E has a Sullivan model that
is a twisted extension of a Sullivan model of the base by a Sullivan model
of the fiber.

We refer the reader to Proposition 15.5 in [18] for the proof of the theorem
above. We remark only that the minimality of (ΛW, d) in (2) is absolutely essential.

Example 2.3. Let ΩSn //PSn
p

//Sn be the based path-space fibration,

where n is odd. Let µ : (Λu, 0) //APL(Sn) be the Sullivan model of Sn, and

consider the relative Sullivan algebra (Λu, 0) //(Λ(u, v), d) , where |v| = n − 1
and dv = u. The cochain algebra (Λ(u, v), d) is clearly acyclic, as is APL(PSn),
which implies that APL(p) ◦ µ extends over (Λ(u, v), d) to a quasi-isomorphism of
cochain algebras µ′ : (Λ(u, v), d) //APL(PSn) . By Theorem 2.2, the induced

cochain algebra map µ′′ : (Λv, 0) //APL(ΩSn) is a quasi-isomorphism, which
implies that H∗(ΩSn; Q) ∼= Q[v], when n is odd.
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More generally, consider the based path-space fibration ΩX //PX
p

//X ,

where X is a simply connected space. Suppose that µ : (ΛV, d) //APL(X) is a
Sullivan model of X .

Using notation that is standard in rational homotopy theory, let V be the
graded Q-vector space that is the suspension of V , i.e., V

n
= V n+1. Let S be the

derivation of Λ(V ⊕ V ) specified by S(v) = v̄ and S(v̄) = 0 for all v ∈ V . Define(
Λ(V ⊕ V ), D

)
by Dv̄ = −S(dv), which implies that Dv̄ ∈ ΛV ⊗ Λ+V , i.e., each

summand of Dv̄ contains at least one factor from V . The CDGA
(
Λ(V ⊕V ), D

)
is

easily seen to be acyclic.
We can now define a morphism of CDGA’s

µ′ :
(
Λ(V ⊕ V ), D

)
→ APL(PX)

by setting µ′(v) = µ(v) for all v ∈ V and µ′(v̄) = 0 for all v̄ ∈ V and extending
multiplicatively. Since both the source and the target of µ are acyclic, µ′ is a quasi-
isomorphism. We have therefore constructed a commutative diagram of CDGA’s

(ΛV, d)

µ ≃

��

ι //
(
Λ(V ⊕ V ), D

)

µ′ ≃

��
APL(X)

p
// APL(PX)

to which we can apply Theorem 2.2. The induced morphism of CDGA’s

µ′′ : (ΛV , 0) //APL(ΩX)

is therefore a quasi-isomorphism, so that H∗(ΩX ; Q) ∼= ΛV .

Theorem 2.2 is a consequence of the following, more general result concerning
fiber squares, for which the slogan is “the model of the pullback is the pushout of
the models.”

Theorem 2.4. Let p : E → B be a Serre fibration, where E is path connected
and B is simply connected, with fiber F . Let f : X → B be a continuous map, where
X is simply connected. Suppose that B or F is of finite rational type. Consider the
pullback

E ×
B

X f̄
//

p̄

��

E

p

��
X

f
// B.

Given a commuting diagram of CDGA’s

(ΛU, d)

≃ ν

��

(ΛV, d)
ϕ

oo ι //

≃ µ

��

(ΛV ⊗ ΛW, D)

≃ µ′

��
APL(X) APL(B)

APL(f)
oo APL(p)

// APL(E),
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consider the pushout diagram in CDGAQ

(ΛV, d)

ι

��

ϕ
// (ΛU, d)

��
(ΛV ⊗ ΛW, D) // (ΛU ⊗ ΛW, D̄).

Then the induced map of cochain algebras

(ΛU ⊗ ΛW, D̄) // APL(E ×
B

X)

is a quasi-isomorphism of CDGA’s.

We again refer the reader to [18] for the proof of this theorem, in the guise of
their Proposition 15.8.

Example 2.5. Let X be a simply connected space of finite rational type, with
Sullivan model ϕ : (ΛV, d) //APL(X) . Consider the free-loop pullback square

LX

e

��

j
// XI

p

��
X

∆ // X × X,

where ∆ is the diagonal map and where p(λ) =
(
λ(0), λ(1)

)
for all paths λ : I → X .

