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Abstract. We compute the asymptotics of twisted fourth power moments of modular L-functions
of large prime level near the critical line. This allows us to prove some new non-vanishing results
on the central values of automorphic L-functions, in particular those obtained by base change
from GL2(Q) to GL2(K) for K a cyclic field of low degree.
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1. Introduction

There has been considerable recent research, most notably the pioneering work of Iwaniec and
Sarnak, into the asymptotics of the second moments of families of L-functions in their critical
strip. A particular family of interest has been forms of fixed weight (usually two) and high level
(usually prime). In this case, the central value of these L-functions has a deep relation to the
arithmetic of the underlying modular curve. In this paper we increase the degree of difficulty and
extend these methods to finding asymptotics for the fourth moment of this family. This allows
for some new non-vanishing results, and suggests a framework for providing several others.

Let q be a prime number, and let H2(q) denote the set of primitive Hecke eigenforms of weight
2 relative to the subgroup Γ0(q)1. Any f(z) ∈ H2(q) admits a Fourier expansion of the form

f(z) :=
∑
n>1

n1/2λf (n)e(nz),

where we normalize so that λf (1) = 1. The coefficients λf (n) are real and moreover the
√
nλf (n)

for n > 1 generate a totally real number field Kf (see [Sh1]). To f is attached an L-function with

1So that H2(q) is an orthogonal basis of the space cusp forms of weight two on Γ0(q). We have restricted ourselves
to this case because it allows us to use Petersson’s trace formula directly, saving some technical complications.
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Euler product

(1.1) L(f, s) :=
∑
n>1

λf (n)n−s =
∏
p

(1−
λf (p)
ps

+
εq(p)
p2s

)−1,

where εq( ) is the trivial character mod q. This series is absolutely convergent when <s is large,
and admits analytic continuation to all of C. It satisfies the functional equation

(1.2) Λ(f, s) = εfΛ(f, 1− s),

where

Λ(f, s) := q̂sΓ(s+
1
2
)L(f, s), q̂ :=

q1/2

2π
, εf = −q1/2λf (q) = ±1.

Throughout this paper, we use two methods of averaging over H2(q), the “harmonic” and “nat-
ural,” defined as ∑h

f

αf :=
∑

f∈H2(q)

αf

4π(f, f)
,
∑n

f

αf :=
∑

f∈H2(q)

αf

|H2(q)|
,

with (f, g) the Petersson inner product on the space Γ0(q)\H. We will also frequently use the

notation
∑∗

f

to denote results which apply to both averages. The focus of this paper is on the

twisted harmonic fourth power moment of L(f, s) on the critical line:

(1.3) M(`) :=
∑h

f

|L(f, s)|4λf (`), s = 1/2 + µ,

with µ imaginary (to save notation, we suppress the dependence of M(`) on µ). We should point
out that the methods of this paper also apply when 1/2 + µ is away from the critical line, but
much simpler methods are sufficient unless <eµ is close to zero.

The question of bounding M(`) was considered by Duke-Friedlander-Iwaniec [DFI2], and for
`� q1/15 they obtained (essentially) the best possible bound:

(1.4) M(`) �ε,µ q
ε`−1/2

for all ε > 0. The main value in studying the twisted moments is that it enables us to evaluate
on average the terms |L(f, s)|4M(f, s) with

M(f, s) :=
∑

m6M

xm

ms
λf (m)

a finite Dirichlet polynomial. There are two very different applications for this, depending on the
choice of the coefficients xm.

• Amplification: the xm’s can be choosen so that, for a specific f0 ∈ H2(q), M(f0, s) is large.
This was developed by Friedlander and Iwaniec to obtain (among other things) improve-
ments in the convexity bounds for L-functions on the critical line. For this application,
a bound of the type (1.4) is sufficient, and as a corollary one obtains the following deep
result of [DFI2]:

Theorem 1.1. For all µ ∈ iR and all ε > 0,

L(f, 1/2 + µ) �ε,µ q
1/4−1/192+ε.
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• Mollification: the xm’s can be chosen so that the M(f, s)’s compensate for the deviation
of L(f, s) from its average size. This was invented by Landau and Bohr, and used very
fruitfully by Selberg, then Levinson and Conrey to study the zeros of Riemann’s ζ function.
Very recently, this technique has been used (for the second power moment) in the context
of automorphic L-functions to obtain non-vanishing results for these L-functions at the
center of the critical strip or unconditional bounds for the average order of vanishing of
L(f, s) at s = 1/2 [IS, KM1, KM2, KMV, V1, V2]. For mollification, a bound like (1.4) is
not sufficient and we need a precise asymptotic expansion for M(`).

Our first step in this asymptotic expansion is to isolate the main terms for M(`), which we do
by following [DFI2] closely:
Theorem 1.2. There exists some B > 0 such that if ` < q and s = 1/2 + µ with µ ∈ iR, then
for any ε > 0

M(`) = MD(`) +MOD(`) +MOOD(`) +Oε

(
qε(1 + |µ|)B(`3/4q−1/12 + `17/8q−1/4 + `q−1/6)

)
.

Here MD(`) is the “diagonal” main term defined in (3.6), MOD(`) is the “off-diagonal” main
term defined in (3.22) if µ 6= 0, (3.23) if µ = 0, and MOOD(`) is the “off-off-diagonal” main term
defined in (4.1).

It is relatively simple to show from their definitions that MD(`) and MOD(`) are Oε((1 +
|µ|)Bqε`−1/2). As we show from more detailed analysis of the asymptotics, MOOD(`) satisfies
the same bound (up to some remainder terms which are dominated by those of Theorem 1.2),
and this is sharp. Another proof of this bound (in a more general setting) can be found in the
erratum [DFI3] (this term had been incorrectly bounded by qε`−1 in [DFI2], see the remark at
the beginning of section 3.4 below).

The bulk of this work is the evaluation of these main terms, the most difficult being MOOD(`).
An asymptotic expansion for MD(`) + MOD(`) is given at the end of section 3, while one for
MOOD(`) is given in Theorem 4.1. Using the specific values ` = 1, µ = 0, one can obtain an
asymptotic formula for the fourth moment:
Corollary 1.3. For all ε > 0

M(1) =
∑h

f

L(f, 1/2)4 = P (log q) +Oε(q−1/12+ε),

with P a polynomial of degree 6 and leading coefficient 1
60π2 .

Remark. The exponent 1/12 matches the one obtained by Estermann [E] for the additive
divisor problem:∑

n6x

τ(n)τ(n+ h) = xPh(log x)(1 +Oε,h(x−1/12+ε)) for Ph some quadratic polynomial.

This is not a coincidence, since Estermann’s estimate relies on Weil’s bound for Kloostermann’s
sums, as does the wide generalization of Estermann’s result found in [DFI1], and the remainder
terms of this paper come directly from those calculated through this method (see also the works of
Deshouillers-Iwaniec and Motohashi [DI, Mo], which go well beyond this result using the spectral
theory of automorphic forms).
Remark. There are relatively few other examples of families of L-functions where the fourth
moment at the critical point can be evaluated precisely. The fourth moment of the Riemann
zeta function on the critical line was calculated by Ingham [I1] (see also [HB1] for a proof with
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polynomial remainder), and the fourth moment of Dirichlet L-functions were calculated by Heath-
Brown in [HB2] (where the remainder term only saves a logarithmic factor). A distinctive feature
of our family is that it should admit an “orthogonal” symmetry (in the terminology of Katz-
Sarnak [KS]), in contrast with the “unitary” symmetry enjoyed by the above-mentioned families.
In particular, the value 1/60π2 may be relevant in the context of the theory of the moments for
L-functions with orthogonal symmetry, as it provides some “experimental” data with which to
compare the theoretical model (see [CF] for considerable discussion of this issue).

More generally, these asymptotics enable us to input a mollifer M(f, s) whose length is a small
positive power of q.

Theorem 1.4. Set M = q̂∆, and let M(f) be the mollifier defined in section 5, equation (5.1)
with the choice P (x) = x3. Let F (∆) denote the function
(1.5)

F (∆) =
1024
∆10

(
648(

∆
2

)6 +
51696

35
(
∆
2

)5 +
6408

5
(
∆
2

)4 +
2772

5
(
∆
2

)3 + 126(
∆
2

)2 +
72
5

(
∆
2

) +
27
10

)
Then for all 0 < ∆ < 1/30 we have

(1.6)
∑h

f

L(f, 1/2)4M(f)4 = (1 + o(1))F (∆)
(
ζ(2)
log q

)4

For the natural average, the same is true in the smaller range 0 < ∆ < 1/48

(1.7)
∑n

f

L(f, 1/2)4M(f)4 = (1 + o(1))F (∆)
(
ζ(2)
log q

)4

.

Remark. The discrepancy in the range of validity between the harmonic and the natural
average can be explained by the fact, pointed out to the authors by H. Iwaniec, that for the
fourth power moment removing the harmonic weight has a cost (which is not the case for the first
and the second moments). In particular, breaking the “convexity” bound for the size of L(f, 1/2)
is needed, so that Theorem 1.1 is essential to our argument. As pointed out in that paper, if one
could show that λf is not too small too often, more precisely, if one could prove that∑

λf (`)2 � Lq−ε

(the sum over ` < L prime to q), then one could replace 1/192 by 1/120 in Theorem 1.1, and then
the range of validity would be ∆ < 1/30 for the natural average also. In section 6 we explain in
greater detail how one passes from the harmonic to the natural average.
Remark. Our methods give a similar result for asymptotics and mollified moments at points
other than 1/2. In particular, F (∆) is replaced by a function Fµ(∆) which is uniformly bounded
for µ near the critical line (for |µ| large it will have lower degree in log q, but approach (1.7) as
µ → 0). Lacking a useful interpretation of these values, we do not reproduce the proof in detail
here.

1.1. Applications to non-vanishing. As is usually the case, our evaluations of mollified mo-
ments can be used to infer non-vanishing results for large fractions of a family at the central point.
The fourth moment does not contribute anything to the non-vanishing of the original family H2(q)
(this is analyzed thoroughly in [IS]), but it does allow us to consider non-vanishing of products
of twists. Let χ be a fixed primitive character of conductor D, coprime with q, and consider the
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twisted L function

L(f ⊗ χ, s) =
∑

n

λf (n)χ(n)
ns

=
∏
p

(1−
λf (p)χ(p)

ps
+
χ2(p)
p2s

)−1.

This L function comes from a modular form of level qD2 and nebentypus χ2 (see [I1]) and thus
satisfies the functional equation:

(1.8) Λ(f ⊗ χ, s) = χ(−q)G(χ)
G(χ)

εfΛ(f ⊗ χ, 1− s),

where

Λ(f ⊗ χ, s) := q̂D
sΓ(s+

1
2
)L(f ⊗ χ, s), q̂D :=

q1/2D

2π
.

We use Theorem 1.4 along with the techniques of [IS] and [KMV] to prove non-vanishing of the
product L(f, 1/2)L(f ⊗ χ, 1/2) for a positive proportion of the f ’s.
Theorem 1.5. Let χ be a fixed primitive character with χ2 6= 1. There exists an absolute constant
c > 0 (independent of χ) such that as q → +∞ through primes,∑∗

f
L(f,1/2)L(f⊗χ,1/2) 6=0

1 > c+ oχ(1),

“*” meaning either the harmonic or the natural average.
The constant c we obtain is extremely small (see section 7 for the exact value). The theorem

also applies (with a slightly better constant) when χ is real and χ(−q) = 1, but this result was
already obtained by Iwaniec and Sarnak [IS] (with a much larger, although still quite small,
constant c = 1/1812) using only second moment estimates. Their proof, which is quite clever,
depends crucially on some particular features of the sign of the functional equations involved; for
complex characters such a favorable situation does not occur, so it appears that we have to rely
on fourth moment estimates. It seems worth pointing out that, for the similar situation when χ
is quadratic and χ(−q) = −1, so that L(f, 1/2)L(f ⊗ χ, 1/2) vanishes identically, the results of
[IS] and [KM2] may be used, again without fourth-moment analysis, to show that∑n

f,(L(f)L(f⊗χ))′(1/2) 6=0

1 > 3/8 + oχ(1).

All one needs is that

|{f ∈ H2(q)
odd, L(f ⊗ χ, 1/2) 6= 0}| >

(
1
2

+ o(1)
)
|H2(q)

odd|,

which is proved in [IS], and

|{f ∈ H2(q)
odd, L′(f, 1/2) 6= 0}| >

(
7
8

+ o(1)
)
|H2(q)

odd|,

which is proved in [KM2], so that by intersecting the two sets,

|{f ∈ H2(q)
odd, L(f ⊗ χ, 1/2)L′(f, 1/2) 6= 0}| >

(
3
8

+ o(1)
)
|H2(q)

odd|.

Similar analysis applies on H2(q)even, where the relevant product is L(f, 1/2)L′(f ⊗ χ, 1/2).
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One can obtain from Theorem 1.5 some interesting corollaries. It was proven by Shimura [Sh2]
that for σ any Q-linear automorphism of C,

L(f ⊗ χ, 1/2) 6= 0 ⇔ L(fσ ⊗ χσ, 1/2) 6= 0

where

L(fσ ⊗ χσ, s) =
∑

n

n−1/2σ(λf (n)
√
n)σ(χ(n))

ns
.

Let d be the order of χ. If the number field Kf generated by the coefficients of f is linearly
disjoint from the d-th cyclotomic field Q(ζd), then for all χ primitive of order d we have

L(f ⊗ χ, 1/2) 6= 0 ⇔
∏
σ

L(f ⊗ χσ, 1/2) 6= 0,

where σ ranges over the automorphisms of Q(ζd).
At a simpler level, since L(f ⊗ χ, 1/2) = L(f ⊗ χ, 1/2), the twists by χ and χ can only vanish

simultaneously.
Hence when d = 3, Theorem 1.5 immediately implies the following:

Corollary 1.6. There exists an absolute constant c > 0, such that: for χ a fixed primitive
character of order 3, when q → +∞ through primes,∑∗

f
L(f,1/2)L(f⊗χ,1/2)L(f⊗χ,1/2) 6=0

1 > c+ oK(1).

“∗” meaning either the natural or the harmonic average.

