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The subconvexity problem for

Rankin-Selberg L-functions and
equidistribution of Heegner points
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Abstract

In this paper we solve the subconvexity problem for Rankin-Selberg
L-functions L(f ® g,s) where f and g are two cuspidal automorphic forms
over Q, g being fixed and f having large level and nontrivial nebentypus. We
use this subconvexity bound to prove an equidistribution property for incom-
plete orbits of Heegner points over definite Shimura curves.
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1. Introduction

1.1. Statement of the results. Given an automorphic L-function, L(f,s),
the subconvexity problem consists in providing good upper bounds for the or-
der of magnitude of L(f,s) on the critical line and in fact, bounds which are
stronger than ones obtained by application of the Phragmen-Lindel6f (convex-
ity) principle. During the past century, this problem has received considerable
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attention and was solved in many cases. More recently it was recognized
as a key step for the full solution of deep problems in various fields such as
arithmetic geometry or arithmetic quantum chaos (for instance see the end
of the introduction of [DFI1] and more recently [CPSS], [Sa2]). For further
background on this topic and other examples of applications, we refer to the
surveys [Fr], [IS] or [M2].

In this paper we seek bounds which are sharp with respect to the con-
ductor of the automorphic form f. For rank one L-function (i.e. for Dirichlet
characters L-functions ) this problem was settled by Burgess [Bu] (see also [CI]
for a sharp improvement of Burgess bound in the case of real characters). In
rank two (i.e. for Hecke L-functions of cuspidal modular forms), the problem
was extensively studied and satisfactorily solved during the last ten years by
Duke, Friedlander and Iwaniec in a series of papers [DFI1], [DFI2], [DFI3],
[DF14], [DFI5], [DFI6], [DFI7] culminating in [DFI8] with

THEOREM 1. Let f be a primitive cusp form of level q with primitive
nebentypus. For every integer j > 0, and every complexr number s such that
Res = 1/2, we have

LO(f,5) < g}~

where the implied constant depends on s, j and on the parameter at infinity
of f (i.e. the weight or the eigenvalue of the Laplacian).

Some years ago, motivated by the Birch-Swinnerton-Dyer conjecture and
its arithmetic applications, the author, E. Kowalski and J. Vanderkam in-
vestigated (amongst other questions) this problem for certain L-functions of
rank 4, namely the Rankin-Selberg L-function of two cusp form, one of them
being fixed [KMV2].

To set up notation, we consider f and g two (primitive) cusp forms of
levels ¢ and D respectively. These are eigenforms of (suitably normalized)
Hecke operators {7}, },>1 with eigenvalues A¢(n), A\y(n) respectively. For all
primes p, these eigenvalue can be written as

Ar(p) = ap1(p) + af2(p), afiars = x5(p)

where we denote by x; the nebentypus of f, and similarly for g. The Rankin-
Selberg L-function is a well defined Euler product of degree 4 , which equals
up to finitely many local factors

H H (1- af,i(p)ag,j(]?))—l — L(x;xg 25) Z )\f(n))\g(n)’

P 4,j=1,2

with equality if (¢, D) = 1.
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Remark 1.1. According to the Langlands philosophy L(f ® g,s) should
be associated to a GL4 automorphic form. Although its standard analytic
properties (analytic continuation, functional equation) have been known for a
while (from the work of Rankin, Selberg and others, see [J], [JS], [JPPS)), it is
only recently that Ramakrishnan established its automorphy in full generality
[Ram].

Note that the conductor of this L-function, Q(f ® g), satisfies

¢*/D* < Q(f ® g) < (¢D)?

and Q(f ® g) = (¢D)? for (¢, D) = 1; from these estimates one can obtain the
convexity bound

(1.1) L(f®g,s) < ¢/*

for Res = 1/2and any € > 0, the implied constant depending on €, s, g and the
parameters at infinity of f. The subconvexity problem in the g-aspect is to
replace the exponent 1/2 above by a strictly smaller one. In [KMV2, Th. 1.1],
we could solve this problem under the following additional hypotheses:

e the level of g is square-free and coprime with ¢ (these minor assumptions
can be removed; see [M1]),

e f is holomorphic of weight > 1,

e the conductor ¢* (say) of the nebentypus of f is not too large; it satisfies
i.e. ¢* < ¢° for some fixed constant 5 < 1/2.

In this paper we drop (most of) the two remaining assumptions and, in
particular, solve the subconvexity problem when f has weight 0 or 1 and has
a primitive nebentypus. We prove here the following:

THEOREM 2. Let f,g be primitive cusp forms of level q, D and nebenty-
pus Xr, Xg respectively. Assume that xyxg s not trivial and also that g is
holomorphic of weight > 1. Then, for every integer j > 0, and every complex
number s on the critical line Res = 1/2,

LY(f®g,s) <j 2 1om;

moreover the implied constant depends on j, s, the parameters at infinity of f
and g (i.e. the weight or the eigenvalue of the Laplacian) and on the level of g.

Remark 1.2. One can check from the proof given below, that the depen-
dence in the parameters s, the parameters at infinity of f, and the level of
g, D, is at most polynomial (which may be crucial for certain applications).
More precisely the exponent for D is given by an explicit absolute constant, and
the exponent for the other parameters is a polynomial (with absolute constants
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as coefficients) in k, (the weight of g) of degree at most one (we have made no
effort to evaluate the dependence in k4 nor to replace the linear polynomials
by absolute constants).

One can note a strong analogy between Theorem 1 and Theorem 2: Indeed
the square L(f, s)? can be seen as the Rankin-Selberg L-function of f against
the nonholomorphic Eisenstein series

0
E'(2) = %E(z, 8)|s=1/2 = y'?logy + 4y*/? Z 7(n) cos(2mnx) Ko (2mny)
n>1

or Eisenstein series of weight one. In spite of this analogy, and the fact that our
proof borrows some material and ideas from [DFI8], we wish to insist that the
bulk of our approach requires completely different arguments (see the outline
of the proof below). In fact, our method can certainly be adapted to handle
L(f,s)? as well, thus giving another proof of Theorem 1 by assuming only that
X¢ is nontrivial, but we will not carry out the proof here (however, see the
discussion at the end of the introduction).

1.2.  FEquidistribution of Heegner points. In many situations, critical
values of automorphic L-functions are expected to carry deep arithmetic in-
formation. This is specially the case of Rankin-Selberg L-functions, when f is
a holomorphic cusp form of weight two and g = g, is the holomorphic weight
one cusp form (resp. the weight zero Maass form with eigenvalue 1/4) corre-
sponding to an odd (resp. an even) Artin representation p of dimension two.
An appropriate generalization of the Birch-Swinnerton-Dyer conjecture pre-
dicts that the central value L(f ® g,,1/2) (eventually the first nonvanishing
higher derivative) measures the “size” of some arithmetic cycle lying in the
(p, f)-isotypic component of a certain Galois-Hecke module associated with a
modular curve. For example our results may provide nontrivial upper bounds
for the size of the Tate-Shafarevitch group of the associated Galois represen-
tations in terms of the conductor of p (see for example the paper [GL]).

In particular, for p an odd dihedral representation, the Gross-Zagier type
formulae which have now been established in many cases [GZ], [G], [Z21], [Z2],
(23] interpret L(f ® g,,1/2) or its first derivative in terms of the height of
Heegner divisors. In particular Theorem 2 provides nontrivial upper bounds
for these heights, which may give, as we shall see, fairly nontrivial arithmetic
information concerning these Heegner divisors, such as equidistribution prop-
erties.

For this introduction, we present our application in the most elementary
form and refer to Section 6 for a more general statement. Given ¢ a prime,
we denote EllI**(F ) = {e;}i—1.., the finite set of supersingular elliptic curves
over Fp2. We have |ElI**(Fp)| =n = q1—_21 + O(1). This space is equipped with
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a “natural” probability measure p, given by
1 / w;

pqlei) = > 1/w;

j=1l..n
where w; is the number of units modulo {£1} of the (quaternionic) endomor-
phism ring of e;. Note that this measure is not exactly uniform but almost (at
least when g is large) since the product wy...w,, divides 12. Let K be an imagi-
nary quadratic field with discriminant — D, for which ¢ is inert; let Ell(Ox) be
the set of elliptic curves over Q with complex multiplication by the maximal
order of K. These curves are defined over the Hilbert class field of K, Hg,
and the Galois group G = Gal(Hg/K) = Pic(Og) acts simply transitively
on Ell(Og); hence for any curve E C Ell(Og ), we have Ell(Ok) = {E? }seq -
When q|g is any prime above ¢ in Hg (recall that ¢ splits completely in Hg),
each E € Ell(Ok) has good supersingular reduction modulo q. Hence a reduc-
tion map
VU, : Ell(Og) — ElII**(Fgp).

One can then ask whether the reductions {¥4(E“)}scq, are evenly distributed
on ElI**(F ;) with respect to the measure py as D — +o00. This is indeed the
case, in fact in a stronger form:

THEOREM 3. Let G C G any subgroup of index < D=, For each

e; € ElI**(Fg2) and each E € Ell(Ok), we have
S G, V. (E%) =¢ _
(1.2 o8B =oll ey + 0,07

for some absolute positive 1, the implied constant depending on q only.

To obtain this result, we express (by easy Fourier analysis) the character-
istic function of G as a linear combination of characters ¢ of Gg. Then the
Weyl sums corresponding to this equidistribution problem can be expressed
in terms of “twisted” Weyl sums. By a formula of Gross, later generalized by
Daghigh and Zhang [G], [Dal, [Z3], the twisted Weyl sums are expressed in
terms of the central values L(f ® gy,1/2) where f ranges over the fixed set
of primitive holomorphic weight two cusp forms of level ¢, and g, denotes the
theta function associated to the character ¢ (this is a weight one holomorphic
form of level D with primitive nebentypus , (=2), the Kronecker symbol of
K). Now, the subconvexity estimate of Theorem 2 (applied for f fixed and D
varying ) shows precisely that the Weyl sums are o(1) as D — +o0 and the
equidistribution follows.

Remark 1.3. Note that for the full orbit (G = Gg), only the principal
character 19 occurs in the above analysis and we have the factorization

L(f ® gy,.5) = L(f,s)L <f® (%) ,s);
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in this case, the subconvexity estimate in the D aspect for the central value
L(f ® (=2),1/2) was first proved by Iwaniec [I1].

The result above is a particular instance of the equidistribution problem
for Heegner divisors on Shimura curves associated to a definite quaternion
algebra, namely the quaternion algebra over Q ramified at ¢ and co. For other
definite Shimura curves similar results hold mutatis mutandis; see Theorem 10
(the reader may consult [BD1] for general background on Heegner points in this
context). These results may then be coupled with the methods of Ribet, and
Bertolini-Darmon ([Ri], [BD2], [BD3]) to prove equidistribution of (the image
of) small orbits of Heegner points in the group of connected components of the
Jacobian of a Shimura curve associated to an indefinite quaternion algebra at
a place of bad reduction or in the set of supersingular points at a place of good
reduction. We will not pursue these interpretations here.

In this setting, other equidistribution problems for Heegner divisors have
been considered by Vatsal and Cornut [Val, [Co| to study elliptic curves over
the anticyclotomic Z,-extension of K. However the Heegner points considered
in these papers were in the same isogeny class (i.e. associated to orders sitting
in a fized imaginary quadratic field). The subconvexity bound of the present
paper allows for equidistribution statements even when the quadratic field
varies.