The free loop space LX is thus {λ ∈ XI | λ(0) = λ(1)}, which is homeomorphic to

XS1

, the space of unbased loops on X .
It is easy to check that

(ΛV, d) ⊗ (ΛV, d)

ϕ̂≃

��

m // (ΛV, d)

ϕ≃

��
APL(X × X)

APL(∆)
// APL(X)

commutes, where m is the multiplication map on (ΛV, d) and ϕ̂ is the composite

(ΛV, d) ⊗ (ΛV, d)
ϕ⊗ϕ
−−−→ APL(X) ⊗APL(X)

αX,X

−−−→ APL(X × X).

Furthermore

(ΛV, d) ⊗ (ΛV, d)

ϕ̂≃

��

ι // (Λ(V ′ ⊕ V ′′ ⊕ V ), D)

Φ≃

��
APL(X × X)

APL(p)
// APL(XI)

commutes as well, where ι is a relative Sullivan algebra (V ′ and V ′′ are two copies
of V ), Φ is an appropriate extension of ϕ̂ and D is specified as follows.

Let S : Λ(V ′ ⊕ V ′′ ⊕ V ) −→ Λ(V ′ ⊕ V ′′ ⊕ V ) be the derivation of degree −1
specified by S(v′) = v̄ = S(v′) and S(v̄) = 0. Then

D(v̄) := v′′ − v′ −
∑

n≥1

(SD)n

n!
(v′).
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Applying Theorem 2.4 we obtain as a Sullivan model of LX
(
Λ(V ⊕ V ), D) ∼= (ΛV, d) ⊗

(ΛV,d)⊗2
(Λ(V ′ ⊕ V ′′ ⊕ V ), D),

i.e., D(v̄) = −S(dv), where S(v) = v̄ and S(v̄) = 0.
Sullivan and Vigué used this model to prove that if H∗(X ; Q) requires at least

two algebra generators, then the rational Betti numbers of H∗(LX ; Q) grow expo-
nentially, which implies in turn that X admits an infinite number of distinct closed
geodesics, when X is a closed Riemannian manifold [33].

It is well known (cf., e.g., [28]) that H∗(LX ; Z) ∼= HH∗

(
C∗(X ; Z)

)
, the Hoch-

schild homology of the cochains on X . The Sullivan model of the free loop space
constructed above is thus also a tool for understanding Hochschild homology.

2.3. Lusternik-Schnirelmann category. One of the most spectacular suc-
cesses of the Sullivan minimal model has been in its application to studying and
exploiting the numerical homotopy invariant known as Lusternik-Schnirelmann (L.-
S.) category.

Definition 2.6. A categorical covering of a space X is an open cover of X
such that each member of the cover is contractible in X . The L.-S. category of a
topological space X , denoted catX , is equal to n if the cardinality of the smallest
categorical covering of X is n + 1.

L.-S. category is in general extremely difficult to compute. It is trivial, however,
to prove that the L.-S. category of a contractible space is 0 and that catSn = 1 for
all n. Similarly, the L.-S. category of any suspension is 1. More generally, a space
X is a co-H-space if and only if catX ≤ 1.

The proof of this last equivalence is most easily formulated in terms of an
equivalent definition of L.-S. category, which requires the following construction,
due to Ganea.

Definition 2.7. Let p : E −→ X be a fibration over a based topological space
(X, x0). Let j : F →֒ E denote the inclusion of the fiber of p over x0, with mapping
cone Cj . Let p̂ : Cj −→ X denote the induced continuous map, which can be
factored naturally as a homotopy equivalence followed by a fibration:

Cj
≃ // E′

p′
// // X.

There is then a commutative diagram

E //

p
  @

@@
@@

@@
@ E′

p′~~}}
}}

}}
}}

X

called the fiber-cofiber construction on p.
Let p : PX −→ X denote the (based) path fibration over X . Iterating the

fiber-cofiber construction repeatedly leads to a commutative diagram

P0X = PX

p

��

// P1X

p1

xxrrrrrrrrrrr

// P2X

p2

ttjjjjjjjjjjjjjjjjjjjj
// · · · // PnX

pn

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee // · · ·

X,
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in which PnX is the nth Ganea space for X and pn is the nth Ganea fibration.

Proposition 2.8. If X is a normal space, then catX ≤ n if and only if the
fibration pn admits a section.

For a proof of this proposition, we refer the reader to Proposition 27.8 in [18].
Another equivalent definition of the L.-S. category of a based space (X, x0) is

expressed in terms of the fat wedge on X

T nX := {(x1, ..., xn) ∈ Xn | ∃ i such that xi = x0}.

Proposition 2.9. If X is a path-connected CW-complex, then the following
conditions are equivalent.

(1) catX ≤ n.

