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Abstract. Given three distinct primitive complex characters χ1, χ2, χ3 satisfying some
technical conditions, we prove that the triple product of twisted L-functions L(f.χ1, 1/2)
L(f.χ2, 1/2) L(f.χ3, 1/2) does not vanish for a positive proportion of weight 2 primitive
forms for Γ0(q), when q goes to infinity through the set of prime numbers. This result,
together with some variants, implies the existence of quotients of J0(q) of large dimension
satisfying the Birch–Swinnerton-Dyer conjecture over cyclic number fields of degree less
than 5.
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1. Introduction

In recent years, questions about non-vanishing of automorphic L-functions at their crit-
ical point have received considerable attention [BFH, Du, Lu1, MM, IS, PS]. One reason
for this is their connections with topics such as the Phillips-Sarnak deformation theory of

2000 Mathematics Subject Classification. Primary: 11F66; Secondary: 11M41, 11G40.
Key words and phrases. automorphic L-functions, mollification, central values.
P.M. is partially supported by NSF Grant DMS-97-2992 and by the Ellentuck fund (by grants to the

Institute for Advanced Study) and by the Institut Universitaire de France.
1



2 P. MICHEL AND J. VANDERKAM

Maass forms, the conjecture of Birch and Swinnerton-Dyer, and the theory of liftings of
automorphic forms.

This work deals with the non-vanishing for central values of L functions attached to the
family S∗2(q) of primitive Hecke eigenforms forms of weight 2, for the group Γ0(q) with
trivial nebentypus. In this context, the proportion of non-vanishing for the central value of
a single L function was investigated first by Duke in [Du]; subsequently, using mollification
techniques, his results were improved by E. Kowalski and the authors in [KM2, V1, KMV1]
to yield a large positive proportion of non-vanishing central values.

In their seminal paper [IS] on the Landau-Siegel zero problem, Iwaniec and Sarnak
demonstrated the importance of establishing, for a positive proportion of primitive forms,
the simultaneous non-vanishing of central values of L functions of primitive forms twisted
by two different characters. They solved this problem (ineffectively) for the case when the
first character is trivial and the second is real. In [KMV2], using mollification of fourth
moments, the question of simultaneous non-vanishing for the first character trivial and the
second arbitrary was solved. The present work extends the methods of [KMV2] to treat
simultaneous non-vanishing for central values of L functions with three twists and discuss
applications connected to the Birch-Swinnerton-Dyer conjecture for J0(q).

A primitive form f ∈ S∗2(q) admits a Fourier expansion at infinity

f(z) :=
∑
n>1

√
nλf (n)e(nz),

with λf (1) = 1. The Fourier coefficients
√
nλf (n) are real algebraic integers. For χ a

primitive Dirichlet character of modulus D, the twist of f by χ, namely

(f.χ)(z) :=
∑
n>1

χ(n)
√
nλf (n)e(nz),

is a cuspidal modular form of level qD2 and nebentypus χ2. If D is coprime with q (which
we henceforth assume), f.χ is a primitive form. The associated L-function is

L(f.χ, s) =
∑
n

λf (n)χ(n)

ns
=
∏
p

(1− λf (p)χ(p)

ps
+
εq(p)χ

2(p)

p2s
)−1,

where εq is the trivial character modulo q. This has analytic continuation to the whole
complex plane and satisfies the functional equation [Li]

(1.1) Λ(f.χ, s) = −χ(−q)G(χ)

G(χ)
εfΛ(f.χ, 1− s)

where G(χ) is the Gauss sum, εf = ±1, and

Λ(f.χ, s) = (qD2)s/2(2π)−sΓ(s+ 1
2
)L(f.χ, s).

When q is squarefree, [Li]

(1.2) εf = µ(q)
√
qλf (q).
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Let χ1, χ2, χ3 be three distinct primitive characters of moduli D1, D2, D3 respectively. In
this paper we consider the simultaneous non-vanishing of the central value

L(f.χ1,
1
2
)L(f.χ2,

1
2
)L(f.χ3,

1
2
)

when the level q is prime.

Theorem 1.1. There exists an effective positive constant c satisfying: for any χ1, χ2, χ3

three distinct primitive characters whose conductors D1, D2, D3 are squarefree, and such
that χ2

1, χ
2
2, χ

2
3 remain primitive with the same moduli, we have

|{f ∈ S∗2(q), L(f.χ1,
1
2
)L(f.χ2,

1
2
)L(f.χ3,

1
2
) 6= 0}| > c|S∗2(q)|

for all sufficiently large primes q, where the requisite size of q depends only on D1, D2, D3.

As is now standard, this is proved through mollification techniques, combined with esti-
mates for the twisted fourth moments of L(f.χi, 1/2). Bounds on moments of this sort are
analyzed thoroughly in [DFI2], and indeed we adopt their methods to control the largest
remainder terms. However, for mollification we also need the asymptotics of these mo-
ments. When χi is the trivial character these asymptotics were computed for the first time
in [KMV2], and the bulk of the present paper is spent obtaining the necessary variant when
χi is non trivial. There is no significant distinction in the handling of the remainder terms
in this case, but the asymptotics are considerably more intricate (since the Eisenstein series
arising from χ⊗ χ has square level). The two assumptions on χ in Theorem 1.1 are there
to simplify the calculations, not because we expect the results to be false in other settings.
For the applications we have in mind (see below) the assumptions do not cause us any
significant difficulties.

In the course of the proof we obtain the following precise asymptotic for the fourth
moment:

Proposition 1.2. Let χ be a complex primitive character of squarefree conductor D > 1,
such that χ2 is primitive. If q is prime, then∑

f∈S∗2 (q)

1

4π(f, f)
|L(f.χ, 1/2)|4 = Pχ(log(qD2/4π2)) + 2<e(χ(q)Cχ) +Oε,D(q−1/12+ε)

where Cχ is a constant depending on χ only and Pχ(X) is a polynomial of degree 4, whose
coefficients depend only on χ, with leading coefficient

1

12ζ(2)

∏
p|D

(1− 1/p)3

(1 + 1/p)
|L(χ2, 1)|2.

This should be compared with Corollary 1.3 of [KMV2] which treated the case of the
trivial character and where the degree of the corresponding polynomial is 6. The difference
in degrees is explained by the fact that the family {L(f.χ, s)}f∈S∗2 (q) is predicted to admit an
“unitary” symmetry (in the terminology of [KS]) when χ is complex, and an “orthogonal”
symmetry when χ is trivial and f is restricted to “even forms”. In both cases our compu-
tations fit well with the predictions of by Conrey-Farmer [CF] and Keating-Snaith [KeSn]
using random matrix models. Note that Cχ and the coefficients of Pχ can be explicitly
computed.
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1.1. Arithmetic applications. These investigations on simultaneous non-vanishing were
motivated by the recent progress made towards the Birch–Swinnerton-Dyer conjecture for
quotients of J0(q) (the Jacobian of the modular curve X0(q)) over abelian number fields.
Let K be an abelian extension of Q. By the Kronecker-Weber Theorem, K is a sub-
field of some cyclotomic extension Q(exp(2πi/D)). Identifying Gal(Q(exp(2πi/D))) with

(Z/DZ)∗, there exists a subgroup Ĝal(K) of the Dirichlet characters of modulus D (which
is identified with the group of characters of Gal(K)) such that the Dedekind L-function of
the field K takes the form

L(K, s) :=
∏

p∈Spec(OK)

(1− 1

NK/Q(p)s
)−1 =

∏
χ∈Ĝal(K)

L(χ̃, s),

where χ̃ is the underlying primitive character of χ. For f ∈ S∗2(q), by successive applications
of the cyclic base change theory (due to Saito, Shintani and Langlands [La]) there is an
automorphic form fK over GL2(AK) called the base change lift of f from Q to K whose
associated L function is given by

L(fK , s) =
∏

χ∈Ĝal(K)

L(f.χ̃, s).

Hence Theorem 1.1 implies the following

Corollary 1.3. There exists an effective positive constant c satisfying: let K be a Galois
extension of degree 5 unramified at 5, then for any sufficiently large prime q (depending on
K)

|{f ∈ S∗2(q), L(fK ,
1
2
) 6= 0}| > c|S∗2(q)|.

The condition that 5 is unramified insures that the conductor of any χ ∈ Ĝal(K) is
square-free. The corollary fits with the following results proven in [KMV2]:

Theorem. There exists an effective positive constant c satisfying: let K be a Galois exten-
sion of degree 2 or 3, then for any sufficiently large prime q (depending on K)

|{f ∈ S∗2(q), L(fK ,
1
2
) 6= 0}| > c|S∗2(q)|,

if K is quadratic and χK(−q) = 1 (here χK is the Kronecker symbol of K) or if K is cubic.
If K is quadratic and χK(−q) = −1 then

|{f ∈ S∗2(q), ord
s=

1
2
L(fK , s) = 1}| > c|S∗2(q)|.

Note that we have said nothing so far about extensions of degree 4. The following variant
of Theorem 1.1, along with its corollary, takes care of the case of cyclic extensions:

Theorem 1.4. There exists an effective positive constant c satisfying: let χ2 a real charac-
ter and χ3 a complex character of squarefree conductors D2, D3 such that χ2

D3
is primitive,

then

|{f ∈ S∗2(q), χ2(−q) = 1, ord
s=

1
2
L(f, s)L(f.χ2, s)L(f.χ3, s) = 0}| > c|S∗2(q)|

|{f ∈ S∗2(q), χ2(−q) = −1, ord
s=

1
2
L(f, s)L(f.χ2, s)L(f.χ3, s) = 1}| > c|S∗2(q)|

for all sufficiently large primes q (depending on D2, D3).
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Corollary 1.5. There exists an effective positive constant c satisfying: let K be a cyclic
extension of degree 4 unramified at 2 and such that K is unramified over its (unique)
quadratic subfield K ′. Let χK′ be the Kronecker symbol associated to K ′, then for any q
prime large enough (depending on K)

|{f ∈ S∗2(q), χK′(−q) = 1, ord
s=

1
2
L(fK , s) = 0}| > c|S∗2(q)|.

|{f ∈ S∗2(q), χK′(−q) = −1, ord
s=

1
2
L(fK , s) = 1}| > c|S∗2(q)|.

We will not give the proof of Theorem 1.4 here as it turns out to be easier in many
aspects than that of Theorem 1.1; however we shortly discuss how this variant is obtained
in Section 11.

Remark. The remaining degree four case is that of the biquadratic field. By our methods
this would require precise asymptotics for the twisted sixth moments of L(f.χ, 1/2), which
are beyond the reach of current techniques.

Combining these results with the work of Gross, Zagier, Kolyvagin, Logachev, and Kato,
[GZ, Ko, KL, Ru, Sc] we obtain the following.

Theorem 1.6. Let K be a cyclic extention of Q of degree at most five such that 2 (respec-
tively 5) is unramified if [K : Q] = 4 (respectively 5). If K is quartic assume also that K
is unramified over its unique quadratic subfield. There exists an absolute positive constant
c such that for q a sufficiently large prime (depending on K), J0(q) admits a quotient J of
dimension dim J > c dim J0(q), whose group of K-rational points satisfies the weak Birch–
Swinnerton-Dyer conjecture. More precisely, denote by JK the K-rational abelian variety
obtained from J by extension of scalars to K, and by L(JK , s) the associated L-function.
Then

rankZJ(K) = ords=1L(JK , s) =

{
dim J if K contains K ′, quadratic, with χK′(−q) = −1,

0 else.

Our paper is organized as follows: after introducing some notation and definitions in
Section 2, we show in Section 3 how Theorem 1.1 and its variant 1.4 implies the Corollaries
1.3, 1.5, and 1.6. In Section 4 we explain how the proof of Theorem 1.1 reduces to the
estimate of (mollified) third and fourth moments. The triple moment is computed in
Sections 5 and 6. The computation of the fourth moment is handled in Sections 7, 8 and
9. In Section 7, we isolate the main terms and compute the easiest ones, the so-called
“diagonal” and “off-diagonal” terms. In Sections 8 and 9 we compute the third main term
(which, lacking a better term, we call “off-off-diagonal”); this is by far the most difficult
and technical portion of the paper. The key is that, as in [KMV2], the off-off-diagonal term
is defined by a double integral whose integrand is an odd function of both variables (s, t
say); hence by contour shift, the OOD term equals the residue of the integrand at s = t = 0
(see (9.5) and (9.10)). Let us emphasize that without this rather delicate property, it is
not possible to mollify properly the OOD portion. The mollification (and the completion
of the proof of Theorem 1.1) is sketched in Section 10, most of the techniques being those
of [KMV2] Sections 5 to 7. In Section 11 we discuss the proof of Theorem 1.4. We end
with a series an appendices dealing with some general forms of the Poisson formula and
the study of various exponential sums encountered in this paper.
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2. Notation and formulae

We refer the reader to [KMV2] for background on modular forms. In addition to the
formulae mentioned above, we will also use the multiplicative relation for the coefficients
of Hecke eigenforms in S∗2(q):

(2.1) λf (m)λf (n) =
∑
d|(m,n)

εq(d)λf (
mn

d2
).

Mobius inversion then gives the inverse equation

(2.2) λf (mn) =
∑
d|(m,n)

εq(d)µ(d)λf (
m

d
)λf (

n

d
)

where εq is the trivial character modulo q.
The fundamental formula of this paper is Petersson’s trace formula, which we now review.

Let B2(q) be an orthogonal basis of S2(q). Then

(2.3)
∑

f∈B2(q)

ψf (m)ψf (n)

4π(f, f)
= δm,n + ∆(m,n)

with

∆(m,n) := −2π
∑
c≡0(q)
c>0

S(m,n; c)

c
J1(

4π
√
mn

c
)

and

S(m,n; c) =
∑

x(c),(x,c)=1

e(
mx+ nx

c
).

Note that the identity (2.3) is independent of the choice of the basis B2(q); since in this
paper q is prime, there are no “oldforms” and S∗2(q) is an orthogonal basis of S2(q). In
particular we have

(2.4) |S∗2(q)| = dimS2(q) =
q

12
+O(1)

To simplify later discussions, we introduce some notation. Given an Euler product
L(s) =

∏
p Lp(s) and an integer A, let LA(s) =

∏
p|A Lp(s) and L(A)(s) =

∏
(p,A)=1 Lp(s).

To avoid confusion, the Ath power of L(s) will be noted L(s)A. Given an integer h and
a character χ of modulus D, we let G(χ, h) =

∑
x(D) χ(x)e(hx/D) denote the Gauss sum
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and let G(χ) denote G(χ, 1). When the modulus of χ is not clear from the context (for
example if χ is induced from a character of lower level) we use the more precise notation
G(χ, h;D). We let χ̃ denote the unique primitive character inducing χ. If D =

∏
p p

αp , we

factor χ() into χ(∗) :=
∏

p|D χp(∗) where χp are characters of modulus pαp .

Because (2.3) will be used for essentially all averaging over forms in this paper, it will
be convenient to introduce the the following notation for the weighted average of forms:∑h

f∈S∗2 (q)

αf :=
∑

f∈S∗2 (q)

αf
4π(f, f)

.

3. Derivation of the arithmetic applications

In this section we show how Theorem 1.1 and its variant, Theorem 1.4, imply 1.3, 1.5
and Theorem 1.6. For K a cyclic extension of degree at most five we let Gal(K) denote its

Galois group over Q and Ĝal(K) its character group. Let χ be the generator of Ĝal(K).
Then for f ∈ S∗2(q),

L(f, 1
2
)L(f.χ, 1

2
)L(f.χ2, 1

2
) 6= 0 ⇐⇒ L(f, 1

2
)L(f.χ, 1

2
)L(f.χ2, 1

2
) 6= 0,

and, since 1, χ, χ2, χ, and χ2 cover all of Ĝal(K), we have

L(fK ,
1
2
) =

∏
χ∈Ĝal(K)

L(f.χ, 1
2
) 6= 0.

Thus Theorem 1.1 implies Corollary 1.3 and similarly Theorem 1.4 implies Corollary 1.5.
Our starting point in the derivation of Theorem 1.6 is the work of Shimura [Sh] on the

arithmeticity of central values of L functions: for any σ ∈ Gal(Q), f ∈ S∗2(q), and character
χ,

L(f.χ, 1/2) 6= 0 ⇔ L(fσ.χσ, 1/2) 6= 0.