1.3. Outline of the proof of Theorem 2.  The beginning of the proof
follows [KMV2]. First, we decompose L(f ® g, s) into partial sums of the form

L(f@g)=> Ai(n) W(n)

n>1

where the W (n) are compactly supported smooth functions, the crucial range
being when n ~ g. Next we use the amplification method and seek a bound
for the second amplified moment

(1.3) Yo wplL(f @91 Ap (0wl

freF (<L

where f’ ranges over an appropriate (spectrally complete) family F of Hecke
eigenforms of nebentypus X, containing our preferred form f, wy is an appro-
priate normalizing factor and the zy are arbitrary coefficients to be chosen later
to amplify the contribution of the preferred form. The choice of the appropri-
ate family F may be subtle. Specifically, the space of weight one holomorphic
forms of given level is too small to make possible an efficient spectral analysis.
This structural difficulty was resolved in [DFI8] by embedding the subspace of
weight one holomorphic forms into the full spectrum of Maass forms of weight
one. At this point, we open (1.3) and convert the resulting sum into sums of
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Kloosterman sums using a spectral summation formula (i.e. Petersson’s for-

mula or an appropriate extension of Kuznetsov’s formula which we borrow
from [DFI8]). At this point one needs bounds for expressions of the form
1 _ — 47\

3 23 X m)Ag(n)Sy(m, fn; YW (m) W (¢n).T <w>
c c

c=0(q) m,n=1

where S, denotes the Kloosterman sum twisted by the character x := x s and
J is a kind of linear combination of Bessel type functions. For completeness
we add that £ can be as large as a small positive power of ¢ and the critical
range for the variable ¢ is around ¢. As in [KMV2] we open the Kloosterman
sum and apply a Voronoi type summation formula to the A\j(m) sum, with the
effect of replacing the Kloosterman sums by Gauss sums. This yields to an
expression of the form

1) Y 5N Gt X RmA ) Wylm,n.e),

c=0(q) h Im—n=h

where W is a kind of Bessel transform depending on the type at infinity of g.
The sum over h above splits naturally into two parts.

The first part corresponds to h = fm —n = 0, its contribution is called the
singular term. But, since we assume that X, is not trivial, this term vanishes.

Remark 1.4. When xx, is trivial the contribution of the singular term is
not always small; in fact it may be larger than the expected bound. However
one expects as in [DFI8] that, in this case, the contribution is cancelled (up to
admissible error term) by the contribution coming from the Eisenstein series.
We do not carry this out here since we are mostly interested in cases where
the conductor of x is large.

The second part corresponding to h # 0,

(1.5) D G (hie) Y Agm)Ag(m)Wy(m,n, ¢)

h#0 Im—n=h
is called the off-diagonal term and is the most difficult to evaluate. In order
to deal with the shifted convolution sums

(1.6) Se(leh)i= Y Ag(m)Ag(m)Wy(m,n, c),

Im—n=h
one could proceed as in [DFI3|, [KMV2], with the -symbol method together
with Weil’s bound for Kloosterman sums. This method and a trivial bound
for the Gauss sums Gy, (h; c), is sufficient to solve the subconvexity problem
as long as the conductor of x is smaller than ¢ for some 3 < 1/2.

Instead, we handle the sums S;(¢, h) by an alternative technique due to
Sarnak [Sa2]. His method, which is built on ideas of Selberg [Se|, uses the full
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force of the theory of automorphic forms on GL2 q. Sarnak’s method consists
in expressing (1.6) in terms of the inner product

(1.7) 1= g V5200 )

where Vj(z) is the [o(Df)-invariant function (Smlz)*/2g((z)(Smz)*/?g(z) and
Ui (s, z) is a nonholomorphic Poincaré series of level D¢. Taking the spectral
expansion of Up(s, z), we transform this sum into

> (Un(., ), u;)(uj, V) + “Eisenstein”,
J
where {u;};>1 is a Hecke eigenbasis of Maass forms on X (D/) and “Eisenstein”
accounts for the contribution of the continuous spectrum. The scalar product
(uj, V) has been bounded efficiently in [Sal], and the other factor (Uy(., s), u;)
is proportional to the h-th Fourier coefficient p;(h) of u;(z). At this point
one uses the following quantitative statement going in the direction of the
Ramanujan-Petersson-Selberg conjecture to bound the resulting sums.

HYPOTHESIS Hy. For any cuspidal automorphic form m on

GL2(Q)\GL2(Aq)

with local Hecke parameters agrl)(p), ag) (p) for p < 0o and /M(rl)(oo), pz’ (00)

there exist the bounds

o) <P’ =12
Repd (c0) <6, j=1,2,

provided Ty, Too are unramified, respectively.

Note that Hypothesis Hy is known for 6 = 6—74 thanks to the works of
Kim, Shahidi and Sarnak [KiSh], [KiSa]. When the conductor ¢* is small,
this value of @ suffices for breaking the convexity bound; in fact it improves
greatly the bound of [KMV2, Th. 1.1] (which may be obtained using Hj 4).
Unfortunately, this argument alone is not quite sufficient when ¢* is large: even
Hypothesis Hy (which is Ramanujan-Petersson-Selberg’s conjecture) allows us
only to solve our subconvexity problem as long as ¢* is smaller than ¢ for
some fixed § < 1.

From the discussion above, it is clear that we must also capture the oscil-
lations of the Gauss sums in (1.5); this is reasonable since G, (h;c) oscillate
roughly like XXy (h) and the length of the h-sum is relatively large (around g).
This point is the key observation of the present paper; while this idea seems
hard to combine with the d-symbol technique, it works beautifully with the al-
ternative method of Sarnak. Indeed, an inversion of the summations, reduces
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the problem to a nontrivial estimate, for each 7 > 1, of smooth sums of the
shape

> XX (h)p; (MW (h),
h

where h is roughly of size ¢: this question reduces to the subconvexity problem
for the twisted L-function

L(uj ® xxg,5), for Res =1/2

in the g-aspect! This kind of subconvexity problem was solved by Duke-
Friedlander-Iwaniec [DFI1] (when the fixed form is holomorphic) more than
ten years ago as one of the first applications of the amplification method. In
the appendix to this paper we provide the necessary subconvexity estimate in
the case of Maass forms;! this estimate together with the Burgess bound (to
handle the contribution from the continuous spectrum) is sufficient to finish
the proof of Theorem 2.

Remark 1.5. We find rather striking that the solution of the subconvex-
ity problem for our preferred rank four L-functions ultimately reduces to a
collection of subconvexity estimates for rank-two and rank-one L-functions.
This kind of phenomenon already appeared — implicitly — in [DFI8] where
the Burgess estimate was used; in view of the inductive structure of the auto-
morphic spectrum of GL,, (see [MW]), this should certainly be expected when
dealing with the subconvexity problem for automorphic forms of higher rank.

Remark 1.6. The proof given here is fairly robust: any subconvex esti-
mate for the L(uj ® x,s) in the ¢ aspect (with a polynomial control on the
remaining parameters) together with any nontrivial bound toward Ramanujan-
Petersson’s conjecture (that is Hy for any fixed 6 < 1/2) would be sufficient to
solve the given subconvexity problem, although with a weaker exponent.

1.3.1. Comparison with [DFI8]. As noted before, Theorem 2 and its proof
share many similarities with the main result of [DFI8], but the hearts of the
proofs are fairly different. To explain quickly the main differences, consider the
subconvexity problem for the Hecke L-function L(f,s). We have the identity

(1.8) (IL(f.8)1%)? = [L(f. 8)|* = |L(f, )PP (= |L(f ® B, 5)|%).

Our method would use the right-hand side of (1.8) and would evaluate the
amplified mean square of partial sums of the form

> A r(m)W(n),

!See also [H] for a slightly weaker bound, and [CPSS] for another proof, in the holomorphic
case, which uses Sarnak’s method described above.
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while the method of [DFI8| uses the left-hand side of (1.8) and evaluates the
amplified mean square of (variants of) the partial sums

D Ay (M)W (n),

where 7, (n) = (1% xs)(n). In this case, the Gauss sums G, (h;c) of (1.4) are
replaced by Ramanujan sums r(h; ¢), so that for h = 0 a singular term appears
(see Remark 1.4). This term turns out to be larger than the expected bound,
but fortunately, a delicate computation shows that it is compensated by the
contribution of the Eisenstein series (see [DFI8, §13]). The main problem then,
is to bound the off-diagonal term; it is solved by the deep results of [DFI2],
[DFI3] on the general determinant equation.

There are some advantages to handling Theorem 1 by the method of the
present paper. A first one is technical; as long as x is nontrivial, there is
no singular term, hence no matching needs to be verified. However, a critical
difference with the present paper is that for ¢ = E’ an Eisenstein series, the
integral I(s) given in (1.7) has a pole at s = 1, which produces a new off-off-
diagonal term; but as this term is independent of x; the resulting contribution
is small as long as x is nontrivial (otherwise one expects some matching with
the contribution from the continuous spectrum). Another advantage of this
method is that once the (many) remaining difficulties have been overcome, it
is likely that the saving on the convexity exponent will be at least comparable
with the exponent of Theorem 2.

The paper is organized as follows: In the next section, we introduce no-
tation and give some background on automorphic forms, Hecke operators and
spectral summation formulas. We recall also some useful lemmas and esti-
mates which are borrowed from [DFIS8]. In Section 3 we recall several facts on
Rankin-Selberg L-functions and reduce the estimation of L(f ® g, s) to that
of partial sums. The bound for the second amplified moment of these partial
sums starts in Section 4; it follows basically the techniques of [KMV2] and
[DFI8]. In Section 5, we handle the shifted convolutions sums (1.5). The proof
of Theorem 3 in a more general form is given in Section 6. In the appendix we
provide a proof of a subconvexity bound for the L-function of a Maass form g
twisted by a primitive character of large level. The result is not new; our main
point there is to make explicit the (polynomial) dependence of the bound in
the other parameters of g (the level or the eigenvalue), a question for which
there is no available reference. Indeed, the polynomial control in the other
parameters is crucial for the solution of our subconvexity problem.
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2. A review of automorphic forms

In this section we collect various facts about automorphic Maass forms.
Our main reference is [DFI8] which contains a very clear exposition of the
whole theory.

The group SL2(R) acts on the upper half-plane by linear-fractional trans-

formations
Z_az—i—b oy a b
e P e a )
For v € SLy(R) we define

. cz+d
Jv(z)

- lcz + d]

= exp(iarg(cz + d)),

and for any integer k£ > 0 an action of weight & on the functions f : H — C by
fiin(2) = Gy (2) F f(72).

For ¢ > 1, we consider I' the congruence subgroup I'g(¢q), and a Dirichlet
character x(mod ¢q); such a x defines a character of I' by

((00) = va=xw o (¢ )er

2.1. Maass forms. A function f: H — C is said to be I'-automorphic of
weight k and nebentypus y if and only if it satisfies

(2.1) fir(2) = x(V)f(2)

for all v € I'. We denote L (g, x) the L?-space of such automorphic functions
with respect to the Petersson inner product

(f,9) = f(2)g(2)
\H Y

dxdy
5 -
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By the theory of Maass and Selberg L(q, x) admits a spectral decomposition
into the eigenspace of the Laplacian of weight k

0? 0? 0
Ap =192 5= + =— | —iky—.
k=Y <82x 0%y r
The spectrum of A has two components: a discrete part spanned by the
square integrable smooth eigenfunctions of Ay (the Maass cusp forms), and a
continuous spectrum spanned by the Eisenstein series. The Eisenstein series

are indexed by the singular cusps {a} and are given by:

Ba(z,8) = > X(Migs14(2) *(Sm(o;1y2))*
vel AT

where o4 is a scaling matrix for the cusp a. Recall that the scaling matrix of
a cusp a is the unique matrix (up to right translations) such that

0400 = @, Uglfaaazfoo:{:t< ! 11)>, bGZ},

and that a cusp a is singular whenever

X (aa< L 1 >a;1> =1, or (-1)*.