(2) The iterated diagonal ∆(n) : X //Xn+1 factors up to homotopy through

the fat wedge T (n+1)X, i.e., there is a map δ : X //T n+1X such that
the diagram

X

δ

##G
GG

GG
GG

GG
∆(n)

// Xn+1

T n+1X

i

99ttttttttt

commutes up to homotopy.

We refer the reader to Proposition 27.4 in [18] for the proof of this equivalence.
Applying Proposition 2.9, we obtain the following useful upper bound on L.-S.

category (cf., Proposition 27.5 in [18]).

Corollary 2.10. If X is an (r − 1)-connected CW-complex of dimension d,
where r ≥ 1, then catX ≤ d/r.

On the other hand, a lower bound on catX is given by the cuplength c(X) of
H∗(X ; Q), i.e, the greatest integer n such that there exist a1, ..., an ∈ H∗(X ; Q)
satisfying a1∪· · ·∪an 6= 0. We leave it as an easy exercise to prove that c(X) ≤ catX
for all path-connected, normal spaces X .

Example 2.11. Observe that c(CPn) = n, so that catCPn ≥ n. On the other
hand, CPn is 1-connected and of dimension 2n, implying that cat CPn ≤ 2n/2 = n.
Thus, cat CPn = n.

Within the realm of rational homotopy theory, it makes sense to consider the
following invariant derived from L.-S. category.

Definition 2.12. The rational category of a simply connected space X , de-
noted cat0 X , is defined by

cat0 X := min{catY | X and Y have the same rational homotopy type}.

As proved in [18] (Proposition 28.1), if X is a simply connected CW-complex,
then cat0 X = catX0. Furthermore, it is obvious that cat0 X ≤ catX for all X .
As we show below, this inequality is sharp, i.e., there are spaces X for which
cat0 X = catX . On the other hand, the inequality can certainly be strict, as the
case of a mod p Moore space easily illustrates.

The next theorem has turned out to be a crucial tool in proving numerous
significant results in rational homotopy theory, such as many of the dichotomy
theorems (cf., Section 2.4).
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Theorem 2.13 (The Mapping Theorem). Let f : X −→ Y be a continuous map
between simply connected spaces. If π∗f ⊗ Q is injective, then cat0 X ≤ cat0 Y .

The original proof of the Mapping Theorem relied on Sullivan models. There is
now a purely topological and relatively simple proof, which is given in [18] (Theorem
28.6).

As a first application of the Mapping Theorem, we mention the amusing and
useful corollary below, which follows immediately from the fact that the natural
map from the (n+1)st Postnikov fiber to the nth Postnikov fiber of a space induces
an injection on homotopy groups.

Corollary 2.14. Let X be a connected CW-complex. Let X(n) denote the
nth Postnikov fiber of X, for all n ≥ 1. Then

· · · ≤ cat0 X(n + 1) ≤ cat0 X(n) ≤ · · · ≤ cat0 X(2) ≤ cat0 X.

One great advantage of rational category, as opposed to the usual L.-S. category,
is that it can explicitly calculated in terms of the Sullivan model, as stated in the
next theorem.

Theorem 2.15. Let ϕ : (ΛV, d)
≃ //APL(X) be the Sullivan minimal model

of a simply connected space X of finite rational type. Let (ΛV/Λ>nV, d̄) denote the
CDGA obtained by taking the quotient of (ΛV, d) by the ideal of words of length
greater than n, and let

(2.1) (ΛV, d)
q

//

i
''NNNNNNNNNNN

(ΛV/Λ>nV, d̄)

(Λ(V ⊕ W ), d)

p

≃

66mmmmmmmmmmmm

be a factorization of the quotient map q as a relative Sullivan algebra, followed by
a surjective quasi-isomorphism. Then cat0X ≤ n if and only if i admits a CDGA
retraction ρ : (Λ(V ⊕ W ), d) //(ΛV, d) , i.e., ρi = Id(ΛV,d).

The fat wedge formulation of the definition of L.-S. category is crucial in the
proof of this theorem, for which we refer the reader to Propositions 29.3 and 29.4
in [18].

Example 2.16. Since Hn(Sn; Q) = Q, the rationalization Sn0 of the n-sphere
is not contractible and therefore cat0 Sn = catSn0 > 0. On the other hand,
cat0 Sn ≤ catSn = 1, whence cat0 Sn = 1, providing the promised example of
equality between rational category and L.-S. category of a space.

This calculation can also be carried out easily using the Sullivan model (cf.,
Section 2.1). If n is odd, then the Sullivan model is (Λ(x), 0), where x is of degree
n. Observe that Λ(x)/Λ>1(x) is isomorphic to Λ(x), since x is of odd degree. Since
the quotient map q is itself the identity map in this case, it follows trivially that
cat0 Sn ≤ 1.