In other words, by the Kronecker-Weber theorem, we have obtained a non-vanishing result for
the central value of base change L-functions to cyclic cubic fields:

Corollary 1.7. Let K/Q be a cyclic cubic field. There exists an absolute constant c > 0 (inde-
pendent of K) such that as q → +∞ through primes,∑∗

f,L(fK ,1/2) 6=0

1 > c+ oK(1),

where L(fK , s) is the L-function of the base change of f from GL2(Q) to GL2(K).

This is immediate, as L(fK , s) = L(f, s)L(f ⊗ χ, s)L(f ⊗ χ, s) for some primitive character χ
of order three.

1.2. Possible extensions. The feasibility of mollifying the fourth powers of L(f, 1/2) indicates
that it may be possible to mollify fourth powers of other families of this type, or to mollify the
second moment of certain families of degree-four L-functions. In particular, it is not too difficult
to replace L(f, 1/2)4 in our methods by |L(f⊗χ1, 1/2)|2|L(f⊗χ2, 1/2)|2 for χ1, χ2 fixed characters
of conductor relatively prime to q (one must replace Proposition 2.3 by a more general expression,
as can be found in [I2]) Let us turn now to a brief discussion of some possible uses for this and
other extensions of the method.

• In Theorem 1.5, it is much more natural to mollify the square product |L(f, 1/2)L(f ⊗
χ, 1/2)|2, rather than the fourth power |L(f, 1/2)|4, so it is likely that an extension to
character twists would significantly improve the value of c.
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• A second possibility, using the inequality∣∣∣∣∑
f

L1(f)L2(f)L3(f)
∣∣∣∣ 6 ( ∑

L1(f)L2(f)L3(f) 6=0

1
)1/4(∑

f

|L1(f)|4.
∑

f

|L2(f)|4.
∑

f

|L3(f)|4
)1/4

is to prove non-vanishing of triple products L(f ⊗χ1, 1/2)L(f ⊗χ2, 1/2)L(f ⊗χ3, 1/2). In
particular, for χ a primitive character of order 4 or 5, by taking L1(f) = L(f, 1/2)M(f),
L2(f) = L(f⊗χ, 1/2)M(f⊗χ), and L3(f) = L(f⊗χ2, 1/2)M(f⊗χ2) for suitably choosen
mollifiers, it is possible to extend Corollary 1.6 to quartic or quintic cyclic number fields
(in the former case, under the assumption that the field is not biquadratic) so as to obtain

Let K a galois field of degree 6 5 over Q, which is not biquadratic, then as q → +∞,
there exists a positive constant c (independent of K) such that as q → +∞∑∗

f,L(fK ,1/2) 6=0

1 > (1 + χ(−q))c+ oK(1),

where χ(−q) = 0 if [K : Q] is odd, and for [K : Q] even, χ is the Kronecker character
associated to the unique quadratic field contained in K. Moreover if [K : Q] is even, and
q range over the primes such that χ(−q) = −1 (so that L(fK , 1/2) = 0), we have∑∗

f,L′(fK ,1/2) 6=0

1 > c+ oK(1).

To do so also require asymptotics for the first moment of the mollified triple product
L(f ⊗ χ1, 1/2)M(f ⊗ χ1)L(f ⊗ χ2, 1/2)M(f ⊗ χ2)L(f ⊗ χ3, 1/2)M(f ⊗ χ3). While these
do not appear explicitly in the literature, they are quite similar to the asymptotics of
the double product, which we give in section 7 (it should not be a surprise to the reader
that a third moment is considerably simpler than a fourth moment). The one feature of
triple products which does not arise for double products is that the εf factors introduce
an additional off-diagonal contribution. This phenomenon is studied in a slightly different
setting in [KM2], sections 2.4.2 through 2.4.6.

If we consider a biquadratic extension K/Q, since there is no conjugation to force
simultaneous non-vanishing, one would have be able to mollify sixth moments to give this
type of result by similar techniques.

• A third possibility comes from the theory of Heegner cycles on modular curves. For
εK a quadratic character (corresponding to the field K = Q(

√
εK(−1)D)), the product

L(f, s)L(f⊗εK , s) is again the L function of the base change of f fromGL2(Q) toGL2(K).
For any character χ of the ideal class group of K, one may then consider L(fK ⊗ χ, s),
the L function of the twist of fK by χ. From the work of Gross, Kohnen, and Zagier,
[GZ, G, GKZ], it is known that the central values L(fK ⊗ χ, 1/2) (if χ(−q) = 1) or
L′(fK⊗χ, 1/2) (if ε(−q) = −1) correspond to heights of (f, χ)-eigencomponents of Heegner
cycles living in certain Hecke modules. It is possible to generalize our techniques to obtain
non-vanishing results of these central values, to bound on average the “analytic rank” of
these L-functions, or to find linear independence results along the lines of [V2]. Observe
that when χ is not real (in particular non-trivial) it is very unlikely that L(fK ⊗ χ, s)
factors as a product of two L functions of degree 2 as L(fK , s) does.

• In fact, all these examples belong to the more general problem of mollifying the square of
L(f ⊗ g, s), the L functions of the Rankin-Selberg convolutions of our family of forms f
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against a fixed automorphic (not necessarly cuspidal) form g over GL2. We consider this
more general problem in an upcoming paper.

• Finally, the feasibility of mollifying the fourth power averaged over the family of automor-
phic forms of fixed weight suggests that there may be other families where these techniques
apply, such as Dirichlet L-functions of primitive characters of a given modulus (the sec-
ond moment is evaluated in [IS2, MV]) or Dirichlet L-functions of quadratic characters
(the second moment has been evaluated in [So]). Evaluating the fourth moment of the
latter family should be more or less equal in difficulty to evaluating the second moment
of L(f ⊗ εK , 1/2) when εK varies over the quadratic characters of conductor less than D
and f is a fixed modular form. For this problem, some bounds are known (see [PP]) but
asymptotics sufficient for mollification would be of considerable value.

1.3. Final comments. As a final remark, let us contemplate what was achieved here concern-
ing the question of mollification. An essential parameter of a mollifier is its (logarithmic) length
∆ := logM/ log q̂. For the family H2(q), mollification of the second moment can be performed
effectively for a very general class of mollifiers provided that ∆ is strictly less than 1. As
noted by Iwaniec and Sarnak, going beyond this limit for general mollifiers would have strik-
ing consequences for the study of Siegel’s zeros (see [IS] for discussion of this topic). By writing
M ′(f, s) = L(f, s)M(f, s)2, our fourth moment calculations can be re-interpreted as second mo-
ment calculations for M ′(f, s)L(f, s), with the mollifier length going beyond the former limit
(essentially ∆′ ∼ 1 + 1/15). Unfortunately, our results cannot be used to say anything about
the zeros of L(χ, s), because our mollifier has a very peculiar shape, with most of its coefficients
(those coming from the L(f, s)) being “smooth,” that is, avoiding the difficult oscillation of the
Mobius function µ. In [IS], the authors were able to go beyond ∆ ∼ 1 for non-smooth mollifiers
either by averaging over the level q or by assuming the generalized Riemann Hypothesis. It was
their success in this, along with the remarkable technology of [DFI2], that indicated that it might
be possible to handle the present smooth case.

This paper is organized as follows. After some preliminary lemmas in section 2, we turn to
the proof of Theorem 1.2 in section 3, where we also compute the asymptotics of the diagonal
and off-diagonal terms. Section 4, which is the main technical point of the paper, is devoted to
the asymptotics of the off-off-diagonal term. In section 5 we apply the theorems to compute the
harmonic average of the mollified fourth power moments at the critical point (Theorem 1.4). In
section 6 we show how to remove the harmonic weight from (1.6) to obtain (1.7). In section 7 we
sketch the second moment calculations needed to prove Proposition 1.5.

Acknowledgments. Some portions of our results come from formal computations which were
performed with the MAPLE system. Copies of the code can be sent upon request to the authors.

It is a pleasure to express our deep gratitude to Henryk Iwaniec and Peter Sarnak for sharing
their insight and experience during the preparation of this paper. The authors would also like to
thank the referee, in particular for some useful comments about Corollary 1.3.

Some of these results were announced during a series of lectures given by the second author at
the Collège de France (Cours Peccot), he wishes to thank this institution for its hospitality and
support. The third author was supported by NSF grant DMS-9804517.

2. Auxiliary Lemmas

We list some results about modular forms and their coefficients which will be cited repeatedly in
what is to come. We begin with Hecke’s recursion formula for primitive forms (which is equivalent
to (1.1), the Euler product):
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Lemma 2.1. For m,n > 1 and f ∈ H2(q)

(2.1) λf (m)λf (n) =
∑

d|(m,n)

εq(d)λf

(mn
d2

)
.

The next lemma is a particular case of Petersson’s trace formula, for weight two and for q prime
(so that H2(q) is an orthogonal basis of the space of cuspidal forms of weight 2 for Γ0(q)).
Lemma 2.2. For m,n > 1 one has

(2.2)
∑h

f∈H2(q)

λf (m)λf (n) = δm,n − 2π
∑
c>1

S(m,n; cq)
cq

J1(
4π
√
mn

cq
)

where δm,n is the Kronecker symbol,

S(m,n; c) =
∑

a mod c
(a,c)=1

e
(ma+ na

c

)

is the classical Kloosterman sum, and J1(x) is the Bessel function of order 1. Moreover we have
the asymptotic formula

(2.3)
∑h

f∈H2(q)

λf (m)λf (n) = δm,n +O((m,n, q)1/2(mn)1/2q−3/2).

The inequality follows easily from Weil’s bound on Kloosterman sums and the bound J1(x) � x.
We will also make use of Jutila’s extension ([J], Theorem 1.7) of the Voronoi summation formula.
Proposition 2.3. (Jutila). Let t : R+ → C be a C∞ function which vanishes in the neighborhood
of 0 and is rapidly decreasing at infinity. Then for c > 1 and dd ≡ 1 (mod c),

c
∑
m>1

τ(m)e
(dm
c

)
t(m) = 2

∫ +∞

0
(log

√
x

c
+ γ)t(x)dx

−2π
∑
h>1

τ(h)e
(
−dh
c

)∫ +∞

0
Y0

(4π
√
hx

c

)
t(x)dx

+4
∑
h>1

τ(h)e
(dh
c

)∫ +∞

0
K0

(4π
√
hx

c

)
t(x)dx.

Through the same methods as [J], one can also show a similar formula for sums of ηµ(m). While
this is not needed in the main body of this paper, it will play an important role in removing the
exponential dependence on µ in the appendix.

3. The twisted fourth moment

To prove Theorem 1.2 we shall refine the method of [DFI2]. We first need to express the square
L(f, s)2 for s on the critical line as an (almost) finite sum. First note the following, which is
implied by (2.1):

L(f, s)2 = ζq(2s)
∑
n>1

τ(n)
λf (n)
ns

.
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Let µ ∈ iR. The functional equation (1.2) and a contour shift imply that

(3.1) G(µ)Γ2(1 + µ)q̂2µL(f, 1/2 + µ)2 =
∑

n

τ(n)λf (n)n−1/2W (n/q̂2)

with

W (y) = Wµ(y) +W−µ(y)

Wµ(y) =
1

2πi

∫
(3)

G(s)Γ2(1 + s)ζq(1 + 2s)y−s ds

s− µ

where G(s) is any even function of moderate growth. For our applications, we take

G(s) = Gµ(s) =
1

|Γ(1 + µ)|2

[
ξ(1

2 + s− µ)2 + ξ(1
2 − s− µ)2

ξ(1
2)2 + ξ(1

2 − 2µ)2

]3

P|µ|(s)

where ξ(s) = 1
2s(1 − s)π−s/2Γ( s

2)ζ(s) is Riemann’s Xi function and P|µ| is an even polynomial
with real coefficients (depending on, and polynomially bounded in, |µ|) such that P|µ|(±µ) = 1
and P|µ|(1± µ) = 0 to at least second order. To simplify exposition, we also assume that P|µ|(s)
has zeros of large order at s = 1, along with double zeros at all poles of Γ(1 + s + µ) in the
range <es > −A for some fixed large constant A. There are several reasons for this choice of
G. First, the ξ functions are squared to avoid zeros in the denominator. Next, since ξ(1

2 + s) is
even in s, Gµ = G−µ. In addition, we have G(µ)G(−µ)Γ(1 + µ)2Γ(1− µ)2 = 1. Finally, and most
importantly, the exponential decay of the ξ functions in the numerator means that a contour shift
to <es = C, together with Stirling’s formula, gives

(3.2) W (y) �C (1 + |µ|)By−C

for any C > 0 (here, as elsewhere in the paper, the B involved in polynomial bounds may change
from one line to the next). Were we to drop the ξ functions from the expression for G, this bound
would be exponential in |µ|2.

We now look to reexpress M(`) so that we can use Lemma 2.2. Since ` < q, we may assume
that (`, q) = 1. We start the proof with formula (3.1), which gives

M(`) =
∑h

f

∑
m

τ(m)λf (m)
m1/2

W (
m

q̂2
)
∑

n

τ(n)λf (`)λf (n)
n1/2

W (
n

q̂2
).

Applying (2.1), this is

M(`) =
∑
de=`

1
d1/2

∑
m,n

τ(m)τ(dn)
(mn)1/2

W (
m

q̂2
)W (

dn

q̂2
)
∑h

f

λf (m)λf (ne).

The recursion formula

(3.3) τ(dn) =
∑

a|(d,n)

µ(a)τ(d/a)τ(n/a)

allows us to write

M(`) =
∑
de=`

1
d1/2

∑
ab=d

µ(a)
a1/2

τ(b)
∑
m,n

τ(m)τ(n)
(mn)1/2

W (
m

q̂2
)W (

adn

q̂2
)
∑h

f

λf (m)λf (aen).

2It is certainly possible to achieve the same goal by choosing simpler function, but at some points the functionnal
equation for ξ will be usefull in simplifying the presentation of some formulas.
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We apply Petersson’s formula (2.2) to obtain M(`) := MD(`) +MND(`) with

(3.4) MD(`) =
∑
de=`

1
d1/2

∑
ab=d

µ(a)
a1/2

τ(b)
∑

n

τ(aen)τ(n)
n(ae)1/2

W (
aen

q̂2
)W (

adn

q̂2
)

and

(3.5) MND(`) = −2π
∑
de=`

1
d1/2

∑
ab=d

µ(a)√
a
τ(b)

×
∑
q|c

1
c2

[
c
∑
m,n

τ(m)τ(n)√
mn

W (
m

q̂2
)W (

adn

q̂2
)S(m, aen; c)J1(

4π
√
aemn

c
)

]
.