The Eisenstein series Fq(z, s) admit analytic continuation to the whole complex
plane without pole for Res > 1/2 and are eigenfunctions of Ay with eigenvalue
A(s) = s(1 — s). The Maass cusp forms generate the cuspidal part of L(q, x)
which we denote C(g,x). A Maass cusp form f has exponential decay and a
Fourier expansion at every cusp. We only need Fourier expansion at infinity,
this takes the form

“+o0o
(2.2) f2) =) pr(M)Woa i iy (dm|nly)e(nz)
n=-—oo
n#0
where W, 5(y) is the Whittaker function, and (1/2 + it)(1/2 — it) is the eigen-
value of f. The Eisenstein series have a similar Fourier expansion

(2.3) Ea(z,1/2 +it) = 6y > T 4 ¢o(1/2 + it)y />~

+oo
+ Z pa(na t)Wﬁg,it(Zlﬂ—’n‘y)e(nx)a
n=—00

n#0

where 4 = 0, unless a = oo, in which case do, = 1 and p4(1/2+it) is the entry
(00, @) of the scattering matrix.
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2.2. Holomorphic forms. Let Sk(q,x) denote the space of holomorphic
cusp forms of weight k, level ¢ and nebentypus ¥, i.e. the space of holomorphic
functions F' : H — C which satisfy

(2.4) F(72) = x(7)(cz + d)* F ()

b
for every v = ( Z d ) € I' and which vanish at every cusp. This space is

equipped with the Petersson inner product:

(F, Gy = /F L FeEe ddy

y?

Such a form has a Fourier expansion at oo,
(2.5) F(z)= Z pF(n)nge(nz).
n>1

From the automorphy relations (2.4) one can deduce the following Voronoi-type
summation formula (see [KMV2] and Section 7 for a more general formulas of
the same type).

LEMMA 2.1. Let W : RT™ — C be a smooth function with compact sup-
port. Let ¢ = 0(q) and a be an integer coprime with c. For g € Sk(q, x),

e Vapyn)e (n2) W)

n>1
— omifx(a) 3 vapy(n)e <—n%> /O W) g <4”\C/ﬁ> dz.

n>1

It will be useful to quote the following properties of the Bessel function
Ji(z) for k > 0 (see [GR], [Wa]). We have

(2.6) Jp(z) = Vi (2) + e_ika(x)
where V}, satisfies
i1 (7) .24

for j, k,x > 0, the implied constant depending only on j. In fact, holomorphic
forms can be embedded isometrically into the space of Maass forms of weight k:

LEMMA 2.2. For F(z) € Si(q, x) the function y*/>F(z) belongs to Ci(q, X).
More precisely the map F(z) — f(z) := y*/?F(2) is a surjective isometry
(relatively to the Petersson inner products) onto the eigenspace of Maass cusp
forms of weight k with eigenvalue E(l — %), moreover the Fourier coefficients

2
agree for alln € Z,
pr(n) = ps(n).
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From this lemma, it follows that L(F ® g,s) = L(f ® g,s); so for the
purpose of proving Theorem 2 we may and will assume that the varying form
f is a Maass form of some weight k£ > 0.

2.3. Spectral summation formulas.  Given Bj(q,x) = {u;j};>1 an or-
thonormal basis of Cj(q, x) formed of Maass cusp forms with eigenvalues A\; =
1/4 + t? and Fourier coefficients p;(n); the following spectral summation for-
mula (borrowed from [DFI8, Prop. 5.2]) is an important tool for harmonic
analysis on L (g, x). For any real number r, and any integer k we set

473 1

IR

PROPOSITION 2.1. For any positive integers m,n and any real r,

Ve U DR S G X CRCReE

j=1 a

S ; 47/
=Gt > x(m,n C)I( T cm">
c=0(q)

c

where Sy (m,n;c) is the Kloosterman sum

_ mz + nx
Sy(m,n;c) = Z X(x)e <—) ,
z(c),(z,c)=1
and I(z) is the Kloosterman integral

@) = ) = =20 [ (i0)* K (Go)d.

—1

In fact this formula is not quite sufficient for our purpose. In order to
gain convergence over the ¢ variable, an extra averaging over r is needed, and
to achieve this, we follow the choice of [DFI8, §14]. Given A a fixed large real
number we set

(r) = rsh2mr ( 7r_r>—4A
W= G2 Az \Man)

Integrating q(r)h(t,r) over r we form

(2.10) H(t) = /R h(t, r)a(r)dr
and correspondingly

(2.11) I(x) = /RI((E,T)Q(T‘)CZT‘.

Hence, we deduce from Proposition 2.1 the following refined formula:

(2.9)
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PROPOSITION 2.2. For any positive integers m,n,

Vi S () ) () + Vi S 1= [ H(OF(m. Ol )

i>1

C

= CA(Sm,n + Z SX(m?n; C)I <47T Cmn>
)

¢=0(g

where H and T are defined above and c4 = ¢(0) is the integral of q over R.

We collect below the following estimates for Z and H (see [DFIS8, §§14 and 17]).
For t real or purely imaginary,

(2.12) H(t) >0, H(t) > (1 + [t])F e
For all 5 > 0, we have

o o\ AT »
(2.13) I () < (H—x> (14 z)1H.

One can also use more general forms of the above spectral summation
formula to provide upper bounds for the Fourier coefficients of Maass forms;
for instance, the following bound follows immediately from [DI, §§5.3 (5.6)
(5.7) and (1.25)]:

LEMMA 2.3. For k =0 and for any positive integer n, any €,T > 1,

nlp;(n)|? 2 e (n.q)"*n'/?
2.14 — T Ty —————
(2.14) 2 anery ST (D)
u;€Bo(q,X)
[t;|<T

where the implied constant depends on & only.

2.4. Hecke operators. The Hecke operators {T,,}, > 1 are defined by

7L " az+b
Tnf(Z)—\/ﬁZX()%f< . )

ad=n

They act on the L%-space of Maass forms of weight k£ and in fact act on both
Cr(q,x) and &k(q, x). They satisfy the Hecke multiplicative relations:

(2.15) TnTn = > x(d)Trna—,

d|(m,n)
and, in particular, commute with each other. They also commute with Ay
and for (n,q) = 1, T, is a normal, because T} = x(n)T),; that is for all
f’g € Ek(QvX)a

(2.16) (Tnf,9) = X(n)(f, Tng).
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A Maass cusp form which is also an eigenfunction of the T;, for all (n, q) = 1 will
be called a Hecke-Maass cusp form and an orthonormal basis of Cr (g, x) made
of Hecke-Maass cusp forms will be called a Hecke eigenbasis. The problem of
the dimension of the Hecke eigenspace is well understood by Atkin-Lehner the-
ory [AL], [ALi], [Lil]. By a primitive form we mean a Hecke-Maass cusp form
which is orthogonal to the space of old forms and (unless otherwise specified)
which has L?-norm 1. By the Strong Multiplicity One Theorem, a primitive
form is automatically an eigenform of all the Hecke operators.
For f an Hecke-Maass cusp form, with Hecke eigenvalues given by

we have from (2.15),
(2.17) Ap(m)Ap(n) = > x(d)Ag(mnd?),
d|(m,n)
(2.18) Ap(mn) =Y p(d)x(d)Ap(m/d)As(n/d),
d|(m,n)

for all (mn,q) = 1 and these relations hold for all m,n if f is primitive. From
(2.16) we also have

(2.19) A(n) = x(n)Ag(n),

for all (n,q) = 1. Finally the action of Hecke operators on the Fourier expan-
sion can be computed explicitly and for a Hecke-Maass cusp form we have:

(2:20) Vipm)Asn) = 3 x(@py (55) /"
d|(m,n)

and

(221)  Vmnps(mn) = d|(%;n)ﬂ(d)x(d)0f (%) \/;Af (5)-

for all m,n > 1 with (n,q) = 1. In particular, for all (n,q) = 1,

(2.22) pr(n)vn = ps(1)As(n),
and for f primitive the relations (2.20), (2.21) and (2.22) are valid for all n > 1.

Remark 2.1. For the classical weight k holomorphic modular forms the
Hecke operators T, have a slightly different definition, and not too surprisingly
this action commutes with the isometry F(z) — f(z) = y*/?F(z) and in
particular for F' a primitive cusp form, yk/ 2F is also primitive and we have,
for all n,
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Remark 2.2. The Hecke operators also act on the space of Eisenstein se-
ries, but unless x is primitive (for this case see [DFI8]) the Eisenstein series
Eq(z,s) are NOT eigenvectors of the T, (n,q) = 1. The problem of diago-
nalizing the Hecke operators in the space of Eisenstein series was studied by
Rankin in a series of papers [Ral], [Ra2], [Ra3]; however we will not need any
of these results.

2.5. Bounds for Fourier coefficients of cusp forms. In this section, we re-
call trivial and nontrivial bounds for Hecke eigenvalues and Fourier coefficients
of automorphic forms. Given g a primitive cusp form of level D, weight k and
eigenvalue 1/4 + 2 (by convention g is L*-normalized) from [DFI8] and [HL],
we have

(2.23)
D=5(1 + [t |)*/?~= [t DE(1 + |tg|)e/?re [t
\/ﬁg ch [ =2 ) <. py(1) <c \/Eg ch (=2 ).

2 2
For Hecke eigenvalues, Hypothesis Hy gives the individual bound?

(2.24) Ag(n)] < T(n)nfs
hence for all n # 0 we have by (2.22)

(Dn)*(1+ |7fg|)k/2+E nf—1/2cp Tty
vD 2 )

If g is holomorphic of weight k& > 1, it follows from the work of Eichler-Shimura-

(2.25) pg(n) <L

Igusa, Deligne, Deligne-Serre that the Ramanujan-Petersson bound holds true:
(2.26) |Ag(n)| < 7(n).

In general it turns out that the Ramanujan-Petersson bound is true on average
by the theory of Rankin-Selberg and some auxiliary arguments (see [DFIS,
§19]); we have for all N > 1 and all e > 0

(2.27) D M) < (D(|tg| + 1)N)°N.
n<N
It will be also useful to introduce the following function
ag(n) ==Y |Ag(d)].
din

Note first that this function is almost multiplicative; by (2.17) and (2.18) we
have

(2.28) (mn) fo4(mn) K€ o4(m)og(n) < (mn)°oy(mn)

?Note that this bound remains true (trivially) for n a ramified prime.
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for all € > 0, and from (2.27) we have

(2.29) > 0g(n)? < (a(1+ [ty|N))°N
n<N
for all N,e > 0. In the above estimates the implied constants depend only
on €.
For technical purposes it will also be useful to have a substitute of (2.25)
when ¢ is an L?-normalized Hecke-Maass form of L? but not necessarily prim-
itive. More precisely we have the following improvement over (2.14):

PROPOSITION 2.3. Let Bo(q,x) = {uj}j>0 be a (orthonormal) Hecke-
eigenbasis. Assume that Hypothesis Hy holds; for any T > 1, n > 1 and
any € > 0,

nlpj(n)[? e, 20
2.30 E — TYT
u;€Bo(g,X)
It;|<T

where the implied constant depends on £ only.