If n is even, the relevant Sullivan model is (Λ(y, z), d), where deg y = n, deg z =
2n− 1 and dz = y2. An easy calculation shows that

(Λ(y, z)/Λ>1(y, z), d̄) = (Q ⊕ Q · y ⊕ Q · z, 0).
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It is not too difficult to show that the quotient map q factors as

(Λ(y, z), d)
q

//

i
((QQQQQQQQQQQQQ

(Q ⊕ Q · y ⊕ Q · z, , 0)

(Λ(y, z) ⊗ ΛW, D)

p

≃

55jjjjjjjjjjjjjjj

where DW ⊂ Λ(y, z)⊗Λ+W , i.e., the differential of any generator of W , if nonzero,
is a sum of words, all of which contain at least one letter from W . We can therefore
define a CDGA retraction ρ by setting ρ(w) = 0 for all w ∈ W , implying that
cat0 Sn ≤ 1.

Though Theorem 2.15 does simplify the calculation of rational category by
making it purely algebraic, the computations involved are still difficult, which led
Halperin and Lemaire to propose the following, apparently weaker numerical in-
variant of rational homotopy [23].

Definition 2.17. Let X be a simply connected space of finite rational type,

with Sullivan model ϕ : (ΛV, d)
≃ //APL(X). If the map i in diagram (2.1) of

Theorem 2.15 admits a retraction as morphisms in the category of (ΛV, d)-modules,
then Mcat0 X ≤ n.

As it turned out, however, the apparent weakness of Mcat0 was only an illusion.

Theorem 2.18. Mcat0 X = cat0 X for all simply connected spaces X of finite
rational type.

For the proof of this theorem, which requires a deep understanding of the
factorization of the quotient map, we refer the reader to Theorem 29.9 in [18].

Theorem 2.18 implies that to show that cat0 X ≤ n, it suffices to find a (ΛV, d)-
module retraction of i in diagram (2.1), which has proven to be a very effective
simplification. We next outline briefly one application of this simplification, to the
study of the additivity of L.-S. category.

It is not difficult to show that cat(X×Y ) ≤ catX +catY for all normal spaces
X and Y . At the end of the 1960’s Ganea observed that in the only known examples
for which cat(X × Y ) 6= catX + catY , the spaces X and Y had homology torsion
at distinct primes. He conjectured therefore that cat(X × Sn) = catX + 1 for all
spaces X and all n ≥ 1, since Sn has no homology torsion whatsoever.

In fact, as stated precisely below, if we forget torsion completely and work
rationally, then L.-S. category is indeed additive.

Theorem 2.19. If X and Y are simply connected topological spaces of finite
rational type, then cat0(X × Y ) = cat0 X + cat0 Y.

The proof of this theorem depends in an essential way on Theorem 2.18. We
refer the reader to Sections 29(h) and 30(a) in [18] for further details.

As an epilogue to this story of Sullivan minimal models and L.-S. category, we
mention that in 1997 Iwase applied classical homotopy-theoretic methods to the
construction of a counter-example to Ganea’s conjecture [26]. In particular, he
built a 2-cell complex X such that cat(X × Sn) = 2 = catX .
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2.4. Dichotomy. There is a beautiful dichotomy governing finite CW-com-
plexes in rational homotopy theory, expressed as follows: the rational homotopy
groups of a finite CW-complex either are of finite total dimension as graded rational
vector space or grow exponentially. We first examine the former case, that of elliptic
spaces, then the latter case, that of hyperbolic spaces.

Definition 2.20. A simply connected topological space X is rationally elliptic
if

dim H∗(X ; Q) < ∞ and dimπ∗(X) ⊗ Q < ∞.

The formal dimension fdimX of a rationally elliptic space X is defined by

fdimX := max{k | Hk(ΛV, d) 6= 0}.

The even exponents of a rationally elliptic space X are the postive integers a1, ..., aq
such that there is a basis (yj)1≤j≤q of πevenX ⊗ Q with deg yj = 2aj. Similarly,
the odd exponents of X are the positive integers b1, ..., bp such that there is a basis
(xi)1≤i≤p of πoddX ⊗ Q with deg xi = 2bi − 1.

A minimal Sullivan algebra (ΛV, d) is elliptic if the associated rational space
< (ΛV, d) > is elliptic. The formal dimension of an elliptic minimal Sullivan algebra
is the formal dimension of the associated space.

Example 2.21. Spheres, complex projective spaces, products of elliptic spaces,
and homogeneous spaces are examples of elliptic spaces.

The following special case of elliptic spaces is important for understanding
general elliptic spaces.

