
Topologial graphs with no large gridsJ�anos Pah1, Rom Pinhasi2, Miha Sharir3, G�eza T�oth4 �1 City College, CUNY and Courant Institute of Mathematial Sienes, New York University,New York, NY 10012, USA; pah�ims.nyu.edu2 Department of Mathematis, Massahusetts Institute of Tehnology, Cambridge, MA 02139,USA; room�math.mit.edu3 Shool of Computer Siene, Tel Aviv University, Tel Aviv 69 978, Israel, and Courant Instituteof Mathematial Sienes, New York University, New York, NY 10012, USA; mihas�tau.a.il4 R�enyi Institute, Hungarian Aademy of Sienes, Budapest, HUNGARY; geza�renyi.huAbstrat. Let G be a topologial graph with n verties, i.e., a graph drawn in the plane withedges drawn as simple Jordan urves. It is shown that, for any onstants k; l, there exists anotheronstant C(k; l), suh that if G has at least C(k; l)n edges, then it ontains a k � l-gridlikeon�guration, that is, it ontains k + l edges suh that eah of the �rst k edges rosses eah ofthe last l edges. Moreover, one an require the �rst k edges to be inident to the same vertex.Key words. Insert your keywords here.1. IntrodutionA topologial graph is a graph drawn in the plane with no loops or parallel edges sothat its verties are represented by points, and its edges by Jordan urves onneting theorresponding points. The points (resp., urves) representing the verties (resp., edges) ofthe abstrat graph are also alled verties (resp., edges) of the resulting topologial graph.If it is lear from the ontext, we will make no notational distintion between the verties(edges) of the underlying abstrat graph, and the points (urves) representing them inthe plane. We assume that (i) the edges of a topologial graph do not pass through anyvertex, (ii) if two edges share an interior point, then at this point they properly ross,and (iii) no three edges ross at the same point. A topologial graph is alled simple ifany pair of its edges have at most one point in ommon (either a ommon endpoint or arossing).It follows from Euler's Polyhedral Formula that every planar graph with n verties hasat most 3n� 6 edges. Equivalently, every topologial graph G with n verties and morethan 3n� 6 edges has a pair of rossing edges. This simple statement was generalized inseveral diretions.� J�anos Pah and Miha Sharir has been supported by NSF Grants CCR-97-32101 and CCR-00-98246,and by a joint grant from the U.S.{Israel Binational Siene Foundation. J�anos Pah has also beensupported by PSC-CUNY Researh Award 63382-0032 and by OTKA T-032452. Miha Sharir has alsobeen supported by a grant from the Israeli Aademy of Sienes for a Center of Exellene in GeometriComputing at Tel Aviv University, and by the Hermann Minkowski{MINERVA Center for Geometry atTel Aviv University. G�eza T�oth has been supported by OTKA-T-038397 and by an award from the NewYork University Researh Challenge Fund.



2 J�anos Pah et al.Pah and T�oth [PT97℄ proved that a simple topologial graph of n verties and morethan (r+2)(n� 3) edges must have r edges that ross the same edge. This bound is tightfor r = 1; 2; 3, but an be substantially improved for large values of r.Agarwal et al. [AAPPS97℄ proved that for some C > 0, every simple topologial graphwith n verties and more than Cn edges has three pairwise rossing edges. In [PRT02℄,it was shown, by a muh shorter argument, that the same assertion is true for all (notneessarily simple) topologial graphs. In [PRT03℄, this result was further strengthened:for every integer r > 0, there exists a onstant Cr > 0, suh that every topologial graphwith n verties and more than Crn edges has r + 2 edges suh that the �rst two rosseah other and both of them ross the remaining r edges.In this note, we establish another generalization. A set of k + l edges of a topologialgraph is said to form a (k; l)-grid if eah of the �rst k edges rosses all of the remaining ledges. If, in addition, the �rst k edges are inident to the same vertex, then the (k; l)-gridis alled radial. If the last l edges are also inident to a vertex, then the grid is biradial.