Proof. By the Atkin-Lehner theory, each Hecke-eigenspace is indexed
by the primitive forms g(z) € Co(q*¢’, X) where ¢’ ranges over the divisors of
q/q* (¢* the conductor of y and x is the character induced by x*); for each
eigenspace, any element of any orthonormal basis {g)(2), dlg/(¢*¢')} is a
linear combinations of the g(dz) where d ranges over the divisors of ¢/(q*q’)

g = Y agdd)g(d).
d'la/(q"q')
For uniformity we extend the above notation to all the divisors of ¢; namely
we set ag(d,d’) = 0 for each pair (d,d’) of divisors of ¢ which are not divisors

of q/q4 and consequently we set 9(a) = 0if d is not a divisor of ¢ /qq. With this
convention, we have by (2.22)

o)=Y (@) ag(d.d)(n/d)!/?pg(n/d)
@'|(g.n)

=pg(1) Y (d)Pag(d, d)Ag(n/d) = pg(1)By(d, m),
d’|(g;n)
say. By Moebius inversion, we have for d'|q

(d/)1/2 d d, Z ﬂg d// (d//d//)

d’ |d/

n

where )\g_l) denotes the Mobius inverse of Ay(n): this is a multiplicative func-
tion given that for each prime p, by

AT (B) = =Ag(p), AV P%) = X(p), and ATV@M) =0if k>3
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In particular we have from Hy that |)\§71) (n)] < 7(n)n’. From the above dis-
cussion, it follows that

n|p; P
(2.31) > %— > Z ’g Zlﬁg :
UJiﬁOg(%X) q'la/q* it |<T

and in particular when n = d’|q we obtain from (2.14) the bound

U

e ¥ NG "’9 Zlﬂgdd’)l2<<a @I+ 5) < (DT,

More generally we have

D16y dn)P =31 D (@) Pag(d, d)g(n/d)?

dlq dlg d'|(g,n)
n _
— Z| Z ,Bg(d, d//) Z Ag (W) )\é 1)(d/)|2
dlg d”|(q,n) d'|(n,q)/d”
n 20
<en Y ()7 D 1By(dd")P
d’|(g;n) dlq

by Cauchy-Schwarz and Hy. From (2.31), the last inequality and (2.32) we
conclude the proof of Proposition 2.3. O

3. Rankin-Selberg L-functions

Our basic reference for Rankin-Selberg L-functions is the book of Jacquet
[J]. Given f and g two primitive forms of level ¢ and D respectively, the
Rankin-Selberg L-function is a degree four Euler product

(3.1)
4 —
L(f 0 g.) = Y Meat) ~Ia s =111 (180, mw)
n>1 p 1=1

which is absolutely convergent for tes > 1. In view of Lemma 2.2 and Remark
2.1 we may assume that f is a Maass form of some weight £ > 0, with eigenvalue
1/4 +t5.

Remark 3.1. Although we will not use this fact, it is useful to know that
by [Ram], L(f ® g, s) is the L-function of a GL4 automorphic form, which we
denote by f ® g.

By direct inspection of the possible cases one can check that

1812, (2)] < .
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and for all p f(q, D),
-1
a 7i p o 7. p
L(fegs) =[] <1_ %) |
i7j:172

In particular we have the following factorization for Res > 1,

d| D> n>1

with
(3.3) Yyog(d) <z 2.

From now on we assume that f # g; then L(f ® g, s) admits analytic continu-
ation over C with no poles and it has a functional equation of the form

(3-4) AMf®g.s)=e(f@gAf®7,1-s3)

where £(f ® g) is some complex number of modulus one and
A(f®9,5) = (Q(f ©9))**Loc(f © 9,5)L(f © g, 9).

Here Loo(f ® g, s) is the local factor at infinity

Loo(fé§gvs)::L0067Q§§7s)

= TI TR+ npegi(c0)), with Tr(s) = 7*/I(s/2),
i=1,...4

and the integer Q) = Q(f ® g) is called the conductor of f ® g and satisfies

(3.5) Q(f ®g) < ¢*D*.

From hypothesis Hy and by inspection of the possible cases we verify that
Respiragi(0o) = =20, i =1,...,4;

in particular Lo (f ® g, s) is holomorphic for Res > 26.

3.1. Approximating L(f ® g, s) by partial sums. We proceed as in [DFIS8,
§9]. For Ag > 1 large (to be defined later), set

(3.6) G(u) = (cos %)_5%_

By a contour shift we infer from the functional equation (3.4) that for Res =
1/2,

Lo = 3 2Py (3 M ()

n>1 n>1
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where
12 Loo(f© 9,1 — 5)

wreg(s) =e(f ©9)Q

LOO(f®g7 S)
d
Wi(y) = W%—i()%(dy),
d|D>
1 [ Lo(f®g,8+u) Gu) _,
V;(y)—2—m/ To(f©g.5) L(XfXgaQS—i'?U)Tl/ du,

1)
and W is defined like Wy except that v7e,(d) and y X, are replaced by F7ag(d)
and X7X-

Remark 3.2. For Nes = 1/2, |wgy(s)| = 1. Define

(3.7) P= 1] (sl + lnsagi(co))'2.
i=1...4

We have (compare with [DFI8, Lemma 9.2]) the following:

LEMMA 3.1. Assume (for simplicity) that x rx4 is not trivial . For Res =
1/2 and for any j > 0,

PO y) <50 log(1 +gDIs)2PI (1 + L)~

Remark 3.3. If x yxg4 is the trivial character, the bound above is valid with
an extra factor log(1 4+ y~1).

Proof. From (3.3) the series

g(d
T [r(d)]

dl/2
d|D>

converges and, so it suffices to prove the lemma for the function V. We shift
the u contour to Res = B with B = —1/(log(1 + ¢D]|s|)) or B = Ay and
differentiate j times in y to get

du

i i — Loo(f & g,Ss + U)
J‘/S(J) & B/
vV <5 B)| Loo(f ®9,5)

+0;=0,B<0|L(XfXg:25)|.

J
L(xfxg,25+ QU)%(U)

Setting s; = s + i fgg,i,;(00) and o; = Res;, we have by Stirling’s formula,
o;+B—1
I'r(s + i(00) +u Si+u|” = m
R( Mf@g,l( ) ) <p %exp <—(‘Sz‘ — ’81+UD>
I'r(s + pfeg,i(00)) 55| 75 4

—j itB s
<Lp,jlul|si| 2 exp <Z|ul>
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Hence,

ijs(j)(y)<<jy_BPj+B/ exp(|ul) L(XfX9’2S+2u)$du

(B)

+dj=0,B<0L(XsXg;25)|-

By definition of G(u), the integral is absolutely convergent and bounded by
<4, 1if B = Ag and by <4, log?(1 + ¢D|s|) for B = —1/(log(1 + ¢D|s])).
The lemma follows by choosing B = Ag if y > P and B = —1/(log(1 + ¢D|s]))
otherwise. O

Applying a smooth partition of unity we derive that

(N) —Ao
% ‘<1+P]l\gq) '

(3.8) L(f®g,s) <log(l +¢Dls|)*) s
N

where L¢gq(N) are sums of type
Liag(N) = Ap(n)Ag(n)W(n)

with W (x) a smooth function supported on [N/2,5N/2] for N =2", v > —1,
such that for all j > 0

(3.9) W (z) <ja, PI.

By taking Ag large enough, we see that Theorem 2 follows from Theorem 4
below, which gives a bound for the partial sums L g4 (V).

THEOREM 4. Let g be a primitive holomorphic form of weight k > 1. For
any N > 1/2 and any smooth function W supported on [N/2,5N/2] bounded
by 1 and satisfying (3.1),

E+B/2+3
(310) Lf®g(N) < (qN)a[(qN)l/Q +N <;> ]q—1/4(22(20+2E+B+9)+11)

4
< (qN)a[(qN)1/2 +N (%) ]q—1/1056

where the exponents B, C, E are as specified in (5.19) and the implied constant
depends on €, k, P, D.

Now, we obtain from this theorem and (3.8) the bound given in Theorem 2
for the zero-th derivative. By convexity we deduce the same bound for s in a
1/log q neighborhood of the critical line and by Cauchy’s formula we deduce
the bound for Res = 1/2 for all the derivatives.
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4. The amplified second moment

In this section we make the first reductions toward the proof of Theorem 4.
In particular we perform amplification of the partial sum L g 4(N) by averaging
its amplified mean square over a well chosen family. Before doing so we need
to transform slightly these sums. The reason for these apparently unmotivated
transformations is to avoid the fact that Eisenstein series Fq(z, s) are not Hecke
eigenfunctions.

We denote by x the character x; of our original form f. We consider the
following linear form

Ligg(Z,N) = ps(1 (Z$€)\f )Lf®g( )

<L
for any vector ¥ = (x1,...,2¢,...,21) € CF with L some small power of ¢,
the coefficients x, satisfying
(4.1) (¢,qD) #1 =z, =0.

From (2.17) for f followed by (2.18) for g we have
Lyey(T, N) = sz Z W(n Ap(O)Af(n)

— ps(1 sz ) S n(@)xg(a)Ag(B) S W (adn) Ay (n)Af (aen)

de=( ab=d n
and from (2.22) we obtain

(4.2)  Lyey(T,N)

= Zx[ Z Z Z W (adn)rg(n)v/aenps(aen).

de={ ab=d

Note that the last expression makes perfectly good sense even if f is not
a Hecke-eigenform. Hence we define for f any cusp form L;g,(Z, N) by the
equality (4.2). We may also extend this definition for the Eisenstein series
Eqo(2,1/2 +t%) and we denote Lqy 4(%, N) the corresponding linear form (ob-
tained by replacing ps(aen) by pq(aen,t) above).

Next we choose an orthonormal basis By([g, D], x) of automorphic cusp
forms of level [q, D] — the least common multiple of ¢ and D — and nebenty-
pus the character (mod [¢, D]) induced by x. We average the quadratic form
|Lfeg(Z, N)|? over it together with the Eisenstein series to form the “spectrally
complete” quadratic form

Qx( ZHtJ |Lu ®g |2+Z /H |Latg )|2dt

where H(t) is as defined in (2.10). Our goal is the following estimate for the
complete quadratic form
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THEOREM 5. Assume g is primitive and holomorphic of level D. With
the above notation, for all € > 0,

(LNq)~*Qu(Z, N) < N||7|3

o N\ 2E+B+6
_H|f"%L2C+2E+B+9N2q9—3/2(q*)(5—5—9) (E)

, , , L N 2E'+B'+6

| [FL2CH2E B N2 32 (g7 (572 0) (E) '

In the above expression,

1711 =Y lael, and |73 = |zl

<L <L

the exponent 6 equals é and the exponents B, C, E, B', C', E' are as specified
n (5.19) and (5.20); moreover the implied constant depends on e, k, P and D
only.

Remark 4.1. Considering a family slightly bigger than the obvious one
enables us to simplify considerably the forthcoming computations (see §4.1.2).

Proof of Theorem 4 (derivation from Theorem 5). We choose an orthonor-

I basis By([q, D taini ferred 1d) form ———~L— .
mal basis By([g, D], x) containing our preferred (now old) form ENCEEC)

By positivity (in particular that of H(t), see (2.12)) we deduce that

[FO([q\pl];(D)\ Htr)| D 2eds (0)P|Lgg (V)P < Qu(@ N)
’ L<L

and from (2.12) and (2.23) we have

lor (V)
[To(lg, D) : To(q)]

(gD + |tg])~*
g, DI(1 + [ts[)16

H(tf) >e

Hence

1> @ (OP|Lyog(N)* <p,pe (LNg)* [‘JN Z |z
<L

2E+B+6
N2
+L2C+2E+B+9 Z |33‘4| 2

q22
+L20'+2E’+B +9 Z |Ig|

<N> 2E’+B’+6
7 q
To conclude we choose the standard amplifier

Ar)x(p) if €=p, (p.gD)=1, VL/2<p< VL
T = —x(p) if €=p% (p.¢D)=1, VL/2<p<VL
0 otherwise.

m\»a
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From the relation A¢(p)? — A ¢(p?) = x(p),
1> 2edp(€)] > LV /log? L
(<L
for L > (log¢D)?, and from (2.27),
D lwd + > fal® < (q(1+ [t L)L,

¢ ¢
To finish the proof of Theorem 4, we note first that N can be taken smaller
than ¢' ™52 ; otherwise the trivial bound L g, (N) <. pp (¢N)N is stronger
than (3.10); then we conclude with the three inequalities above, by choosing

1
L = Q2CRCH2E+B+9)+11 = (]1/264. O

It remains to prove Theorem 5 for which we spend the rest of this section.