When χ is real, it follows from [GZ] that

ord
s=

1
2
L(f.χ, s) = 1 ⇔ ord

s=
1
2
L(fσ.χσ, s) = 1

(here by L(f.χ, s) we really mean L(f.χ̃, s), the L-function of the twist by the primitive
underlying character). From this it follows that∏

χ∈Ĝal(K)

L(f.χ, 1/2) 6= 0 ⇔
∏

χ∈Ĝal(K)

L(fσ.χσ, 1/2) 6= 0 ⇔
∏

χ∈Ĝal(K)

L(fσ.χ, 1/2) 6= 0

since σ stabilizes Ĝal(K). More precisely, if χ has order d and σ(exp(2πi/d)) = exp(2πia/d)
for (a, d) = 1 then χσ = χa. It follows that

(3.1)
∏

χ∈Ĝal(K)

L(f.χ, 1/2) 6= 0 ⇔ ∀χ ∈ Ĝal(K),
∏

f ′∈{fσ , σ∈Gal(Q)}

L(fσ.χ, 1/2) 6= 0.

Let Af denote the subquotient of J0(q) associated to f by Shimura theory. This is an
abelian variety of dimension 2df . Let AKf = ResK/QAf/K be the restriction from Kto
Q of the extension of scalars of Af to K; this is an abelian variety over Q of dimension
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(degK)(dimAf ). The set of rational points AKf (Q) is naturally isomorphic as a Z-module

to the set of K-rational points of Af ; in particular there is an action of Gal(K) on AKf (Q)

and a natural decomposition of AKf (Q)⊗C into χ eigencomponents for χ ∈ Ĝal(K),

AKf (Q)⊗C =
⊕

χ∈Ĝal(K)

(AKf (Q)⊗C)χ.

By the work of Kato1 (see [Ru, Sc] and the discussion in Section 5 of [Me]),∏
f ′∈{fσ , σ∈Gal(Q)}

L(fσ.χ, 1/2) 6= 0 implies that dim(AKf (Q)⊗C)χ = 0.

hence

(3.2) L(fK ,
1
2
) 6= 0 implies that rankAf (K) = 0.

If K contains a quadratic field K ′ such that χ(−q) = −1 then L(f, 1
2
)L(f.χK′ , 1

2
) =

L(fK ,
1
2
) = 0, so if we assume that ord1

2
L(fK , s) = 1 when either L(f, 1

2
) 6= 0 or L(f.χK′ , 1

2
) 6=

0, and that L(f.χ, 1
2
) 6= 0 for all the other χ ∈ Ĝal(K), then this argument continues to

hold and for all χ ∈ Ĝal(K) with one exception the corresponding χ-eigencomponent is
zero-dimensional. Suppose that the exception is the trivial character: ord

s=
1
2
L(f, s) = 1;

then from the [GZ, Ko, KL], rankAf (Q) = ord
s=

1
2
L(Af , s) = df , hence in this case

(3.3) ord
s=

1
2
L(fK , s) = 1 implies that rankAf (K) = df .

The same argument holds in the case ord
s=

1
2
L(f.χK′ , s) = 1 with a minor difficulty: one

needs instead to consider the product Af × Af.χK′ where Af.χK′ is the subquotient of
J0(q(condχK′)2) corresponding to the twisted form f.χK′ ∈ S∗2(q(condχK′)2). From the
hypotheses ord1

2
L(f.χK′ , s) = 1, L(f, 1

2
) 6= 0 we have rankAf × Af.χK′ = df.χK′ = df .

To conclude the derivation of Theorem 1.6, we consider, for K cyclic of degree at most
five, the quotient

J =
∏
f

Af

where f ranges through a set of representatives of Gal(Q)-orbits of f ∈ S∗2(q) such that the
order of L(fK , s) at s = 1

2
is 1 or 0, depending on whether K does or does not contain a

quadratic subfield K ′ such that χK′(−q) = −1. From (3.2) and (3.3) J(K) has the expected
rank. The condition that K is unramified at 2 or 5 if degK = 4 or 5 respectively insures
that the conductors of the characters of Gal(K) are coprime with their order and hence
are squarefree, so, from Corollaries 1.3 and 1.5 we have for q a sufficiently large prime

dim J > 2c|S∗2(q)| = 2c dim J0(q).

1If χ is real, one uses the work of Gross-Zagier and Kolyvagin-Logachev instead.
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4. Principle of the proof of non-vanishing

The basic idea of the proof is that for any numbers L1(f), L2(f), L3(f) one has by
Hölder’s inequality( ∑
f∈S∗2 (q)

L1(f)L2(f)L3(f)

)4

6 (
∑

f∈S∗2 (q)
L1L2L3(f) 6=0

1)(
∑

f∈S∗2 (q)

|L1(f)|4)(
∑

f∈S∗2 (q)

|L2(f)|4)(
∑

f∈S∗2 (q)

|L3(f)|4).

We take Li(f) = Mi(f)L(f.χi,
1
2
) where Mi(f) is a “mollifier” chosen so that∑

f∈S∗2 (q)

L1(f)L2(f)L3(f)

|S∗2(q)|
> c0 + o(1) and

∑
f∈S∗2 (q)

|Li(f)|4

|S∗2(q)|
6 ci + o(1)

where c0, c1, c2, c3 are positive. In the following sections we will show that
(4.1)∣∣ ∑h

f∈S∗2 (q)

L1(f)L2(f)L3(f)
∣∣ > (c0 + o(1))(log q)k0 and

∑h

f∈S∗2 (q)

|Li(f)|4 6 (ci + o(1))(log q)ki ,

for i = 1, 2, 3, with 4k0 = k1 + k2 + k3 so that

c40
c1c2c3

+ o(1) 6
∑h

f∈S∗2 (q)
L1L2L3(f) 6=0

1.

To finish the proof of Theorem 1.1 we must still replace the weight 1/4π(f, f) by the
“natural” weight 1/|S∗2(q)|. This can be done using the axiomatic system of [KM2] and
[KMV2] with no loss in the size of the constants, but since we do not care about the size of
the constants, it is enough to use the inequality (already used by Luo in [Lu2], in a similar
context) ∑h

f∈S∗2 (q)
L1L2L3(f) 6=0

1 6 (
∑

f∈S∗2 (q)
L1L2L3(f) 6=0

1)1/2(
∑h

f∈S∗2 (q)

1

4π(f, f)
)1/2

and the upper bound due to E. Royer [Ro]:

Lemma 4.1. There exists an absolute constant C such that, for q a sufficiently large prime,∑h

f∈S∗2 (q)

1

4π(f, f)
6 Cq−1.

5. The third moment

5.1. Expression of the central values as rapidily converging series. Let χ be a
primitive character of conductor D, and let εχ = −χ(−q)G(χ)/G(χ). Take f ∈ S∗2(q) with
(q,D) = 1. Then from (1.1) and a contour shift we have

L(f.χ, 1
2
) =

∑
n

λf (n)χ(n)

n1/2
V (

n

q1/2D
) + εχεf

∑
n

λf (n)χ(n)

n1/2
V (

n

q1/2D
)(5.1)
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where

V (y) =
1

2πi

∫
(3)

Γ(1 + s)(2πy)−s
ds

s
.

If χ is real then

(5.2) (

√
qD

2π
)−1Λ′(f.χ, 1

2
) = (1− εχεf )

∑
n

λf (n)

n1/2
V (

n

q1/2D
).

For χ1, χ2 two primitive characters of respective moduli D1, D2, and (q,D1D2) = 1, we
denote by

χ1∗χ2(n) =
∑

n1n2=n

χ1(n1)χ2(n2),

their Dirichlet convolution. By (2.1), we get

L(f.χ1, s)L(f.χ2, s) = L(q)(2s, χ1χ2)
∑
n

λf (n)χ1∗χ2(n)n−s

so that

L(f.χ1,
1
2
)L(f.χ2,

1
2
) =

∑
n

λf (n)χ1∗χ2(n)

n1/2
Wχ1χ2(

n

qD1D2

)

+ εχ1εχ2

∑
n

λf (n)χ1∗χ2(n)

n1/2
Wχ1χ2(

n

qD1D2

)

:= P (f, χ1χ2) + εχ1εχ2P (f, χ1χ2)

(5.3)

say, with

Wχ1χ2(y) =
1

2πi

∫
(3)

Γ(1 + s)2L(q)(1 + 2s, χ1χ2)(4π
2y)−s

ds

s
.

Shifting the line of integration, we infer that

(5.4) yjV (j)(y), yjW (j)
χ1χ2

(y) � (1 + y)−A| log y|

for all j > 0 and all A > 0, the implied constant depending on j, A,D1, D2 only (the
| log y| factor appearing if and only if χ1 = χ2). On the other hand, if we shift the line to
<es = −1/2 we have (if χ1 6= χ2)

(5.5) Wχ1χ2(y) = L(χ1χ2, 1) +OD1,D2(y
1/2).

5.2. Mollification. Let χ1, χ2, χ3 be distinct primitive Dirichlet characters of conductors

D1, D2, D3, and let q be a large prime with (q,D1D2D3) = 1. Since L(f.χ, 1
2
) = L(f.χ, 1

2
)

we may also assume that χi 6= χj for i 6= j. For each f ∈ S∗2(q) and χi i = 1, 2, 3 we
associate a mollifier Mi(f) of the form

Mi(f) =
∑
`6L

(`,q)=1

xi(`)
λf (`)

`1/2
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where L := q∆ for some fixed ∆ < 1 and the xi(`) are complex numbers satisfying xi(`) � qε

for all ε > 0, the implied constant depending on ε,D1, D2, D3 only. To simplify the
notations to come we note that (2.1) lets us write

M1(f)M2(f)M3(f) =: M(f) =
∑
`6L′

(`,q)=1

x(`)

`1/2
,

with L′ = q3∆ and the x(`) satisfying the same bound. To be precise, we have

(5.6) x(`) =
∑∑

d,d′

1

dd′

∑
`3`4=`

∑
`1`2=`3d′

x1(d`1)x2(d`2)x3(d
′`3).

In view of (5.1) and (5.3), it suffices to estimate the sums

PM(χ1, χ2, χ3) :=
∑h

f

P (f, χ1χ2)P (f, χ3)M(f)

and

PM ε(χ1, χ2, χ3) :=
∑h

f

εfP (f, χ1χ2)P (f, χ3)M(f)

and to take an appropriate linear combination involving the conjugates of χ1, χ2. We make
an additionial reduction by writing P (f, χ3)M(f) in the form

(5.7) P (f, χ3)M(f) =
∑
`,n

λf (`n)

(`n)1/2

∑
(d,q)=1

x(d`)χ3(dn)

d
V (

dn

q1/2D3

) :=
∑
n

λf (n)

n1/2
y(n).

Note that, in view of (5.4) and the bound on x(`),

(5.8) y(n) � qε(1 +
n

q1/2+3∆
)−A

for all ε, A > 0 the implied constant depending on ε, A, and D1D2D3.

5.3. Evaluation of PM(χ1, χ2, χ3). Since q is prime, we have B2(q) = S∗2(q) and Peters-
son’s formula provides a decomposition of PM(χ1, χ2, χ3) into the sum of a diagonal term,

(5.9)
∑
m

y(m)χ1∗χ2(m)

m
Wχ1χ2(

m

qD1D2

)

and a non-diagonal term,
(5.10)

PMND = −2π
∑

c>0,c≡0(q)

c−1
∑∑
m,n

χ1∗χ2(m)

m1/2
Wχ1χ2(

m

qD1D2

)
y(n)

n1/2
S(m,n; c)J1(

4π
√
mn

c
).

Now we appeal to the large sieve inequality of [DFI2]:
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Proposition 5.1. Let k > 2 be an integer. For η a smooth function supported in [C, 2C]
such that η(i) �i C

−i for all i > 0, set

∆η(n, `) := 2πi−k
∑
c≡0(q)
c>0

S(n, `; c)

c
Jk−1(

4π
√
`n

c
)η(c).

Then for any sequences of complex numbers xm, yn,∑
m6M

∑
n6N

xmyn∆η(`, n) �ε,k C
ε(

√
LN

C
)k−3/2(1 +

L

q
)1/2(1 +

N

q
)1/2||x||2||y||2

with any ε > 0 the implied constant depending on ε and k only.

Introducing a smooth partition of unity on the variables c,m, n and using Proposition
5.1 along with (5.4) and (5.8), we find that the expression (5.9) is dominated by qε−(1−6∆)/8

for all ε > 0 the implied constant depending on ε,D1, D2, D3.

Remark. It is possible to avoid the use of Proposition 5.1, a rather deep result, through
elementary methods (see [V2], for example) with no loss in the quality of the estimate.
Here we prefer to get the desired result as quickly as possible.

We thus have (using (5.5))∑h

f

P (f, χ1χ2)P (f, χ3)M(f) =
∑
d,`,n

x(d`)χ1∗χ2(`n)χ3(dn)

d`n
V (

dn

q1/2D3

)Wχ1χ2(
`n

qD1D2

) + o(1).

= L(χ1χ2, 1)
∑
d,`,n

x(d`)χ1∗χ2(`n)χ3(dn)

d`n
V (

dn

q1/2D3

) + o(1)(5.11)

as long as ∆ < 1/6, the implied constant depending on D1, D2, D3,∆.
Before going to the evaluation of the more difficult term PM ε(χ1, χ2, χ3), we show that

we are finished calculating the third moment if any of the characters, say χ1, is real. By
(1.1),

L(f.χ1,
1
2
) =

1 + εχ1εf
2

L(f.χ1,
1
2
)

since both sides vanish if εf = −εχ1 , so

L(f.χ1,
1
2
)L(f.χ2,

1
2
)L(f.χ3,

1
2
) =

1 + εχ1εf
2

L(f.χ1,
1
2
)L(f.χ2,

1
2
)(P (f, χ3) + εχ3εfP (f, χ3)).

But, since both sides are zero unless εf = εχ1 , we have (1+εfεχ1)εχ3εf = (1+εfεχ1)εχ3εχ1 .
Thus

L(f.χ1,
1
2
)L(f.χ2,

1
2
)L(f.χ3,

1
2
) = L(f.χ1,

1
2
)L(f.χ2,

1
2
)(P (f, χ3) + εχ1εχ3P (f, χ3)),

and both terms can be evaluated by (5.11).
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6. Evaluation of PM ε(χ1, χ2, χ3)

Note that, by appropriate labelling of characters, we may assume that χ1χ2(−1) = 1.
We define y(n) by

(6.1) P (f, χ3)M(f) =
∑
`,n

λf (`n)

(`n)1/2

∑
(d,q)=1

x(d`)χ3(dn)

d
V (

dn

q1/2D3

) :=
∑
n

λf (n)

n1/2
y(n).

We have

PM ε(χ1, χ2, χ3) = −√q
∑∑
m, n

χ1∗χ2(m)y(n)

m1/2n1/2
Wχ1χ2(

m

qD1D2

)
∑h

f

λf (qm)λf (n)

We use Petersson’s formula to break this into a “diagonal” term,

−
∑
m

χ1∗χ2(m)y(qm)

m
Wχ1χ2(

m

qD1D2

),

and a “non-diagonal” term,

−2π
√
q

∑
c>0,c≡0(q)

c−1
∑∑
m,n

χ1∗χ2(m)

m1/2
Wχ1χ2(

m

qD1D2

)
y(n)

n1/2
S(qm, n; c)J1(

4π
√
qmn

c
).

By (5.4) and (5.8) the diagonal term is � qε(1 + q(1−6∆)/2)−A for all ε, A > 0 and is thus
negligible as long as ∆ < 1/6. Thus we need only consider the non-diagonal term. Note
first that the contribution from when n is divisible by q is � qε(1 + q(1−6∆)/2)−A for all
ε, A > 0, and can thus also be ignored. Thus we may assume that (n, q) = 1. We note
that S(qm, n; c) = 0 unless q divides c exactly once, in which case, writing c = qc′ with
(c′, q) = 1, we have

S(qm, n; c) = S(m, qn; c′)S(0, c′n; q) = −S(m, qn; c′).

Thus

PM ε =
2π
√
q

∑
(n,q)=1

y(n)

n1/2

∑
(c,q)=1

∑
m

χ1∗χ2(m)

m1/2

S(m, qn; c)

c
Wχ1χ2(

m

qD1D2

)J1(
4π
√
mn/q

c
)+Err.