This last term will be evaluated using the techniques of [DFI2], from which we borrow some
notation. In what follows let T (c) denote the expression contained in brackets, so that

MND(`) := −2π
∑
de=`

1
d1/2

∑
ab=d

µ(a)
a1/2

τ(b)
∑
q|c

1
c2
T (c).

3.1. Evaluation of the diagonal term. By inverting (3.3), we find that the main diagonal
term equals

(3.6) MD(`) =
1
`1/2

∑
de=`

∑
n

τ(dn)τ(en)
n

W (
dn

q̂2
)W (

en

q̂2
).

By (3.2) and τ(n) � nε, this is no larger than (1 + |µ|)Bqε`−1/2, as expected. We hold off on
evaluating the asymptotics of this term until later, as it will turn out that it combines with the
first off-diagonal term in a convenient manner.

3.2. Preliminary evaluation of the non-diagonal terms. We adjust MND(`) so that we can
use the methods of [DFI2] (most of the methods in the next three sections can be found there,
up to notational adjustments). First we make a smooth partition of unity and write

1
(mn)1/2

W (
m

q̂2
)W (

dan

q̂2
) =

∑
M,N

FM,N (m,n)

the sum being performed over some indices M,N > 1 and

FM,N (m,n) :=
1

(mn)1/2
W (

m

q̂2
)W (

dan

q̂2
)FM (m)FN (n)

where FM (m) denotes a smooth function compactly supported in [M/2, 3M ] such that for all
j > 0

xjF
(j)
M (x) �j 1.

Moreover, we assume that
∑

M6X 1 � logX. Accordingly we split

T (c) =
∑
M,N

TM,N (c)

with

(3.7) TM,N (c) = c
∑
m,n

τ(m)τ(n)S(m,aen; c)FM,N (m,n)J1(
4π
√
aemn

c
)
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and define also

TM,N =
∑
q|c

1
c2
TM,N (c).

Note that the derivatives of FM,N satisfy the bounds

(3.8) xiyj ∂
i

∂ix

∂j

∂jy
FM,N (x, y) � (1 + |µ|)B(MN)−1/2(log q)i+j(

q̂2

x
)A(

q̂2

day
)A′

for all i, j, A,A′ > 0. By taking i = j = 0 and either A or A′ large in (3.8), we have∑
M+N�q1+ε

TM,N �ε,A (1 + |µ|)Bq−A,

for any ε > 0 and any A > 0. Thus we may assume that

(3.9) M 6 q1+ε, N 6 q1+ε.

It will also prove convenient to remove large values of c through the large sieve inequality, as
given in [DFI2], Proposition 1, and section 12. Using these methods, the contribution of TM,N (c)
for c > C and M,N � q1+ε is

(3.10)
∑
q|c

c>C

1
c2
TM,N (c) �ε (1 + |µ|)Bqε `

3/4(MN)1/4

C1/2
.

As in [DFI2], we take C = min(q2/3M1/2, q7/6) (note that the entire sum on c is dropped when
M < q2/3). The error taken on by doing this is at most

(3.11) (1 + |µ|)B`3/4N1/4q−1/3+ε � (1 + |µ|)B`3/4q−1/12+ε.

Accordingly, in the next two sections we attach a smooth compact function ηC(c) vanishing for
c > 2C and equal to 1 for c 6 C.

3.3. Applying the summation formula. Now we apply Jutila’s summation formula (2.3) on
the m variable with the effect of splitting

(3.12) TM,N (c) = T ∗M,N (c) + T−M,N (c) + T+
M,N (c)

according to [DFI2] (33) p. 228.
The “trivial” bound (43) of [DFI2] suffices to bound T ∗M,N (c) for our needs (by our different

normalization of FM,N we have an extra factor of (MN)−1/2 compared to [DFI2]) by∑
q|c

c−2T ∗M,N (c) �ε (1 + |µ|)Bqεq−2(MN)1/2 �ε (1 + |µ|)Bq−1+ε.

The other two terms of (3.12) require considerably more effort and contribute main terms in two
different ways. Recall ([DFI2] (36),(37)) that the remaining terms take the form

(3.13) T−M,N (c) + T+
M,N (c) = ϕ(c)T−0 (c) +

∑
h 6=0

S(0, h; c)(T−h (c) + T+
h (c))

with
T∓h (c) =

∑
m∓aen=h

τ(m)τ(n)G∓(m,n),
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and

G−(z, y) = −2π
∫ ∞

0
Y0(

4π
√
xz

c
)J1(

4π
√
x(aey)
c

)FM,N (x, y)dx,

G+(z, y) = 4
∫ ∞

0
K0(

4π
√
xz

c
)J1(

4π
√
x(aey)
c

)FM,N (x, y)dx.

Now the Ramanujan sum equals

(3.14) S(0, h; c) =
∑
gc′=c
c′|h

µ(g)c′

We consider two cases, coming from q|g and (q, g) = 1 (at this point the primality of q simplifies
our argument), and we split the ramanujan sum into these cases

S(0, h; c) = Sm(0, h; c) + Se(0, h; c), with Sm(0, h; c) =
∑
gc′=c

c′|h,(g,q)=1

µ(g)c′

We will see in section 4.4 (4.27) that the terms involving
∑

h 6=0 S
e(0, h; c)(T−h (c) + T+

h (c)) con-
tribute to the fourth moment as a Oε((1+|µ|)B`1/2q−1+ε). On the other hand the terms associated
with the portion Sm(0, h; c) of the Ramanujan sum will contribute as a main term.

3.4. Evaluation of the off-diagonal terms. We continue to apply the arguments of [DFI2].
It turns out that there is an error in Section 9, p. 229: a factor of s = ae coming from a change
of variable (namely, replacing x with h+ sy) has been omitted. Correcting this, we obtain from
[DFI2], equations (44), (46), and (47) that

T−M,N (c) + T+
M,N (c) = φ(c)

∑
n

τ(aen)τ(n)G−(aen, n)(3.15)

+
∑
16w

(ae, w)
w2

∑
h 6=0

Sm(0, h; c)S(0, h;w)
[
V −(h) + V +(h)

]

+Oε((1 + |µ|)BqεP 11/4`3/4 N
1/4

M1/2
c2)

:= TOD(c) + TOOD(c) + Err(c),

(remark that, unlike [DFI2], we have not introduced the summation condition w < c) with

V ±(h) =
∫ ∞

0

∫ ∞

0
δh∓aey>0[log(h∓ aey)− λ1,w][log(aey)− λae,w](3.16)

×K±(
4π
√
x(h∓ aey)
c

)J1(
4π
√
x(aey)
c

)FM,N (x, y)dxdy,

with
K−(y) = −2πJ0(y), K+(y) = 4K0(y),

λae,w = 2γ + log
aew2

(ae, w)2
, P = 1 +

(aeMN)1/2

c
.
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The contribution of Err(c) over c << C is bounded by∑
q|c

c−2Err(c) �ε (1 + |µ|)Bqε

(
`3/4 N

1/4

M1/2

C

q
+ `17/8M

7/8N13/8

q11/4

)
(3.17)

�ε (1 + |µ|)Bqε

(
`3/4q−1/12 + `17/8q−1/4

)
.

It is the `3/4q−1/12 term which accounts for our choice of C and leads to the most important error
term in Theorem 1.2 (and to the value of 1/192 in Theorem 1.1). Improvements in the admissible
size of ` will have to come primarily from improvements in this bound.

3.5. Expanding the c sum. We thus wish to evaluate∑
q|c

ηC(c)c−2

[
TOD(c) + TOOD(c)

]
.

We can now extend to the wider range c� Cmax = qA for some large A (while we no longer need
the strict c � C bound, there are still some advantages to keeping the sum finite). The off-off-
diagonal term can be bounded using the arguments in [DFI2], sections 9 through 12 (remembering
the extra factor of ae, and that our F differs from theirs by a factor of (MN)−1/2):∑

q|c

(1− ηC(c))c−2TOOD(c) �ε (1 + |µ|)Bqε`1/2MN
∑
q|c

(1− ηC(c))c−2

�ε (1 + |µ|)Bqε`1/2MN

qC

�ε (1 + |µ|)Bqε`1/2q−1/6

For the off-diagonal term, we start with equation (54) of [DFI2], which gives∑
c≡0(q)

(1− ηC(c))c−2TOD(c) = −2π
∑

n

τ(aen)τ(n)
∫ ∞

0
Y0(4π

√
aent)J1(4π

√
aent)Sn(t)dt

with the same definition of Sn(t) except for a factor of 1− ηC(c) in the c sum (in particular, this
means that Sn(t) is supported in [0, 2M/C2]). From this we obtain∑

c≡0(q)

(1− ηC(c))c−2TOD(c) �ε (1 + |µ|)Bqε N
1/2

M1/2

∫ 2M/C2

0
| log t|M

1/2

t1/2+ε
(aeNt)−1/4dt

�ε (1 + |µ|)Bqε(ae)−1/4q−1/12.

Thus we may extend the c sums at acceptable cost, so that the non-diagonal terms come from∑
q|c

1
c2
T (c) =

∑
c≡0(q)

φ(c)
c2

∑
n

τ(sn)τ(n)G−(aen, n)(3.18)

+
∑
q|c

1
c2

∑
w>1

(ae, w)
w2

∑
h 6=0

Sm(0, h; c)S(0, h;w)
[
V −(h) + V +(h)

]
+Oε(qε(1 + |µ|)B(`3/4q−1/2 + `1/2q−1/6).
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Moreover, using (3.2), we may reintroduce the contribution from M + N � q1+ε at the cost of
an error term which is �A,ε (1 + |µ|)Bq−A for all A. Thus we may combine all of the FM ’s into
one function F , replacing the FM,N in the formulas for G−(z, y) and V ±(h) with

(3.19) F (x, y) :=
1
√
xy
W (

x

q̂2
)W (

ady

q̂2
)F (x)F (y),

where F (x) is a smooth function, supported in [1/2,∞) with F (x) = 1 for x > 1. For the off-
diagonal term (the first line of (3.18)) we may also replace the product F (x)F (y) by 1 at the
cost of an error term which is Oε((1 + |µ|)Bq−1+ε`1/2). We will eventually do likewise for the
off-off-diagonal term, but this requires more difficult arguments and will not be dealt with until
section 4.1.

3.6. Evaluation of the off-diagonal term. Putting the first line of (3.18) into (3.5) and in-
verting (3.3), we have
(3.20)

MOD(`) = −2π
∑
de=`

1
d1/2

∑
ab=d

µ(a)
a1/2

τ(b)MOD(`, ae) =
−2π
`1/2

∑
de=`

∑
n

τ(dn)τ(en)
n

W (
dn

q̂2
)Y (en)

with

Y (n) := −
∫ ∞

0
Y0(y)J1(y)

 ∑
c≡0(q)

φ(c)
c
W (

c2y2

(4π)2q̂2n
)

 dy.
The Mellin transform for W gives

Y (n) = −
∫ ∞

0
Y0(y)J1(y)

1
2πi

∫
(3)

G(s)Γ2(1 + s)ζq(1 + 2s)
(

(4π)2q̂2n
y2

)s∑
q|c

φ(c)
c1+2s

2sds
s2 − µ2

dy.

We can extend the c sum to include c > qA, at negligible cost for <s = 3, making it

q−1−2sφ(q)
ζ(2s)

ζq(1 + 2s)
.

We can then switch the order of integration and use the identity

(3.21)
∫ ∞

0
Y0(y)J1(y)y−2sdy =

1
2
√
π

Γ(s)
Γ(1/2− s)

Γ(1− s)2

Γ(1 + s)2
.

The orthogonality property for the Bessel functions used in [DFI2], section 12, is encapsulated in
(3.21), since this expression vanishes at s = 1/2. We thus have

Y (n) = −φ(q)
2πq

1
2πi

∫
(3)

G(s)Γ2(1− s)
Γ(s)ζ(2s)

π2s−1/2Γ(1/2− s)
(
n

q̂2
)s 2sds
s2 − µ2

The functional equation
ζ(2s)Γ(s) = π2s−1/2ζ(1− 2s)Γ(1/2− s)

lets us convert this to

Y (n) = −φ(q)
2πq

1
2πi

∫
(3)

G(s)Γ2(1− s)ζ(1− 2s)(
n

q̂2
)s 2sds
s2 − µ2

.
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We can now shift the contour to <es = −1/2, meeting poles at s = ±µ (the factor of 2s cancels
the pole of ζ(1− 2s) at s = 0 unless µ = 0) contributing residues of

G(µ)Γ2(1 + µ)ζ(1 + 2µ)(
n

q̂2
)−µ +G(−µ)Γ2(1− µ)ζ(1− 2µ)(

n

q̂2
)µ.

In the resulting contour integral, changing s into −s gives an expression which equals −W ( n
q̂2 ),

up to a factor of 1 +O(q−1). Thus we have

Y (n) = −G(µ)
2π

(
−W

(
n

q̂2

)
+ Γ2(1 + µ)ζq(1 + 2µ)(

n

q̂2
)−µ + Γ2(1− µ)ζq(1− 2µ)(

n

q̂2
)µ)
)

+Oε((1 + |µ|)Bq−1+ε).

Putting this back in (3.20), we get

(3.22) MOD(`) = −MD(`) +Oε((1 + |µ|)Bq−1+ε)

+
G(µ)
`1/2

∑
de=`

∑
n

τ(dn)τ(en)
n

W (
dn

q̂2
)
[
Γ2(1 + µ)ζ(1 + 2µ)(

en

q̂2
)−µ + Γ2(1− µ)ζ(1− 2µ)(

en

q̂2
)µ
]
.

For µ = 0 we take the limit of this expression, getting

(3.23) MOD(`) = −MD(`) +
1
`1/2

∑
de=`

∑
n

τ(dn)τ(en)
n

W (
dn

q̂2
) log(

q̂2

en
) +Oε(q−1+ε).