4.1. Analysis of the quadratic form Q(Z, N). By Proposition 2.2 we have
(4.3)

QW N)=> Tpms, Y, plar)u(az)xxg(@az)x(brba)Xg(b1)Ag(b2)
b1l arbie; =4,

a202€2=L2

Do bioe L onppar bioer ‘
S C (G 62)’N)+E%D]>C2S (Coy by e )N

:CAQD(fv N) + QND(fa N)7

say, where c4 is the constant defined in Proposition 2.2,

b S _
s << Z; b; :; > ’N> - Z Ag(m)Ag(n)W (a1dim)W (azdan)
aie;m=aszexn

and

(4.4)
GND < ( ar b1 el ) ,N; c> =c Y Ag(m)Ag(n)Sy(arerm, agean; )

\/7 o

C

where d1 = a1b1 and dg = a2b2.

4.1.1. The diagonal term. Applying (2.21) in the reverse direction we
find that

QP (& N) = X(d1)Ta,e, x(d2)Taye, Y, Ag(dim)Ag(dan)W (dym)W (dan).

dl ,e1 erm=ean
da,ez
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From (2.27), (2.28) and (2.29),

(4.5)
QP (@ N) < Y [adie |Tadze] Y [Ag(diean) Ay (doern)||W (drean) W (daein)|
d,dy,eq nz=1
da,e2
N1+5
< (¢P) ddz: |xdd1e1Hl’ddzez|‘7g(d2)0'g(el)ag(dl)%(@)m
daré’
<. (@NP*N 3 (e |[rar,| 2270 2) (GNPY2N Y a2,
d, 01,05 Vit ¢

4.1.2. The nondiagonal term. We transform (4.4) further by applying the
Voronoi summation formula to the n variable. For this, we set e = (azes,c),
¢ =c/e, e = ages/e so that (¢*,e*) = 1. Opening the Kloosterman sum, we
have from (4.4),

ND ar b er N\ B o arermE
5 << az by €2>’N’C>_ec Z X(l‘);%(m)e< > >

z(c)

(z,0)=1
e*rn 4 /a1aze1eamn )\ —
X Zx\g(n)e< = )I( ! z 12 > W (ardym)W (agdan).

By (4.1), we have (e,¢D) = 1, hence D|[q, D]|c*, so we apply Lemma 2.1 with

e‘rn

the effect of replacing the additive character e(;7*) above by

Yolera)e <—?”> = xy(FT)e <—%6”> .

Cc

Hence

SND<< ai b el),N;c)
a9 b2 €9

= exg(e") Z Ag(m)Ag(n)Gyy, (a1e1m — e€*n; ¢) T (m,n)

m,n
where
- (0]
(4.6) J(x,y) = 2wk W (aydi ) / W (agdau)
0
T <47r\/a1a26162xu> oy <4Wew/yu> .
c c
To proceed further we factor ¢ as follows:
(4.7) c=c*, where ¢ = H pUr©:
ple

vy (€)<vp(azez)
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in particular one has the following:
(&) =1, Ple, (cf,e*) =1,
and the Gauss sum factors accordingly (remember that (e,¢D) = 1):
Gy, (a1e1m — ee*n;c) = Xxg(cbe*)GXXg(alelm — en; F)r(areym — ee¥n; &)
= XXg(€") G, (aream — en; )r(arerm; ),

where

wemer= £ (57 5 n(5)
z(c”) fl(azeim,c)

(z,c")=1

denotes the Ramanujan sum. Hence
al b1 €1
SND N;c
az by e )7

= x(e")xxg(c Zm()Z@Mm > A(m)Ag(n) T (m,n);

e*ae;m—en=h
arexm=0(f)

the congruence aje;m = 0(f) is equivalent to m = 0(f*) where f* := f/(aie1, f).
Using (2.18), we infer that

(4.8) SND<< "o b1 el), ,c)

N
= x(e)xxg()e > fu (C?) 1(f)xg(F)N(F*/ ) E(arere” ' £, e),

fler flfe
where
(4.9) Y(arere f'f* e ZGX (h; *)Sp(arere” f f*, e)
h
and
Sp(arere*f'f*e) = Z Ag(m)Ag(n) T (f' f*m,n).

arere* f' f*m—en=h

Since xX4 is not the trivial character, G, (0;¢)Sy = 0, and we are left
with evaluating (4.9) over the frequencies h # 0. This will be done in Theo-
rem 6.

First we analyze the properties of J; to simplify the notation we set

a = aldl, b= CLQdQ, d= aijaseiey,
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LEMMA 4.1. Let

d\'* N N
@:< > B X0:_7
C a

ab
o d (@2+1

5 b c?
€2 2\ e

Yo=P’=~—(1+0%> =P
0 €2N(+ )

)XO, Z =P+0.
For any o, B,v > 0,

o 9°
w00 07
0oz OBy

©

A+1 y y
1 1 I —v—1/4
os)  EeE

N
@@«WW—(
Yo

b

the implied constant depending on «, 3,v and (polynomially) on k, and A is
the constant fixed in (2.9) which also appears in (2.13). Recall also that as a
function of x, J(x,y) is supported on [Xo/2,5X0/2].

Proof. By a trivial estimation of the integral (4.6) using (2.7), (2.13) ,
(3.9) and that x ~ N/a, we see that

N e A+1 y€2N —-1/4

Using the decomposition (2.6), we integrate by parts 2v times the exponential.
Using again (2.7), (2.13) and (3.9) we obtain

N A+1 y —v—1/4

4.1 — | ——= 1 14+ = .

@) Jen <y (1og) +e (1t

Differentiating in = and y we obtain the desired conclusion. O

We now bound X(ajeie* f'f* e) by applying Theorem 6 (to be proved in
the forthcoming section), with the following choice of parameters (to avoid
confusion the parameters of Theorem 6 are noted in boldface):

d\'* N d
@: <E> ) llzalele*f/f*:f/f*_u 12267

C e
Z:P+®,X:FF%:thY:h%:P< o )X

q = Cond(xx,) ,c = ¢, F(z,y) = T (f' f*z/l1,y/l2);
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and we obtain that (4.9) is bounded by (remember that f’f*d is coprime with
¢D and that ff’ < (¢)?)

< (Le)

. ) 2
EdC+% (f*f/)C+§ (df*f/)ln (14 @)kg+3(2E+B+5)+17AN2(£)9+%
abe @k‘g+2(2E+B+5)7A Cb

! ’ 1 ’ ’ ’
. _d® +g(f*f/)c *é(df*f’)f (1 + ©)ks+3Q2E'+B/+5)+1-4 N2<%>9+%(q*)%*%*9
&

+(Le) abe OFkg+2(2E'+B/+5)— A’
. 6dc+E+B/2+g(Cb)20+{—§(d)l%N2 c\O+E (NP
< ( C) (ab)E+B/2+4e (E) ? (q )
1 ’ ’
dC'+E+B' /245 (b)2C"+2( )2 0+1/2 / N\ 2E +B'+6 L
+(LC)E 2(C ) ( )1 N2 (%) (_) (q*)§—§—0’

(ab)E'+B'/2+4¢ c c

the implied constants depending on D, kg4, P, e only. Here we have used (4.10)
with A = kg +3(2E+ B+5)+ 1 and A’ = k;+ 3(2E' + B’ +5) + 1, and we
have bounded ff’ by (¢”)?; recall that (d); denotes the factor of d defined as
in (5.18).

Hence we deduce from this bound and (4.8) the upper bound

I ~Np(,a1 b1 e )
Z C_QS (( a9 bQ €9 )’N’C>
c=0([q,D])

C+E+B/2+2 ( N0 2E+B+6
< (L )ad e /+2(d)111 N2 0-3 ﬁ ( *)%—é—@
D,kg,Pe \q (ab)E+B/2+4¢ q q q
dC'+E'+B'/2+g(d)1% o <N>2E’+B'+6
> (2

13
+(Lq) (ab)E'+B'/2+4¢ p

Collecting all the terms (see (4.3)) we deduce

2E+B+6
= ell= 8, an(l_1_ N
QNP (&, N) €ty pe (qLN)||F|L20T2EFBHON2 0= () (32 0) <5>

2E'+B'+6
~3-0) (ﬁ)
q

NG

11 = ’ ’ ’ _ 3 *
+ (qLN)®||F|ZL2OHEHB I N2 5 (g

This estimate together with (4.5) concludes the proof of Theorem 5.

5. A shifted convolution problem

In this section, which is the bulk of this paper, we consider the follow-
ing shifted convolution problem: Let y be a primitive character of modulus ¢,
1 < ¢ =0(q). Let £1,/2 > 1 be two integers, and g be a primitive holo-
morphic cusp form of weight & and level D with some nebentypus, which is
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arithmetically normalized. That is, ¢ has the Fourier expansion

Z Ag( n e (nz)

n=1
where A\j(n) denotes the n-th Hecke-eigenvalue. Let F(z,y) be a smooth func-
tion supported on [X/2,5X/2[x[1/2,+oo[ which satisfies

a8 0% o°

Y e 0y
for some Z, X,Y > 1 and for all v,«, 8 > 0, the implied constant depending
on «, 3, v only.

(5.1) Fle,y) < 220 (14 2)

We consider the sums

S(l1,62) =Y Gy(h; c)Sp(ty, b2)
h=£0

where G, (h;c) is the Gauss sum of the (induced) character x mod (¢) and

(5.2) Sullr,la) = > Xg(m)Ag(n)F(tym, Lan).
lim—Lan=h

Our goal in this section is to prove

THEOREM 6. With the above notation, let X' = min(X,Y), Y’ = Max(X,Y).
The following upper bound holds

X, b)) < (05162)622E+B+5(6152)@%(5152)11_1 (£1la,q) 7

e L 12E+B+5 AN
X ? 5 2 22Ycz

(el1lo) Z2E B (0,0)0 5 (01057 (010, q)

Y\ SFREEBAS N0 /
X < g q>"3Y'c

for all € > 0, the constant implied depending on € and g only. Here 0 is any
number such that Hypothesis Hy is satisfied; the integer (¢1€2)1 (a factor of
0143) is defined by the formula (5.18) and the exponents B,C,E,B',C" E’ are
the ones given in (5.19), (5.20).

[N

Proof. First by a smooth dyadic partition of unity on the y variable
we reduce the proof to the case where F(z,y) is compactly supported on
[X/2,5X/2]x[Y/2,5Y/2] and by symmetry we assume that X' = X <Y =Y".
We consider the following unique factorization

c=qdd, (d,q9)=1, ¢
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Now,
Gy(h;c) = x()Gy(hyqq')r(h; )

where r(h;c) = 2odi(eh) du(c /d) denotes the Ramanujan sum. Moreover
Gy (h;qq’) = 0 unless ¢'|h in which case

Gy(h;qd') =X(h/q)d' Gx(1;9);
hence
(5.3)  X(l1,62) = Xx(c)q'Gy(150) > du(c /d)x(d) Y " X(h)Shga-
d|c’ h#0

Our treatment of X (€1, 2) begins with the method of Sarnak [Sa2] which we
summarize below. This method is based on the analytic properties of the series

e\ k—1
D(g,s;01,02,h) = Z Ag(m)Ag(n) (%) (bym + lan) %,
lim—~Lan=h
Indeed,
(5.4) Sy, = 2%” D(g, s; 01,02, h)ﬁ(h, s)ds
2
with

~ oo u+h u—~h 4u? e du
. F(h,s)= F p—
(5:5) F(h.s) /0 < 2 2 )(uQ—fﬂ) Y

[ (Y (4 e Y T
X—h 2 2 u—h u+h u
from the support property of F; in particular we have F\(h, s)=0if |h| >Y.