By Weil’s bound for Kloosterman sums and the inequality J1(x) � x we can ignore the
contribution from large c, say c > C for C = q1000. To simplify computations, we multiply
the expression by η(m), where η(x) is smooth, vanishing near the origin, and equal to one
on [1,+∞). Note that the sum is unchanged by this step.

6.1. Application of Poisson’s Formula. We now write S(m, qn; c) as a sum of expo-
nentials e((am+ aqn)/c) and apply Proposition A.2 for the function

η(x)F (x) = η(x)x−1/2Wχ1χ2(
x

qD1D2

)J1(
4π
√
xn/q

c
).
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We can then write PM ε = PM ε
main + PM ε

er + Err with

PM ε
main = 2π

G(χ2)L(1, χ1χ2)√
q

∑
(n,q)=1

y(n)

n1/2

∑
c6C,D2|c
(c,q)=1

χ1(
c

D2

)
G(χ2, qn; c)

c2

∫ ∞

0

η(x)F (x)dx

+2π
G(χ1)L(1, χ1χ2)√

q

∑
(n,q)=1

y(n)

n1/2

∑
c6C,D1|c
(c,q)=1

χ2(
c

D1

)
G(χ1, qn; c)

c2

∫ ∞

0

η(x)F (x)dx,

where G(χ2, qn; c) =
∑

a(c),(a,c)=1 χ2(a)e(aqn/c) and

PM ε
er = −4π2

√
q

∑
(n,q)=1

y(n)

n1/2

∑
c6C

(c,q)=1

∑
m1,m2

R(m1,m2, qn; c)

cc1c2

∫ ∞

0

η(x)F (x)Y0(4π

√
m1m2x

c1c2
)dx

+8π
χ2(−1)
√
q

∑
(n,q)=1

y(n)

n1/2

∑
c6C

(c,q)=1

∑
m1,m2

R(m1,m2,−qn; c)

cc1c2

∫ ∞

0

η(x)F (x)K0(4π

√
m1m2x

c1c2
)dx,

where R(m1,m2, n; c) is the exponential sum defined in (B.1). Using Lemma B.1 we see
that

PM ε
er � q−1/2

∑
(n,q)=1

|y(n)|
n1/2

∑
c6C

(c,q)=1

∑
m>1

τ(m)
((c1c2/c

2)n− qm, c)

c2

∣∣∣∣∫ ∞

0

η(x)F (x)Y0(4π

√
mx

c1c2
)dx

∣∣∣∣
+ q−1/2

∑
(n,q)=1

|y(n)|
n1/2

∑
c6C

(c,q)=1

∑
m>1

τ(m)
((c1c2/c

2)n+ qm, c)

c2

∣∣∣∣∫ ∞

0

η(x)F (x)K0(4π

√
mx

c1c2
)dx

∣∣∣∣,
the implied constant depending only on D1, D2. We bound these terms by the methods
of [KM2] 2.4.6 which gives that the inner sums over the variable c,m are bounded by
� qε−1/2n1/2. Note in particular the singularity for n = qm(c1c2/c

2)−1 > qm/(D1D2), but
from (5.8), as long as 1/2 + 3∆ < 1, it gives a negligable contribution. The net result is
that PM ε

er is bounded by

� qε−1
∑

(n,q)=1

|y(n)| � qε−1/2+3∆,

which is admissible as long as ∆ < 1/6.

6.2. Evaluation of PM ε
main. Now we evaluate the two terms of PM ε

main. First we remove
the function η(x) from the integral at a cost � q−1/2+3∆ (using that J1(x) � x), and we
extend the summation to c > C at a negligible cost. Next we make the change of variable

y = 4π
√
n√

qcD2
x1/2. In the definition of Wχ1χ2 as an inverse Mellin transform we shift the line of

integration to σ = 1/4, switch this integral with the x-integral and the c sum (everything
is absolutely convergent) and use the identity∫ ∞

0

J1(y)y
−2sdy = 2−2sΓ(1− s)

Γ(1 + s)
.
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We obtain finally that the first of the two terms of PM ε
main is

(6.2)
G(χ2)

D2

L(1, χ1χ2)
∑
n

y(n)

n

1

2πi

∫
(1/4)

Γ(1− s)Γ(1 + s)L(q)(1 + 2s, χ1χ2)Z(1 + 2s)(
D1

D2n
)s
ds

s

where

Z(s) =
∑

(c,q)=1

χ1(c)
G(χ2, qn; cD2)

cs
.

We have

G(χ2, qn; cD2) =
∑
a(cD2)
(a,c)=1

χ2(a)e(
aqn

cD2

) =
∑
u|c

µ(u)χ2(u)
∑
a(cD2)

χ2(a)e(
auqn

cD2

)

=
∑
u|c
c/u|n

µ(u)χ2(u)
c

u

∑
a(D2)

χ2(a)e(
aqn/(c/u)

D2

) = G(χ2)χ2(q)
∑
ef=n
e|c

eχ2(f)µ(c/e)χ2(c/e).

We obtain that

Z(s) =
∑
ef=n

(e,q)=1

χ1(e)χ2(f)e1−sL(q)(χ1χ2, s)
−1.

Note that we can drop the condition (e, q) = 1 at an admissible cost since q|e implies that
q|n, and we have already ruled out that case. Finally, up to an admissible remainder term,
(6.2) equals

G2(χ2)χ2(q)

D2

L(1, χ1χ2)
∑
n

y(n)

n
F (χ1, χ2, n)

where

(6.3) F (χ1, χ2, n) =
1

2πi

∫
(1/4)

Γ(1− s)Γ(1 + s)(
D1

D2

)s
∑
ef=n

χ1(e)χ2(f)(
e

f
)s
ds

s
.

So, up to a remainder dominated by � qε−1/2+3∆,

PM ε =
∑
n

y(n)

n

[
G2(χ2)χ2(q)

D2

L(1, χ1χ2)F (χ1, χ2, n)+
G2(χ1)χ1(q)

D1

L(1, χ1χ2)F (χ2, χ1, n)

]
.

This finishes our computation of PM ε(χ1, χ2, χ3).

6.3. End of the computation. We now combine the sums to calculate∑h

f

L(f.χ1,
1
2
)L(f.χ2,

1
2
)εfP (f, χ3)M(f)

=
∑h

f

P (f, χ1χ2)εfP (f, χ3)M(f) + εχ1εχ2

∑h

f

P (f, χ1χ2)εfP (f, χ3)M(f).
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At this point, it is sufficient to compute[
G2(χ2)χ2(q)

D2

L(1, χ1χ2)F (χ1, χ2, n) +
G2(χ1)χ1(q)

D1

L(1, χ1χ2)
∑
n

F (χ2, χ1, n)

]
(6.4)

+εχ1εχ2

[
G2(χ2)χ2(q)

D2

L(1, χ1χ2)F (χ1, χ2, n) +
G2(χ1)χ1(q)

D1

L(1, χ1χ2)
∑
n

F (χ2, χ1, n)

]
.

By shifting the s contour in (6.3) to σ = −1/4 we get a simple pole at s = 0. Making the
change of variable s→ −s, we have

F (χ1, χ2, n) + F (χ2, χ1, n) = χ1∗χ2(n).

Using the hypothesis χ1χ2(−1) = 1 and the identity εχ1εχ2 = χ1χ2(q)
G(χ1)
G(χ1)

G(χ2)
G(χ2)

, we find

that (6.4) equals

(6.5)
G2(χ2)χ2(q)

D2

L(1, χ1χ2)χ1∗χ2(n) +
G2(χ1)χ1(q)

D1

L(1, χ1χ2)χ1∗χ2(n).

Thus we have proved the following.

Theorem 6.1. Let χ1, χ2, χ3 be three distinct primitive characters of conductor D1, D2, D3

such that χ1χ2(−1) = 1. Then for any ∆ < 1/6,

(6.6)
∑h∏

L(f.χi,
1
2
)Mi(f) = PM(χ1, χ2, χ3) + εχ1εχ2PM(χ1, χ2, χ3)

+ ε3PM
ε(χ1, χ2, χ3) + ε3PM

ε(χ2, χ1, χ3) + o(1)

the implied constant depending on only on D1, D2, D3,∆, where

(6.7) PM(χ1, χ2, χ3) = L(1, χ1χ2)
∑∑
d,`,n

x(d`)χ1∗χ2(`n)χ3(dn)

d`n
V (

dn

q1/2D3

)

and
(6.8)

PM ε(χ1, χ2, χ3) =
G2(χ2)χ2(q)

D2

L(1, χ1χ2)
∑∑
d,`,n

x(d`)χ1∗χ2(`n)χ3(dn)

d`n
V (

dn

q1/2D3

).

7. The fourth moment

In this section and the following, χ is a complex primitive character of conductor D,
such that χ2 is also primitive of conductor D > 1. We wish to calculate asymptotics for
the fourth moment ∑h

|L(f.χ, 1
2
)|4|M(f)|4.

We start by calculating a precise asymptotic expansion for the twisted fourth moment

(7.1) M4(`) :=
∑h

f∈S∗2 (q)

|L(f.χ, 1/2)|4λf (`).

We can assume in what follows that ` is coprime with qD.
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Proposition 7.1. Let χ be a non-trivial complex character of conductor D squarefree, we
assume also that χ2 is also primitive. For any prime q, and any ` < q coprime with qD,
an any ε > 0 we have

M4(`) = MD(`) +MOD(`) +MOOD(`) +Oε,D(qε(`3/4q−1/12 + `17/8q−1/4 + `q−1/6))

where MD(`) +MOD(`) is defined in (7.9) and MOOD(`) is defined in (8.14).

This proposition is a variant of Theorem 1.2 of [KMV2] and is proved in essentially the
same way. Since the analysis of the error terms is exactly the same as in [DFI2, KMV2]
(because D is fixed) we will almost entirely skip it to concentrate on the evaluation of the
main terms. In particular when we refer to an expression as being an “admissible error
term” we mean that the contribution of this expression to the whole M4(`) can be bounded
by Oε,D(qε(`3/4q−1/12 + `17/8q−1/4 + `q−1/6)).

To simplify notation we define the twisted divisor function

τχ(n) := χ ∗ χ(n) =
∑
ab=n

χ(a)χ(b)

it satisfies

(7.2) τχ(m)τχ(n) =
∑
d|(m,n)

εD(d)τχ(
mn

d2
), τχ(mn) =

∑
d|(m,n)

εD(d)µ(d)τχ(
m

d
)τχ(

n

d
).

Let G(s) be a real even polynomial such that G(0) = 1 and G vanishes at order at least 2
at s = 1, 2, 3 (this simplifies some technical aspects of the computation). We have

|L(f ⊗ χ, 1/2)|2 = 2
∑
n

τχ(n)√
n
λf (n)W (

n

qD2
)

with

W (y) :=
1

2πi

∫
(3)

G(s)Γ2(1 + s)ζ(qD)(1 + 2s)(4π2y)−s
ds

s
.

We have by (2.1)

M4(`) =
∑
de=`

d−1/2
∑
ab=d

µ(a)

a1/2
τχ(b)

∑
m,n

τχ(m)τχ(n)

(mn)1/2
W (

m

qD2
)W (

adn

qD2
)
∑h

f

λf (m)λf (aen).

Using (2.3), we split this into

M4(`) = MD(`) +MND(`)

with

MD
4 (`) =

∑
de=`

1

d1/2

∑
ab=d

µ(a)

a1/2
τχ(b)

∑
n

τχ(aen)τχ(n)

(ae)1/2n
W (

aen

qD2
)W (

adn

qD2
),

MND
4 (`) = −2π

∑
de=`

1

d1/2

∑
ab=d

µ(a)√
a
τχ(b)

×
∑
c≡0(q)

1

c

∑
m,n

τχ(m)τχ(n)√
mn

W (
m

qD2
)W (

adn

qD2
)S(m, aen; c)Jk−1(

4π
√
aemn

c
).
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We have by (7.2)

(7.3) MD(`) =
1

`1/2

∑
de=`

∑
n

τχ(en)τχ(dn)

n
W (

en

qD2
)W (

dn

qD2
).

Before evaluating MND(`), we make a smooth dyadic partition of unity on the variables
x and n by introducing (as with the third moment) η(x), which vanishes near the origin
and is one on [1,+∞). We decompose η as

η(x) =
∑
M>1

ηM(x),

a sum of smooth functions ηM which are compactly supported on [M/2, 2M ] with deriva-
tives satisfying xjη(j)(x) �j 1 for any j. We set

(7.4) D(x, n) :=
1√
xn
W (

x

qD2
)W (

adn

qD2
)

and we use the generic notation FM,N(x, n) or F (x, n) to designate a function of the form

FM,N(x, n) := ηM(x)ηN(n)D(x, n).

We thus have

MND
4 (`) = −2π

∑
de=`

1

d1/2

∑
ab=d

µ(a)√
a
τχ(b)

×
∑
M,N

∑
c≡0(q)

1

c

∑
m,n

τχ(m)τχ(n)FM,N(m,n)S(m, aen; c)J1(
4π
√
aemn

c
).(7.5)

We note that we can remove the contributions from M + N > q1+ε and then from c > C
(where C = min(q7/6, q2/3M1/2)) at an admissible cost, using (5.4) and Proposition 5.1. We
apply Proposition A.2 and get

c
∑
m

τχ(m)F (m,n)S(m, aen; c) = δD|c2<e
(
χ(

c

D
)G(χ, aen; c)G(χ)L(1, χ2)

)∫ ∞

0

F (x, n)dx

+
∑
±

χ(∓1)
∑
m>1

T (m,∓aen; c)F̂±(m,n)(7.6)

where

F̂±(y, n) := −2π

∫ ∞

0

F (x, n)J1(4π

√
xaen

c
)K±(4π

√
xy

[c,D]
)dx,

K−(x) := −2πY0(x), K
+(x) := 4K0(x),

T (m,n; c) :=
∑

m1m2=m

R(m1,m2, n; c)

and

R(m1,m2, n; c) =
c

[c,D]2

∑
x(c)

(x,c)=1

e(
nx

c
)

∑
r1,r2([c,D])

χ(r1)χ(r2)e(
m1r1 +m2r2

[c,D]
+
r1r2x

c
)
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is the sum studied in Section B.1 of the Appendix. The contribution of the first term can
be shown negligible in exactly the same way as in [DFI2] p. 229 or [KMV2] 3.3, the only
adjustment being powers of D to consider, so we will not cover it in detail here. This leaves
the sum over m, which we break into two cases.

7.1. Evaluation of the off-diagonal term. We first consider the special case m =
( D

(c,D)
)2aen (the “off-diagonal” term), specifically its contribution to the “+” part of the

sum in (7.6). For notational convenience, we let D3 = D/(c,D), so that

MOD
4 (`) =

∑
de=`

1

d1/2

∑
ab=d

µ(a)√
a
τχ(b)

∑
M,N

∑
c≡0(q)
c6C

1

c

∑
n

τχ(n)T (aenD2
3, aen; c)F̂−

M,N(D2
3aen, n).

(7.7)

From (B.4), we see that T (aenD2
3, aen; c) = 0 unless D3 = 1, so D|c. Combining (B.4)

with (B.3), we find that

T (aen, aen; c) = τχ(aen)φ(
c

D1

)µ(D1),

where D1 is the largest divisor of (D, c) such that (D1, c/D1) = 1. As in [KMV2] 3.5, we
can drop the constrains c 6 C and M + N 6 q1+ε at an admissible cost. At this point
(7.7) is almost exactly identical to the off-diagonal terms studied in [KMV2], Section 3.6,
the only difference being the replacement of τ by τχ and φ(c) by φ(c/D1)µ(D1). Thus we
may follow the steps of that paper precisely, using the calculation∑

qD|c

φ( c
D1

)µ(D1)

c1+2s
=

φ(q)

q1+2s
D1−2s ζ(2s)

ζ(qD)(1 + 2s)ζ(D)(1− 2s)
,

and the functional equation

ζ(2s)Γ(s) = π2s−1/2ζ(1− 2s)Γ(1/2− s).

to get an off-diagonal term of
(7.8)∑
de=`

1

`1/2

∑
ab=d

µ(a)

a
τχ(b)

∑
n

τχ(aen)

n
W (

adn

qD2
)

1

2πi

∫
(3)

G(s)Γ2(1−s)ϕ(q)

q
ζ(D)(1−2s)(

4π2aen

qD2
)s
ds

s
.

