000129258 001__ 129258
000129258 005__ 20190316234423.0
000129258 0247_ $$2doi$$a10.1016/j.comgeo.2007.05.003
000129258 037__ $$aARTICLE
000129258 245__ $$aDrawing cubic graphs with at most five slopes
000129258 269__ $$a2008
000129258 260__ $$c2008
000129258 336__ $$aJournal Articles
000129258 500__ $$aProfessor Pach's number: [206]. Also in: Graph Drawing 2006, Lecture Notes in Computer Science 4372, Springer, 2007, 114-125.
000129258 520__ $$aWe show that every graph G with maximum degree three has a straight-line drawing in the plane using edges of at most five different slopes. Moreover, if G is connected and has at least one vertex of degree less than three, then four directions suffice.
000129258 6531_ $$astraight-line drawing
000129258 6531_ $$aslope number
000129258 700__ $$0243575$$g194132$$aKeszegh, Balázs
000129258 700__ $$0243577$$g183120$$aPach, János
000129258 700__ $$aPálvölgyi, Dömötör$$g184485$$0243572
000129258 700__ $$aTóth, Géza
000129258 773__ $$j40$$tComputational Geometry - Theory and Applications$$k2$$q138-147
000129258 8564_ $$zURL
000129258 8564_ $$zURL
000129258 8564_ $$uhttps://infoscience.epfl.ch/record/129258/files/Keszegh_2008_Computational-Geometry.pdf$$zn/a$$s173958
000129258 909C0 $$xU11887$$0252234$$pDCG
000129258 909CO $$qGLOBAL_SET$$pSB$$ooai:infoscience.tind.io:129258$$particle
000129258 937__ $$aDCG-ARTICLE-2008-002
000129258 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000129258 970__ $$apre05268583/DCG
000129258 980__ $$aARTICLE