Following [Sa2, Appendix|, we set N = D/{1{s and express D(g,s;h) in
terms of the integral of the I'o(IN) invariant function

V(2) = (L) /2g(012) (Loy) %9 (L22)

against an appropriate Poincaré series

Up(z,s) = Z (Smyz)®e(hReyz);
YEL L\

precisely,

(5.6)

_ T —1
r= V= [ Oeave) S (st k1)
To(N)\H

¥: o (2m)sthl(06y) s

On the other hand U} can be decomposed spectrally (at least formally): we
pick Bo(NN) = {u;};>0 an orthonormal Hecke-eigenbasis of Co(IV, xo) (where

D(g,s; h).
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ug is the constant function) and assume also that the u; are eigenforms of the
reflection operator R.u;(z) := u;(—%) = €ju;(z) where €; = £1. By Parceval,
we have

(5.7)
I= Z<Uh(" s), ug)(uy, V> + Eisenstein Contr.
Jj20
28717(}@) s = 1 + itj S — 1 _ itj o
- Z |h|511 r 22 T 22 (u;, V) + Eisenstein Contr.
jz1

and Eisenstein Contr. (the contribution from the continuous spectrum) is given
by

(5.8)
% 25 g (h S—%+it sf%—it T
472:/ e L) e (2T (B b i), P

(the reader should note that the quantity “p;(h)” in [Sa2] equals 2p;(h)|h|*/?
in the present paper.) From [Sa2], (18), we have

(5.9) (uj, V) <g VN(L+ [t5])FH e 51,
and the same bound holds for Eisenstein series
(Ea(., 5 +1t), V) <o VN(L+ [t e 31,

Now calculations similar to those of [ILS, pp. 71-75] show? that one can choose
the Hecke-eigenbasis By(IV) = {u;};>0 such that the bound (2.25) holds:

AN () v

for all u;; eventually by Weyl’s law and the above estimates we obtain Theorem
A1 of [Sa2].

(5.10) pu, (h) <

THEOREM 7. For any 61 > 0, D(g,s; 1,02, h) extends holomorphically to
the half-plane {s € C, o := Res > 1/2 4 01} and satisfies in this region the
upper bound

D(g, 801, la, h) e g (W16o)* (L102) 2|/ 2T =0 (1 4 [2])?,

where s = o + it and the implied constant depends on € and g only.

3For simplicity we shall not reproduce these (tedious) computations here but use instead
the averaged version (2.30) of (5.10).



THE SUBCONVEXITY PROBLEM FOR RANKIN-SELBERG L-FUNCTIONS 217

From the above result we can shift the contour in (5.4) to Res = 1/240+¢,
and after integrating by parts F'(h, s), five times in u, we obtain that

N 75 [y \ 5 TP
F(h,S) <, W (Y) Y1/2+9+€;

hence

k—1

Y\ z ™
Sh K¢ Z5(D£1€QYZ)ED(€1€2)1/2 <f) Y1/2+9.

From (5.3) we obtain (since d¢'|h| < Y),

k—1

Y\ z
(5.11) (01, 89) < (DlLsY D Z5 ({1 £aq) /2 (Y) Y3200,

the implied constant depending only on ¢ and g.

Remark 5.1. One can see easily that (5.11) is much stronger than the
bound of Theorem 6 when ¢ is small and in particular yields much better
subconvexity exponents than the one given by Theorem 2 for small conductors.
In fact, for the purpose of breaking convexity for Rankin-Selberg L-functions ,
any bound for X(f1, £3) with Y3/24% replaced by Y29 for any fixed § > 0 would
suffice. One can see that the bound (5.11) is sufficient as long as ¢ < Y'1720-9
for any fixed § > 0. Taking back the notation from the introduction we see
that the Ramanujan-Petersson conjecture (i.e. § = 0 is admissible) would solve
the convexity problem for Rankin-Selberg L-functions as long as ¢* < ¢* 9 for
any fixed 6 > 0. In the rest on this section we will solve the problem for all ¢
unconditionally by exploiting the averaging over h and the oscillations of X(h).

From the above analysis we see that

(5.12) D X(h)Sugn = (161) "2

h#£0
1 25—1 2 s+k—1
9 / % (Discrete Contr. + Eisenstein Contr.)ds
i s —
(2)
where
it — 1t —
(5.13) Discrete Contr. —ZI‘ ( 2 hakl ]> r (%) (uj, V)
j>1
X(h)pj(dq'h) &
|dq’;L|5 : F(dq'h, s)
h#0

is the contribution from the discrete part of the spectrum and Eisenstein Contr.
is the similar expression coming from the continuous spectrum. In the next
Subsections 5.1 and 5.2 we evaluate both contributions.
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5.1. The discrete spectrum contribution. ~ We handle here the discrete
part (5.13) and more precisely the inner sum

X(h)p;(dg'h)
Z |dq/;L|8 1 (d /h )
h£0

which has analytic continuation to fes > 1/2 + 6;. We handle here the con-
tribution corresponding to h < 0, the other one being similar. We abuse the
notation slightly by using the same notation 3;(x, s) for the sum running over
h < 0. Now,

1 ! —(2+s—1) 1n
Ei(x:s) = EjX(_l)% /L;iq (x,z+ s —1)(dg) "GV E(z,5)dz
2)

where
(5.14)
_ © % futh u—h oh 2 e . _dhdu
Pz, s) = r 1 - Bt s AU
(2,5) 0 /0 ( 2 72 >( R u+h) Y T
and x(h)p5(dg'h)
dq’ o x\n)pzlaq
LJ (X?S) - hs
h>1

L;.lq/ (X, s) is (up to a shift by 1/2) essentially the L-function of u; twisted by x.
We will see in the next subsection that qu (x, ) has analytic continuation to
the half-plane Res > 0, and satisfies for §Res = 0 the following bound:
(5.15)
d ’
qu (Xa S)
< Rj(dg', N; 0)(eN|s|(1+ [t51)[1 + 8|7 (1 + [t;) ENONF/ (N, g) /1 g1 /27122
+R;(dq', N5 0)(eN[s|(1+ [t51)7[1 + 5|7 (1 + [t;))7 N N[/2(N, ) /4g1 /2= 1/%

for any € > 0, where N; and the exponents B, C, E, B’, C', E' are as given
n (5.18), (5.19) and (5.20) and

Rj(dd,N;o)= ) M
dq’|h|(dg'N)=>
(by (2.30), R;(dq’, N; o) is converging for o > —1/4). We evaluate 3;(x, s) on
the line Res = 1/2 + 0; with 0; = 6 + <. First we shift the z contour in (5 14)
to Rez = 1/2 — #;. Then we integrate by parts « times in v and § times in h
in (5.14) and apply (5.1) with v = % +a+ 3+ 3/2+ ¢ to gain convergence
in the A variable. Now, we obtain

- 2y \* /2y \?\ /Y \ =
F ' 2) v
(9) < <o<£152mo<X|s|> (<5) ) (%)
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In the above bound, a and 3 don’t need to be integers. We take 3 = E+1+¢
to ensure convergence of the z integral and apply (5.15) to get

(X, 8) <e Rj(dg', N;0)(eN|s|(1+ |t;))°|s| P~ (1+]t;)) ENC (N, ¢) VI NT/ M
Y> tetBrl

% ZQ+E+1 <Y qE_EY—F

where ... contains the similar term involving the exponents B’,C’, E’. We
plug this bound, (5.9) and (5.10) into (5.13) and use the following estimate

|F <S_%+itj> T <S_§_it]‘> |
3 ° 2 (1+ [t;)PH*1R;(dg', N;0)

~ IT(s+k—1)] eIt 172

2(B+k+1) s—g+it; 579
(Z (1+[#1) T —%— )T —% |)1/2
<
j=1

T'(s+k—1)]

1., . 1 .
s—5+it; s§—5—1it;
> (ZF< > )F( E >’|pj<h>|2 12
X
T kE—1 [t >
da' (g’ V) IU(s +k—1)] ¢

Jjz1

<en (dg'Ns|)*|25|PFONY2(dg')" =12 = (dg' N|s|)*N'/2(dg/ )"~ /225|172

by Weyl’s law for the spectrum and (2.30). We choose o = E+B+4+¢ to have
convergence in the s integral and we infer from (5.9) and the last estimate that
the discrete spectrum contribution to 3, . X(h)Sagn in (5.12) is bounded by

(5.16)

ol
N
-

Y

kLl 2B+B+5
) ’

(clibo)* E+B c+1 2/11 1
o= K CE R G CUN L e

ool=

Y.

Bl 12 +B'+5 )

(C£11€2)€ 2B 4+ B'45 o'4l 1/2 1
Jr(dq/)l/Q—ez T (ll) T 2 (1l2)) (Uil q) X

It remains to prove (5.15) which we do in the next subsection.

5.1.1. Bounds for twisted L-functions. Recall that u; is a Hecke-
eigenform and denote @; the primitive form (of some level N’ dividing N)
underlying u;. For any n > 1, we denote A;j(n) the n-th Hecke-eigenvalue
of @;; in particular, for (n, N) = 1, it coincides with the n-th Hecke eigenvalue
of u;. We have the further factorization
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/ X(h)p;(dg'h X(n)\i(n
GATLY (o s)=| > X( )]f&( ) 3 7(713113/(2 A
h|(dg’N)e° (n,dg’N)=1

S X(h)pj(dg'h)

hs
h|(dg’ N)>

2s+1
pldg'N prHiz

where x( denotes the trivial character modulo N’ and

L(aj.x, s ZX

is the twisted L-function of @; by . By Hypothesis Hy and (2.30) the product
of two first factors of (5.17) has analytic continuation to the half-plane fes >
—1/2 4 6 + 6 for any fixed § > 0, and is bounded in this domain by

e (A N(1+|tj]))°Rj(dqd’, N;Res).

On the other hand L(%;.x, s + 1/2) has analytic continuation to C and what
we need is an upper bound for it when s is on the shifted critical line Res = 0.
It turns out that the convexity bound is just insufficient for us. The subcon-
vexity problem for twisted L-functions L(g ® x, s) in the conductor aspect was
solved for the first time in [DFI1] for g holomorphic and of level one with the
subconvexity exponent 1/2 — 1/22. Recently, Cogdell, Piatetski-Shapiro and
Sarnak solved the problem by another method (based on Theorem 7) for g
still holomorphic, but of any level and with the better subconvexity exponent
1/2—7/130 [CPSS]. The case (of main interest for us) where g is a weight zero
Maass form of any level was recently settled by G. Harcos [H] by a variant of
the d-symbol method.

THEOREM 8. Let g be a fized weight zero primitive Maass form, and x be
a primitive character of modulus q. For Res =1/2,

L(g-X, S) < q1/2—1/54+5

for any € > 0, the implied constant depending on e, s and g.

Unfortunately this bound does not display explicitly the dependence in |s|
or in the parameters of g. For our purpose an explicit polynomial dependence
is crucial; lacking a reference, we provide in the appendix a refinement of the
method of [DFI1] yielding:
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THEOREM 9. Let g be a weight zero primitive Maass form of level N and
eigenvalue 1/4 +t2, and let x be a primitive character of modulus q. Set

(5.18) Ny := H pe 2.

For Res = 1/2,

L(g.x, 8) <z (|s|(1 + [t) Nq)*|s|P(1 + |t ) ENC NJ/M (N, q) /11 gH /21 /224
(1|1 + [H)N )| (1 + [¢)" N NP (N, g) /4g />~ /3+

for any € > 0, the implied constant depending on € only and with the following
values for the exponents

(5.19) B=14/11, C=1/4, E=4/11,
(5.20) B'=7/2, C'=11/16, E' =1.