We make the change of variable s′ = −s, then shift the resulting contour to the right up to
<es′ = 3, passing a pole at s′ = 0. After rearranging the a, b, e sums and combining with
the the diagonal term (7.3), we obtain that

MD(`)+MOD(`) =
ϕ(q)

q

4

`1/2

∑
de=`

∑
n

τχ(dn)τχ(en)

n
W (

dn

qD2
)Ress=0

G(s)Γ2(1 + s)(qD2)s

s(4π2en)s
ζ(D)(1+2s)

(7.9) +
4

`1/2

∑
de=`

∑
n

τχ(dn)τχ(en)

n
W (

dn

qD2
)W ∗(

en

qD2
)
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up to and admissible error term with

W ∗(y) =
1

2πi

∫
(3)

G(s)Γ2(1 + s)
(
ζ(qD)(1 + 2s)− ϕ(q)

q
ζ(D)(1 + 2s)

)
(4π2y)−s

ds

s
.

Shifting the contour to <es = ε gives W ∗(y) �ε (yq)εq−1, so this second sum is negligible.

8. The off-off diagonal term

The “off-off diagonal” term, which we denote MOOD(`), is the contribution from MND(`)
when m 6= D2

3aen. As in [KMV2], its evaluation is by far the most difficult and technical.
We start with a notational adjustment: to any c > 0 we associate the decomposition
D = D1D2 and the divisor D3|D2 uniquely defined by the properties

c = c′D1, (c′, D1D3) = 1, (D2/D3)
2|c′.

Note that this is slightly different than the decomposition in Appendix B, we have adjusted
it because here the only important distinction is between primes dividing c once and di-
viding it any other number of times. There is no change in the meaning of D3, but what
we now call D2 is called D2D3 in the appendix.

We first write MOOD(`) as a sum over M and N of terms of the form

MOOD
M,N (`) = −2π

∑
de=`

1

d1/2

∑
ab=d

µ(a)√
a
τχ(b)

×
∑
c≡0(q)

1

c2

∑
±

χ(∓)
∑
h 6=0

∑
m±D2

3aen=h

T (m,∓aen; c)F±
M,N(m,n).

Using equation (B.4), we see that the off-off-diagonal term is provided by the sum over
a, c, e, M , and N of

(8.1) χD3(−1)
∑

ν∈{±1}

χ(−ν)
∑
h 6=0

r(h; c′)×

[ ∑
m1m2+νD2

3aen=h

χD2
(m1)χD2(m2)τχ(n)R(m1,m2,−νaen;D1)F̂

±
M,N(m1m2, n)

]
with

R(m1,m2, n;D1) =
1

D1

∑∗

x(D1)

∑
r1,r2(D1)

χD1(r1)χD1
(r2)e(

m1r1 +m2r2 +D3(r1r2x+ nx)

D1

).

Since q|c′, we can decompose r(h; c′) as

r(h; c′) =
∑

gc′′=c′,(q,g)=1
c′′|h

µ(g)c′′ +
∑

gc′′=c′,q|g
c′′|h

µ(g)c′′ := rm(h; c′) + re(h, c′).

One can show, exactly as in [KMV2] 4.4, that the re(h; c) portion contributes an admissible
error term so in the expression (8.1) we may replace r(h, c′) by rm(h; c′). We compute now
the sum over the m1,m2, n variables. The treatment of remainder terms and the choice of
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parameters in what is to come is the same as in [DFI2] and we refer to that paper (and also to
[DFI1]). We apply the δ-symbol method [DFI1] to detect the condition m1m2±D2

3aen = h,
giving ∑

m1m2+νD2
3aen=h

· · · =
∑

16r<2R

1

D1

∑∗

d(r)

e(
−dh
r

)
∑∗

r1,r2,x(D1)

χD1(r1)χD1
(r2)e(

r1r2x

D1

)×

∑
m1,m2

χD2
(m1)χD2(m2)e(

m1r1 +m2r2
D1

+
dm1m2

r
)×(8.2)

∑
n

τχ(n)e(νD2
3ae(

d

r
− x

D1

)n)Eν(m1m2, n)

where R is chosen depending on M,N and

Eν(x, y) = F̂ ν(x, y)∆r(x+ νD2
3aey − h).

Now we perform Poisson summation using Proposition A.1 of Appendix A: we obtain
(8.3)∑∑
m1,m2,n

· · · = Ress=t=0
Êν(1 + s, 1 + t)

[r,D]2(s+t)

(
I0
s2

+
1

s
(I−+ I+)

)(
II0
t2

+
χ(ν)

t
(II−+ II+)

)
+Err

where

Êν(1 + s, 1 + t) =

∫∫ +∞

0

Eν(x, y)xsytdxdy,

I0 = I0(d, r1, r2) =
1

[r,D]2

∑
s1,s2([r,D])

χD2
(s1)χD2(s2)e(

r1s1 + r2s2

D1

+
ds1s2

r
)

II0 = II0(d, x) =
1

[r,D]2

∑
s1,s2([r,D])

χ(s1)χ(s2)e(D
2
3ae(

d

r
− x

D1

)s1s2)

I− = I−(d, r1, r2) =
1

[r,D]2

∑
s1,s2([r,D])

χD2
(s1)χD2(s2)e(

r1s1 + r2s2

D1

+
ds1s2

r
)

(
−Γ′

Γ
(
s1

[r,D]
)

)

II− = II−(d, x) =
1

[r,D]2

∑
s1,s2([r,D])

χ(s1)χ(s2)e(D
2
3ae(

d

r
− x

D1

)s1s2)

(
−Γ′

Γ
(
s1

[r,D]
)

)
and I+, II+ are defined similarly with −Γ′

Γ
( s2

[r,D]
).2 The portion called “Err” is the sum of 8

more terms (see (A.2)) involving sums of the (discrete) Fourier transforms of the functions

(s1, s2) → χD2
(s1)χD2(s2)e(

s1r1 + s2r2
D1

+
ds1s2

r
)

(s1, s2) → χ(s1)χ(s2)e(νD
2
3ae(

d

r
− x

D1

)s1s2),

2Note that in order to factor out the term χ(ν) we have (implicitly) made the changes of variables
s′2 = νs2 for II− and s′1 = νs1 for II+, so that these expressions are now independent of ν.
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weighted by certain Bessel transforms of Eν . Summing back over the variables d, r1, r2, x
one obtains sums of Kloosterman sums to which one applies Weil’s bound. The details
work precisely as in [DFI2], so we skip the rather tedious calculations involved. This
shows, as in [DFI2] p.229-231, that Err contributes an admissible remainder term to the
fourth moment, so that the main term comes from the contribution of the pole at s = t = 1
of the Hurwitz zeta functions.

8.1. Computation of I0(d, r1, r2). Since χ2 is primitive, either χ2
D2

is non-trivial or D2 =
1. Summing over s2 we see that I0(d, r1, r2) is zero unless D2 = 1 and D|r. In this case the
sum becomes

(8.4) I0(d, r1, r2) =
1

r2

∑
s1,s2(r)

e(
r1s1 + r2s2

D
+
ds1s2

r
) =

1

r
e(−dr

′r1r2
D

)

with r = r′D.

8.2. Computation of II0(d, x). Summing over s2, then over s1, we find that II0 is zero
unless D1||r and χ2

D1
is trivial. The same holds for D2 and χ2

D2
, so, since χD is assumed

non-trivial, we have

(8.5) II0(d, x) = 0

8.3. Computation of I−(d, r1, r2). Once again, the sum is zero unlessD|r and (D, r/D) =
1. Let r = Dr′. Decomposing s2 as s2 = s′2 +Dt, with 0 6 t < r′, we get s1 ≡ 0(r′) and

I−(d, r1, r2) =
χD2

(r′)

r′D2

∑
s1,s2(D)

χD2
(s1)χD2(s2)e(

D2r
′r1s1 +D2r2s2 + ds1s2

D
)

(
−Γ′

Γ
(
s1

D
)

)
.

The s2 sum is now a Gauss sum equalling

D1χD2
(D1ds1)G(χD2)δs1≡−dD2r2(D1),

so

I−(d, r1, r2) =
χD2

(D1dr
′)

r′D2D
G(χD2)

∑
s1(D)

s1≡−dD2r2(D1)

χ2
D2
e(
r′r1s1

D1

)(s1)

(
−Γ′

Γ
(
s1

D
)

)
.

Since −dD2r2 is coprime with D1, the exponential term is constant, and we can detect the
congruence through multiplicative characters ψ of modulus D1, namely∑

s1(D)

s1≡−dD2r2(D1)

=
1

ϕ(D1)

∑
ψ(D1)

ψ(−dD2r2)
∑

16s16D

ψ(s1)χ
2
D2

(s1)

(
−Γ′

Γ
(
s1

D
)

)
.

Using (A.9) we obtain
(8.6)

I−(d, r1, r2) =
χD2

(D1dr
′)

r′D2

e(−r1r2r
′D2d

D1

)
G(χD2)

ϕ(D1)

∑
ψ(D1)

ψ(−dD2r2)Ress=0D
sL(ψχ2

D2
, 1 + s).

The same holds for I+(d, r1, r2) except that χ and χ exchange places.
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8.4. Computation of II−(d, x). Summing over s2 shows that the sum is zero unlessD2||r,
and more generally we see that the sum is zero unless every prime factor of (r,D) divides
r exactly once. Thus we may factor r into r = r′(r,D) with (r′, D) = 1. Summing over
s2 = s′2 +Dt with 0 6 t < r′ gives zero unless s1 ≡ 0 modulo r′/(ae, r′), so

II−(d, x) =
χ(r′/(ae, r′))

r′D2

∑
s1(D(ae,r′))

s2(D)

χ(s1)χ(s2)e(D
2
3

ae

(ae, r′)
(

d

(D, r)
−r

′x

D1

)s1s2)

(
−Γ′

Γ
(

s1

D(ae, r′)
)

)

The s2 sum now equals

G(χ,D2
3

ae

(ae, r′)
(d

D

(D, r)
−D2r

′x)s1;D) = χ(D2
3

ae

(ae, r′)
(d

D

(D, r)
−D2r

′x)s1)G(χ);

note that this is zero unless D3 = 1, so D|c. Using (A.9),

(8.7) II+(d, x) = (ae, r′)
χ( aer′

(ae,r′)2
(d D

(D,r)
−D2r

′x))

r′D
G(χ)L(χ2, 1).

Again, the same applies for II−(d, x) except that χ and χ exchange places.

8.5. Computation of the cross-terms. Next we need to compute

A(h, c; r) :=
1

D1

∑∗

d(r)

e(
−dh
r

)
∑∗

r1,r2,x(D1)

χD1(r1)χD1
(r2)e(

r1r2x

D1

)I0(d, r1, r2)
∑
±

II±(d, x)

B(h, c; r) :=
1

D1

∑∗

d(r)

e(
−dh
r

)
∑∗

r1,r2,x(D1)

χD1(r1)χD1
(r2)e(

r1r2x

D1

)
∑
±

I±(d, r1, r2)
∑
±

II±(d, x).

By Section 8.4, these terms are zero unless D3 = 1, and that c only affects A(h, c; r) and
B(h, c; r) through the decomposition of D into D1 and D2.

8.5.1. Computation of A(h, c; r). As seen in Section 8.1, A(h, c; r) is zero unless D1 = D
and D|r, so the sum over r1, r2 is∑

r1,r2(D)

χ(r1)χ(r2)e(
r1r2(x− dr′)

D
) = 0,

since χ2 is non trivial. So A(h, c; r) = 0.

8.5.2. Computation of B(h, c; r). By Section 8.3, B(h, c; r) is zero unless r = Dr′ with
(r′, D) = 1. For notational purposes, we let r(1) := r1, r(−1) := r2, so that for ε, ε′ ∈
{−1, 1},

Iε(d, r1, r2) =
χεD2

(D1r
′d)

r′D2

G(χεD2
)e(−r1r2r

′D2d

D1

)
1

ϕ(D1)

∑
ψ(D1)

ψ(−D2dr(ε))Ress=0D
sL(ψχ2ε

D2
1+s),

IIε
′
(d, x) = (ae, r′)

χε
′
( aer′

(ae,r′)2
(d−D2r

′x))

r
G(χε

′
)L(χ2ε′ , 1).
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Thus we can define

(8.8) B(h, c; r) =
∑
ε,ε′

Bεε′(h, c; r),

with

Bεε′(h, c; r) :=
1

D1

∑∗

d(r)

e(
−dh
r

)
∑∗

r1,r2,x(D1)

χD1(r1)χD1
(r2)e(

r1r2x

D1

)Iε(d, r1, r2)II
ε′(d, x)

=
χεD2

(D1r
′)χε

′
( aer′

(ae,r′)2
)G(χεD2

)G(χε
′
)L(χ2ε′ , 1)

r2/(ae, r′)

1

ϕ(D1)

∑
ψ(D1)

ψ(−D2)Ress=0D
sL(ψχ2ε

D2
, 1+ s)

×
∑∗

d(r)
x(D1)

e(−dh
r

)(ψχεD2
)(d)χε

′
(d−D2r

′x)
∑

r1,r2(D1)

χD1(r1)χD1
(r2)ψ(r(ε))e(

r1r2(x− r′D2d)

D1

).

The r1 and r2 sums give∑
r1,r2(D1)

χD1(r1)χD1
(r2)ψ(r(ε))e(

r1r2(x− r′D2d)

D1

) = δψ=χ2ε
D1
ϕ(D1)G(χεD1

)χεD1
(x− r′D2d),

so

Bεε′(h, c; r) =
χεD2

(r′)χεD1
(D2)χ

ε′( aer′

(ae,r′)2
)G(χε)G(χε

′
)L(χ2ε, 1)L(χ2ε′ , 1)

r2/(ae, r′)

×
∑∗

d(r)
x(D1)

e(−dh
r

)(χεD1
χε+ε

′

D2
)(d)χε−ε

′

D1
(x)χε+ε

′

D1
(dx−D2r

′).

We next compute the sum over d and x. It factors over moduli into the product S(r′)S(D1)S(D2)
of 3 sums. We let d = D1D2d

′ + r′D1d2 + r′D2d1, so the first sum is

S(r′) =
∑∗

d′(r′)

e(−d
′h

r′
) = r(h; r′)

and the third sum is

S(D2) = χε+ε
′
(r′)

∑∗

d(D2)

e(−d2h

D2

)χε+ε
′

D2
(d2D1) = χε+ε

′

D2
(D1r

′)G(χε+ε
′

D2
, h;D2).

The second sum is more complicated:

S(D1) =
∑∗

d1,x(D1)

e(−d1h

D1

)χεD1
(d1r

′D2)χ
−ε′
D1

(x)χε+ε
′

D1
(xd1r

′D2 − r′D2).

Making the variable change x′ = xd1 lets us factor this into a Jacobi sum over x and a
Gauss sum over d1, giving

S(D1) = χ2ε+ε′

D1
(−r′D2)G(χε+ε

′

D1
, h;D1)J(χ−ε

′

D1
, χε+ε

′

D1
).



SIMULTANEOUS NON-VANISHING OF TWISTS OF AUTOMORPHIC L-FUNCTIONS 25

Combining the various sums thus yields

Bεε′(h, c; r) =
χεD2

(r′)χεD1
(D2)χ

ε′( aer′

(ae,r′)2
)G(χε)G(χε

′
)L(χ2ε, 1)L(χ2ε′ , 1)

r2/(ae, r′)

× r(h; r′)χε+ε
′

D2
(D1r

′)G(χε+ε
′

D2
, h;D2)χ

2ε+ε′

D1
(D2r

′)G(χε+ε
′

D1
, h;D1)J(χ−ε

′

D1
, χε+ε

′

D1
).

=
χ2(ε+ε′)(r′)χε

′
( ae

(ae,r′)2
)G(χε)G(χε

′
)L(χ2ε, 1)L(χ2ε′ , 1)r(h; r′)

r2/(ae, r′)
G(χε+ε

′
, h;D)J(χ−ε

′

D1
, χε+ε

′

D1
).