For future reference we write this in the following form

MD(`) +MOD(`) = Oε(q−1+ε)

(3.24) +Rest=0
1
`1/2

∑
de=`

∑
n

τ(dn)τ(en)
n

W (
dn

q̂2
)
2G(t)Γ2(1 + t)ζ(1 + 2t)

t
(
q̂2

en
)t

¿From (3.22) or (3.23), along with the usual bounds for W and τ , we have

MD(`) +MOD(`) �ε q
ε(1 + |µ|)B`−1/2.

We can use (3.23) to evaluate the contribution of the diagonal and off-diagonal terms to M(1)
at µ = 0. Setting ` = 1, we get a main term of∑

n

τ(n)2

n
W (

n

q̂2
) log

q̂2

n
.

Using the integral formula for W , this is

1
2πi

∫
(3)
G(s)Γ(1 + s)2ζq(1 + 2s)∂s

[
q̂2s
∑

n

τ(n)2

n1+s

]
2ds
s

=
1

2πi

∫
(3)
G(s)Γ(1 + s)2ζq(1 + 2s)q̂2s ζ(1 + s)4

ζ(2 + 2s)
[log q̂2 + 4

ζ ′

ζ
(1 + s)− 2

ζ ′

ζ
(2 + 2s)]

2ds
s
.

A contour shift to <es = −1/2 leaves a contour integral whose value is bounded by a constant
times bounded by q−1/2, plus the contribution of multiple poles at s = 0, which clearly gives a
polynomial in log q. The lead term comes from replacing all ζ(1 + s) factors by 1/s, and winds
up as

1
2ζ(2)

Ress=0
qs

s6
(log q − 4

s
) =

(log q)6

360ζ(2)
=

(log q)6

60π2
.
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The off-off-diagonal term will also contribute a main term to the fourth moment, but, as we shall
see, MOOD(1) has lead term (log q)2, and thus does not affect the lead term of this polynomial.

4. The off-off-diagonal main term

We thus return to the analysis of the off-off-diagonal term, which from the previous section is

(4.1) MOOD(`) = −2π
∑
de=`

1
d1/2

∑
ab=e

µ(a)
a1/2

τ(b)

∑
q|c<qA

1
c2

∑
w

(ae, w)
aew2

∑
h 6=0

Sm(0, h; c)S(0, h;w)[V −(h) + V +(h)],

with V ± and F defined as in (3.19). In this section, which is the most delicate part of this paper,
we find the asymptotic value of this expression. As the proof is rather lengthy, we first provide
an outline. What we will do is:

• convert the Ramanujan sums to divisibility conditions;
• bring in the Mellin transforms of J1, Y0, and K0 to evaluate V + and V −;
• include 1− F (y) at negligible cost, and perform the y integral;
• include 1− F (x) at negligible cost, and perform the x integral;
• evaluate the J1 integral through a contour shift;
• show that the remaining integrand is an even function in two variables, and thus equals

its residue at the origin;
• and bound the second case through more elementary methods.

We apply (3.14) to S(0, h;w), so

MOOD(`) = −2π
∑
de=`

1
d1/2

∑
ab=e

µ(a)
a1/2

τ(b)
∑
g,v

(g,q)=1

µ(g)
g2

µ(v)
v2

∑
q|cg

cg<qA

1
c

∑
w

(ae, wv)
w

∑
[w,c]|h
h 6=0

[V −(h)+V +(h)].

The present term contributes the main term to the expression. For the next three sections, we
will (implicitely) assume that (q, g) = 1, so q|c and q|h.

4.1. Evaluating V − and V +. We now look to evaluate the V −(h) + V +(h) portion of the off-
off-diagonal term. As a first step, we replace negative values of h (which only contribute to V −)
by their absolute value, and replacing both V ’s by their integral formulations. We rewrite for
positive h, after the change of variable aey/h→ y:

V −(h) + V +(h) =
h1/2

(ae)1/2

∫ ∞

0

∫ ∞

0
(xy)−1/2J1(

4π
√
hxy

cg
)W (

x

q̂2
)W (

dhy

eq̂2
)F (x)F (

hy

ae
)

×
[
−2πY0(

4π
√
hx(1 + y)
cg

)L++ − 2πδy>1Y0(
4π
√
hx(y − 1)
cg

)L−+(4.2)

+4δy<1K0(
4π
√
hx(1− y)
cg

)L+−
]
dxdy,

with
L±± = (log(h(±1± y))− λ1,wv)(log(hy)− λae,wv).
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To simplify the integration, we bring in the Mellin transforms of J1, Y0, and K0 (note in particular
the similarity between the last two).

J1(x) = − 1
2πi

∫
(−0.1)

π

Γ(1 + z)Γ(2 + z) sin(πz)
(
x

2
)1+2zdz,

(4.3) Y0(x) = − 1
2π

1
2πi

∫
(∗)

22βΓ(β)2x−2β cosπβ2dβ,

K0(x) =
1
4

1
2πi

∫
(0.7)

22βΓ(β)2x−2β2dβ.

The (∗) contour can be taken as a path including almost all of <eβ = −1, except when |=mβ| < 1,
where it curves to hit the real axis at β > 0. We need this extra care because Γ(β)2 cosπβ does
not decay quickly enough for large values of =mβ unless <β is negative. Fortunately, we will
almost always be able to ignore this difficulty.

We insert (4.3) into (4.2). With the given values of z and β, all of the integrals are absolutely
convergent, so we may move the x and y integrals inside the z and β integrals. We thus have

V −(h) + V +(h) = − 2π
(2πi)2

∫
(0.7)

∫
(−0.1)

Γ(β)2(4π)1+2z−2β2−1−2z+2β

Γ(1 + z)Γ(2 + z) sinπz
(cg)−1−2z+2βh1+z−β

(4.4) ×
∫ ∞

0
xz−β+1W (

x

q̂2
)F (x)

dx

x∫ ∞

0
yz+1W (

dhy

eq̂2
)F (

hy

ae
)
[

cosπβ
(1 + y)β

L++ + δy>1
cosπβ

(y − 1)β
L−+ + δy<1

L+−

(1− y)β

]
dy

y
dz2dβ.

We have shifted the (∗) contour to <eβ = 0.7, which can be justified by the rapid decay of the x
integral in β.

We next look to evaluate the x and y integrals in (4.4). This would be much easier if we could
replace the F (x)F (y) by 1 on [0,∞)2, so we start by showing that we can include the contributions
from small x and y at negligible cost.

4.1.1. Expanding the y integral. We first look to replace F (hy/ae) by 1. Since <ez > −1, there is
no convergence difficulty in taking y near zero in (4.4), so we need only calculate the contribution
to the integral from y < ae/h� `/q. Since this is much less than one, we need not worry about
poles from (1 ± y)−β, so we can dominate the y integral in this range by (ae/h)1+<ez. We may
shift the β contour to <eβ = 1 + δ and the z contour to −δ without crossing any poles. The x, z,
and β integrals are thus bounded by (1 + |µ|)B(gc)1+4δh−1−δ+ε. Putting this into the v, w, c, g, h
sums, the contribution from small y is dominated by

(1 + |µ|)B`1/2
∑
g,v,w

1
v2

1
w
g−1+4δ

∑
q|c,gc<qA

c4δ
∑

[c,w]|h

h−1−δ+ε

� (1 + |µ|)B`1/2q−1+εq3δA.

Taking δ < 1/6A is enough to make this smaller than the error terms already identified, so we
may replace F (hy/ae) by 1.

This makes it feasible to evaluate the y integral. It appears that there will be problems with
convergence, since we need <eβ > 1 for convergence at infinity and <eβ < 1 for convergence near
y = 1. However, the double zero of cosπβ + 1 at β = 1 allows us to circumvent this difficulty
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with a contour shift.3 To simplify notation, we suppress this technicality and write the y integral
as a single integral. Using the integral formula for W (dhy/eq̂2) (with <t = 0.7 so that we have
convergence at y = 0), the y-integral becomes(

q̂2e

dh

)t

(−∂t + log h− λae,wv)∫ ∞

0
y1+z−t

[
cosπβ(−∂β + log h− λ1,wv)

(
1

(1 + y)β
+

δy>1

(y − 1)β

)
+

(4.5) (−∂β + log h− λ1,wv)
δy < 1

(1− y)β

]
dy

y
.

Each of the y integrals is a known Mellin transform, they can be found in [Ob] 1.2.19, 1.2.20, and
1.2.21. Setting Λ = log h− λ1,wv to save space, the last two lines of (4.5) equal

cosπβ(−∂β + Λ)
Γ(1 + z − t)Γ(−1− z + t+ β)

Γ(β)

(
1 +

sinπ(t− z)
sinπβ

)
−

(−∂β + Λ)
Γ(1 + z − t)Γ(−1− z + t+ β)

Γ(β)
sinπ(−z + t+ β)

sinπβ
,

where we have used the identity Γ(x)Γ(1−x) = π/ sinπx to make the arguments of the Γ functions
more consistent. This can be simplified further, but for the time being it is enough to note that
the first and third terms have poles (and after differentiation by t, double poles) at 1 + z− t = 0.

4.1.2. Expanding the x integral. We replace F (x) by 1 in (4.4). To justify this, we must first
examine the contribution coming from replacing F (x) by F1(x) = 1 − F (x). Once again we do
this through contour shifts, which start with <eβ = 1 + δ, <et = 0.7, <ez = −0.1. Using the
value of the y integral given above, the key parts of the integrand (which we then sum over c, g,
h, v, and w) look like

g−1−2z+2βc−2−2z+2βh1+z−β−tq̂2t(
e

d
)t×[

Γ(1 + z − t)H1(t, z, β) + Γ′(1 + z − t)H2(t, z, β)
] ∫ ∞

0
xz−β+1W (

x

q̂2
)F(x)

dx

x
,

with H1,H2 analytic with rapid decay in the directions of interest. We shift <β to 0.3, so that
there are no convergence issues coming from the integral of xz−β near zero. We want

∑
h1+z−β−t

absolutely convergent, so we to shift t to the right, say to <t = 1.7, to compensate. This will give
a new contour, along with single and double poles at t = 1 + z.

• First we look at what comes from the <t = 1.7 portion. Since x < 1, the x integral is
dominated by a power of log q, and we can factor q−1−z+β, which is negligible, from the c,
h, and q terms. The h sum is absolutely convergent, as is the c sum (thanks to t being so
large), and this is enough. Shifting to <et = 1.5 and <e(β − z) = 0.5 lets us bound this
term by eq−1/2 � `q−1/2, no matter what upper limit we take on the c, g sum.

• As for the poles at t = 1 + z, we need another contour shift, this time in z and β. We
shift z to the right (passing a pole at z = 0 from 1/ sinπz, but G(t) = G(1 + z) has
a zero to compensate), then shift β to the right, so that z − β > −1 at all stages of
the shift. Stopping at <ez = 0.5 + 2ε and <eβ = 1 + ε, say, the x integral is again
bounded by a power of log q, and both the sum on h−β and c−2−2z+2β sums are absolutely

3More precisely, we separate a small neighborhood of y = 1 from the integral, evaluate it at <eβ < 1 and the
rest at <eβ > 1, then shift contours to connect the two without crossing any poles.
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convergent. The power of q involved works out to be q−1−z+β+ε, so this term is dominated
by Oε(qε(1 + |µ|)B`q−1/2), again small enough to ignore.

Thus we can extend the x integral to the entire positive axis in both cases. By the inverse
Mellin transform, so long as <e(z − β) > −1,∫ ∞

0
xz−βW (x/q̂2)dx =

G(1 + z − β)Γ(2 + z − β)2ζq(3 + 2z − 2β)q̂2+2z−2β2(1 + z − β)
(1 + z − β)2 − µ2

.

To simplify notation, we change variables, setting β = 1 + z − s. Putting the values of the x and
y integrals into our formula for MOOD(`), we have

MOOD(`) =
2π
`1/2

∑
de=`

∑
ab=d

τ(b)
µ(a)
a

∑
g

µ(g)
g2

∑
q|c

1
c

∑
v

µ(v)
v2

∑
w

(ae, wv)
w

∑
[c,w]|h

1
(2πi)3

∫
(1.7)

∫
(0.6)

∫
(−0.1)

G(t)Γ(1 + t)2ζq(1 + 2t)G(s)Γ(1 + s)2ζq(1 + 2s)q̂2s+2t

(t2 − µ2)(s2 − µ2)

(2π)−1+2s(cg)1−2shs−t(
e

d
)t πΓ(1 + z − s)2

Γ(1 + z)Γ(2 + z) sinπz
(−∂t + log h− λae,wv)[

− cos(π(z − s))(∂s + Λ)
Γ(1 + z − t)Γ(t− s)

Γ(1 + z − s)
(1 +

sin(π(t− z))
sin(π(s− z))

)

(4.6) +(∂s + Λ)
Γ(1 + z − t)Γ(t− s)

Γ(1 + z − s)
sin(π(t− s))
sin(π(s− z))

]
dz4sds2tdt,

plus the poles arising from t = 1 + z, coming from the shift of t to the right,4 and some negligible
error terms. We now examine the z integral, we return to the full expression later.

4.2. Shifting the z contour. For the time being, we ignore everything in (4.6) which does
not depend on z. Along vertical strips, the integrand decays as |z|−1−s−t, and similarly along
horizontal strips, so as long as the real parts of s and t are positive we can safely shift in either
direction. We choose to shift to <z = +∞ because the residue calculations are simpler. We pick
up poles from three sources: 1/ sinπz, 1/ sinπ(s − z), and Γ(1 + z − t). This last source gives
residues which exactly cancel those from t = 1 + z when t was shifted to the right in the last
section, since the signs are opposite (this is not a surprise, the shift of t was an artificial step
taken to ensure convergence of various sums). Thus we can restrict our attention to the first two,
which give poles at z = k and z = k + s for k > 0. We first write the entire z-integral, without
the s and t portions, for ease of reference.

π

2πi

∫
(−0.1)

Γ(1 + z − s)2Γ(1 + z − t)
Γ(2 + z)Γ(1 + z) sinπz[

− cos(π(z − s))(∂s + Λ)
Γ(t− s)

Γ(1 + z − s)
(1 +

sinπ(t− z)
sinπ(s− z)

)

(4.7) +(∂s + Λ)
Γ(t− s)

Γ(1 + z − s)
sinπ(t− s)
sinπ(s− z)

]
.