Definition 2.22. A minimal Sullivan algebra (ΛV, d) is pure if dimV < ∞,
d|V even = 0 and d(V odd) ⊆ ΛV even. A space is pure if its Sullivan model is pure.

Note that a pure space X is elliptic if and only if dim H∗(X ; Q) < ∞.
A pure Sullivan algebra (ΛV, d) admits a differential filtration

Fk(ΛV, d) = ΛV even ⊗ Λ≤kV odd.

In particular, dFk(ΛV, d) ⊂ Fk−1(ΛV, d). Write

Hk(ΛV, d) =
ker

(
d : Fk(ΛV, d) −→ Fk−1(ΛV, d)

)

Im
(
d : Fk+1(ΛV, d) −→ Fk(ΛV, d)

) .

The following list of the most important properties of pure Sullivan algebras
summarizes Propositions 32.1 and 32.2 in [18].

Proposition 2.23. Let (ΛV, d) be a pure, minimal Sullivan algebra..

(1) dimH∗(ΛV, d) < ∞ ⇔ dimH0(ΛV, d) < ∞.

(2) If dimH∗(ΛV, d) < ∞, then Hn(ΛV, d) is a 1-dimensional subspace of
Hr(ΛV, d), where n is the formal dimension of (ΛV, d) and r = max{k |
Hk(ΛV, d) 6= 0}.

(3) If dim H∗(ΛV, d) < ∞, then r = dimV odd − dimV even. Thus,

dimV odd = dimV even ⇔ H∗(ΛV, d) = H0(ΛV, d).
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(4) If dimH∗(ΛV, d) < ∞ and (ΛV, d) is a Sullivan minimal model of X, then

fdimX =
∑

i

(2bi − 1) −
∑

j

(2aj − 1),

where the even and odd exponents of X are a1, .., aq and b1, ..., bp, respec-
tively.

We present next a tool for determining whether spaces are elliptic, based on
the notion of pure spaces.

Definition 2.24. Let (ΛV, d) be a minimal Sullivan algebra such that dimV <
∞. Filter (ΛV, d) by

Fp(ΛV, d) =
⊕

k+l≥p

(ΛV even ⊗ ΛkV odd)l.

The induced spectral sequence is called the odd spectral sequence and converges to
H∗(ΛV, d).

Observe that the E0-term of the odd spectral sequence is the associated graded
of (ΛV, dσ), where dσ(V

even) = 0, dσ(V
odd) ⊆ ΛV even and (d − dσ)(V

odd) ⊆
ΛV even⊗Λ+V odd. We call (ΛV, dσ) the associated pure Sullivan algebra of (ΛV, d).

Proposition 2.25. Under the hypotheses of the definition above,

dimH∗(ΛV, d) < ∞ ⇔ dimH∗(ΛV, dσ) < ∞.

Thus, (ΛV, d) is elliptic if and only if (ΛV, dσ) is elliptic.

Proof. As the odd spectral sequence converges from H∗(ΛV, dσ) to H∗(ΛV, d),
one implication is clear. An algebraic version of the Mapping Theorem (Theorem
2.13) plays an essential role in the rest of the proof. We refer the reader to Propo-
sition 32.4 in [18] for the complete proof. �

Example 2.26. Consider (ΛV, d) = (Λ(a2, x3, u3, b4, v5, w7), d), where the sub-
script of a generator equals its degree and d is specified by da = 0, dx = 0, du = a2,
db = ax, dv = ab − ux and dw = b2 − vx. Its associated pure Sullivan algebra is
(Λ(a, x, u, b, v, w), dσ), where dσa = 0, dσx = 0, dσu = a2, dσb = 0, dσv = ab and
dσw = b2. A straightforward calculation shows that

H∗(ΛV, dσ) = Q · a ⊕ Q · b ⊕ Λy/(y3) ⊕ Λz/(z3),

where y is represented by bu − av and z is represented by aw − bv. In particular
dimH∗(ΛV, dσ) < ∞, which implies that (ΛV, d) is elliptic.

The next theorem describes the amazing numerology of elliptic spaces and
Sullivan algebras, which imposes formidable constraints on their form.

Theorem 2.27. Let (ΛV, d) be an elliptic, minimal Sullivan algebra of formal
dimension n and with even and odd exponents a1, ..., aq; b1, ..., bp. Then:

(1)
∑p

i=1(2bi − 1) −
∑q

j=1(2aj − 1) = n;

(2)
∑q

j=1 2aj ≤ n;

(3)
∑p

i=1(2b1 − 1) ≤ 2n − 1; and

(4) dimV even ≤ dim V odd.
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As a consequence of this theorem, we know, for example, that if (ΛV, d) is
an elliptic, minimal Sullivan algebra of formal dimension n, then V = V ≤2n−1,
dimV >n ≤ 1 and dimV ≤ n.