The two cases ε = ±ε′ contribute in slightly different ways. If ε = ε′, then
(8.9)

Bεε(h, c; r) = J(χ−εD1
, χε+ε

′

D1
)χ4ε(r′)χε(

ae

(ae, r′)2
)G(χε)2G(χ2ε, h;D)L(χ2ε, 1)2 r(h; r′)

r2/(ae, r′)
.

However, if ε = −ε′, then J(χ−εD1
, χε+ε

′

D1
) = µ(D1), so

(8.10) Bε−ε(h, c; r) = µ(D1)χ
ε(

ae

(ae, r′)2
)|L(χ2, 1)|2 r(h; r)

rr′/(ae, r′)
.

8.6. The main off-off-diagonal term. Since A(h, c; r) vanishes,∑∑
m1,m2,n

· · · = Êν(1, 1)χ(ν)B(h, c; r) + Err

where Err is admissible and ν ∈ {±1}. Following [DFI1] p.215, we have

Êν(1, 1) =

∫∫ ∞

0

F̂ ν(x, y)∆r(x+ νD2
3aey − h)dxdy =

∫ ∞

0

F̂ ν(h− νD2
3aey, y)dy + Err,

since ∆r approxiamate well the Dirac distribution. Hence

(8.11)
∑∑
m1,m2,n

· · · = χ(ν)B(h, c; r)

∫ ∞

0

F̂ ν(h− νD2
3aey, y)dy + Err,

where in both equations Err is an admissible error term. Collecting all the terms (ie.
summing over M,N), we find that the main off-off diagonal term is given by

(8.12) MOOD(`) = χ(−1)
∑
de=`

1

d1/2

∑
ab=d

µ(a)

a1/2
τχ(b)

∑
c≡0(qD)
c6qA

1

c2

∑
r≡0(D)

(D,r/D)=1

∑
h 6=0

rm(h; c′)B(h, c; r)
[
V +(h) + V −(h)

]
with A = 100, say, and

V ±(h) = −2π

∫∫ ∞

0

δh∓aey>0K
±(4π

√
x(h∓ aey)

c
)J1(4π

√
x(aey)

c
)η(x)η(y)D(x, y)dxdy,
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where D is defined by (7.4) Since rm(h; c′)B(h, c; r) is even in h, we can replace h by its
absolute value, as in [KMV2], with the effect of replacing

[
V +(h) + V −(h)

]
by (compare

[KMV2] (35))

(8.13)
h1/2

(ae)1/2

∫∫
(xy)−1/2W (

x

qD2
)W (

dhy

eqD2
)η(x)η(

hy

ae
)J1(4π

√
hxy

c
)

×
[
−2πY0(4π

√
hx(1 + y)

c
)−2πδy>1Y0(4π

√
hx(y − 1)

c
)+4δy<1K0(4π

√
hx(1− y)

c
)
]
dxdy.

One can show, exactly as in [KMV2] 4.1, that we may, up to an admissible error term,
drop the constraint c 6 qA and replace η(x) and η(hy

ae
) by 1. Following [KMV2] 4.1–4.3,

but with slightly simpler calculations because there are no logarithms, we find that (8.13)
equals

16(ae)−1/2

(2πi)2

∫
(1.7)

∫
(0.6)

ζ(qD)(1 + 2s)ζ(qD)(1 + 2t)(
e

d
)tc1−2shs−t

(qD2)s+t

(4π2)t

×G(s)G(t)Γ(1 + s)Γ(1− s)Γ(1 + t)Γ(1− t) cos(π
t+ s

2
)Γ(t+ s) cos(π

t− s

2
)Γ(t− s)dsdt

st
.

Plugging this into (8.12) we obtain, up to an admissible error term,

(8.14) MOOD(`) =
1

`1/2
16

(2πi)2

∫
(1.7)

∫
(0.6)

ζ(qD)(1 + 2s)ζ(qD)(1 + 2t)L(`, s, t)
(qD2)s+t

(4π2)t

×G(s)G(t)Γ(1 + s)Γ(1− s)Γ(1 + t)Γ(1− t) cos(π
t+ s

2
)Γ(t+ s) cos(π

t− s

2
)Γ(t− s)

dsdt

st

where
(8.15)

L(`, s, t) = χ(−1)
∑
abe=`

µ(a)

a
τχ(b)(

e

ab
)t
∑

c≡0(qD)

1

c1+2s

∑
r≡0(D)

(D,r/D)=1

∑
h>1

hs−trm(h; c′)B(h, c; r)

and B(h, r; c) is given by (8.9) and (8.10). This concludes the proof of Proposition 7.1. �

9. Computation of MOOD(`)

We next need to evaluate MOOD(`). The largest remaining step is to compute the formal
L series L(`, s, t) and its contribution to the off-off-diagonal term. Up to the symmetry
χ → χ it is enough to compute L++(`, s, t) and L−+(`, s, t), defined as in (8.15) but with
B++(h, c; r) and B−+(h, c; r) instead of B(h, c; r).

9.1. Computation of L++(`, s, t). We want to factor L++(`, s, t) over relatively prime
moduli as much as possible. We set

h = h′h′′, (h′, D) = 1, h′′|D∞; c = c′D1 = c′′D1D
2
2D

′, D′|D∞
2 , (c′′, D) = 1; r = r′D, (r′, D) = 1,

so that

rm(h; c′) = rm(h′h′′; c′′D2
2D

′) = rm(h′; c′′)r(h′′;D2
2D

′)
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B++(h, c; r) = χ(
ae(r′)4

(ae, r′)2
)χ2(h′)(ae, r′)

r(h′; r′)

(r′)2
J(χD1

, χ2
D1

)G(χ2, h′′;D)
G(χ)2L(χ2, 1)2

D2
.

Hence we have

L++(`, s, t) =
G(χ)2L(χ2, 1)2

D2

(
χ(−1)

∑
D1D2=D
D′|D∞2

J(χD1
, χ2

D1
)

(D1D2
2D

′)1+2s

∑
h|D∞

hs−tr(h;D2
2D

′)G(χ2, h;D)
)

×
(∑
abe=`

µ(a)

a
τχ(b)(

e

ab
)tχ(ae)

∑′

c≡0(q)

1

c1+2s

∑′

r

χ4(r)
χ2((ae, r))(ae, r)

r2

∑′

h>1

χ2(h)
r(h; r)rm(h; c)

ht−s

)

(9.1) :=
G(χ)2L(χ2, 1)2

D2
LD

++(`, s, t)L(D),++(`, s, t)

where the
∑′ means sum over integers coprime with D.

9.1.1. Computation of L(D),++(`, s, t). We follow [KMV2], (43) through (45): using (8.2)
we have (setting A = ae)

L(D),++(`, s, t) =
1

`t

∑
Ab=`

τχ(b)A
2tζA(1 + 2t)−1χ(A)

∑′

(g,q)=1

µ(g)

g1+2s

×
∑′

c≡0(q)

1

c2s

∑
v

µ(v)χ4(v)

v2

∑′

w

χ4(w)
χ2((A, vw))(A, vw)

w

∑′

c,w|h

χ2(h)

ht−s

The g sum is ζ(qD)(1 + 2s)−1. We separate variables using the identity∑
c,w

f(c, w)
∑
c,w|h

g(h) =
∑
u,x

µ(u)
∑
c,w

f(uxc, uxw)
∑
h

g(cwu2xh).

We factor the resulting c and h sums to obtain (compare with [KMV2] (43))

LD,++(`, s, t) =
χ2(q)L(χ2, t+ s)L(χ2, t− s)

qs+tζ(qD)(1 + 2s)

1

`t

∑
Ab=`

τχ(b)A
2tζA(1 + 2t)−1χ(A)×

∑
v

µ(v)χ4(v)

v2

∑
x

χ2(x)

x1+t+s

∑′

(u,q)=1

µ(u)

u1+2t

∑
w

χ2(w)
χ2((A, uvwx))(A, uvwx)

w1+t−s .

Next we factor u = u1u2 with u1|A, (u2, A) = 1, replace A by u1A, sum over u2, and write
u1b = B to obtain

LD,++(`, s, t) =
χ(`)χ2(q)L(χ2, t+ s)L(χ2, t− s)

qs+tζ(qD)(1 + 2s)ζ(qD)(1 + 2t)

× 1

`t

∑
AB=`

A2t
∑
v

µ(v)χ4(v)

v2

∑
x

χ2(x)

x1+t+s

∑
w

χ2(w)
χ2((A, vwx))(A, vwx)

w1+t−s .
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We factor v = v1v2 as we did for u, replacingA byAv2, so the v1 sum equals LAv2(χ
4, 2)L(χ4, 2)−1.

We combine the product xw into a single variable w, and use the relation∑
A,w

χ2((A,w))(A,w)f(A,w) =
∑
E

Eχ2(E)LE(χ2, 1)−1
∑
A,w

f(EA,Ew),

together with ∑
E,w

σ2s(Ew)

(Ew)s
g(E,w) =

∑
a

µ(a)
∑
E,w

σ2s(E)

Es

σ2s(w)

ws
g(aE, aw)

to end up with

L(D),++(`, s, t) =
χ2(q)L(χ2, 1 + t+ s)L(χ2, 1 + t− s)L(χ2, t+ s)L(χ2, t− s)

qs+tL(χ4, 2)ζ(qD)(1 + 2s)ζ(qD)(1 + 2t)

(9.2) ×χ(`)

`t

∑
aAE|`

A2tLA(χ2, 1)−1Etσ2s(E)

Es

µ(a)χ2(a)

a
LaE(χ2, 1)−1LaAE(χ4, 2).

9.1.2. Computation of L++
D (`, s, t). Since χ2 is primitive, r(h;D2

2D
′)G(χ2, h;D) is zero un-

less h = 1 and D2
2D

′ = 1, so that D1 = D. This simplifies calculations considerably, leaving
us with

(9.3) L++
D (`, s, t) = χ(−1)

J(χD, χ
2
D)G(χ2)

D1+2s
= D−2sG(χ2)2

G(χ)2
.

9.1.3. Computation of the off-off diagonal term I. Using (8.14) (9.1), (9.2), and (9.3) we
see that the contribution of L++(`, s, t) to MOOD(`) is

MOOD,++(`) =
χ2(q)

`1/2
G(χ2)2

G(χ)4

L(χ2, 1)2

L(χ4, 2)

× 16

(2πi)2

∫
(1.7)

∫
(0.6)

L(χ2, 1 + t+ s)L(χ2, 1 + t− s)L(χ2, t+ s)L(χ2, t− s)
D2t

(2π)2t

×G(s)G(t)Γ(1 + s)Γ(1− s)Γ(1 + t)Γ(1− t) cos(π
t+ s

2
)Γ(t+ s) cos(π

t− s

2
)Γ(t− s)

× χ(`)

`t

∑
aAE|`

A2tLA(χ2, 1)−1Etσ2s(E)

Es

µ(a)χ2(a)

a
LaE(χ2, 1)−1LaAE(χ4, 2)

dsdt

st
.

Since χ2 is primitive and χ2(−1) = 1, L(χ2, s) satisfies the asymmetric functional equation

2(
D

2π
)s cos(πs/2)Γ(s)L(χ2, s) = G(χ2)L(χ2, 1− s).
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Applying this twice we obtain

(9.4) MOOD,++(`) =
χ2(q)

`1/2
D2

G(χ)4

L(χ2, 1)2

L(χ4, 2)

× 4

(2πi)2

∫
(1.7)

∫
(0.6)

G(s)G(t)
∏
±

Γ(1± s)Γ(1± t)
∏
±,±

L(χ2, 1± t± s)

× χ(`)

`t

∑
aAE|`

A2tLA(χ2, 1)−1Etσ2s(E)

Es

µ(a)χ2(a)

a
LaE(χ2, 1)−1LaAE(χ4, 2)

dsdt

st

Let Φ(s, t, `) be the multiplicative function

Φ(s, t; `) =
1

`t

∑
aAE|`

A2tLA(χ2, 1)−1Etσ2s(E)

Es

µ(a)χ2(a)

a
LaE(χ2, 1)−1LaAE(χ4, 2).

One can check (compare with [KMV2] 4.3.1) that Φ(s, t; `) is an even function is both s
and t: obviously we may assume that ` = pα for some prime p 6 |D. Evenness in s is
obvious, but evenness in t requires a case-by-case breakdown of whether p divides each of
the variables. More precisely we rewrite

Φ(s, t; `) =
∑

acAE=`

(A
ac

)t
LA(χ2, 1)−1σ2s(E)

Es

µ(a)χ2(a)

a
LaE(χ2, 1)−1LaAE(χ4, 2).

and we split the sum according to three cases which are even in s and t:

• If p|E, we have∑
E`′=`
E>1

σ2s(E)

Es

1

1 + χ2(p)
p

∑
AB=`′

(A
B

)t
LA(χ2, 1)−1LB(χ2, 1)−1.

• If E = 1, and either A = ` or ac = `, we have

`t
1

1 + χ2(p)
p

+ `−t(1− χ2

p(1 + χ2(p)
p

)
) =

`t + `−t

1 + χ2(p)
p

.

• If E = 1, and p|A and p|ac, we have

1

1 + χ2(p)
p

∑
AB=`/p2

(A
B

)t ∑
ac=Bp

µ(a)χ2(a)

a
La(χ

2, 1)−1 =
1− χ2(p)

p
+ χ4(p)

p2

1 + χ2(p)
p

∑
AB=`/p2

(A
B

)t
.

From (9.4) it follows that the integrand in MOOD,++(`) is an odd function of s and t.
Thus, by shifting the contours in s and t, we find that MOOD,++(`) equals one-fourth of
the residue at s = t = 0 of the integrand (since the polynomial G(s) vanishes at s = ±1,
the Γ factors contribute no poles). The same holds for L−−(s, t; `) with χ exchanged for χ,
thus

(9.5) MOOD,εε(`) = χ2ε(q)
D2

G(χε)4

L(χ2ε, 1)6

L(χ4ε, 2)

χε(`)

`1/2
Φε(`)
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with

(9.6) Φε(`) =
∑
aAE|`

LA(χ2ε, 1)−1τ(E)
µ(a)χ2ε(a)

a
LaE(χ2ε, 1)−1LaAE(χ4ε, 2).

9.2. Computation of L−+(`, s, t). Next we compute

L−+(`, s, t) = χ(−1)|L(χ2, 1)|2
∑
abe=`

µ(a)

a
τχ(b)(

e

ab
)t
∑

c≡0(qD)

1

c1+2s

∑
(D,r′)=1

∑
h>1

hs−trm(h; c′)µ(D1)χ(ae)χ((ae, r′))2 r(h; r
′D)(ae, r′)

D(r′)2
.

The calculation is again done by factoring over primes and grouping those primes into three
disjoint sets: those dividing D, those dividing `, and those dividing neither. The last set
requires exactly the same computations as were done in [KMV2], except slightly simpler
since there are no logarithms involved, and we wind up with

(9.7) q−s−tζ(q`D)(1 + 2s)−1ζ(q`D)(1 + 2t)−1ζ(`D)(2)−1
∏
±

ζ(`D)(1± s+ t)ζ`D(t± s).

The product over primes dividing ` is similar both to the calculations of the previous sec-
tion and to those of [KMV2]. Introducing the same variables to account for the divisibility
conditions on h and the various common divisors, we wind up with

(9.8) χ(`)
∏
p|`

(1− p−1−2s)(1− p−1−2t)(1− p−2)

(1− p−1−t−s)(1− p−1−t+s)(1− p−t−s)(1− p−t+s)

× 1

`t

∑
aEA|`

A2tLA(χ2, 1)−1Etσ2s(E)χ(E)2

Es

µ(a)χ(a)2

a
LaE(χ2, 1)−1ζaAE(2).

Let Ψ(s, t; `) be the multiplicative function of ` given on the second line of (9.8). Once
again, one can check that Ψ(s, t; `) is even in both s and t. From (9.7) and (9.8), the
contribution from all primes not dividing D is now

(9.9)
χ(`)

qs+t
ζ(qD)(1 + 2s)−1ζ(qD)(1 + 2t)−1ζ(D)(2)−1

∏
±

ζ(D)(1± s+ t)ζ(D)(t± s)Ψ(s, t; `).