4We do not compute these residues, since they will soon be cancelled by another shift.
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4.2.1. Poles at z = k. The poles from 1/ sin(πz) are all simple, with a residue of (−1)k 1
π times

the result of plugging in z = k to the integrand of (4.7). Rotation by πk multiplies sine and cosine
of an angle by (−1)k, so (by checking how often z appears in an angle in (4.7)), all of the factors
of (−1)k cancel, so the residue at z = k is (the − sign arises because we are shifting the contour
to the right):

−
∞∑

k=0

Γ(1 + k − s)2

Γ(2 + k)Γ(1 + k)

[
− cosπs(∂s + Λ)

Γ(1 + k − t)Γ(t− s)
Γ(1 + k − s)

(1 +
sinπt
sinπs

)

(4.8) +(∂s + Λ)
Γ(1 + k − t)Γ(t− s)

Γ(1 + k − s)
sin(π(t− s))

sin(πs)

]
.

The “+Λ” terms give

cosπs+ cotπs sinπt− (sinπt cosπs− sinπs cosπt)/ sinπs) = cosπs+ cosπt

times

Γ(t− s)
∞∑

k=0

Γ(1 + k − s)Γ(1 + k − t)
Γ(2 + k)Γ(1 + k)

= Γ(t− s)Γ(t+ s)
Γ(1− s)Γ(1− t)
Γ(1 + s)Γ(1 + t)

,

where the last step is Gauss’s hypergeometric identity. The ∂s terms are similar. Applying ∂s to
the trigonometric portions yields

π sinπtΓ(t− s)Γ(t+ s)
Γ(1− s)Γ(1− t)
Γ(1 + s)Γ(1 + t)

,

while applying it to the Γ functions gives

(cosπs+ cosπt)
∞∑

k=0

Γ(1 + k − s)Γ(1 + k − t)
Γ(2 + k)Γ(1 + k)

(−Γ′

Γ
(t− s) +

Γ′

Γ
(1 + k − s)).

The sum can be evaluated again through the hypergeometric identity, differentiated in either t or
s, making the total contribution from these poles is

(4.9) Γ(t− s)Γ(t+ s)
Γ(1− s)Γ(1− t)
Γ(1 + s)Γ(1 + t)

×
(
π sinπt+ (cosπs+ cosπt)(Λ +

Γ′

Γ
(1 + s) +

Γ′

Γ
(1− s)− Γ′

Γ
(t+ s)− Γ′

Γ
(t− s)

)
.

Note that, after bringing in the factor of Γ(1 + s)2 from (4.6), this is already even in s.

4.2.2. Poles at z = k + s. As it turns out, these contribute exactly zero to the expression, which
greatly simplifies our task. Replacing sinπ(t−z) with sinπ(t−s) cosπ(s−z)+cosπ(t−s) sinπ(s−
z), we find that the relevant terms are

(1− cos2 π(z − s))(∂s + Λ)
Γ(t− s) sinπ(t− s)

Γ(1 + z − s) sinπ(s− z)

+π cosπ(z − s)
Γ(t− s) sinπ(t− s)

Γ(1 + z − s) sinπ(s− z)
sinπ(s− z).

When z = k + s, the first line has a double zero from the 1 − cos2 factor, so there is no pole.
Obviously, the sinπ(s− z) terms cancel in the second line, so there is no pole for it either. This
simplification arises completely from taking the Y0 and K0 terms together, and including both
positive and negative values of h into one sum. Had we treated them separately, there would have
been considerably more terms to consider (which, of course, would eventually cancel).
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4.3. The rest of the calculation. Using (4.9), replacing 2πq̂ by q1/2, and cancelling a few
factors of 2π, we have
(4.10)

MOOD(`) =
2

(2πi)2

∫
(1.7)

∫
(0.6)

G(s)G(t)Γ(1 + s)Γ(1− s)Γ(1 + t)2ζq(1 + 2s)ζq(1 + 2t)qs+t

(s2 − µ2)(t2 − µ2)(2π)2t

1
`1/2

∑
abe=`

τ(b)
µ(a)
a

(
e

ab
)t
∑

g

µ(g)
g1+2s

∑
q|c

1
c2s

∑
v

µ(v)
v2

∑
w

(ae, wv)
w

∑
c,w|h

1
ht−s

(−∂t + log h− λae,wv)(
π sinπt+ (cosπs+ cosπt)(

Γ′

Γ
(1± s)− Γ′

Γ
(t± s) + log h− λ1,wv)

)
Γ(t− s)Γ(t+ s)

Γ(1− t)
Γ(1 + t)

2sds2tdt.

We now look to simplify the integer sums, primarily by removing as many divisibility conditions
as possible. Everything appearing after (e/ab)t is a function only of ae, not any of a, b, or e
individually, so we can set A = ae, making the sum on a, b, e

1
`1/2+t

∑
Ab=`

A2tτ(b)
∏
p|A

(1− p−1−2t).

By Mobius inversion,∑
c,w

f(c, w)
∑
c,w|h

g(h) =
∑
u,x

µ(u)
∑
c,w

f(uxc, uxw)
∑

h

g(cwu2xh),

so we can simplify the c, w|h condition by introducing two new sums. This means that we replace
q|c by q|cux, but if q|ux, the resulting expression is small enough to ignore (in particular, q|x
gives the same terms except with an extra factor of q−1, while the q|u case can be immediately
bounded by q−2.1`0.6). Thus we can replace c by cq, factoring q−s−t from the c sum. We extend
the c, g, u, and x sums out to infinity, since these extra terms contribute at most `−1/2+tqA(1−s−t),
which is negligible. Since (q, g) = 1, the g sum is thus ζq(1 + 2s)−1, exactly cancelling the term
in the first line. We thus have, up to negligible error,

(4.11) MOOD(`) =
2

(2πi)2

∫
(1.7)

∫
(0.6)

G(s)G(t)Γ(1 + s)Γ(1− s)Γ(1 + t)2ζq(1 + 2t)
(s2 − µ2)(t2 − µ2)(2π)2t

1
`1/2

∑
Ab=`

A2t

`t
τ(b)

∏
p|A

(1− p−1−2t)
∑

c

1
ct+s

∑
v

µ(v)
v2

∑
x

1
x1+t+s

∑
(u,q)=1

µ(u)
u1+2t

∑
w

(A, uvwx)
w1+t−s

∑
h

1
ht−s

(−∂t + log qcwu2xh− λA,uvwx)(
π sinπt+ (cosπs+ cosπt)(

Γ′

Γ
(1± s)− Γ′

Γ
(t± s) + log qcwu2xh− λ1,uvwx)

)
Γ(t− s)Γ(t+ s)

Γ(1− t)
Γ(1 + t)

2sds2tdt.

Note that we have now completely removed powers of q from the expression. Thus the usual
method of evaluation—shifting contours to get a negative power of q and taking the residues
passed along the way—cannot work here. As it turns out, we will still be able to evaluate
everything through a contour shift, since it will be even in both s and t. We discuss this more
later, after additional adjustments to the integer sums.
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Since u is squarefree, we can factor it into u1, which divides A, and u2, relatively prime to A.
The former contributes µ(u1)/u2t

1 , the latter completes the ζq(1 + 2t)−1 factor. Replacing A by
Au1 then lets us combine the u1 and b sums. We can also combine wx into w and ch into c, since
their only appearances in the logarithms are as a product. The integer sums are then

(4.12)
1

`1/2+t

∑
A|`

A2t
∑

c

σ2s(c)
ct+s

∑
v

µ(v)
v2

∑
w

(A, vw)σ2s(w)
w1+t+s

,

times a few logarithms. We can factor v as we did u, replacing A by Av2. The identity∑
A,w

(A,w)f(A,w) =
∑
d,g

dµ(g)
∑
A,w

f(dgA, dgw) =
∑
D

φ(D)
∑
A,w

f(DA,Dw)

lets us eliminate the resulting (A,w) factor.∑
D,w

(Dw)−sσ2s(Dw)f(D,w) =
∑

a

µ(a)
∑
D,w

[D−sσ2s(D)][w−sσ2s(w)]f(Da,wa)

(compare this with (3.3), which is the case s = 0). Using Ψ(x) to denote
∑

p|x
log p
p−1 , we have

(4.13) MOOD(`) =
3

(2πi)2

∫
(1.7)

∫
(0.6)

G(s)G(t)Γ(1 + s)Γ(1− s)Γ(1 + t)2

(s2 − µ2)(t2 − µ2)(2π)2t

1
`1/2+t

∑
aAD|`

A2tφ(A)
A

Dtσ2s(D)
Ds

φ(aD)
aD

µ(a)
a

∑
(v,aAD)=1

µ(v)
v2

∑
c

σ2s(c)
ct+s

∑
w

σ2s(w)
w1+t+s

(−∂t − 2γ + log cq − logw − log `+ logD − 2 log v + 2Ψ(aD))

(
π sinπt+ (cosπs+ cosπt)[

Γ′

Γ
(1 + s) +

Γ′

Γ
(1− s)

−Γ′

Γ
(t+ s)− Γ′

Γ
(t− s)− 2γ + log cq − logw − logD − 2 log a− 2 log v + 2Ψ(A)]

)
Γ(t− s)Γ(t+ s)

Γ(1− t)
Γ(1 + t)

2sds2tdt.

Note that this entire expression (except for sds) is even in s. Thus the contour integral at
<es = −0.6 is the negative of the integral at <es = 0.6, meaning that the latter is exactly half
the sum of the residues passed during the shift from one to the other. The only such poles are
at s = ±µ, and each has the same residue, so the s integral equals the residue at s = µ. When
µ = 0, the integral is half the residue at s = 0.

We next show that the integrand is also even in t. We can think of it as having two parts,
the `-dependent and the analytic. The former consists of most of the integer sums (including the
logarithms of D, a, and v), and the latter consists of the ζ functions, Γ functions, and the sums
on c and w. We will show that each part is even in t separately, which allows us to evaluate it
through a contour shift. This evenness should not be a surprise, despite how complicated the
integrand is. The t integral came originally from the functional equation for Λ(f, s)2, an even
function, and all we have done since is average it over f . It is possible that one could write the
entire fourth moment, not just this off-off-diagonal term, as an even integrand in t, and this might
assist in controlling the remainder terms.
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4.3.1. The `-dependent part. We ignore the various Γ factors, as well as everything associated
with c and w, collecting them into the constants C1 and C2. We want to show that

(4.14)
1
`t

∑
aAD|`

A2tφ(A)
A

Dtσ2s(D)
Ds

φ(aD)
aD

µ(a)
a

∑
(v,aAD)=1

µ(v)
v2

[C1 − logD − 2 log a− 2 log v + 2Ψ(A)][C2 + logD − 2 log v + 2Ψ(aD)]
is even in t. Letting c = `/aAD, we can rewrite (4.14) as (A/ac)t times an expression not
depending on t. Thus it is enough to show that switching A with ac does not change anything
in that expression. In particular, nothing with D matters except where it is mixed with a (so in
particular, we can assume that D is squarefree). Also, µ(a) log a,
mu(v)logv, Ψ(A), and Ψ(aD) do not depend on how often a prime divides the number, merely
whether it divides it at all. Thus we can also assume that A is squarefree, as with ac. Given a
prime p, let (e1, e2, e3) denote the number of times it divides A, D, and ac, respectively. We need
only worry about 0 6 ei 6 1, so there are only eight cases. Since (A/ac)t = p(e1−e3)t, we can also
ignore those cases where e1 = e3, so we need only consider four cases.

• The case (1, 0, 0) yields

pt p− 1
p

(C1 +
2 log p
p− 1

)C2.

• The case (0, 0, 1) splits into three cases, based on p|a, p|v, or neither, giving

p−t

(
−p− 1

p2
(C1 − 2 log p)(C2 +

2 log p
p− 1

)− 1
p2

(C1 − 2 log p)(C2 − 2 log p) + C1C2

)
.

This equals the previous expression except for the negation of t.
• The case (1, 1, 0) yields

σ2s(p)p−spt (p− 1)2

p2
(C1 − log p+

2 log p
p− 1

)(C2 + log p+
2 log p
p− 1

).

• The case (0, 1, 1) splits into two cases, p|a or (p, av) = 1, giving

σ2s(p)p−sp−t

(
−p− 1

p2
(C1 − log p− 2 log p)(C2 + log p+

2 log p
p− 1

)

+
p− 1
p

(C1 − log p)(C2 + log p+
2 log p
p− 1

)
)
.

Again, this matches the previous expression except that p−t becomes pt.
Thus this portion is even in t. One must also check cross-terms of the form (log p1)(log p2), but
they work in exactly the same way.

4.3.2. The analytic part. We now restrict our attention to the other parts of (4.13). To simplify
notation, we let

C3 = −2γ + log q − log `+ logD − 2 log v + 2Ψ(aD),
C4 = −2γ + log q − logD − 2 log a− 2 log v + 2Ψ(A) + Γ′/Γ(1± s).

We want to analyze the behavior of

Γ(1 + t)2

(2π)2t

∑
c

σ2s(c)
ct+s

∑
w

σ2s(w)
w1+t+s

(−∂t + log
c

w
+ C3)(

π sinπt+ (cosπs+ cosπt)(−Γ′

Γ
(t+ s)− Γ′

Γ
(t− s) + log

c

w
+ C4)

)
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Γ(t− s)Γ(t+ s)
Γ(1− t)
Γ(1 + t)

.

We apply the −∂t to the expression, and put the resulting Γ(1± t)′ terms (whose sum is obviously
even) into C3. This leaves us with Γ(1 + t)Γ(1− t), which is obviously even, times

(4.15)
Γ(t+ s)Γ(t− s)

(2π)2t

∑
c

σ2s(c)
ct+s

∑
w

σ2s(w)
w1+t+s[

−π2 cosπt+ π sinπt(C3 + C4 + 2 log
c

w
− 2

(Γ(t+ s)Γ(t− s))′

Γ(t+ s)Γ(t− s)
)

+(cosπs+ cosπt)
(

(Γ(t+ s)Γ(t− s))′

Γ(t+ s)Γ(t− s)

)′
+(cosπs+ cosπt)(C3 + log

c

w
− (Γ(t+ s)Γ(t− s))′

Γ(t+ s)Γ(t− s)
)

(C4 + log
c

w
− (Γ(t+ s)Γ(t− s))′

Γ(t+ s)Γ(t− s)
)
]
.