Proof. One first proves by induction on dimV that the formal dimensions of
(ΛV, d) and of its associated pure Sullivan algebra are the same, reducing the proof
of the theorem to the pure case. For further details, we refer the reader to Theorem
32.6 in [18]. �

Definition 2.28. The Euler-Poincaré characteristic of a graded vector space
W of finite type is the integer

χW =
∑

i

(−1)i dimW i = dimW even − dimW odd.

It is easy to show that χW = χH∗(W,d), for any choice of differential d on W .

Proposition 2.29. If (ΛV, d) is an elliptic, minimal Sullivan algebra, then
χΛV ≥ 0 and χV ≤ 0. Furthermore, the following statements are equivalent.

(1) χΛV > 0.

(2) H∗(ΛV, d) = Heven(ΛV, d).

(3) H∗(ΛV, d) = Λ(y1, ..., yq)/(u1, ..., up), where (u1, ..., up) is a regular se-
quence.

(4) (ΛV, d) is isomorphic to a pure, minimal Sullivan algebra.

(5) χV = 0.

Proof. The proof of this proposition reduces essentially to Poincaré series
calculations. We refer the reader to Proposition 32.10 in [18] for details of the
calculations. �

Definition 2.30. Let X be an elliptic space with minimal Sullivan model
(ΛV, d). The homotopy Euler characteristic χπ(X) of X is defined to be χV .

Propostion 2.29 implies that χπ(X) ≤ 0 for all elliptic spaces X and that
χπ(X) = 0 if and only if X is a pure elliptic space.

Example 2.31 (Application to free torus actions (Example 3 in section 32(e)
of [18])). Let T denote the r-torus, i.e., the product of r copies of S1. Suppose that
T acts smoothly and freely on a simply connected, compact, smooth manifold M .
There exists then a smooth principal bundle M −→ M/T and thus a classifying
map M/T −→ BT with homotopy fiber M .

If M is elliptic, then M/T is also elliptic, since M/T is compact and BT =
(CP∞)r. Furthermore,

0 ≥ χπ(M/T ) = χπ(M) + χπ(BT ) = χπ(M) + r,

implying that r ≤ −χπ(M).

Now we go to the other extreme.

Definition 2.32. A simply connected space X with the homotopy type of a
finite CW-complex is rationally hyperbolic if dimπ∗(X) ⊗ Q = ∞.

The following theorem, which justifies the terminology “hyperbolic,” is Theo-
rem 33.2 in [18]. Its proof depends strongly on the Mapping Theorem (Theorem
2.13).
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Theorem 2.33. If X is a rationally hyperbolic space, then there exist C > 1
and N ∈ Z such that

n∑

i=0

dimπi(X) ⊗ Q ≥ Cn

for all n ≥ N .

In other words, the rational homotopy groups of X grow exponentially. More-
over, as stated more precisely in the next theorem (Theorem 33.3 in [18]), there
are no “long gaps” in the rational homotopy groups of X .

Theorem 2.34. If X is a rationally hyperbolic space of formal dimension n,
then for all k ≥ 1, there exists i ∈ (k, k + n) such that πiX ⊗ Q 6= 0. Furthermore,
for k ≫ 0,

k+n−1∑

i=k+1

dim πi(X) ⊗ Q ≥
dimπkX ⊗ Q

dimH∗(X ; Q)
.

Consequently, if X has formal dimension n, then

X is rationally elliptic ⇔ πj(X) ⊗ Q = 0 ∀j ∈ [2n, 3n− 2],

a simple and lovely test of ellipticity.

3. Commutative algebra and rational homotopy theory

In the late 1970’s two algebraists, Luchezar Avramov, then at the University
of Sofia, and Jan-Erik Roos of the University of Stockholm, discovered and began
to exploit a deep connection between local algebra and rational homotopy theory.
In 1981 they established contact with the rational homotopy theorists, initiating
a powerful synergy that led to a multitude of important results in both fields. In
this section, of a more expository nature than the preceding sections, we describe
certain of the most important results of this collaboration. For further details we
refer the reader to Section 4 of [24].