Figure 1. A radial (4; 5)-grid.Theorem 1. For any k; l � 1, every topologial graph with n verties and more than16 � 244lkn edges ontains a radial (k; l)-grid.If we assume that G is a simple topologial graph, the proof beomes simpler and thebound beomes better.Theorem 2. For any k; l � 1, every simple topologial graph of n verties and more than8 � 24lkn edges ontains a radial (k; l)-grid.In the speial ase when the verties of the graph are in onvex position, the edges aredrawn by straight-line segments, k = 2, and l = 1, Theorem 2 has been established byBrass et al. [BKV03℄.It follows from the results in [PPTT02℄ that, for any �xed k and l, the maximum numberof edges of an x-monotone topologial graph with n verties that does not ontain anybiradial (k; l)-grid is O(n logn). We do not know whether this bound an be replaed byO(n). We annot deide either if, instead of requiring that the grid be radial or biradial,one an assume that all endpoints of the partiipating edges are distint.It is an easy orollary of Theorem 2 that for any k; l � 1; there exists a onstant  = klsuh that every simple topologial graph with n verties and more than n edges ontainsa radial (k; l)-grid whose �rst k edges ross the remaining edges in the same order. Thismeans that their arrangement really looks like a grid with quadrilateral ells.



Topologial graphs with no large grids 32. Proof of Theorem 1Let G be a topologial graph with n > 5 verties, ontaining no radial (k; l)-grid for somek; l > 0. Assume without loss of generality that G is onneted (as an abstrat graph),otherwise we an argue separately for its onneted omponents and omplete the proofby indution.Let us redraw G, if neessary, so that the resulting topologial graph ~G satis�es thefollowing two onditions:(i) If two edges of ~G ross eah other, then the orresponding edges also ross in G;(ii) ~G has the minimum number of rossing points among all drawings with property (i).It follows from property (i) that ~G annot ontain a radial (k; l)-grid, beause theorresponding edges would form a radial (k; l)-grid in G.Obviously, no edge of ~G intersets itself, otherwise we ould redue the number ofrossings by removing the loop. Suppose that ~G has two distint edges, e and f , thatmeet at least twie (inluding their ommon endpoint, in the ase they have one). Asimply onneted region whose boundary is omposed of an ar of e and an ar of f isalled a lens.Claim 2.1. Every lens in ~G has a vertex in its interior.Proof. Suppose, for a ontradition, that there is a lens ` that ontains no vertex of ~G inits interior. Consider a minimal lens `0 � `, by ontainment. Notie that by swapping thetwo sides of `0, we ould redue the number of rossings without reating any new pair ofrossing edges, ontraditing property (ii) above. 2The following property is a diret onsequene of a result of Shaefer and Stefankovi�[SS01℄.Claim 2.2. For any edge e of ~G and for any m > 0, every set of 2m onseutive rossingsalong e involves at least m distint edges other than e. 2Sine the abstrat underlying graph of G and ~G is onneted, we an hoose a sequeneof edges e1; e2; : : : ; en�1 2 E( ~G) suh that e1; e2; : : : ; ei form a tree Ti, for every 1 � i �n� 1. In partiular, e1; e2; : : : ; en�1 form a spanning tree Tn�1 of ~G.As in [PRT02℄, we �rst onstrut a sequene of rossing-free topologial graphs (trees),~T1; ~T2; : : : ; ~Tn�1, as follows. Let ~T1 be de�ned as a topologial graph of two verties,onsisting of the single edge e1. Suppose that ~Ti has already been de�ned for some 1 �i < n�1, and let v denote the endpoint of ei+1 that does not belong to Ti. Then we de�ne~Ti+1 as follows. Add to ~Ti the piee of ei+1 between v and its �rst rossing with ~Ti. Morepreisely, follow the edge ei+1 from v up to the point v0 where it hits ~Ti for the �rst time,and denote this piee of ei+1 by ~ei+1. If v0 is a vertex of ~Ti, then add v and ~ei+1 to ~Ti andlet ~Ti+1 be the resulting topologial graph. If v0 is in the interior of an edge e of ~Ti, thenintrodue a new vertex at v0. It divides e into two edges, e0 and e00. Add both of them to~Ti, and delete e. Also add v and ~ei+1, and let ~Ti+1 be the resulting topologial graph.