It thus remains to calculate the contribution from primes dividing D. Since (D, `) = 1,
several things simplify, and we are left with

L−+
D (s, t) =

∑
D|c|D∞

µ(D1)

c1+2s

∑
h|D∞

hs−tr(h; c′)r(h;D)/D,

where c′ = c/D, D1D2 = D with D2 = (D, c′). Again, this sum factors over primes. The
important distinction is whether a given prime divides c exactly once (in which case it
divides D1), or more than once (in which case it divides D2). The first case yields

p−2−2sµ(p)
∑
l>0

pl(s−t)r(pl; p) = −p−2−2sp
1+s−t − 1

1− ps−t
= −p−1−s−t1− p−1−s+t

1− ps−t
,
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while the second yields∑
k>2

p−k(1+2s)p− 1

p

∑
l>k−1

pl(s−t)r(pl; pk) = (1− p−1)
1− p−1−s+t

1− ps−t
p−2s−2t

1− p−s−t
.

Combining the terms, we have

p−2s−2t (1− p−1−s+t)(1− p−1+s+t)

(1− ps−t)(1− p−s−t)
.

From this last equation and (9.9) we obtain that the full product is

L−+(`, s, t) =
χ(`)

(qD2)s+t
χ(−1)|L(χ2, 1)|2

ζ(qD)(1 + 2s)ζ(qD)(1 + 2t)
ζ(D)(2)−1

∏
±

ζ(D)(1± s+ t)ζ(t± s)

ζ(D)(1± s− t)
Ψ(s, t; `).

Again, L+− is the same except with χ and χ switched.

9.2.1. Computation of the off-off-diagonal term II. Putting this back in (8.14) and using
the functional equation

Γ(t± s)ζ(t± s)

(2π)t±s
=

ζ(1− (t± s))

2 cos(π(t± s)/2)

we find that the contribution of B−+ is

MOOD−+(`) = 4
χ(−1)|L(χ2, 1)|2

ζ(D)(2)(2πi)2

∫
(1.7)

∫
(0.6)

χ(`)

`1/2
Ψ(s, t; `)

G(s)G(t)
∏
±

Γ(1± s)Γ(1± t)
∏
±,±

ζ(D)(1± s± t)
dsdt

st
,

and since the whole integrand is now evidently odd in s and t we have

(9.10) MOOD−+(`) = Ress=t=0
χ(−1)|L(χ2, 1)|2

ζ(D)(2)

χ(`)

`1/2
Ψ(s, t; `)

× G(s)G(t)

st

∏
±

Γ(1± s)Γ(1± t)
∏
±,±

ζ(D)(1± s± t).

9.3. Computation of the “pure” fourth moment. We now analyze the case ` = 1 in
greater detail. From Proposition 7.1 we have for all ε > 0

M4(1) = MD(1) +MOD(1) + 2<e(MOOD++(1) +MOOD−+(1)) +Oε,D(q−1/12+ε).

where MD(1) +MOD(1) is given by the first term of (7.9), and the other terms are given
by (9.5), (9.10). Shifting the t-contour in the integral defining W ( n

qD2 ) to <et = −1/2 we

see that, up to an admissible remainder term, MD(1) +MOD(1) equals

Ress=t=04
G(s)G(t)Γ2(1 + s)Γ2(1 + t)

st

(qD2

π2

)s+t
ζ(D)(1 + 2s)ζ(D)(1 + 2t)

∑
n>1

τχ(n)2

n1+s+t
.
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Since ∑
n>1

τχ(n)2

n1+s+t
=
L(χ2, 1 + s+ t)L(χ2, 1 + s+ t)

ζ(D)(2 + 2s+ 2t)
ζ(D)(1 + s+ t)2

we see that MD(1) +MOD(1) is a polynomial in log(qD2/4π2) whose highest degree term
is given by

4
G(1)2Γ2(1)ζD(1)−4|L(χ2, 1)|2

ζ(D)(2)
Ress=t=0

(
qD2

4π2

)s+t
st(s+ t)22s2t

=
|L(χ2, 1)|2

12ζ(2)

∏
p|D

(1− 1/p)3

(1 + 1/p)
log(

qD2

4π2
)4.

From (9.10), 2<eMOOD−+(1) is a constant depending on χ only, while from (9.5), 2<eMOOD++(1) =

2<e(χ2(q) D2

G(χ)4
L(χ2,1)6

L(χ4,2)
). This concludes the proof of Proposition 1.2.

10. Mollification

In this section we evaluate the mollified moments, using the asymptotics already calcu-
lated. Following the notation of [KMV2], Section 5, we introduce the following conventions:

• For ~z = (z1, z2, z3, z4) ∈ C4 we use ν(s, t, ~z, `) for any arithmetic function of the
form

ν(s, t, ~z, `) =
∏
p|`

(1 +
1

p
f(s, t, ~z, p))

with |f(s, t, ~z, p)| = O(p3/4) uniformly for s, t, ~z in the domain s, t,<ezi > −1/4.
• We use η(s, t, ~z) to denote any Euler product of the form

η(s, t, ~z) =
∏
p

(1 +
1

p2
f(s, t, ~z, p))

absolutely convergent and bounded (together with its low partial derivatives) for ~z
in the domain <ezi > −1/4.

• Our notations are “generic” in the sense that the exact value of ν(s, t, ~z,m) or
η(s, t, ~z) may change from line to line.

The idea is that factors of this nature appear naturally in mollified moments but do not
affect the degrees of any poles at the origin, so we can ignore them unless we need to
compute the exact values of the residues. Their main advantage is that any Euler product
that occurs below will be considered as a factor of type η(s, t, ~z) times a product of degree
one Euler products. In the event that we would want to know the proportion of non-
vanishing precisely, we would want to be very careful with the exact value of such functions
(especially at the origin, where we will be evaluating everything), but since the goal of this
paper is merely to prove the existence of such a constant, we can afford to be a little bit
less precise.

The mollifiers we use will have the following form: for R > 1 fixed (independent of
χ1, χ2, χ3) let PR be the product of primes less than R. We set

(10.1) xχ(`) =

{
0 if (`, PR) 6= 1
χ(`)µ(`)P (log(`/L)) else;
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with L = q∆ for some fixed small ∆. We take

Pn(x) =
1

2πi

∫
(3)

e−xz
dz

zn
,

a degree-(n− 1) polynomial on (−∞, 0) which is zero identically on [0,∞).

10.1. The third moment. We use Theorem (6.1). Suppose first that all three char-
acters are complex. The leading term of the mollified third moment will come from
PM(χ1, χ2, χ3), the other three PM -type terms contributing lower powers of log q. In
order to cover all four terms at once, we consider the general expression

PM(χA, χB, χC) = L(1, χAχB)
∑
d,`,n

x(d`)χA ∗ χB(`n)χC(dn)

d`n
V (

dn

q1/2D3

),

where χA, χB, and χC are distinct non-conjugate characters to be determined later.
Using (10.1) we see that

(10.2) PM(χA, χB, χC) = L(1, χAχB)
∑
d,`,n

χA ∗ χB(`n)χC(dn)

d`n∑
d1,d3

1

d1d3

∑
`3`4=d`

∑
`1`2=d3`4

χ1(d1`1)χ2(d1`2)χ3(d3`3)µ(d1`1)µ(d1`2)µ(d3`3)

1

(2πi)4

∫∫ ∫∫
Γ(1 + s)

(
q1/2D3

dn

)s
Lz1+z2+z3

dz1+z2
1 dz33 `

z1
1 `

z2
2 `

z3
3

ds

s

dz1dz2dz3

zn1
1 zn2

2 zn3
3

.

Since the only important issue is the presence of poles, it is enough to assume that d1d3d`n
is square-free–all other terms can be collapsed into η functions. Thus, given a prime p, it
is enough to consider the contributions to first order when it divides each of d, `, n, d1 and
d3. Some straightforward analysis gives

PM(χA, χB, χC) =
L(χAχB, 1)

(2πi)4

∫∫ ∫∫
Γ(1+s)qs/2Ds

3η(s, z1, z2, z3)L(χAχC , 1+s)L(χBχC , 1+s)

(10.3)
Lz1+z2+z3L(χ1χ2, 1 + z1 + z2)L(χ1χ3, 1 + z1 + z3)L(χ2χ3, 1 + z2 + z3)∏3

i=1 L(χiχA, 1 + zi)L(χiχB, 1 + zi)L(χiχC , 1 + zi + s)

ds

s

dz1dz2dz3

zn1
1 zn2

2 zn3
3

.

for some η(s, z1, z2, z3). Now we evaluate by shifting contours to the left. Since we are
assuming q to be much larger than L, we can first shift s to <s = −1/10 and each zi to
<zi = 1/10, and bound the resulting contour integral by q−1/20L3/10, which is small enough
to ignore. The only pole we cross in the process is at s = 0, and it is a simple pole since
χA, χB, and χC are distinct and non-conjugate. Thus we have, up to negligible error,

(10.4) PM(χA, χB, χC) =
L(χAχB, 1)L(χAχC , 1)L(χBχC , 1)

(2πi)3

∫∫∫
Lz1+z2+z3η(z1, z2, z3)

L(χ1χ2, 1 + z1 + z2)L(χ1χ3, 1 + z1 + z3)L(χ2χ3, 1 + z2 + z3)∏3
i=1 L(χiχA, 1 + zi)L(χiχB, 1 + zi)L(χiχC , 1 + zi)

dz1dz2dz3

zn1
1 zn2

2 zn3
3

.
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Now we shift the z contours to the left, one at a time. Were we to assume the Riemann
Hypothesis for these L-functions, this would be simple, we could shift each to <ezi = −1/10
without hitting any poles. However, as discussed in detail in [KMV2], we don’t need the
Riemann Hypothesis to bound the resulting contour integrals if we just shift to a contour
lying to the right of all the zeros of the various L-functions. Since non-vanishing of these
L-functions has been proved in small ranges of the critical strip, this is enough (again, see
[KMV2] 5.3 for a detailed discussion of how to bound the contour integrals). Thus all we
have left is the residues at z1 = z2 = z3 = 0, and it is here that we need to be more careful
about poles. For reasons discussed while analyzing the fourth moment, we will always be
taking ni = 4.

Suppose first that the characters are all complex. If all of the L-functions in the denom-
inator come from non-trivial characters, then all the poles are degree 4, and the leading
term goes as (logL)9. However, if (for example) χA = χ1, the z1 pole is only a triple
pole, so the lead term goes at most as (logL)8. Thus the largest term in (6.6) when all
of the characters are complex is the one coming from PM(χ1, χ2, χ3), not from any of the
conjugates, and that main term is

(10.5) PM(χ1, χ2, χ3) =
η(0, 0, 0)∏3
i=1 L(χ2

i , 1)
(logL)9.

It remains to see that η(0, 0, 0) is bounded away from zero for all choice of characters. Had
we written η(z1, z2, z3) out explicitly, it would have been an Euler product over primes not
dividing PR of terms of the form

1 + p−2f(χ1, χ2, χ3, p, z1, z2, z3),

with f bounded, times some non-zero factors from primes dividing PR (namely, certain
factors from the ζ and L-functions). The latter is a finite product of non-zero terms, each
of which is between 1 − p−1 and 1 + p−1, and the former’s logarithm’s absolute value is
dominated by cR

∑
p−2 for some constant cR, and thus it also cannot be zero. Thus η(0, 0, 0)

is bounded away from zero by a constant depending only on R, not on the characters or
their conductors. In practice, it turns out to be enough to take PR = 2× 3× 5× 7, but for
the sake of the proof it is enough to show that it exists.

If any of the characters are real, this isn’t quite right, since then L(χ2
i , 1) is infinite.

Everything we have derived through (10.4) is still correct, so it is just a matter of evaluating
the degree of the various poles (in particular, so long as the characters are distinct we get
no poles from the shift of the s contour, so log q never appears in the formula). As we
have just seen, if any of the characters are complex then we only get contributions to the
main term from those PM ’s in which they appear unconjugated. Thus in the remaining
analysis, we can assume that χA = χ1 and so forth.

Now suppose for a moment that χ1 is real but χ2 and χ3 are complex. Then (10.4)
becomes

(10.6) PM =
L(χ1χ2, 1)L(χ1χ3, 1)L(χ2χ3, 1)

(2πi)3

∫ ∫ ∫
Lz1+z2+z3η(z1, z2, z3)

ζD1(1 + z1)
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L(χ1χ2, 1 + z1 + z2)L(χ1χ3, 1 + z1 + z3)L(χ2χ3, 1 + z2 + z3)

L(χ1χ2, 1 + z1)L(χ1χ3, 1 + z1)
∏3

i=2 L(χiχ1, 1 + zi)L(χiχ2, 1 + zi)L(χiχ3, 1 + zi)

dz1dz2dz3

z4
1z

4
2z

4
3

.

The z2 and z3 contours can be shifted as before, giving the same powers of logL, and the
z1 contour can also be shifted, and also gives only a triple pole, since the ζD1(1 + z1)

−1

provides a zero. Thus we wind up with a main term of

(10.7) PM = η(0, 0, 0)
φ(D1)/D1

L(χ2
2, 1)L(χ2

3, 1)
(logL)8.

Similarly, we will always get a main term of the form

(10.8) η(0, 0, 0)
∏
χ2

i =1

φ(Di)

Di

(∏
χ2

i 6=1

L(χ2
i , 1)

)−1

(logL)3c+2r,

where there are r real characters and c complex characters. Since we are only concerned
with the existence of such a constant, not its precise value, this is enough.

10.2. The fourth moment. We now assume that χ is complex, of squarefree level D > 1,
such that χ2 is still primitive. We wish to compute (and bound)

(10.9) M(χ) =
∑h

f∈S∗2 (q)

|L(f.χ, 1/2)|4|Mχ(f)|4

where the coefficients of Mχ(f) are defined by (10.1). Using (2.2) (and (`, qD) = 1) we
have

|Mχ(f)|4 =
1

(2πi)4

∫
(2)4

L(χ2, 1 + z1 + z3)L(χ2, 1 + z2 + z4)
∏
i<j

(i,j) 6=(1,3),(2,4)

ζ(D)(1 + zi + zj)η(~z)

∑
(`,qD)=1

λf (`)

`1/2
ν(~z, `)

( ∑
`=m1m2×

m3m4

χ(m1m3)χ(m2m4)
µ(m1)µ(m2)µ(m3)µ(m4)

mz1
1 m

z2
2 m

z3
3 m

z4
4

)
L~zd~z

~zn
.

Thus |Mχ(f)|4 =
∑
λf (`)x(`)`

−1/2 with x(`) only supported on ` < L4, (`, qDPR) = 1.
Shifting the zi contours to <ezi = ε/4 shows that x(`) �ε `

ε for any ε > 0. Proposition
7.1 implies that

M(χ) =
∑
`6L4

(`,qD)=1

1

`1/2
x(`)

[
MD(`) +MOD(`) +MOOD(`)

]
+ oD(1)

so long as L < q1/60−δ for some fixed δ.
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10.3. The diagonal and off-diagonal terms. We recall from (7.9) that the diagonal and
off-diagonal terms take the following form:

MD(`)+MOD(`) = Ress=0
ϕ(q)

q`1/2
4

2πi

∫
(2)

G(s)G(t)Γ2(1+s)Γ2(1+t)ζ(D)(1+2s)ζ(qD)(1+2t)

×
∑
de=`

1

dset

∑
n>1

τχ(dn)τχ(en)

n1+s+t
(
qD2

4π2
)s+t

dt

st
.

We have ∑
de=`

1

dset

∑
n>1

τχ(dn)τχ(en)

n1+s+t
=
∑
abd=`

1

ds
µ(a)τχ(b)

a1+s+2tbt

∑
n>1

τχ(adn)τχ(n)

n1+s+t

so that, using the identity τχ(p
k+α) = χ(pα)τχ(p

k) + χ(pk)τχ(p
α)− χ(pα)χ(pk),∑

n>1

τχ(adn)τχ(n)

ns
=
ζ(D)(s)2L(χ2, s)L(χ2, s)

ζ(D)(2s)

∏
pα||ad
α>0

(
τχ(p

α) + χ(pα)(1− ζp(s)Lp(χ
2, s)

ζp(2s)
)
)
.