From this result, we deduce (5.15) for Res = 0.

5.2.  The continuous spectrum contribution. The arguments for the
contribution from the continuous spectrum follows the same lines. The only
point we need to check is that a bound similar to (5.15) holds in the case of
Eisenstein series Eq4(z,t) for the corresponding L-function

qut/(x, 8) — Z Y(h)m(dq/hv t)

hs

h>1

Recall that the cusps of I'g(N) are uniquely represented by the rationals

E7 ’U)‘N, (u7w):17 1<u<(w,N/’LU)
w

In the half-space Imt < 0, we have ([DI] (1.17) and p.247)

w8 |h[t12( (w, N/w)\ Y St
(1/2 + it) wN

(v,N/w)=1
X Z e(—hi)

~yw
5(yw),(8,yw)=1
dv=u mod(w,N/w)

pa(h,t) =

and (either by the general theory of Eisenstein series or in this case by the
standard zero-free region for Dirichlet L-functions) the pq(h,t) have analytic
continuation to Imt = 0 with at most one simple pole at ¢t = —i/2 (for n =0
only). This can be seen by a direct computation which may be cumbersome for
a general cusp a. In particular note that the Fourier coefficients p4(h, t) are not
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proportional to a multiplicative function, the reason being that Fq(z,1/2+1it) is
not an eigenfunction of the Hecke operators (even of these T,, for n coprime with
the level). The problem of diagonalizing Eisenstein series is studied thoroughly
by Rankin in [Ral], [Ra2], [Ra3], [Rad], but we will not use his results. We
restore multiplicativity by decomposing the v sum according to the characters
modulo (w, N/w):

s T )

(7, N/w)=1 6(yw),(8,yw)=1 7
dvy=u mod(w,N/w)

1 - d(y
= 2w Njw)) >, Uw ) 71&22t Gy (h;yw).
’ 1 mod(w,N/w) (v,N/w)=1
For each character ¢ mod(w, N/w) we denote w* its conductor, and decompose
*,0000

w = w*w'w” with w'|[w**, (w”,w*) = 1. Accordingly the Gauss sum factors
as follows:

Gy (h;yw) = p(yw” )Gy (h; w*w')r(h; yw”)
= Oy p ' th(yw" )Gy (h/w's w*)r(h/w'; yw").

Hence
Y(v) 2 (7)
Z 71+2it"':5w’\hw/¢( w”)Gy (1 w" Z Wr(hww”)
('y,N/w):l ,leoc
(7, N/w)=1

Y(h/w') Z ¢ (d)d~2t,

N) (2,1 + 2it) dh =

where the superscript (IV) indicates that the local factors at the primes dividing
N have been removed. From this computation we deduce the bound (¢t € R):
w|t\> (b, w)'/2(w, N/w)

2 VwN |h|

We can analyze Lat (X, s) as before, this time with L(u;.x, s) replaced by

palh,1) < (BN (L + Ji]))ch (

Z P(a)p(d)(a/d) = L(xy, s — it)L(X, s + it)

ad=n

and Theorem 9 replaced by the Burgess bound
(5-21) ILOcP, s — i) L(XY, s + it)] <e (|s] + [t])q! /27154

for Res = 1/2 and ¢t € R. Gathering these estimates we deduce that the
contribution from the continuous spectrum to ;.o X(h)Sgqn in (5.12) is also
bounded by (5.16); and by (5.3) we conclude the proof of Theorem 6. O
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6. Equidistribution of Heegner points

In this section we apply our subconvexity estimates to prove equidistri-
bution results for Heegner points on Shimura curves associated to definite
quaternion algebras over Q. For more details, we refer to the papers of Gross
[G] and of Bertolini and Darmon [BD1].

6.1. Definite Shimura curves. We consider ¢ = ¢q ... q, a fixed square-
free number and a fixed factorization ¢ = ¢~ ¢ with ¢~ having an odd number
of prime factors. Let B,- be the quaternion algebra ramified at the primes
dividing ¢~ and at co. We fix Ry = Rg+ 4 an Eichler order of B,-, I} =
Ry, I, ..., I, C Ry aset of representatives of (left) ideals classes and we denote
R; the right order of ;.

This set corresponds to the set of connected components of a certain conic
curve denoted X+ 4~ in [BD1]. We denote Pic(Xy+ o) = Zey @ ... Ze, the
group of divisor classes where e; corresponds to the class of a single point
supported on the i-th component and PicO(Xq+,q—) the kernel of the degree
map. Pic(Xy+ 4-) is equipped with the inner pairing

< s > : PiC(Xqu,q—) X PiC(Xq+7q—) — 7

given by (e;, e;) = 8; jw; with w; = |R /{£1}|. The curve X+ - is endowed
with an action of a Hecke algebra Ty+ .- ([BD1, 1.5]) by correspondences, and
the Hecke operators T, (n,q) = 1 are self-adjoint for the induced action on
Pic(Xg+ 4- ). Moreover (as a consequence of Eichler’s trace formula) it is known
that the image of this Hecke algebra into End(Pic(X,+,-)) is isomorphic
to the Hecke algebra of S§ "“"(q) (the space of weight 2 holomorphic cusp
forms of level ¢ which are new at ¢~). In particular (as a special case of the
Jacquet-Langlands correspondence), for each primitive form f € S¥(q) there
is a unique e; € Pic%(X,+,-) ®z R such that (es,ef) = 1 and such that
Ther = Ap(n)ey for every (n,q) = 1. For ¢'|¢" we denote mg : Xyr - = Xy o
the degeneracy map induced by the inclusion Ry ;- C Rg+ 4- and 7, the map
T Pic’(X,+ 4-) = Pic%(X, ) induced by contravariant functoriality. A
basis of Pic®(X,+ ,-) is given by

Bfﬁyq’ = {Wjﬂ-;’(ef)) dq/|q+7 f € Sg(qqu)}
where Wj is the Atkin-Lehner operator ([BD1, 1.5]) and f ranges over the

primitive forms of level ¢'q~ for ¢'d|q™.

6.2. Gross-Heegner points. Let K be an imaginary quadratic field of
discriminant —D; denoting Ok the ring of integers, Pic(Of ) the ideal class
group and Hg the Hilbert class field, we have

(6.1) D'?7¢ «_ |Pic(Ok)| < D'/?log D,
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the lower and upper bounds following from the Class Number Formula and
Siegel’s theorem.

A Gross-Heegner point (associated to the maximal order O)?* is an opti-
mal embedding £ : Og = R; of Ok into some R; modulo conjugation by R*.
By a well know recipe, a given Gross point determines a point in X+ ;- and we
still denote (with an abuse of notation) by £ its natural image in Pic(Xg+ 4-),
which is some e;,. The set Hy+ 4 (1) of Gross points is nonempty if and
only if every prime p dividing ¢~ is inert in K and every p dividing ¢* is split
(a condition which we assume for the rest of this section). In this case Hy+ - (1)
is endowed with a free and transitive action of {+1}" x Pic(Ox). For £ a Gross
point, and x a character of Pic(Ox) we denote

&pi= Y, (0)¢7 €Pic(Xyr 4 ) @z C

O'GPiC(OK)

the y-eigen-component of £. The following formula due to Gross when ¢ and
D are primes ([G], p. 164) and subsequently generalized by Daghigh [Da]
and Zhang [Z3] relates the central value of Rankin-Selberg L-functions to the
position of &, in Pic(X4+ 4-) ®z C; more precisely for f a primitive form
of level ¢,

(62) earep)? = VD LS00,

here g, is the theta series (of weight one, level D and nebentypus (ﬂ) )

*
associated to the character ¢ and 7y is a certain positive factor depending on

f only.
Theorem 3 is a particular case of the following:

THEOREM 10. Let K be a quadratic field such that every prime p dividing
q~ is inert in K and every p dividing q* is split. Consider a Gross point
£ € Hyr g (1) and a subgroup G C Pic(Ok) of index < D=s; then as D —
+o0, the orbit G.£ becomes equidistributed in the set {e1,..., ey} relative to
the measure given by

p({e}) = wi /OO wi™h).
=1

More precisely there exists an absolute constant n > 0 such that

et =l e +oun)

for any i€ {1,...,n}. Here, the implied constant depends on q only.

4For simplicity we consider this case only; the general case of Gross-Heegner points with
CM by a nonmaximal order is similar.
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Proof. We consider the basis of Pic(Xg+ 4-) ®z R given by {eg} U By+ 4-

where
Z w; )T Z w;
From the decomposition

ei=(eoeeot Y Y wraWimpes

dq’|lg* f€S5(q'q—)

we deduce that

(6.3)
{oeG & =e}| Z o)
W f
’G| UGG’
_Zn —1+ Z fodW 7T,ef, |G|Z€U>.
=1 W dq'lqt f oceG
Now,

1 1
+,__* i o\ * = + O’ IO'
<Wd 7Tq/€f, ’G|Z§ > <7Tq€f, ’G|2Wd§ ef7 ‘G’Z§

oceG oeG oceG
where ¢ = Wq/(WJ_ §) defines a Gross point on Xy ,-. By Fourier inversion,
1 1 1
G o =1em 2 (g 2 v@))e
G| Gr| = \|G]|
ocG e o'eG

Since ﬁ Y oeq¥(0') is the characteristic function of characters which are
trivial on G we deduce from (6.2) that

1/2
o Win : —M D 1/4\/§L(f®9¢71/2) .
aezcg UNTE R TP

When 1) is a real character gy, is an Eisenstein series and

for some real Dirichlet characters x1, x2 such that x1, x2 = (%); in this case,
we use the bound of Theorem 3 of [DFI3] for each twist. When 1 is a complex
character, gy, is cuspidal and we use the bound provided by Theorem 2 instead.
In all cases

IG\

Z'f" Wirher)| < DI <, D"
e —_—
i e e
oeG
for some 1 > 0 if the index of G is < |D|=E. The proof follows from this
estimate and (6.3). O



226 P. MICHEL

We now deduce Theorem 3 of the introduction from Theorem 10 applied
for ¢ = ¢~ a prime number. The ideal Iy,..., I, corresponds to the n iso-
morphism classes of supersingular elliptic curves ey, ..., e, over F_q and in this
identification End(e;) = R;. Fix q a prime in Hg above ¢q. For E € Ell(Og)
the reduction mod q, ¥4, defines an optimal embedding {q g : Ok — R;g) by
reduction of the endomorphism. Moreover (see [BD1, p. 120]) the action of
Pic(Ok) = Gk commutes with the reduction map; for any o € Pic(O),

(6.4) o8 = Sq.p- = Vq(E7)

and Theorem 3 follows.

7. Appendix

In this appendix we provide a proof for Theorem 9 which yields a sub-
convexity estimate in the ¢ aspect for the Hecke L-function of a weight zero,
primitive Maass form g, (which we normalize here by setting py(1) = 1), twisted
by a primitive Dirichlet character y of conductor q. Besides the subconvexity
estimate, the main feature is an explicit polynomial dependence in the other
parameters of g and of the complex variable s. We denote by D, and 1/4 4 t2,
respectively, the level of g and the eigenvalue of the Laplacian and we assume
for simplicity that the nebentypus of g is trivial. Our proof follows closely
[DFI11], [DFI2].

We prove here:

THEOREM 11. Let g be a weight zero primitive Maass form of level D,
trivial nebentypus, and eigenvalue 1/4 + t2, and let x be a primitive character
of modulus q. Denote by g ® x the twist of g by x. For fes =1/2,

L(g ® x, 8) << (|s|(1 + |t]) D) |s| P (1 + [¢)) P DC DY (D, ) /11 g1 /2-1/22+
+(1s|(1 + [¢]) Dg)*[s|Z' (1 + |¢)2' D" D}/* (D, q)/4g 2~ 1/5+=

for any e > 0, the implied constant depending on € only. Here D1 is the integer
defined in (7.5) below and the values of the exponents are given by

(7.1) B=14/11, C=1/4 ,E=4/11,
(7.2) B'=17/2, C'=1/2+3/16 ,E =1.