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10 10Figure 2. Construting ~T10 from T10After ompleting n � 2 steps, we obtain a topologial tree ~T := ~Tn�1, whih (1) isrossing-free, (2) has fewer than 2n verties, (3) ontains eah vertex of ~G, and (4) hasthe property that eah of its edges is either a full edge, or a piee of an edge of ~G.Next, we reursively onstrut another sequene of onneted, rossing-free topologialgraphs, ~H1; ~H2; : : : ~Hm = ~H. For every i, let ~Ei onsist of all edges of ~G that have a pieewhih is an edge of ~Hi. We will refer to these edges as used edges at stage i.Set ~H1 := ~T and ~E1 := fe1; e2; : : : ; en�1g. Suppose that we have already onstruted~Hi and ~Ei for some i > 0.
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Figure 3. A proper ut.Let Ei be the set of unused edges of ~G at this stage, that is, Ei = E( ~G) n ~Ei. Everyedge e 2 Ei may ross ~Hi at several points. These rossing points divide e into severalpiees, alled segments. Let S denote the set of all segments over all edges e 2 Ei. To form~Hi+1, we add one segment s 2 S to ~Hi as an edge. Eah endpoint of s is either a vertexof ~Hi, or a point p on an edge e of ~Hi. In the latter ase, p divides e into two segments,e0 and e00. Add p to ~Hi as a vertex, and replae e with two edges, e0 and e00. Denote theresulting topologial graph by ~Hi(s). The segment s divides one of the ells of ~Hi intotwo ells. If eah of these ells has at least 8 sides, inluding those along s, then we saythat s is a proper ut of ~Hi (see Figure 3). Note that if we enounter both sides of an edgewhile walking around the boundary of a ell, then this edge ontributes 2 to the numberof sides of the ell.



Topologial graphs with no large grids 5We distinguish two ases.Case 1. There exists no s 2 S whih is a proper ut of ~Hi.Set m := i, ~H := ~Hi, ~E := ~Ei, and the proedure terminates.Case 2. There exists s 2 S whih is a proper ut of ~Hi.Suppose that s is a segment of an unused edge e 2 Ei at stage i. Set ~Hi+1 := ~Hi(s),~Ei+1 := ~Ei [ feg, and proeed further to the next step.Sine ~G has �nitely many edges, this proedure will terminate. Let ~E and E denotethe set of used and unused edges after the last stage, resp., i.e., ~E = ~Em and E = Em.Claim 2.3. ~H has fewer than 8n edges. Consequently, the number of used edges of ~Gafter the last stage satis�es j ~Ej < 8n.Proof. Let �i (resp., Æi) be the number of edges (resp., ells) in ~Hi. We know that �1 < 2nand Æ1 = 1. For every i, we have �i+1 � �i+3 and Æi+1 = Æi+1, so that �m < 3m+2n� 3,Æm = m. On the other hand, eah ell has at least 8 edges. This holds for ~H1 = ~T ,provided that n � 5, and, by onstrution, it remains true as segments are added. Sowe have �m � 4Æm. It follows that 3m + 2n � 3 > �m � 4Æm = 4m. Thus, we obtain2n� 3 > m. This implies that for the number of edges of ~H we have �m < 8n.The seond statement follows from the fat that every used edge of ~G has a segmentwhih is an edge of ~H. 2It remains to estimate the number of unused edges of ~G at the �nal stage. For anyvertex v of ~G, let deg(v) be the number of unused edges of ~G inident to v, and let deg ~H(v)be the degree of v in ~H. Consider the yli order of the unused edges of ~G and the edgesof ~H inident to v, in a small neighborhood of v. We show that between any �xed pair ofonseutive edges e0 and e00 of ~H, there are at most (2k� 2)244l unused edges of ~G in thissequene. Let E(e0; e00) be the set of all suh unused edges. An edge e 2 E(e0; e00) is alledlong or short, aording to whether it has altogether at least 4l or fewer than 4l rossingswith edges of ~H, respetively.In what follows, we would like to distinguish between the two sides of the same edge.To this end, orient the edges of ~H arbitrarily, and orient every element of E(e0; e00) awayfrom v. If two oriented edges, e and f , ross at a point p, we say that at this point erosses f from left to right (or, equivalently, f rosses e from right to left), if the diretionof e at p an be obtained from the diretion of f at p by a lokwise turn through anangle less than �.For any long edge e = �!vw 2 E(e0; e00), onsider the �rst 4l rossings along e withthe edges of ~H, as we move from v towards w, and let hh1; h2; : : : ; h4li be the list of theorresponding edges of ~H. For any 1 � i � 4l, write ti = h�i (resp., let ti = h+i ) if e rosseshi from left to right (resp., from right to left). Finally, de�ne the type of e = �!vw as theordered list (sequene) T (e) = ht1; t2; : : : ; t4li.The type of a short edge e = vw is de�ned similarly, exept that now the list T (e)might be shorter (beause we do not have 4l rossings), and we add w to the list as a lastelement.Claim 2.4. The number of types is at most 244l.Proof. Sine there exists no proper ut of ~H, the two endpoints of eah segment of anedge e = �!vw 2 E(e0; e00) are \lose" to eah other in the sense that their distane alongthe boundary of the orresponding ell of ~H is at most 6. More preisely, if we �x the�rst i < 4l elements of the sequene T (e), there are at most 24 possibilities how to selet