Here all derivatives are to be taken in the t variable. The w sum gives ζ(1+ t+ s)ζ(1+ t− s) and
the c sum will give ζ(t + s)ζ(t − s), in both cases possibly differentiated. We adjust the c sum
through the asymmetric functional equation (see for example [D])

Γ(t)ζ(t)
(2π)t

=
ζ(1− t)

2 cos(πt/2)
,

which implies

Γ(t− s)Γ(t+ s)ζ(t− s)ζ(t+ s)
(2π)2t

=
ζ(1− t− s)ζ(1− t+ s)

4 cos π
2 (t+ s) cos π

2 (t− s)
=
ζ(1− t− s)ζ(1− t+ s)

2(cosπt+ cosπs)
.

We group the terms in (4.15) based on derivatives and factors of C3 and C4.
(1) The very first term, combined with the C3C4 term, gives

(4.16) (−π2 cosπt+ C3C4(cosπs+ cosπt))
ζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s)

2(cosπt+ cosπs)
.

(2) The (C3 + C4) terms give

(4.17) (C3 + C4)
(
π sinπt

ζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s)
2(cosπt+ cosπs)

+
(cosπs+ cosπt)

(2π)2t
(−
(

(2π)2tζ(1− t+ s)ζ(1− t− s)
2(cosπt+ cosπs)

)′
ζ(1 + t+ s)ζ(1 + t− s)

+
(2π)2tζ(1− t+ s)ζ(1− t− s)

2(cosπt+ cosπs)
(ζ(1 + t+ s)ζ(1 + t− s))′)

)
.

The derivative of (2π)2tζ(1−t−s)ζ(1−t+s), added to the derivative of ζ(1+t−s)ζ(1+t+s),
gives

(4.18) (C3 + C4)
ζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s)

2(
−2 log 2π +

ζ ′

ζ
(1 + t+ s) +

ζ ′

ζ
(1 + t− s) +

ζ ′

ζ
(1− t+ s) +

ζ ′

ζ
(1− t− s)

)
.
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The derivative of 1/(2 cosπt + 2 cosπs) cancels exactly with the first line of (4.17), so
(4.18) is the entire contribution.

(3) The π sinπt term (other than the C3 + C4) gives

(4.19)
2π sinπt
(2π)2t

(
−(2π)2tζ(1− t+ s)ζ(1− t− s)

2(cosπt+ cosπs)
)′ζ(1 + t+ s)ζ(1 + t− s)

+
(2π)2tζ(1− t+ s)ζ(1− t− s)

2(cosπt+ cosπs)
(ζ(1 + t+ s)ζ(1 + t− s))′

)
.

(4) The remaining cosπs+ cosπt terms give

(4.20)
cosπs+ cosπt

(2π)2t

(
(
(2π)2tζ(1− t+ s)ζ(1− t− s)

2(cosπt+ cosπs)
)′′ζ(1 + t+ s)ζ(1 + t− s)

−2(
(2π)2tζ(1− t+ s)ζ(1− t− s)

2(cosπt+ cosπs)
)′(ζ(1 + t+ s)ζ(1 + t− s))′

+
(2π)2tζ(1− t+ s)ζ(1− t− s)

2(cosπt+ cosπs)
(ζ(1 + t+ s)ζ(1 + t− s))′′

)
.

We group this by number of derivatives of the cosπt, (2π)2t, or ζ terms. Differentiating
the cos term in the denominator of the first two lines of (4.20) once gives exactly the
negative of (4.19), so these terms drop. Differentiating it twice in the first line gives

(4.21) ζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s)
(

π2 cosπt
2(cosπs+ cosπt)

− π2 sin2 πt

(cosπs+ cosπt)2

)
.

Note that the first term exactly cancels the first term of (4.16). Differentiating the (2π)2t

expression in the first two lines of (4.20) exactly once gives

(4.22) −2 log 2πζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s)(
ζ ′

ζ
(1 + t+ s) +

ζ ′

ζ
(1 + t− s) +

ζ ′

ζ
(1− t+ s) +

ζ ′

ζ
(1− t− s)

)
.

Differentiating it twice in the first line of (4.20) gives

(4.23) 2(log 2π)2ζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s).

We are left with differentiating only the ζ terms. These give

(4.24)
ζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s)

2(∑ ζ ′′

ζ
(1± t± s) + 2

′∑ ζ ′

ζ
(1± t± s)

ζ ′

ζ
(1± t± s)

)
,

where the
∑′ means that we only take the six pairs of distinct ± patterns.

Combining (4.16), (4.18), (4.21), (4.22), (4.23), and (4.24) we find that the analytic part is

(4.25)
1
2
ζ(1 + t+ s)ζ(1 + t− s)ζ(1− t+ s)ζ(1− t− s)(

C3C4 + (C3 + C4)(−2 log 2π +
∑ ζ ′

ζ
)− 2π2 sin2 πt

(cosπt+ cosπs)2

−4 log 2π
∑ ζ ′

ζ
+ 4(log 2π)2 +

∑ ζ ′′

ζ
+ 2

′∑ ζ ′

ζ

ζ ′

ζ

)
,
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which is obviously even in t. Thus the t integral equals half the sum of the residues between
<et = 1.7 and <et = −1.7. It appears that this involves poles at t = ±1,±1 ± µ, but these can
be eliminated by setting G(t) = 0 to sufficient order at these points. Thus all that contributes
is the poles at t = ±µ, which have equal residues, so the main term equals the residue at t = µ.
When µ = 0, the main term is half the residue at t = 0.

This completes the derivation of the main off-off-diagonal term. Before writing the complete
expression explicitly in Theorem 4.1, we need to take care of the case q|g, which arose in section
3.3.

4.4. The case q|g. We now return to (3.13) with the purpose of bounding the terms coming from∑
h 6=0 S

e(0, h; c)(T−h (c) + T+
h (c)) where

Se(0, h; c) =
∑
gc′=c

q|g,c′|h

c′.

This time we will not need to use the results of [DFI1] to evaluate the sums T∓h (c) but will
proceed directly. We now suppose that q|g, so that we may replace g by gq, with (g, q) = 1. After
removing irrelevant constants, we need to bound

1
q2

∑
g

µ(g)
g2

∑
cg<qA−1

1
c

∑
m,n

τ(m)τ(n)
n1/2

W (
adn

q
)

∫ ∞

0
J1(

√
aenv

qcg
)[−2πδm≡aen(c)Y0(

√
mv

qcg
) + 4δm≡−aen(c)K0(

√
mv

qcg
)W (

v2

q
)F (v2)dv.

The congruence condition on m,n is now quite mild, and we will be able to get sufficient cancel-
lation through multiplicative character sums.

We assume for the moment that (m, c) = (ae, c) = 1. Summing over all multiplicative characters
modulo c, we have∑

m,n

δm≡±aen(c)F (m,n) =
1

φ(c)

∑
χ

∑
m,n

χ(m)χ(±aen)F (m,n).

We use the Mellin transforms of W , J1, K0, and Y0, changing the order of integration to perform
the v integral first (everything is absolutely convergent so this is justified). We thus wish to bound

−2π
∑

g

∑
c

∑
χ

χ(ae)
∑
m,n

τ(m)τ(n)χ(m)χ(n)

1
(2πi)3

∫
(1.2)

∫
(∗)

∫
(−0.1)

G(t)Γ(1 + t)2ζq(1 + 2t)Γ(β)2

(t2 − µ2)Γ(1 + z)Γ(2 + z) sinπz
(ad)−t(ae)1/2+z

q−3−2z+2β+t µ(g)
g3+2z−2β

1
φ(c)c2+2z−2β

(cosπβ + χ(−1))

m−βn−t+z

∫ ∞

0
x1+z−βW (

x

q
)FM (x)

dx

x
dzdβ2tdt.

As with the main term, the inner x integral decays quickly in β, so that we may shift the β
contour to <β = 1.2. This makes the m sum absolutely convergent, so that we may move the c,
g, m, and n sums inside the integrals, giving

− π

(2πi)3

∫
(1.2)

∫
(1.2)

∫
(−0.1)

G(t)Γ(1 + t)2ζq(1 + 2t)Γ(β)2

(t2 − µ2)Γ(1 + z)Γ(2 + z) sinπz
(ad)−t(ae)1/2+z
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q−3−2z+2β+t
∑

g

µ(g)
g3+2z−2β

∑
c

∑
χ

1
φ(c)c2+2z−2β

(cosπβ + χ(−1))

(4.26) L(χ, β)2L(χ, t− z)2
∫ ∞

0
x1+z−βW (

x

q
)FM (x)

dx

x
dzdβ2tdt.

We shift the β contour to the left, to <β = δ. The pole at β = 1 from L(χ, β)2, when χ is
principal, is cancelled by the double zero of cosπβ + χ(−1). We shift the z contour to −δ and
the t contour to 1. By the convexity principle, L(β, χ)2 is dominated by c1−δ, while L(t− z, χ)2

is bounded. Taking absolute values, performing the absolutely convergent integrals (note that we
can now replace F by 1 in the v integral with negligible loss), and summing over all χ, we can
bound (4.26) by

(1 + |µ|)B`1/2−δq−1+2δ
∑

c

c−1+3δ.

Since c << qA−1, this is bounded by

(4.27) (1 + |µ|)B`1/2q−1−2δ+3δA,

which can be made negligible by taking δ small enough.

4.4.1. Common divisors. So far we have assumed that (m, c) = 1 and (ae, c) = 1. However, the
general case is really no different. We wish to bound

(4.28)
∑

c

1
c2+2z−2β

∑
m≡±aen(c)

τ(m)τ(n)
mβnt−z

.

Letting d = (c, ae), we replace c,m by cd,md, so (4.28) becomes∑
d|ae

1
d2+2z−β

∑
(c,ae)=1

1
c2+2z−2β

∑
m≡±aen/d (mod c)

τ(md)τ(n)
mβnt−z

.

We then let r = (m, c) = (n, c), so that (4.28) is now∑
d|ae

1
d2+2z−β

∑
(r,ae)=1

1
r2+z−β+t

∑
(c,ae)=1

1
c2+2z−2β

∑
m≡±aen/d

(m,c)=1

τ(mdr)τ(nr)
mβnt−z

.

We have

(4.29)
∑
m

τ(mh)χ(m)
mβ

= L(χ, β)2
∏
pe||h

(e+ 1− eχ(p)p−β).

For the values of z, β, and t where we evaluate these terms, the r sum is be absolutely convergent,
and the d sum, which is only over divisors of ae, will not have any effect on the bounds given.
This completes the analysis of the off-off-diagonal terms, and with it the asymptotic evaluation
of the twisted fourth moments of the L-functions inside the critical strip.
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4.5. The complete off-off-diagonal main term. Collecting all that has been done in this
section, we obtain

Theorem 4.1. For some absolute constant B, for all ε > 0 and ` < q, the off-off-diagonal term
MOOD(`) defined in (4.1) equals

MOOD(`) =
1
`1/2

1
(2πi)2

∫
(1.7)

∫
(0.6)

I(`; s, t)
2sds
s2 − µ2

2sdt
t2 − µ2

+Oε(qε(1 + |µ|)B `

q1/2
)

where

(4.30) I(`; s, t) := G(s)G(t)Γ(1 + s)Γ(1− s)Γ(1 + t)Γ(1− t)
∏

ζ(1± s± t)

× 1
`t

∑
aAD|`

A2tφ(A)
A

Dtσ2s(D)
Ds

φ(aD)
aD

µ(a)
a

∑
(v,aAD)=1

µ(v)
v2

×
[(

log q − log
`v2

D
+ 2Ψ(aD)− 2γ +

Γ′

Γ
(1± s)

)

×
(

log q − logDv2 + 2Ψ(A)− 2γ +
Γ′

Γ
(1± t)

)

+
(

2 log q − log `v4 + 2Ψ(A) + 2Ψ(aD)− 4γ +
Γ′

Γ
(1± s)

+
Γ′

Γ
(1± t)

)(
−2 log 2π +

∑ ζ ′

ζ
(1± s± t)

)

− 2π2 sin2 πt

(cosπt+ cosπs)2
+ 4(log 2π)3 − 4 log 2π

∑ ζ ′

ζ
(1± s± t)

+
∑ ζ ′′

ζ
(1± s± t) + 2

′∑ ζ ′

ζ
(1± s± t)

ζ ′

ζ
(1± s± t)

]
;

moreover I(`; s, t) is an even function in both s and t.

Shifting the s and t contours to (ε) and (2ε), respectively, we have

Corollary 4.2. For ` 6 q1/3 and for all ε > 0,

MOOD(`) �ε q
ε(1 + |µ|)B`−1/2.

Theorem 4.1 is sufficient for use in mollification. To find the asymptotics of M(1) at µ = 0 re-
quires more calculation, but no more thought, one simply takes ` = 1 and calculates residues. The
lead term goes as (log q)2, significantly smaller than the diagonal and off-diagonal contributions.

5. Mollification at the center of the critical strip

In this section we use our evaluation of the twisted fourth power moment to evaluate mollified
fourth power moments at the center of the critical strip (that is, for the special case µ = 0).
The same techniques apply for other values of µ, but since they have no particular arithmetic
significance, we simplify the argument by focusing on the central point.
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5.1. The mollifier. Following [IS] and [KMV], we take as our mollifier

(5.1) M(f) =
∑

m<M

µ(m)λf (m)
ψ(m)m1/2

P (
logM/m

logM
),

where M is a (non-integer) small power of q, ψ(m) is the product of 1 + 1/p over all primes
dividing m and P (x) = x3.

