000129261 001__ 129261
000129261 005__ 20190415234800.0
000129261 020__ $$a978-0-444-82375-5
000129261 0247_ $$2doi$$a10.1016/B978-044482375-5/50028-6
000129261 037__ $$aBOOK_CHAP
000129261 245__ $$aA history of rational homotopy theory
000129261 269__ $$a1999
000129261 260__ $$bElsevier Science B.V.$$c1999
000129261 336__ $$aBook Chapters
000129261 520__ $$aRational homotopy theory is the study of topological spaces “modulo torsion”. When rational homotopy theorists calculate algebraic invariants of a topological space, such as its homotopy or homology groups, they retain only the nontorsion information. Algebraic models of topological spaces are the most important tools of the rational homotopy theorist.
000129261 700__ $$0240499$$aHess, Kathryn$$g105396
000129261 720_1 $$aJames, I.M.$$eed.
000129261 773__ $$q757-796$$tHistory of Topology
000129261 909C0 $$0252139$$pUPHESS$$xU10968
000129261 909CO $$ooai:infoscience.tind.io:129261$$pbook$$pchapter$$pSV
000129261 917Z8 $$x148230
000129261 937__ $$aGR-HE-CHAPTER-2008-002
000129261 973__ $$aEPFL$$sPUBLISHED
000129261 980__ $$aCHAPTER