Hence

MD(`)+MOD(`) = Ress=0
ϕ(q)

q`1/2
4

2πi

∫
(2)

G(s)G(t)Γ2(1+s)Γ2(1+t)ζ(D)(1+2s)ζ(qD)(1+2t)

× ζ(D)(1 + s+ t)2L(χ2, 1 + s+ t)L(χ2, 1 + s+ t)

ζ(D)(2 + 2s+ 2t)
Ψ′(s, t; `)(

qD2

4π2
)s+t

dt

st
,

with
(10.10)

Ψ′(s, t; `) :=
∑
abd=`

1

ds
µ(a)τχ(b)

a1+s+2tbt

∏
pα||ad
α>0

(
τχ(p

α) + χ(pα)(1− ζp(1 + s+ t)Lp(χ
2, 1 + s+ t)

ζp(2 + 2s+ 2t)
)
)
.

One can show that Ψ′(0, 0, `) = Ψ(0, 0, `) where Ψ(0, 0, `) is the multiplicative function
defined in Section 9.2 (see (9.8)), this is important for the problem of computing an explicit
lower bound for the proportion of non-vanishing.

Inserting (10.10), we find that the contribution of the diagonal and off-diagonal terms to
the fourth moment takes the form

MDOD(χ) =
4

2πi

∫
(2)

Ress=0
1

(2πi)4

∫
(2)4

η(s, t, ~z)G(s)G(t)Γ2(1 + s)Γ2(1 + t)

L(χ2, 1 + z1 + z3)L(χ2, 1 + z2 + z4)L(χ2, 1 + s+ t)L(χ2, 1 + s+ t)∏4
i=1 L(χ2(−1)i

, 1 + s+ zi)L(χ2(−1)i , 1 + t+ zi)∏
i<j

(i,j) 6=(1,3),(2,4)

ζ(D)(1 + zi + zj)
ζ(D)(1 + s+ t)2ζ(D)(1 + 2s)ζ(qD)(1 + 2t)∏4

i=1 ζ
(D)(1 + s+ zi)ζ(D)(1 + t+ zi)

(
qD2

4π2
)s+t

L~zd~z

~zn
dt

st
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We shift the z contours to <ezi = 1/4 and the t-contour to <et = −1/4, passing a pole at
t = 0. The resulting integral is bounded by � Lq−1/4 which is admissible. Thus we have

MDOD(χ) =
4

(2πi)4

∫
(2)4

Ress=t=0
(qD2/4π2)s+t

st
η(s, t, ~z)G(s)G(t)Γ2(1 + s)Γ2(1 + t)

L(χ2, 1 + z1 + z3)L(χ2, 1 + z2 + z4)L(χ2, 1 + s+ t)L(χ2, 1 + s+ t)∏4
i=1 L(χ2(−1)i

, 1 + s+ zi)L(χ2(−1)i , 1 + t+ zi)
(10.11)

∏
i<j

(i,j) 6=(1,3),(2,4)

ζ(D)(1 + zi + zj)
ζ(D)(1 + s+ t)2ζ(D)(1 + 2s)ζ(qD)(1 + 2t)∏4

i=1 ζ
(D)(1 + s+ zi)ζ(D)(1 + t+ zi)

L~zd~z

~zn
.

As in [KMV2] 5.3, everything can be evaluated by shifting the zi contours just past the line
<zi = 0, the only important contribution coming from the following 5 sequences of poles

(z1 = 0, z2 = 0, z3 = 0, z4 = 0),

(z1 = 0, z2 = −z3, z4 = z3, z3 = 0),

(z1 = −z2, z3 = z2, z2 = 0, z4 = 0),

(z1 = −z2, z3 = 0, z4 = z2, z2 = 0),

(z1 = −z3, z2 = 0, z4 = z3, z3 = 0).

All other sequences contribute lower powers of log q, so long as n > 4. The important
question is what power of logL ∼ log q comes out of this calculation. This is simply a
matter of counting poles: the ζ functions in the numerator contribute eight poles, those in
the denominator remove eight, and the combined powers of s, t, and zi contribute 4n+ 2.
Thus the leading power of log q or logL will be (log q)4n−4. Thus, taking n = 4, the fourth
moment is dominated by (log q)12 times a constant of the form

c
L(χ2, 1)L(χ2, 1)L(χ2, 1)L(χ2, 1)∏4

i=1 L(χ2(−1)i
, 1)L(χ2(−1)i , 1)

ζD(1)4 ζD(1)2ζD(1)ζD(1))∏4
i=1 ζD(1)ζD(1)

=
c

|L(χ2, 1)|4
,

where c is bounded from above independent of χ. Recall, (10.5), that the main term of the
third moment was proportional to (log q)9 times a constant of the form c′/L(χ2

1, 1)L(χ2
2, 1)L(χ2

3, 1)
when all the characters are complex.

10.4. The off-off-diagonal terms. Using (9.5) and (9.6), we have

(10.12) MOOD,++(χ) =
χ2(q)µ(D)G(χ−2)G(χ)2L(χ2, 1)6

L(χ4, 2)D2

1

(2πi)4

∫
(2)4

η(~z)

× L(χ2, 1 + z1 + z3)L(χ2, 1 + z2 + z4)[
L(χ2, 1 + z1)L(χ2, 1 + z3)ζ(D)(1 + z2)ζ(D)(1 + z3)

]4 ∏
i<j

(i,j) 6=(1,3),(2,4)

ζ(D)(1+zi+zj)
L~zd~z

~zn
.

Again, all we need is bounds in terms of powers of logL arising from poles in the z variables,
since there are no powers of log q coming from the s or t residues. The numerator gives
four ζ functions, the denominator eight, so when combined with the powers of zi there are
a total of 4n− 4 poles in four variables, giving a leading term of (logL)4n−8 = (logL)8 for
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n = 4. Note that this is a lower power than we got from the diagonal and off-diagonal
terms.

Next we consider the +− term, which from (9.10) is

(10.13) MOOD,+−(χ) =
χ(−1)|L(χ2, 1)|2

ζ(D)(2)

1

(2πi)4

∫∫
(2)4

Ress,t=0η(s, t, ~z)
G(s)G(t)

st

∏
±

Γ(1± s)Γ(1± t)
∏
±,±

ζ(D)(1± s± t)

× L(χ2, 1 + z1 + z3)L(χ2, 1 + z2 + z4)∏
± L(χ2, 1 + z1 ± t)L(χ2, 1 + z3 ± t)L(χ2, 1 + z2 ± s)L(χ2, 1 + z4 ± s)∏

i<j 6=(1,3),(2,4) ζ
(D)(1 + zi + zj)∏

± ζ(1 + z1 ± s)ζ(1 + z3 ± s)ζ(1 + z2 ± t)ζ(1 + z4 ± t)

L~zd~z

~zn
.

Using the same arguments, it is enough to count the factors of logL arising from taking
the various s, t, z poles, which is 4n− 4. Thus for n = 4 the off-off diagonal terms produce
a main term proportional to (logL)12 times a constant of the form c′′

|L(χ2,1)|4 .

Remark. It is instructive to note that althought the off-off-diagonal terms are the most
complicated of the main terms, they contribute less: for the untwisted fourth moment of
Proposition 1.2, the contribution of these terms is by 4 powers of log q smaller than that
of the diagonal terms. For the mollified fourth moment, setting L = q∆ we see that the
diagonal and off-diagonal terms contribute by (essentially) ' log12 q, while the MOOD++

terms contribute by � ∆8 log8 q which is negligeable, and MOOD−+ by ' ∆12 log12 q which
althought contributing, becomes smaller for smaller ∆ (note that for Theorem 1.1 we cannot
take ∆ arbitrarly small in view of the third moment). Note also that, the discrepancy in the
contributions of the MOOD−+ and the MOOD++ terms can be guessed already by looking
at (8.9) and (8.10): in (8.9) there is an oscillating factor G(χ2, h;D) which is not present
in (8.10).

10.5. Conclusion of the proof of Theorem 1.1. Thus, under the assumption that all
the characters are complex, we have shown that that there exist mollifiers Mi(f) such that

(10.14)∣∣∣∑h

f

L(f.χ1,
1
2
)M1(f)L(f.χ2,

1
2
)M2(f)L(f.χ3,

1
2
)M3(f)

∣∣∣ > (c0 + o(1))
(logL)9

|
∏3

i=1 L(χ2
i , 1)|

and ∑h

f

|L(f.χi,
1
2
)Mi(f)|4 6 (ci + o(1))

(log q)12

|L(χ2
i , 1)|4
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where c0, ci are absolute constants, c0 > 0, and L = q∆ for some positive fixed ∆. This
proves that

(10.15)
∑h

f,L(f.χi,
1
2
) 6=0

i=1,2,3

1 >
c40∆

4

c1c2c3
+ o(1),

and we conclude the proof as explained in Section 4. Suppose now that χ1 is the trivial
character but χ2 and χ3 are complex: from (10.7), we have∣∣∣∑h

f

L(f, 1
2
)M(f)L(f.χ2,

1
2
)M2(f)L(f.χ3,

1
2
)M3(f)

∣∣∣ > (c0 + o(1))
(logL)8

|L(χ2
2, 1)L(χ2

3, 1)|
.

The necessary upper bound on the fourth moment for the trivial character is provided by
[KMV2], Theorem 1.4, which gives (with our present choice of mollifier)∑h

f

|L(f, 1
2
)M(f)|4 6 (c1 + o(1))(log q)8.

Since 4× 8 = 8 + 12 + 12, we still have (10.15).

11. Variant for real characters

Finally, we discuss the variant, Theorem 1.4. Recall that this involves the case in which
χ1 is trivial, χ2 is real, and χ3 is complex. We assume also that D2, D3 are squarefree
and that χ2

3 is primitive. For q prime such that χ2(−q) = 1, the first case of Theorem 1.4
follows from the inequality

(11.1)

( ∑h

f∈S∗2 (q)

L1,2(f)L3(f)

)4

6 (
∑h

f∈S∗2 (q)
L1,2(f)L3(f) 6=0

1)(
∑h

f∈S∗2 (q)

|L1,2(f)|2)2(
∑h

f∈S∗2 (q)

|L3(f)|4),

where L1,2(f) = M1(f)M2(f)L(f, 1
2
)L(f.χ2,

1
2
) and L3(f) = M3(f)L(f.χ3,

1
2
). The only

remaining question is to evaluate the second moment∑h

f

(L(f, 1
2
)L(f.χ2,

1
2
))2λf (`).

This calculation winds up being quite similar to the one we have already done, but avoids
many of the pitfalls that we have encountered above because now 1 ∗ χ2(n) represents
the coefficients of an Eisenstein series of square-free level (for example, it is instructive
to compare the calculations of Appendix B.2 which is used here with those of Appendix
B.1). The remainder terms have exactly the same size as before, and the main term,
gets contributions from the diagonal, off-diagonal, and off-off-diagonal which gives that
the averages of |L1,2(f)|2 goes as (log q)8, which is precisely the correct power to make
the proportion of non-vanishing triple products go as a constant : recall that the lefthand
side of (11.1) goes as (logL)7×4, and the last factor of the righthand side goes as (log q)12.
Rather than reproduce all the calculations here and lengthen this paper even further, we
merely present the asymptotics for the case ` = 1, which has independent interest. The



40 P. MICHEL AND J. VANDERKAM

average (using the harmonic weights) of the square of the kth derivative of Λ(f, 1
2
)Λ(f.χ2,

1
2
)

is the sum of an error term of the usual size, plus two main terms MDOD +MOOD, where

MDOD =
4(k!)2

(2πi)2

∫
(3)

∫
(2)

G(t)Γ(1 + t)2L(χ2, 1 + 2t)

sk+1tk+1
(
qD

4π2
)t(F (s, t) + χ(−q)F (−s, t))dsdt,

where

F (s, t) = G(s)Γ(1 + s)2L(χ2, 1 + 2s)(
qD

4π2
)s
ζ(1 + s+ t)ζ(D)(1 + s+ t)L(χ2, 1 + s+ t)2

L(χ2, 2 + 2s+ 2t)
,

and

MOOD =
4(k!)2L(χ2, 1)2

ζ(2)(2πi)2

∫
(3)

∫
(2)

G(s)G(t)
∏

± Γ(1± s)Γ(1± t)

tk+1sk+1

[(
Ds+t

ζD(1 + s+ t)
+

D−s−t

ζD(1− s− t)

)∏
±

ζ(1± (s+ t))L(χ2, 1± (s− t))

+ χ(−q)
(

D−s+t

ζD(1− s+ t)
+

Ds−t

ζD(1 + s− t)

)∏
±

L(χ2, 1± (s+ t))ζ(1± (s− t))

]
dsdt.

Notice that in both cases, the parity of the integrands is odd precisely when the relevant
derivative can be non-zero, that is, when χ(−q) = 1 for even k and when χ(−q) = −1
for odd k. Thus these expressions can be evaluated by taking residues at s = 0 and then
t = 0 in the usual fashion. In particular, for k = 0 and χ(−q) = 1, the asymptotics go as
Pχ2(log q), where Pχ2 is a quadratic polynomial with coefficients depending on χ2.

Appendix A. Summation formulae

In this section we derive a Poisson-like summation formula for the convolution of two
distinct primitive Dirichlet characters. These results are standard but we couldn’t find them
in the existing literature with the required degree of generality. Our methods essentially
follow those of [J] but there are other ways to obtain this formula. We first start with a
very general proposition obtained by double application of Poisson summation.

Proposition A.1. Given c1, c2 > 1 two integers and G a complex valued function on
(Z/c1Z)× (Z/c2Z). Let

(A.1) H(m1,m2) =
∑
r1(c1)

∑
r2(c2)

G(r1, r2)e(
m1r1
c1

+
m2r2
c2

),

denote its discrete Fourier transform, and assume that H(−m1,−m2) = νH(m1,m2) for
some ν ∈ {±1}. Let F (x) be a smooth function on (0,∞), vanishing in a neighborhood of



SIMULTANEOUS NON-VANISHING OF TWISTS OF AUTOMORPHIC L-FUNCTIONS 41

0, such that F and all its derivatives have rapid decay at ∞. Then

∑
m1,m2>1

G(m1,m2)F (m1m2) = Ress=1
F̂ (1 + s)

(c1c2)1+s

(H(0, 0)

s2
+

1

s
(H− +H+)

)(A.2)

+
ν

c1c2

∑
m1,m2>1

H(m1,m2)

∫ ∞

0

F (x)Jν(4π

√
m1m2x

c1c2
)dx

+
1

c1c2

∑
m1,m2>1

H(m1,−m2)

∫ ∞

0

F (x)Kν(4π

√
m1m2x

c1c2
)dx

where F̂ (s) is the Mellin transform of F , c1 = [c,D1], c2 = [c,D2],

H− =
∑
r1(c1)

∑
r2(c2)

G(r1, r2)
(
−Γ′

Γ
(
r1
c1

)
)
,

H+ =
∑
r1(c1)

∑
r2(c2)

G(r1, r2)
(
−Γ′

Γ
(
r2
c2

)
)
,

J+(x) = −2πY0(x); J−(x) = 2πiJ0(x); K+(x) = 4K0(x); K−(x) = 0.

Proof. We rewrite the sum as∑
m1,m2

G(m1,m2)F (m1m2) =
∑∑

r1(c1), r2(c2)

G(r1, r2)
∑
m1≡r1

∑
m2≡r2

F (m1m2).

Taking the Mellin transform of F and using the Hurwitz zeta function ζ(s, α) =
∑
m>1

(m +

α)−s, this becomes

(A.3)

c1∑
r1=1

c2∑
r2=1

G(r1, r2)
1

2πi

∫
(3)

F̂ (s)
1

(c1c2)s
ζ(s,

r1
c1

)ζ(s,
r2
c2

)ds.

We shift the contour to the left, crossing over poles at s = 1, then use the functional
equation of ζ(s, α) to convert to convergent sums.

A.1. The poles at s = 1. If s is near 1,

ζ(s, α) =
1

s− 1
− Γ′

Γ
(α) +O(s− 1).

The portion of (A.3) coming from the pole is thus

(A.4)

c1∑
r1=1

c2∑
r2=1

G(r1, r2)Ress=1F̂ (s)
1

(c1c2)s

(
1

(s− 1)2
− 1

s− 1
(
Γ′

Γ
(
r1
c1

) +
Γ′

Γ
(
r2
c2

))

)
.

giving the first term in (A.2).
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A.2. The shifted integral. We recall the functional equation (see [Da])

ζ(s, α) =
2Γ(1− s)

(2π)1−s

∞∑
m=1

sin 2π(mα+ s/4)

m1−s .