Some comment is in order about our choice of P (x). For mollification of the second moment,
the optimal choice (see [IS]) is P (x) = x2, while in [KMV] it is shown that to mollify the second
moment of derivatives optimally, one must take polynomials of higher degree (while still requiring
P (0) = P ′(0) = 0). It turns out here that, in order to have the fourth moment comparable to the
square of the second moment, P (x) must vanish to at least third degree at the origin. This is due
to the (log q)6 and (log q)5 terms in the diagonal and off-diagonal contributions. For the (log q)6

term, taking P (x) = x2 (or any other polynomial with non-vanishing second derivative at the
origin) leads to a (log q)6/(logM)8 term in the mollified fourth moment (see section 5.3 below).
Taking P (x) = x3 makes that particular term go as (log q)6/(logM)12, while introducing new
terms which are at most (log q)6/(logM)10. The mollified second moment (using either P (x) = x2

or P (x) = x3) goes as (log q)−2, so we want a fourth moment which goes as (log q)−4, making the
x2 mollifier inappropriate.

This requirement of greater smoothness in the mollifier coefficients is not surprising: had P (x) =
x been used in [IS], the first moment would have been asymptotic to (log q)−1, as would the second
moment, making the non-vanishing arguments less successful. It should be pointed out that we
have not formally optimized the choice of P (x) as we did in [KMV]. However, given that x2 was
optimal for the second moment, it is likely that the simplest polynomial possible is also optimal
for the fourth (and it certainly makes exposition easier).

Using the Mellin transform, we have

M(f) =
1

(logM)3
6

2πi

∫
(2)

∑
m<M

µ(m)λf (m)
ψ(m)

M zdz

mzz4
.

We first simplify M(f)4 using the Hecke recursion. Replacing λf (m1)λf (m2) by
∑
λf (m1m2/d

2)
and changing variables gives

(5.2) M(f)4 =
1

(logM)12

1296
(2πi)4

∫
(2)4

∑
`

λf (`)
`1/2

∑
g

1
g∑

`1`3=`

∑
(d1,g`1)=1

µ(d1)2

ψ(d1)2d1+z1+z2
1

∑
(d3,g`3)=1

µ(d3)2

ψ(d3)2d1+z3+z4
3∑

m1m2=g`1

µ(m1)µ(m2)
ψ(m1)ψ(m2)mz1

1 m
z2
2

∑
m3m4=g`3

µ(m3)µ(m4)
ψ(m3)ψ(m4)mz3

3 m
z4
4

M z1+z2+z3+z4d~z

z4
1z

4
2z

4
3z

4
4

.

Evaluating the mollified fourth moment is thus simply a matter of replacing λf (`) by M(`) in
(5.2) this formula and performing a series of contour shifts. In order to simplify the technical
steps to come, we introduce the following conventions:

• We use ν(~z,m) for any arithmetic function of the form

ν(~z,m) =
∏
p|m

(1 +
1
p
f(~z, p))

with |f(~z, µ, p)| = O(p3/4) uniformly for ~z in the domain <ezi > −1/4.
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• We use η(~z) to denote any Euler product of the form

η(~z) =
∏
p

(1 +
1
p2
f(~z, p))

absolutely convergent and bounded (together with its partial derivatives) for ~z in the
domain <ezi > −1/4.

The idea is that terms of this nature will not affect the degrees of any poles we might encounter,
and thus we can ignore them until we need to compute exact constants. Our notations are
“generic” in the sense that the exact value of ν(~z,m) or η(~z) may change from line to line.

These conventions allow us to ignore the various relative primality restrictions in (5.2) “up to
factors of η(~z) and ν(l, ~z),” so we may use the more compact form

M(f)4 =
1296

(logM)12

1
(2πi)4

∫
(2)4

∑
`

λf (`)
`1/2

ν(~z, `)η(~z)

 ∑
`=m1m2×

m3m4

µ(m1)µ(m2)µ(m3)µ(m4)
mz1

1 m
z2
2 m

z3
3 m

z4
4


(5.3)

∏
i<j

ζ(1 + z1 + zj)
M z1+z2+z3+z4d~z

z4
1z

4
2z

4
3z

4
4

.

The d1 and d3 sums give ζ(z1 + z2)ζ(z3 + z4) while the g sum gives ζ(z1 + z3)ζ(z1 + z4)ζ(z2 +
z3)ζ(z2 + z4).

5.2. Using the twisted fourth moment. We now reduce M(`) by throwing out all terms which
contribute fewer than the maximum possible number of powers of log q (or logM) to the mollified
fourth moment. The remainder terms of Theorem 1.2, summed against `−1/2+ε for ` < M4 ∼ q2∆,
contribute at most

q5∆/2−1/12+ε + q21∆/4−1/4+ε,

which is negligible so long as ∆ < 1/30. We may thus restrict our attention to the main terms
MD(l) +MOD(l) and MOOD(l), given in (3.24) and (4.30).

5.2.1. The diagonal and off-diagonal terms. We start with the main contribution of MD(`) +
MOD(`), as given by (3.24), namely

1
`1/2

1
2πi

∫
(3)

Rest=0J(s, t; `)
4ds
st

with
J(s, t; `) := G(s)G(t)Γ2(1 + t)Γ2(1 + s)ζq(1 + 2s)ζ(1 + 2t)q̂2(s+t)K(s, t; `),

K(s, t; `) =
∑

abd=`

µ(a)
a1+s+2t

τ(b)
bt

1
ds

∑
n

τ(adn)τ(n)
n1+s+t

.

Now ∑
n

τ(dn)τ(n)
ns

=
ζ4(s)
ζ(2s)

τ(d)
∏
pα||d

(1− 2α
(α+ 1)(ps + 1)

)

so that

(5.4) K(s, t; `) =
ζ4(1 + s+ t)
ζ(2(1 + s+ t))

∑
abd=`

µ(a)
a1+s+2t

τ(b)
bt

τ(ad)
ds

ν(1 + s+ t, ad).
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Thus the contribution of these terms to the mollified fourth power is

1296
(logM)12

1
(2πi)4

∫
(2)4

∫
(2)
Rest=0

∑
`

J(s, t; `)
`

ν(~z, `)η(~z)
( ∑

`=m1m2
×m3m4

µ(m1)µ(m2)µ(m3)µ(m4)
mz1

1 m
z2
2 m

z3
3 m

z4
4

)
∏
i<j

ζ(1 + zi + zj)
4ds
st

M z1+z2+z3+z4d~z

z4
1z

4
2z

4
3z

4
4

.(5.5)

The ` sum is then

G(s)G(t)Γ2(1 + s)Γ2(1 + t)ζq(1 + 2s)ζ(1 + 2t)q̂2(s+t)

×η(s, t, ~z) ζ4(1 + s+ t)
ζ(2(1 + s+ t))

4∏
i=1

[
ζ(1 + zi + s)ζ(1 + zi + t)]−2.

To evaluate this, we first shift all of the z contours to <ez = 1/2, then evaluate the t residue,
then shift the s contour to <es = −1/2. The resulting contour integral is bounded by

Oε(qεM2q−1/2)

which is admissible as long as ∆ < 1/2. This allows us to replace in (5.5) the s-integral by the
residues of the integrand at s = 0:

1296
(logM)12

1
(2πi)4

∫
(1/2)4

Ress,t=0

[
4
st
η1(s, t, ~z)G(s)G(t)

Γ(1 + s)2Γ(1 + t)2ζq(1 + 2s)ζ(1 + 2t)∏4
i=1

[
ζ(1 + zi + s)ζ(1 + zi + t)]2

q̂2(s+t) ζ4(1 + s+ t)
ζ(2(1 + s+ t))

]∏
i<j

ζ(1 + zi + zj)
M z1+z2+z3+z4d~z

z4
1z

4
2z

4
3z

4
4

. .(5.6)

The exact value of the s = t = 0 residues is messy enough that there is no value in printing it, but
we should point out that the only contributions to the main term will come from differentiations
in s or t of either qs+t or functions of the form ζ(1 + zi). All else, such as the G(s)Γ(1 + s)2, the
η1, or the ζ(2 + 2s+ 2t), will contribute fewer powers of log q or logM , and can thus be ignored.

Let us take a moment, then, to examine the total degree in log q and logM which we expect
out of this expression after taking the residues at the origin (which is where the zi integrals will
be evaluated as well). The twelve factors of ζ(1+∗) in the numerator contribute twelve poles, the
sixteen factors of ζ(1+∗) in the denominator contribute sixteen zeros, and the factors of s, t, and
z4
i contribute another eighteen poles. We thus have a total of fourteen net poles, evaluated over

the course of six variables. Since each pole can give at most one extra factor of log q (in the case
of s and t poles) or logM (for the zi poles), we expect the main term to involve at most eight
powers of log q or logM from the integrand, multiplied by the (logM)−12 in front. Thus anything
which gives less than this can be ignored. Note also that the s and t residues by themselves will
contribute at most (log q)6, so we will need at least six poles from the z integrands to bring the
total up to eight powers. This will be important later, when many of the zi poles are simple and
thus do not contribute enough.

5.2.2. The off-off-diagonal term. We consider now the off-off diagonal term: by Theorem 4.1
(using the evenness of I(`; s, t)), the main term of MOOD(`) equals

1
4
Ress=t=0

I(`; s, t)
`1/2

2
s

2
t

= Rest=0
I(`; 0, t)
`1/2t

,
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so that the contribution of the off-off-diagonal term is given by

1296
(logM)12

1
(2πi)4

∫
(2)4

Rest=0

∑
`

I(0, t; `)
t

ν(~z, `)
`

( ∑
`=m1m2×

m3m4

µ(m1)µ(m2)µ(m3)µ(m4)
mz1

1 m
z2
2 m

z3
3 m

z4
4

)
(5.7)

×η(~z)
∏
i<j

ζ(1 + zi + zj)
M z1+z2+z3+z4d~z

z4
1z

4
2z

4
3z

4
4

.

Again, we are only interested in the main term upon sliding the z contours past the origin. This
allows us to simplify this expression considerably, since we know that differentiation of any term
other than a power of M or a ζ(1+∗) will lead to lower orders of magnitude. Among other things,
this lets us drop expressions like log v, γ, or Γ′/Γ(1± s) from the formula for I(0, t; `). Thus we
are left with (5.7) where 1

t I(0, t; `) is replaced by

(5.8) Rest=0
1
t5

1
`t

∑
aAD|`

A2tφ(A)
A

Dtτ(D)
φ(aD)
aD

µ(a)
a

∑
v,(v,aAD)=1

µ(v)
v2

×
[(

(log q)2 − log q log `+ (log
`

D
) logD

)
+

4
t2

]
,

the 4
t2

coming from the sums of ζ ′′/ζ and (ζ ′/ζ)(ζ ′/ζ). The series∑
`

1
`1+t

∑
aAD|`

A2tφ(A)
A

Dtτ(D)
φ(aD)
aD

µ(a)
a

∑
(v,aAD)=1

µ(v)
v2

( ∑
`=m1m2×

m3m4

µ(m1)µ(m2)µ(m3)µ(m4)
mz1

1 m
z2
2 m

z3
3 m

z4
4

)

can be rewritten as

η2(t, ~z)
[∏

i

ζ(1 + zi + t)ζ(1 + zi − t)ζ(1 + zi)2
]−1

.

We also need to check how the − log ` and − logD factors contribute. Up to terms of lower order,
the − log ` corresponds to differentiating at u = 0 the product[∏

i

ζ(1 + u+ zi + t)ζ(1 + u+ zi − t)ζ(1 + u+ zi)2
]−1

,

so we may replace − log ` in (5.8) by

−
∑

i

ζ ′

ζ
(1 + zi + t) +

ζ ′

ζ
(1 + zi − t) + 2

ζ ′

ζ
(1 + zi).

Similarly, − logD can be replaced by

−2
∑

i

ζ ′

ζ
(1 + zi)

and so the main term is given by

(5.9)
1

(logM)12
1296
(2πi)4

∫
(2)4

Rest=0
η2(0, ~z)M z1+z2+z3+z4

∏
ζ(1 + zi + zj)

t5
∏

i z
4
i ζ(1 + t+ zi)ζ(1− t+ zi)ζ(1 + zi)2(

(log q)2 + (log q)(
∑

i

2
ζ ′

ζ
(1 + zi) +

ζ ′

ζ
(1 + zi + t) +

ζ ′

ζ
(1 + zi − t))
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+(2
∑

i

ζ ′

ζ
(1 + zi))(

∑
i

ζ ′

ζ
(1 + zi + t) +

ζ ′

ζ
(1 + zi − t)) +

4
t2

)
d~z.

Again, we check for total number of poles. There are six poles from the ζ functions in the
numerator, sixteen zeros from the ζ functions in the denominator, and another twenty-one poles
from the factors of t and z4

i in the denominator. The expression in parentheses gives either two
extra poles or two extra powers of log q, for a net of thirteen poles over five integrals. Thus, as
with the diagonal and off-diagonal terms, the main term goes as (logM)−4 and we can ignore
anything which contributes less. We next study the contour shifts of the z integrals more carefully,
as they involve a phenomenon which has not occurred in the study of lower moments (namely,
more than one sequence of residues contributing to the main term).

5.3. Shifting the z contours. We evaluate (5.6) and (5.9) by shifting the z contours, one at a
time, past the origin. We show that the main terms come only from various sequences of poles
passed in this process, but this requires some care, due to the presence of ζ(1 + zi) terms in the
denominator. We wish to avoid any poles coming from zeros of these factors in our contour shift.
Under the Riemann Hypothesis (or even a “quasi-RH” giving a zero-free strip), this is simple:
we shift z1 to <ez1 = −δ, shift the other z’s to <ezi = δ/4, and the resulting contour integral is
dominated by M−δ/4, which is small enough to ignore.