Roos’ interest in rational homotopy theory was inspired by work of Jean-Michel
Lemaire on Serre’s question concerning rationality of Poincaré series of the rational
homology of loop spaces and by the work of local algebraists on the analogous
question of Kaplansky and Serre for local rings. More precisely, Lemaire had studied
the Poincaré series ∑

n≥0

dimQ Hn(ΩE; Q) · zn

for E a finite, simply connected CW-complex, while local algebraists were interested
in the series ∑

n≥0

dimF ExtnR(F, F) · zn

for R a local ring with residue field F. (Here and throughout this section, all local
rings are assumed to be commutative and noetherian.) In both cases, the goal was
to determine whether the series always represented a rational function.

Roos established a research program to study the homological properties of local
rings, in particular those whose maximal ideal m satisfied m3 = 0, the first nontrivial
case for Poincaré series calculations. He realized that in order to study local rings,
it was useful, or even necessary, to work in the larger category of (co)chain algebras.
By 1976 he had proved the equivalence of Serre’s problem for CW-complexes E such
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that dimE = 4 and of the Kaplansky-Serre problem for local rings (R, m) such that
m3 = 0 [31].

Avramov ascribes his original interest in rational homotopy theory to Levin’s
result from 1965 that if R is a local ring with residue field F, then TorR(F, F) is
a graded, divided powers Hopf algebra [27]. Since the dual of a graded, divided
powers Hopf algebra is the universal enveloping algebra of a uniquely defined graded
Lie algebra (char F = 0 [30], char F > 2 [1], char F = 2 [32]), to any local ring R is
associated a graded Lie algebra π∗(R), the homotopy Lie algebra of R. Based on
results in characteristic 0 due to Gulliksen in the late 1960’s, Avramov proved that
if R −→ S is a homomorphism of local rings such that S is R-flat, then there is an
exact sequence of groups

... → π
n
R −→ π

n(S ⊗R F) −→ π
n(S) −→ π

n(R)
δ

n

−−→ π
n+1(S ⊗R F) −→ π

n+1
S → ....

The existence of such a long exact sequence of homotopy groups confirmed Av-
ramov’s intuition that rational homotopy invariants were analogous to homology
invariants of local rings in arbitrary characteristic.

In 1980 David Anick constructed a finite, simply connected CW-complex E of
dimension ≤ 4 such that the Poincaré series of the homology of ΩE was not rational
[2], [3]. Anick’s construction interested rational homotopy theorists because of its
relation to the dichotomy between elliptic and hyperbolic spaces; see Section 2.4.
Local algebraists were interested because of Roos’s result, which allowed the tran-
scription of Anick’s space into a local ring (R, m) with m3 = 0 and with irrational
Poincaré series. Shortly after Anick’s result became known, Roos and his student
Clas Löfwall discovered other examples of local rings with irrational Poincaré series
that they obtained by completely different methods [29].

The converging interests of rational homotopy theorists and of local algebraists
led to direct contact between the two groups in 1981. Inspired by the work of Roos
and his colleagues, Félix and Thomas began to work on calculating the radius of
convergence of the Poincaré series of a loop space [19], establishing the following
beautiful characterization: a simply connected space E of finite L. -S. category is
rationally elliptic if and only if the radius of convergence of the Poincaré series of
ΩE is 1. If E is rationally hyperbolic, then the radius of convergence is strictly less
than 1. Moreover, they found a relatively easily computable upper bound for the
radius of convergence in the case of a hyperbolic, formal space. They also showed
that if A is a noetherian, connected graded commutative algebra over a field F of
characteristic zero and ρA denotes the radius of convergence of

PA(z) =
∑

n≥o

dimF TorAn (F, F) · zn,

then either ρA = +∞ and A is a polynomial algebra; or ρA = 1, A is a complete
intersection, and the coefficients of PA(z) grow polynomially; or ρA < 1, A is not a
complete intersection, and the coefficients of PA(z) grow exponentially. Avramov
later generalized this result to any characteristic [6].

The written version of Avramov’s Luminy talk on the close links between local
algebra and rational homotopy theory provides an excellent and thorough introduc-
tion to the subject [7]. His article contains the first “dictionary” between rational
homotopy theory and local algebra, explaining how to translate notions and tech-
niques from one field to the other. Given a theorem in one field, applying the
dictionary leads to a statement in the other field that stands a reasonable chance
of being true, though the method of proof may be completely different.
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Avramov and Halperin wrote another thorough introduction to the subject in
the proceedings of the Stockholm conference of 1983 [8]. It begins at a more ele-
mentary level than the survey article of Avramov in the proceedings of the Luminy
conference, leading the reader from first principles of differential graded homolog-
ical algebra to notions of homotopy fiber and loop space and on to the homotopy
Lie algebra.