Recall that g ® x is a weight zero primitive Maass form with eigenvalue
1/4 + t? and level Q dividing Dq?, with nebentypus the Dirichlet character of
modulus @ induced by (the underlying primitive character of) x2. The basic
property of g ® x is that for n coprime with (g, D), the n-th Hecke-eigenvalue
satisfy

Agax (1) = x(n)Ag(n).
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Moreover we have the factorization

Llg® x,8) = g®x Z 79®X ) Z Ag(n)x(n)

ns ns
TL>]. n|(qD n>l

where (by Hypothesis Hy) the coefficients v, (n) satisfy

Yoo (n) Ke nlte

for every € > 0, the implied constant depending only on €. Its L-function
L(g ® x, s) satisfies a functional equation of the form

Q" Loo(9,5)L(g ® X, 5) = w(g ® x,)QY 2L (9,1 — 5)L(g® x,1 — 5)

where |w(g ® x)| =1,

_ 1_—
9\IR(s — it + 269)

and ¢, is the eigenvalue of g under the involution g(z) — g(—%)). Proceeding
as in Section 3 we approximate L(g ® x, s) for s on the critical line by partial

LOO(97 3) - FR(

sums of length ~ Q'/2 and obtain the following estimate

|Lg(N)| N \—4o
L(g @, 5) <a, log(qDls]) 1+
g X 4, log(q %: ~ ( e @)

where Ag is a constant that can be taken arbitrarly large, P = |s|+[t|, N = 2",
v > —1, and
Zx n'2V (n).

Here V(z) = Vi (z) is some smooth function supported on [N/2,5N/2], such
that for all j > 0,
VI (z) <4, P

In particular the convexity bound gives
L(g ® x,5) <= (gD(1+[t])|s])°¢" > DY*(|s| + |¢)"/2.

We now bound Lg4,(N), by using the amplification and the é-symbol
methods of [DFI1], [DFI2] with the appropriate generalization given in [KMV?2],
[M1]. To this end we consider the quadratic form

EN) = Loy (NP zex(0))
x(q) <L

where the x range over the primitive characters of modulus ¢, and the z, are
complex numbers of modulus less than 1 such that

(7.3) x¢ =0, unless (¢,¢gD)=1and L/2 < ¢ < L.
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We prove below

(7.4)
Q(Z,N) <. (¢qPN)*(gN L+ (1 + |t])2(|t|*/*+|s|>/*)D D1 (Dy, q) /2 L*T/ANT/4,

where
(75) Dy = H pvp(Dw)_l = Hpvp(D)_17 Dy = H pvp(D)—Z.
p‘Dw pID p|D
vp(D) 22

From the trivial bound

L (NP1 Y zex (O < Q(F, N)

(<L
we obtain (on choosing the classical amplifier given by x, = X(¢) for
¢ € ]L/2, L], such that (¢, D) =1 and ¢ = 0 otherwise), the bound
1/2
qN
Lgx(N) < (qPN)6(<T>

+(1+ [ ([t + [s*/®)(DD1) /2 (Do, @) LTENT/E,
We then set
M = (1+ [¢)) (1] + |s]*/%)(DD1)"/*(Dy, q)'/*
and choose L = 1 + ¢¥/M M —8/1I N—=3/11 g6 that
LQ'X(N) <<5 (qPN)E(q1/2—4/22M4/11N3/22 + ]\4’]\73/8>7

VN

which is sufficient.

7.1. Treatment of the quadratic form. We have (see for example [DFI1,
p. 4])
QI N)<(q) Y, D x0Tl L)

h=0(q) l1,62<L
with
Sl te) = 30 Am)Ag(m)V(m)V ().

Zlmffzn:h
By (2.27) the contribution from the h = 0 term is bounded by
(7.6) <o (DLN(1+ [t))*¢N > |ag|? < (DLN(1 + [t]))*¢N L.
¢
For h # 0, we proceed to bound Sy, ({1, ¢2); we can rewrite this sum as

Sh(él,ég) = Z )\g(m))\g(n)F(ﬂlm,Egn),

lim—~lan=h
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with
F(z,y) =V(z/G)V(y/l2)p(x —y —h)

where p(u) is a smooth function supported on |u| < U = LNP~! such that
©(0) =1 and ¢ (u) <; U~ for all i > 0. In particular,

F(i’j)(a?,y) <<i,j U—(H‘j)
for all 4,7 > 0. From the §-symbol method we get

Sty = 3 Y e (_jh);Ag(m)/\g(n)e<w)E(m,n)

1<e<C d(c)
(d,e)=1

with C' = 2U"/? < 2\/LN/P and E(z,y) = F ({12, l2y)Ac(f12— oy — h) where
A.(u) is the function defined in (11) of [DFI2].

7.1.1. A summation formula. We will transform the above sum by means
of a summation formula, for this we need the following refinement of Theorem
A4 of [KMV2]. We define the “wild” part of D to be

I »®

p|D
vp(D)>1

For g primitive of level D we have, by [Lil, Th. 3, p. 295],
(7.7) pg(n) = 0 whenever (n, D) # 1.

PROPOSITION 7.1. Let D be a positive integer, and g a primitive weight
zero Maass form of level D and trivial nebentypus. For (a,c) =1, set

(7.8) = J] »p* c=c¢, D= (D), D' =D/DF,

pl(c,D*)
vp(€)<vy (D)

D =lcm.[D,()?], D’ = D/D* (note that (¢*,¢") = (D*, D°) = (D*, D°) = 1).

For F € C°(R*") a Schwartz class function vanishing in a neighborhood
of zero we have the identity

(79) ¢S py(mn!Pe(n) F(n)

C
n>1

incbﬁ > 47
\/_Zggilz/ggnac —F /0 ()szit< 7 ﬁ)dw

n>1

In the above expression,

e ¢, denotes the eigenvalue of g under the reflection operator,
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. Jou(x) = W;)(Ym(x) + Yogit(x)), Jif(x) = dch(mt) Koy ().

o kg(n,a,c) 12,

( )pgdnw b(n)n

where 1 runs over the Dirichlet characters of modulus ¢, Ga(cb) is the
Gauss sum, g.1p denotes the twist of g by the character ¢ (which is a
form of level [?) and W, denotes the Atkin-Lehner operator acting on
forms of level D.

Proof. Since (cf, ") = 1,

F naod
= Sl (55) Fo = Do (M54 2.

By our assumption (7.7) the n-sum runs over integers coprime with ¢, which

nact

allows us to transform easily the additive character e ( ) into multiplicative

ones

a nag
S(ga _) = 1b Z Q;Z) acﬁ ZP 1/21/} ) (7) F(n)

¢ QO(C Y(mod c?)

By [ALi, Prop. 3.1], the twisted form g.¢) has level D and nebentypus 2.
Since (cf, D) = D! is coprime with D/Df = D, we may apply Theorem A.4
of [KMV2], and the proof follows. O

7.1.2. Transformation of the double sum. In view of the above summation
formula we set

Ccl = C/(C,El), Cy) = C/(C, 52), ll = 51/(C,£1), l2 = EQ/(C, fg)

and apply Proposition 7.1 to both variables to get a sum of four terms of the
form

1
= Z Ei’i(nl,ng)li’i(nl,nz)
1<e<C ClCQDb n1,ne>1
with
—dh
(7.10) Ei’i(nl,ng)_Ze<—> > kglna,dly, c1)rg(ng, dla, co)
d(c) ¢ ni,na>1

(:I:nlcbdllf)b ﬂ:ngcbdlgbb)
e +

‘i &
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(7.11)

4 [nix 47
+.4+ + /11 + |n
I (n1,n2) / / E(z,y)J5;, < B ) J5i (Q B ) dxdy,

and where ¢; = c’icg, cy = cgcg as in (7.8). Note also that since ({142, D) =1,
we have cg = cg := ¢”; hence the corresponding decompositions for D and D
coincide; D = D! D} = DiD} with D} = D} = D’, and DY, = D} = D".

For each m,n > 1,

2
Ei’i(nl, 712) = —Cb
()

1/2 1/2
x> (A)GH() G (O pg ()02 pg, (n2)ny
)
Rrra=vy =y
S ) ( dhimccillD ingcaélgD>
d(c) € Ca

the innermost d sum is a Kloosterman type sum and is bounded by

<. Cl/2+€(C, h)1/2;

hence
(7.12) Eii(m,m) < 01/2+8 C h 1/2 Z |,Og w‘w n1 /2|2
¥(c)

Hoga, (2)ny* 2.

We now bound the analytic term 1% (n1, ny) using the following estimates for
the Bessel type functions (cf. [12, p. 227]); for 0,7 € R,

(7.13) Yorau(y) <y 2l Kopon(y) < y/%e™

for y > 1+ |o|? + 4/t|?, the implied constant being absolute. In particular we
get,

(7.14) T (y) <y 2

for y > 1+4]t|? , the implied constant being absolute. For the remaining range
we will also use the following general bound:

1+ e\
(7.15) JE(y) <<s( y")

for every r € R and € > 0, the implied constant depending only on £. These
last bounds follow from the integral representations

J5(y) = 20h(7rt)% /r (g +it) T (% —it) (%)_S ds
¢)
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Joi(y) = % /F (% + it) r (% — it) cos(wg) <%>_S ds
©)

(for J~ we obtain the bound by shifting the contour to fes = —e: we meet
two poles at s = +2it whose residues are bounded by (y/(1+]t|))?). By several
integrations by parts, using the recurrence relations

(z”K,,(z))/ = —2"K,-1(2), (z”Y,,(z))/ = —2"Y,-1(2),

the estimate E(7) < ; (¢C)~ i+l and (7.13), we see that I5%(ny, ny)
is very small unless

and

"2 2
7.16 ni <o @PF D (1 Cp2) i— .
N c2

When the variables n;, i = 1,2 satisfy (7.16), we use the bounds (7.14) and
(7.15) without integrating by parts to get

Ii’i(nl, ngy)

N ‘”2( VN, )‘”2
- (Poe||E|L | 1 1
<e (Pg)°|| ||1< + L+ 1t \/_> + PV D
—1/2 —-1/2
oY (14 VN > (1 VA2 )
< (Pg) L( (1 + [t)2)ct /D i (1 + [t[2)ci /D

by (30) of [DFI2]. Using this bound, (7.14) and
Y Ipguiw,, (mn' P < (aDX(1+ [t)°X
n<X

we obtain

3
(C,h)1/2 1/2 b N )
Su(l1,£s) << (¢DP)* ) Wf(l + [tl)

e<C 01

(ASD)? (GAED)Y2 g PAC?
N1/2 N3/2 <|t| + )
D(1 + [t])? 1/2,24+1/2 b3 (1416 pic?
87 —
e (@DPI g 3 (e hy e e (1t +—~)
(LN)3/4

<. (aDPDD(Do, )Y2(1 -+ 1) ([H° + P*) o

where Dy, Dy are as defined in (7.5) (we have used here that c @ =c¢; <cand
D’ < D < DD;). Summing over h = 0(q), h # 0 and /1, {5 we obtain finally
(7.4).
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In the (improbable) case where 2it € R (i.e. g is an exceptional eigenform
and so 2it € [—260,20]) we proceed as above to obtain the same bound. In
particular we use in the range

(D ¢

n; < (¢P)° N ?PQ,izl,Q,

the bound
Jo(y) < min(y =2, y=1/?) <y

(since one can take 6 < 1/4) the implied constant being absolute.
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