Thus upon shifting the contour in (A.3) to <es = −2 and replacing s with 1− s, we have
the following contour integral:

(A.5)
4

c1c2

c1∑
r1=1

c2∑
r2=1

G(r1, r2)
1

2πi

∫
(3)

F̂ (1− s)Γ(s)2(
c1c2
4π2

)s
∑
m1,m2

1

ms
1m

s
2

1

4

(
e(−s

2
+
m1r1
c1

+
m2r2
c2

) + e(
s

2
− m1r1

c1
− m2r2

c2
) + e(

m1r1
c1

− m2r2
c2

) + e(−m1r1
c1

+
m2r2
c2

)

)
ds.

Note that H(−m1,−m2) = νH(m1,m2), so the contour integral’s contribution to (A.3) is
(A.6)

1

c1c2

∑
m1,m2

1

2πi

∫
(3)

F̂ (1− s)Γ(s)2(
c1c2

4π2m1m2

)s (cν(s)H(m1,m2) + (1 + ν)H(m1,−m2)) ds,

with, c+(s) = 2cos(πs), and c−(s) = −2i sin(πs). We then shift the integration contour to

<es = 1/8, open the Mellin transform F̂ (1− s) and use the formulas (see [EMOT] Vol 1.
7.3 (17),(19),(23)), valid for 0 < σ < 1/4,

1

2πi

∫
(σ)

Γ2(s)x−sds = 2K0(2
√
x),

1

2πi

∫
(σ)

Γ2(s) cos(πs)x−sds = −πY0(2
√
x)

1

2πi

∫
(σ)

Γ2(s) sin(πs)x−sds = πJ0(2
√
x).

This completes the proof of Proposition A.1. �

A.3. Convolution of Dirichlet characters. We apply Proposition A.1 to the caseG(m1,m2) =
χ1(m1)χ2(m2) for χ1 and χ2 two primitive Dirichlet characters.

Proposition A.2. Given χ1, χ2 distinct primitive Dirichlet characters of conductors D1

and D2, respectively. Let F (x) be a smooth function on (0,∞), vanishing in a neighborhood
of 0, such that F and all its derivatives have rapid decay at ∞. Given c a positive integer,
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and a coprime with c,∑
m>1

χ1∗χ2(m)e(
am

c
)F (m) =

δD2|c

c
χ1(

c

D2

)χ2(a)G(χ2)L(1, χ1χ2)

∫ ∞

0

F (x)dx

+
δD1|c

c
χ2(

c

D1

)χ1(a)G(χ1)L(1, χ1χ2)

∫ ∞

0

F (x)dx(A.7)

+
χ1χ2(−1)

c1c2

∑
m1,m2

H(a,m1,m2; c)

∫ ∞

0

F (x)J±(4π

√
m1m2x

c1c2
)dx

+
χ2(−1)

c1c2

∑
m1,m2

H(−a,m1,m2; c)

∫ ∞

0

F (x)K±(4π

√
m1m2x

c1c2
)dx

where ± = χ1χ2(−1), c1 = [c,D1], c2 = [c,D2],

(A.8) H(a,m1,m2; c) =
∑
r1(c1)

∑
r2(c2)

χ1(r1)χ2(r2)e(
m1r1
c1

+
m2r2
c2

)e(
ar1r2
c

),

J+(x) = −2πY0(x), J−(x) = 2πiJ0(x), K+(x) = 4K0(x), K−(x) = 0.

Proof. This is immediate from Proposition A.1 and the following two lemmas. �

Lemma A.3. If χ1 and χ2 are primitive characters modulo D1 and D2, respectively, and
(a, c) = 1, then if χ1 = χ2 and D1|c,

[c,D1]∑
r1=1

[c,D2]∑
r2=1

χ1(r1)χ2(r2)e(
ar1r2
c

) = cχ1(a
c

D1

)G(χ1)
φ(D1)

D1

but otherwise the sum is zero.

Proof. If c1 := [D1, c] > c, we may write r1 = cs1 + t1, with 1 6 t1 6 c and 0 6 s1 < c1/c,

and the s1 sum takes the form
∑

χ1(cs1 + r1) = 0 since χ1 is primitive modulo D1. Thus

we have c1 = c, and by symmetry we also have c2 = c, so D1 and D2 must both divide c.
We now write r1 = D1s1 + t1, with 1 6 t1 6 D1 and 0 6 s1 < c/D1, so that the s1 sum is∑

s1<c/D1

e(
ar2s1D1

c
) =

c

D1

δc/D1|r2 .

Thus the complete sum is

c

D1

D1∑
t1=1

D1∑
s2=1

χ1(t1)χ2(s2
c

D1

)e(
as2t1
D1

).

This vanishes unless (D2, c/D1) = 1, which is to say D2|D1. Since the original expression
was symmetric in D1 and D2, we must also have D1|D2, so D1 = D2. The t1 sum is then

D1∑
t1=1

χ1(t1)e(
as2t1
D1

) = χ1(as2)G(χ1),
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leaving us with the expression

c

D1

χ2(
c

D1

)χ1(a)G(χ1)

D1∑
s2=1

χ2(s2)χ1(s2),

which is zero unless χ1 = χ2. �

Lemma A.4. With notation as above,

−
∑∑
r1(c1),r2(c2)

χ1(r1)χ2(r2)e(
ar1r2
c

)
Γ′

Γ
(
r1
c1

) = δD2|cc1χ1(
c

D2

)χ2(a)G(χ2)L(1, χ1χ2)

if χ1 6= χ2, and

−
∑
r1,r2

χ1(r1)χ2(r2)e(
ar1r2
c

)
Γ′

Γ
(
r1
c1

) = δD1|cc
ϕ(D1)

D1

χ1(
c

D1

)χ1(a)G(χ1)(log(D1) + γ + Ψ(D1))

if χ1 = χ2, where Ψ(D1) =
∑

p|D1

log p
p−1

.

Proof. We perform the r2 sum first, and in a manner similar to the previous proof we obtain
that the sum is zero unless D2|c in which case we are left with

c

D2

G(χ2)χ1(
c

D2

)χ2(a)

D1D2/(c,D1)∑
s=1

χ1χ2(s)
Γ′

Γ
(

s

D1D2/(c,D1)
).

We now use the identity (obtained using −Γ′(α)

Γ(α)
=

1

α
+ γ +

∑
k>1

1

k + α
− 1

k
)

(A.9)
∑

16r6cD

χ(r)

(
−Γ′

Γ
(
r

cD
)

)
= ress=0

(cD)1+s

s
L(χ, 1 + s).

Thus if χ1 6= χ2 the sum is

c

D2

D1D2

(D1, c)
G(χ2)χ1(

c

D2

)χ2(a)L(1, χ1χ2),

the desired result, and similarly if χ1 = χ2. �

Appendix B. An exponential sum

In this section we study the average of the exponential sum H(a,m1,m2; c) defined
in (A.8). Recall that χ1, χ2 are primitive characters of conductor D1, D2. We again let
c1 = [c,D1] and c2 = [c,D2]. We study the average

R(m1,m2, n; c) : =
c

c1c2

∑∗

a(c)

e(
na

c
)H(a,m1,m2; c)(B.1)

=
c

c1c2

∑∗

a(c)

e(
na

c
)
∑
r1(c1)
r2(c2)

χ1(r1)χ2(r2)e(
m1r1
c1

+
m2r2
c2

+
ar1r2
c

).
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Lemma B.1.
|R(m1,m2, n; c)| 6 (D1D2)

3(
c1c2
c2

n−m1m2, c).

Proof. For p a fixed prime number, we define the exponents d1, d2, k, k1, k2 by pd1||D1,p
d2||D2,

pk||c, pk1||c1, pk2||c2. We set cp = c/pk, with c1,p and c2,p defined analogously. Let χi,p de-
note the p-primary component of χi. By the Chinese Remainder Theorem we can factor
R(m1,m2, n; c) over primes to get local sums (after some changes of variable) of the form

pk−k1−k2
∑∗

a(pk)

e(
c1,pc2,pcp

2na

pk
)
∑
r1(pk1 )

χ1,p(r1)e(
m1r1
pk1

)
∑
r2(pk2 )

χ2,p(r2)e(
m2r2
pk2

+
ar1r2
pk

).

Since the context is now clear, we henceforth write χi instead of χi,p. We also set Dp :=
c1,pc2,p/c

2
p. If k < d1 + d2 the sum is trivially bounded by p3(d1+d2), so we may assume that

k > d1 + d2, so that k1 = k2 = k and Dp = c1c2/c
2. We now break into cases.

B.0.1. The case p 6 |D1D2. This is the generic case; the sum takes the form

p−k
∑∗

a(pk)

e(
Dpna

pk
)
∑
r1(pk)

e(
m1r1
pk

)
∑
r2(pk)

e(
(m2 + ar1)r2

pk
),

yielding the Ramanujan sum∑∗

a(pk)

e(
(Dpn−m1m2)a

pk
) � (Dpn−m1m2, p

k).

B.0.2. The case p 6 |D1, p|D2. We have

p−k
∑∗

a(pk)

e(
Dpna

pk
)
∑
r1(pk)

χ1(r1)e(
m1r1
pk

)
∑
r2(pk)

e(
(m2 + ar1)r2

pk
)

=
∑∗

a(pk)

e(
(Dpn−m1m2)a

pk
)χ1(−am2) � pd1/2(Dpn−m1m2, p

k),

since this is a Gauss sum.

B.0.3. The case p|D1 and p|D2. We have

p−k
∑∗

a(pk)

e(
Dpna

pk
)
∑
r1(pk)

χ1(r1)e(
m1r1
pk

)
∑
r2(pk)

χ2(r2)e(
(m2 + ar1)r2

pk
)

The r2 sum equals

pk−d2G(χ2)δpk−d2 |(m2+ar1)χ2(
m2 + ar1
pk−d2

)

Since k − d2 > d1 we may replace χ1(r1) by χ1(−m2a) and the sum equals

p2k−d2−k1−k2G(χ2)χ1(−m2)
∑∗

a(pk)

e(
(Dpn−m1m2)a

pk
)χ1χ2(a)

∑
s1(pd2 )

χ2(s1)e(
m1s1

pd2
)

� p(d1+d2)/2(Dpn−m1m2, p
k).
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�

B.1. The case χ1 = χ2. We now restrict to the particular case χ1 = χ2 = χ, with D, the
conductor of χ, square-free. We also suppose that (n,D) = 1, which will always be the
case in our applications. We have

R(m1,m2, n; c) =
c

[c,D]2

∑∗

x(c)

e(
nx

c
)

∑
r1,r2([c,D])

χ(r1)χ(r2)e(
m1r1 +m2r2

[c,D]
+
r1r2x

c
)

=
c

[c,D]2
ϕ(c)

ϕ([c,D])

∑
x,r1,r2([c,D])

(x,cD)=1

χ(r1)χ(r2)e(
m1r1 +m2r2

[c,D]
+
r1r2x+ nx

c
).

We factor the sum over primes, setting D = D1D2D3 and c = D1c2c3 with (c3, D) = 1,
D1||c, p|D2 ⇒ p2|c2, (c3, D) = 1. Then [c,D] = c3D1c2D3. We have

R(m1,m2, n; c) = R(m1,m2, n; c3)R(m1,m2, n; c2)R(m1,m2, n;D1)R(m1,m2, n;D3)

where (after some simple changes of variable)

R(m1,m2, n; c3) =
1

c3

∑∗

x(c3)

∑
r1,r2(c3)

e(
m1r1 +m2r2 +D3(r1r2x+ nx)

c3
)

R(m1,m2, n;D3) =
1

ϕ(D3)D3

∑∗

x(D3)

∑
r1,r2(D3)

χD3(r1)χD3
(r2)e(

m1r1 +m2r2
D3

).

R(m1,m2, n; c2) =
1

c2

∑∗

x(c2)

∑
r1,r2(c2)

χD2(r1)χD2
(r2)e(

m1r1 +m2r2 +D3(r1r2x+ nx)

c2
)

R(m1,m2, n;D1) =
1

D1

∑∗

x(D1)

∑
r1,r2(D1)

χD1(r1)χD1
(r2)e(

m1r1 +m2r2 +D3(r1r2x+ nx)

D1

)

To evaluate the first sum, we sum first over r1, getting

R(m1,m2, n; c3) = r(m1m1 −D2
3n; c3) = r(m1m1 − (D/(c,D))2n; c3).

The second sum can also be evaluated by doing the r1 sum first, getting

(B.2) R(m1,m2, n;D3) = χD3(−1)χD3
(m1)χD3(m2).

The third and fourth sums are slightly more complex. Since they are multiplicative in their
modulus, we can factor over primes, reducing to the evaluation of

R(m1,m2, n; pα) =
1

pα

∑∗

x(pα)

∑
r1,r2(pα)

χp(r1)χp(r2)e(
m1r1 +m2r2 +D3(r1r2x+ nx)

pα
).
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B.1.1. The third sum (α > 1). First note that if p|m1m2, then R(m1,m2, n; pα) = 0, as
can be seen by summing over ri if p|mi. Thus we may assume that p 6 |m1m2, so we get

R(m1,m2, n; pα) = χp(m1)χp(m2)r(1, 1,m1m2n; pα)

Next we set r1 = x1 + py1 with x1 < p y1 mod(p
α−1). Summing over y1 we get 1 + r2x ≡

0(pα−1). Letting 1 + r2x = zpα−1, we sum over x1, then over z, getting Gauss sums, and
finally over x, getting

R(m1,m2, n; pα) = χp(m1)χp(m2)r(m1m2 −D2
3n; pα).

B.1.2. The fourth sum (α = 1). Note that if p|m1m2,

R(m1,m2, n; p) =

{
χ2(m2)χp(m1m2 − nD2

3)G(χ2
p) ifp|m1

χ2(m1)χp(m1m2 − nD2
3)G(χ2

p) ifp|m2

When (p,m1m2) = 1 we have R(m1,m2, n; p) = χp(m1)χp(m2)R(1, 1, nm1m2; p) and some
simple computations then give

R(m1,m2, n; p) = χp(−1)χp(m1)χp(m2)
∑
x(p)

χp(x(1 + nD2
3m1m2x))χp(1 + x).

An interesting case occurs when m1m2 = nD2
3, in which case

(B.3) R(m1,m2, n; p) = −χp(m1)χp(m2).

This is the source of the “off-diagonal” term in the main text.
To summarize, we have

(B.4) R(m1,m2, n; c) = χD3(−1)r(m1m2 −D2
3n; c′)χD2D3

(m1)χD2D3(m2)R(m1,m2, n;D1)

where the variables are defined by

D = D1D2D3, c = c′D1, (c′, D1D3) = 1, D2
2|c′.

B.2. The case χ1 = 1. Finally, we consider the case when χ1 is trivial, so D1 = 1 and
[c,D1] = c. To simplify notation, we use χ rather than χ2 to denote the non-trivial
character. We wish to sum

R(m1,m2, n; c) =
1

[c,D]

∑∗

a(c)

e(
na

c
)
∑
r1(c)

r2([c,D])

χ(r2)e(
m1r1 + ar1r2

c
+
m2r2
[c,D]

).

Performing the r1 sum gives

c

[c,D]

∑∗

a(c)

e(
na

c
)
∑

r2([c,D])

δm1+ar2≡0(c)χ(r2)e(
m2r2
[c,D]

).

Since D is squarefree, we can write [c,D] = cD2, with D2 = D/(c,D) and (D2, c) = 1.
We factor χ = χ1χ2 such that the conductor of χ2 is D2. We split r2 over relatively prime
moduli as r2 = s1c+ s2D2 to make the sum

1

D2

∑∗

a(c)

e(
na

c
)
∑
s1<D2

∑
s2(c)

δm1+aD2s2≡0(c)χ1(s2D2)χ2(s1c)e(
m2s1

D2

+
m2s2

c
).
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Note that the s2 sum only contributes one term, s2 = −m1aD2. The s1 sum is a Gauss
sum, so the entire expression is

G(χ2)

D2

χ2(cm2)χ1(−m1)
∑∗

a(c)

e(
(n−m1m2D2)a

c
)χ1(a).
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