6 J�anos Pah et al.the (i + 1)-st element: in both diretions we an hoose one of the edges supporting the6 losest sides of the ell, or one of the 6 losest verties as w (if e = vw is short). Thus,the total number of possible types is at most 244l. 2Claim 2.5. For any �xed type, the number of edges in E(e0; e00) is at most 2k � 2.Proof. The statement is trivial if the type orresponds to a short edge. Indeed, if two shortedges belonging to E(e0; e00) have the same type, then both of their endpoints oinide,whih is impossible, beause our graph has no parallel edges.Suppose now, in order to obtain a ontradition, that there are 2k � 1 long edges,e1; e2; : : : ; e2k�1 2 E(e0; e00), whih have the same type (t1; : : : ; t4l), where, for eah j,tj = h+j or h�j for some edge hj of ~H.For 1 � i � 2k�1 and 1 < j � 4l, let eji denote the segment of ei between its (j�1)-stand j-th rossing with the edges of ~H. Let e1i stand for for the segment of ei between vand the �rst rossing of ei with an edge of ~H, as we move away from v. Furthermore, let�ei = [4lj=1eji , that is, the piee of ei between v and its 4l-th rossing with the edges of ~H.Clearly, for any �xed 1 � j � 4l, the segments eji , for 1 � i � 2k � 1, are pairwisenon-rossing. Indeed, otherwise, let j be the smallest number suh that eji and eji0 have arossing p, for some i 6= i0. Then the lens enlosed by the piees of �ei and �ei0 between vand p would be vertex-free, ontraditing Claim 2.1. Therefore, the urves �e1; �e2; : : : ; �e2k�1\run parallel", in the same order. More preisely, if �e1; �e2; : : : ; �e2k�1 emanate from v inthis lokwise order, then for eah 1 � j � 4l, the segments ej1; ej2; : : : ; ej2k�1 meet the edgehj in the same order. See Figure 4.
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Figure 4. The edges e1; e2; e3 run parallel.It follows from the de�nition that �ek partiipates in at least 4l rossings. By Claim 2.2,there are at least 2l distint edges of ~G that ross �ek. Fix any one of them, e, and denoteby x one of its intersetion points with �ek.It is suÆient to show that e must ross either every element of f�e1; �e2; : : : ; �ekg or everyelement of f�ek; �ek+1; : : : ; �e2k�1g. Indeed, if this holds, then at least half of the 2l distint



Topologial graphs with no large grids 7edges of ~G that ross �ek will also ross every element in one of the above sets. Thus, ~Gwill ontain a radial (k; l)-grid, ontraditing our assumptions.Suppose, in order to obtain a ontradition, that there are two ars, �ea and �eb, 1 �a < k < b � 2k � 1, that do not ross e. For any 1 < j � 4l, let Rj denote the regionbounded by eja, ejb, and the portions of hj�1 and hj between their intersetion points witheja and ejb.By de�nition and by the previous observations, Rj fully ontains ejk, but it has novertex of ~H in its interior. Let j � k be the minimum integer suh that e has a point inRj. Sine e annot end in Rj, it must meet one of its sides, belonging eja, ejb, hj�1, or hj.(We set h0 := v. Note also that R1 has only three sides.) By de�nition, e annot meeteja and ejb. It is also impossible that e enters and leaves Rj through its side belonging tohj, beause then, within Rj it would form an empty lens with hj, ontraditing Claim2.1. Thus, if j > 1, then e must leave Rj through its side belonging to hj�1. This impliesthat e must have a point in Rj�1 ontraditing the minimality of j. On the other hand, ifj = 1, then e must end at h0 = v. However, in this ase, the portions of e and �ek betweenv and x would form an empty lens within the region R1[R2[� � �[R4l . This ontraditionompletes the proof of Claim 2.5. 2
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Figure 5. Any edge of ~G that rosses �e3 must also ross either �e1 and �e2, or �e4 and �e5.Now we return to the proof of Theorem 1. Reall that ~E and E denote the sets ofused and unused edges of ~G at the last stage, respetively. Thus, ombining the last threelaims, we obtainjE( ~G)j = jEj+ j ~Ej � jEj+ jE( ~H)j � �244l(2k � 2) + 1� jE( ~H)j � �244l(2k � 2) + 1� 8n< 16 � 244lkn;as required.