In his introductory article [7], Avramov emphasized the importance of minimal
models in local ring theory. If KR is the Koszul complex of a local ring, then there
is a minimal, commutative cochain algebra (ΛV, d) over the residue field of R that
is quasi-isomorphic to KR. Avramov called (ΛV, d) the minimal model of R. He
established its relevance by observing that in degrees greater than 1, the graded
Lie algebra derived from (ΛV, d2) is isomorphic to the homotopy Lie algebra of R.

In [17] Félix, Halperin, and Thomas continued the in-depth study of the ho-
motopy Lie algebra of a rationally hyperbolic space begun by Félix and Halperin in
[14]. They showed, for example, that if E is rationally hyperbolic, then its ratio-
nal homotopy Lie algebra is not solvable. Moreover they proposed as conjectures
translations of their theorems into local algebra, where, for a local ring (R, m) with
residue field F, L.-S. category is replaced by dimF(m/m2) − depthR and infinite
dimensional rational homotopy is replaced by R not being a complete intersection.
Recall that

depthR = inf{j | ExtjR(F, R) 6= 0}.

In [17] Félix, Halperin and Thomas also mentioned a very important conjecture
due to Avramov and Félix, stating that the homotopy Lie algebra of a rationally
hyperbolic space should contain a free Lie algebra on at least two generators. This
conjecture has motivated much interesting work in the study of the homotopy Lie
algebra and has not as yet (2006) been proved.

Using minimal model techniques, Halperin and Bøgvad proved two conjectures
due to Roos, which are “translations” of each other [9]. They showed that

(1) if R is a local ring such that the Yoneda algebra Ext∗R(F, F) is noetherian,
then R is a complete intersection; and

(2) if E is a simply connected, finite CW-complex such that the Pontryagin
algebra H∗(ΩE; Q) is noetherian, then E is rationally elliptic.

Their proof is based on a slightly weakened form of the Mapping Theorem that
holds over a field of any characteristic, as well as on ideas from the article of Félix,
Halperin and Thomas of the previous year [17].

In the spring of 1985 Halperin applied minimal model techniques to answering
on old question concerning the deviations of a local ring [22]. The jth deviation,
ej(R), of a noetherian, local, commutative ring R with residue field F is dimF πj(R).
Assmus had shown in 1959 that R is a complete intersection if and only if ej(R) = 0
for all j > 2 [4], raising the question of whether any deviation could vanish if R
were not a complete intersection. Halperin succeeded in answering this question,
showing that if R is not a complete intersection, then ej 6= 0 for all j.

The Five Author paper [15] represents a great leap forward in understanding
the structure of the homotopy Lie algebra of a space or of a local ring. The principal
innovation of the Five Author paper consists in exploiting the radical of the homo-
topy Lie algebra, i.e., the sum of all of its solvable ideals, which rational homotopy
theorists had begun to study in 1983. The radical itself is in general not solvable.
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Recall, as mentioned above, that the rational homotopy Lie algebra of a rationally
hyperbolic space is not solvable.

Expressed in topological terms, the main theorem of the Five Author paper
states that if E is a simply connected CW-complex of finite type and cat(E) =
m < ∞, then the radical of the homotopy Lie algebra, Rad(E) is finite dimensional
and dimRad(E)even ≤ m. This is a consequence of two further theorems, both
of which are of great interest themselves. The first concerns the relations among
the rational L.-S. category of a space and the depth and global dimension of its
homotopy Lie algebra. Recall that the gobal dimension of a local ring R with
residue field F satisfies

gl. dim.(R) = sup{j | ExtjR(F, F) 6= 0}.

The precise statement of this theorem in topological terms is then that if L is the
homotopy Lie algebra of a simply-connected CW-complex of finite type E, then
either

depthUL < cat0(E) < gl. dim. UL

or

depth UL = cat0(E) = gl. dim. UL.

The second theorem states that under the same hypotheses, if depth UL < ∞, then
Rad(E) is finite dimensional and satisfies dimRad(E)even ≤ depthUL. Moreover,
if dimRad(E)even = depthUL, then Rad(E) = L.

Rational homotopy theorists have exploited extensively the results of [15] in
developing a deep understanding of the homotopy Lie algebra of rationally hyper-
bolic spaces. The methods the five authors devised to prove their results have
turned out to be extremely important as well. For example, since their goal was
to relate cat0(E) to depth(L), they needed to construct a model of the quotient
cochain algebra (ΛV/Λ>nV, d̄), where (ΛV, d) is the Sullivan minimal model of E.

Their method for doing so, based on perturbation of a model for (ΛV/Λ>nV, d2),
proved to be useful in a number of other circumstances, such as in the proof of
Theorem 2.18.
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