8 J�anos Pah et al.3. Proof of Theorem 2We only sketh the proof, sine it is a speialization of the previous one. Let G be a simpleonneted topologial graph with n verties that does not ontain a radial (k; l)-grid.In ontrast to the previous proof, now we do not have to build another topologialgraph, ~G, sine G is simple, i.e., any pair of edges of G ross at most one. Thus, we anfollow the previous argument with ~G = G.Construt a topologial graph ~H in exatly the same way as in the previous proof, andde�ne the sets of used and unused edges as before. Obviously, Claim 2.3 remains true.Now we estimate the number of unused edges of G. For any vertex v of G, let deg(v)denote the number of unused edges of G inident to v, and let deg ~H(v) denote the degreeof v in ~H. As before, onsider a small neighborhood of v, and list the unused edges of Gand the edges of ~H inident to v in the order as they emanate from v. Now we an showthat between any two onseutive edges e0 and e00 of ~H, there are fewer than 24lk unusededges of G: Let E(e0; e00) denote the set of all suh edges. For eah e 2 E(e0; e00), onsiderthe �rst l rossings of e with the edges of ~H, and let T (e) denote the sequene of theorresponding edges of ~H. As before, T (e) is alled the type of e. As before, edges withfewer rossings with ~H have shorter types; they list all these rossings and terminate atthe other endpoint of the edge. Instead of Claims 2.4 and 2.5, now we obtainClaim 3.1. The number of di�erent types is at most 24l. 2Claim 3.2. For any �xed type, E(e0; e00) has at most k � 1 elements.Proof. The ase of short edges is argued as above. Suppose, for the sake of ontradition,that there are k elements, e1; e2; : : : ; ek, inident to v, that \run parallel" for at least lsteps, i.e., we have T = T (e1) = T (e2) = : : : = T (ek). Sine G is simple, the l edges ofG orresponding to T are all distint. Thus, we have found a radial (k; l)-grid in G, thedesired ontradition. 2Now the proof an be ompleted in exatly the same way as before.Referenes[AAPPS97℄ P. K. Agarwal, B. Aronov, J. Pah, R. Pollak, and M. Sharir, Quasi-planar graphshave a linear number of edges, Combinatoria 17 (1997), 1{9.[BKV03℄ P. Bra�, G. K�arolyi, and P. Valtr, A Tur�an-type extremal theory of onvex geometrigraphs, in: Disrete and Computational Geometry { The Goodman-Pollak Festshrift (B.Aronov et al., eds.), Algorithms and Combinatoris 25, Springer Verlag, Berlin, 2003, 275-300.[P99℄ J. Pah, Geometri graph theory, in: Surveys in Combinatoris, 1999 (J. D. Lamb andD. A. Preee, eds.), London Mathematial Soiety Leture Notes 267, Cambridge UniversityPress, Cambridge, 1999, 167{200.[PRT02℄ J. Pah, R. Radoi�i�, and G. T�oth, Relaxing planarity for topologial graphs, in: Finiteand In�nite Combinatoris (E. Gy}ori et al., eds), Bolyai Soiety Leture Notes, to appear.[PRT03℄ J. Pah, R. Radoi�i�, and G. T�oth, On quasiplanar graphs, in preparation.
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