Without the Riemann Hypothesis, the contour shifts are still feasible, just more intricate. Let
Cγ denote a contour lying to the left of the line <z = 0 but to the right of all zeros of ζ(1+z), and
on which |(1/ζ(1 + z))(j)|+ |ζ(1 + z)(j)| � log(1 + |=mz|)B, for some fixed B, for all derivatives
j 6 8. By the prime number theorem one may take take Cγ of the form

Cγ = {− C

log(|u|+ 2)
+ iu, u ∈ R}

for some positive constant C < 1
4 log 2. We shift the z contours to Cγ , it will turn out that

these bounds are sufficient for our needs. To avoid, for as long as possible, poles coming from
zi = zj , we start with zi ∈ −Cγ/(6 − i), i = 1 . . . 4, then (after taking the s and t residues)
we shift the z1 contour to Cγ . In the process we get residues coming from the poles located at
z1 = 0, z1 = −z2, z1 = −z3, z1 = −z4 to which we will return later. The new integral of z1 ∈ Cγ is
small: we shift the 3 other contours to <ezi = 1/(6 − i) log q, i = 2, 3, 4 and bound the resulting
integrals by (log q log(1+ |z1|)B′

for some fixed B′ depending on B. The z1-integral integral along
Cγ is thus bounded by ∫

R
(log q)B′

(log(2 + |u|)B′
M−C/2 log(2+|u|) du

(1 + |u|)4

� (log q)B′
eB

′ log(log q))−b1(log M)1/2 � e−δ log1/2 q

for some absolute δ = δ(B′,∆) > 0. This is certainly sufficient, so we may ignore the resulting z1
contour and deal only with the residues passed during the shift which are integrals in the variables
z2, z3, z4.

We repeat this process by shifting one of z2, z3, z4 to Cγ ; the rule being that we next shift
zi where i is the smallest index for which M zi appears in the integrand to a positive power. So
usually we shift z2 next, but for the z1 = −z2 pole, where the M factor is M z3+z4 , we shift z3
instead. In the case of the z2 shift, we pass poles at z2 = 0, z2 = −z3, and z2 = −z4, and get
a contour integral at Cγ which can be bounded by e−δ2 log1/2 q. We can thus ignore the contour
and repeat the process. There are five different types of pole sequences which can occur in this
process, we now list them.
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(1) One possibility is that the first two poles eliminate powers of M from the integrand.
There are three such sequences, namely (z1 = −z2, z3 = −z4), (z1 = −z3, z2 = −z4),
and (z1 = −z4, z2 = −z3). In each case we are left with an integral in two variables with
no dependence on M , with a factor of at most (log q)6/(logM)12 out front. Since the
integrals will be absolutely bounded, their contribution is at most O((log q)−6), too small
to be part of the main term. Note that had we taken P (x) = x2 in the mollifier, these
poles would have gone as O((log q)−2), larger than the main term.

(2) Another possibility is that the first three poles eliminate powers of M from the integrand.
There are nine such sequences, up to permutation of indices (and order) they look like
either (z1 = 0, z2 = 0, z3 = −z4) or (z1 = −z2, z3 = z2, z2 = −z4). These lead to the same
situation as the previous case, not enough poles have been hit yet to get enough powers
of logM , and the remaining poles cannot increase the order of magnitude.

(3) A third possibility is that there is only a factor of M−zi after the third pole is taken.
There are eight such sequences, up to permutation of indices and order they all look like
(z1 = 0, z2 = −z3, z4 = −z3). These are easier, we shift the remaining variable to −Cγ

and get a negligible contour integral, without passing any more poles.
(4) We can also have a factor of M−2zi after three poles, there are three sequences leading to

this, all of which look like (z1 = −z2, z3 = −z2, z4 = −z2). The same argument as case 3
still applies, we shift to −Cγ without passing poles.

(5) Finally, there are five sequences which contribute a main term (this is rather different
from the second moment, where z1 = z2 = 0 is the only main term, z1 = −z2 being like
case one here). Those five sequences are:

(z1 = 0, z2 = 0, z3 = 0, z4 = 0),

(z1 = 0, z2 = −z3, z4 = z3, z3 = 0),

(z1 = −z2, z3 = z2, z2 = 0, z4 = 0),

(z1 = −z2, z3 = 0, z4 = z2, z2 = 0),

(z1 = −z3, z2 = 0, z4 = z3, z3 = 0).

We will discuss the exact value of the residues from these sequences in a moment, first we look
to calculate the constants which arise from the various η and ν functions.

5.4. Computation of the constants. In this section, we compute the exact value of the con-
stants η1(0, 0,~0)/ζ(2) and η2(0,~0) from (5.6) and (5.9). We do this by factoring over primes (both
of these functions come from Euler products). Since we already know which ζ(1 + zi + . . . )’s will
appear (or, equivalently, which factors of (1− p−1−zi−...)−1 will arise) we will simplify by setting
s = t = zi = 0, i = 1 . . . 4 and performing formal computations with the Euler products. In
particular, this means that we will also be allowing factors of the form ζ(1) =

∏
p(1− 1/p)−1.

We start with the mollifier: we define the formal dirichlet series∑
`

λf (`)
`1/2

Θ(`) :=
∑

`

λf (`)
`1/2

∑
g

1
g

∑
`1`3=`

( ∑
(d1,g`1)=1

µ(d1)2

ψ(d1)2d1

)( ∑
(d3,g`3)=1

µ(d3)2

ψ(d3)2d3

)

×
( ∑

m1m2=g`1

µ(m1)µ(m2)
ψ(m1)ψ(m2)

)( ∑
m3m4=g`3

µ(m3)µ(m4)
ψ(m3)ψ(m4)

)
,
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which is (5.2) evaluated at z1 = z2 = z3 = z4 = 0. Since m1,m2,m3,m4 are all square-free, `g2

must be fifth-power free, so we are left with a finite calculation for each prime which might divide
`. Performing the d and m sums, we have

(5.10) Θ(`) =
∏
p

1
(1 + p−1)4

∑
`1`3=`

∑
g

1
g

∏
(p,g`1)=1

(1 + 3p−1 + p−2)
∏

p||g`1

(−2− 2p−1)
∏

p2||g`1

1
∏

p3|g`1

0

∏
(p,g`3)=1

(1 + 3p−1 + p−2)
∏

p||g`3

(−2− 2p−1)
∏

p2||g`3

1
∏

p3|g`3

0.

Breaking into cases based on pe||`, the formal Euler factor for the mollifier is

e (1 + p−1)4Θ(pe)
0 (1 + 10p−1 + 20p−2 + 10p−3 + p−4)
1 (−4− 20p−1 − 20p−2 − 4p−3)
2 (6 + 15p−1 + 6p−2)
3 −4(1 + p−1)
4 1

> 5 0.

We turn now to the twisted power M(`), which we calculate in a similar fashion. To evaluate
MD(`) +MOD(`), let Φ(`) denote the multiplicative function defined in 5.4 for s = t = 0:

(5.11) Φ(`) =
∑
ab=`

τ(b)
∏
pα||a
α>0

(1− 1
p
)(α+ 1− 2α

p+ 1
).

Similarly for the off-off-diagonal term we may also consider the arithmetic function defined at the
top line of (5.8) (which, to facilitate comparison with (5.11), we write with D replaced by b):

Φ′(`) = ζ(2)
∑
aAb|`

τ(b)
φ(A)
A

φ(ab)
ab

µ(a)
a

∑
v,(v,aAb)=1

µ(v)
v2

=
∑

aAcb=`

τ(b)
φ(A)
A

φ(ab)
ab

µ(a)
a

∏
p|aAb

(1− 1
p2

)−1.

We now show that Φ = Φ′. Clearly it is enough to consider ` a prime power. If ` = 1 both equal 1,
and if 1 < b < ` = pe, one can quickly convert Φ′ to Φ (the b’s in the two expressions correspond).
Finally, one can check directly that the sum of the terms b = 1 and b = ` = pe > 1 is

e
2p2 − p+ 1
p2 + p

+ 2− 1
p

for both Φ and Φ′. Thus η1(0, 0,~0)/ζ(2) = η2(0,~0) and the constant in front of the residues
coming from these factors is

∑
`

1
`
Θ(`)

Φ(`)
ζ(2)

=
∑

l

1
`
Θ(`)

Φ′(`)
ζ(2)

=
∏
p

4∑
e=0

1
pe

Θ(pe)
Φ(pe)
ζ(2)

.
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Again breaking into cases based on pe = `, for our cases of interest we have

e (1− p−2)Φ(`)
0 (1− 1

p2 )
1 4(1− p−1)
2 (1− p−1)(10− 5p−1 + p−2)
3 (1− p−1)(20− 16p−1 + 4p−2)
4 (1− p−1)(35− 35p−1 + 10p−2).

We point out here for future reference that one can actually evaluate Φ(pe) in closed form:

(5.12) Φ(pe) = (e+ 1) +
e(e+ 1)(e+ 5)

6
(1− p−1)− e(e+ 1)(e+ 2)

3
1− p−1

p(1 + p−1)
.

Using the two tables, we find that the constant in front of the residue calculations is

(5.13)
∑

l

1
`
Θ(`)

Φ(`)
ζ(2)

=
∏
p

(1− p−1)6

(1 + p−1)4
=

ζ4(2)
ζ(1)10

=
η1(0, 0,~0)
ζ(2)ζ(1)10

=
η2(0,~0)
ζ(1)10

.

Since we had found six ζ(1 + zi + . . . ) factors in the numerator and sixteen in the denominator,
the ζ(1)−10 agrees with expectations, and the constant by which we will multiply the residues is
ζ(2)4. There is a ζ(2) in the first moment and a ζ(2)2 in the second moment (see [IS]), so this is
exactly as expected.

5.5. Calculating residues. We now have done enough to be able to calculate the residues
which contribute to the main term. We take (5.6) and (5.9) and replace every ζ(1 + z) by 1/z,
every function not involving a ζ(1 + ∗) or a power of q or M by the constant ζ(2)4, and every
contour integral by one of the five sequences of residues. Using the MAPLE “residue” command
and replacing logM by ∆

2 log q (which is all that matters for the main term) we find that the
(z1 = 0, z2 = 0, z3 = 0, z4 = 0) pole sequence contributes

(5.14)
ζ(2)4

(log q)4
(
2
∆

)9
(

648(
∆
2

)5 +
52128

35
(
∆
2

)4 +
6624

5
(
∆
2

)3 +
3024

5
(
∆
2

)2 + 144(
∆
2

) +
72
5

)
.

The (z1 = −z2, z3 = z2, z2 = 0, z4 = 0) pole sequence gives

(5.15)
ζ(2)4

(log q)4
(
2
∆

)10

(
108
5

(
∆
2

)5 +
378
5

(
∆
2

)4 +
477
5

(
∆
2

)3 +
99
2

(
∆
2

)2 +
54
5

(
∆
2

) +
27
10

)
,

while the other three (which are symmetric under a change of variable order) each contribute

(5.16) − ζ(2)4

(log q)4
(
2
∆

)9
(

396
35

(
∆
2

)4 +
198
5

(
∆
2

)3 +
243
5

(
∆
2

)2 +
45
2

(
∆
2

) +
18
5

)
.

Adding together (5.14), (5.15), and three copies of (5.16) shows that the mollified fourth moment
is

(5.17)
∑h

f

L(f,
1
2
)4M(f)4 =

ζ(2)4

(log q)4
(1 +O(

1
log q

))×

×(
2
∆

)10

(
648(

∆
2

)6 +
51696

35
(
∆
2

)5 +
6408

5
(
∆
2

)4 +
2772

5
(
∆
2

)3 + 126(
∆
2

)2 +
72
5

(
∆
2

) +
27
10

)
.
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This is the term given in theorem 1.4 (1.6). For comparison, the first and second moments with
this mollifier (using the formula for general mollifiers in [KMV]) are

3ζ(2)
log q

(
2
∆

) and
ζ(2)2

(log q)2
(
2
∆

)3(12 + 18(
∆
2

)),

respectively. For small ∆, the first moment goes as ∆−1, the second moment as ∆−3, and the
fourth moment as ∆−10 (this part comes only from (5.15)), so any ∆ < 1/30 gives a fourth moment
which is much larger than the square of the second moment. Thus further improvements on the
number of non-vanishing L(f, 1/2)’s are out of the question (this is completely to be expected, it
would be startling for the fourth moment to be a stronger bound than the second). On the other
hand, notice what happens for large ∆ (think of this as being able to mollify the non-vanishing
elements completely). The square of the first moment approaches half the second moment, and
the square of the second moment approaches half the fourth moment, which is what one would
expect, since it is generally believed (see in particular [Br]) that half of these L-functions do not
vanish for large q.

It is, in principle, possible to combine these results with the methods of [KMV] to find the
asymptotic fourth moments of the kth derivative of Λ(f, s) for any k > 0. One useful feature
is that the quality of mollification (namely, the size of ∆) becomes unimportant for large k. In
effect, we can think of this as allowing M to be arbitrarily large. Thus it is likely that, despite the
considerable restrictions on ∆, the fourth moments of the kth derivatives will approach one-half
the square of the second moments as k gets large. Since there is no particular significance to these
asymptotics, we have not pursued this approach further.

6. Removing the harmonic weight

In this section we explain the necessary arguments to remove the harmonic weight 1/4π(f, f)
from (1.6) in Theorem 1.4 so that (1.7) also holds. This technique has been performed several
times (see [IS, KM1, KM2]) so we will give only a sketch of the proof. The basic idea is that
4π(f, f) equals (up to admissible terms)

|H2(q)|
ζ(2)

L(sym2f, 1)

where

L(sym2f, s) =
∑

n

ρf (n)
ns

=
∑

n

1
ns

∑
m2l=n

εq(m)λf (l2)

Since we only need this value at the edge of the critical strip, we can approximate L(sym2f, 1) by
a very short Dirichlet polynomial (for κ < 1)

(6.1) ωf (qκ) =
∑
n6qε

ρf (n)
n

=
∑

m2l6qκ

εq(m)
λf (l2)
m2l

=
∑

m2l6qκ

λf (l2)
m2l

.

This is possible unconditionally so long as we work on average. We borrow from [KM1] a general
proposition which is the axiomatization of the method described in [KM2].
Proposition 6.1. For q prime, let (αf )f∈H2(q) be a family of complex numbers satisfying

(6.2)
∑h

f

|αf | � (log q)A for some absolute A > 0
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(6.3) Max
f∈H2(q)

|αf |
4π(f, f)

� q−δ for some absolute δ > 0

Then for all κ > 0 there exists a γ = γ(κ, δ) > 0 such that∑n

f

αf =
1
ζ(2)

∑h

f

ωf (qκ)αf +O(q−γ).

We want to apply this proposition to αf = (L(f, 1/2)M(f))4. Condition (6.2) follows immedi-
ately from Theorem 1.4. As for condition (6.3): it is known from [GHL] that

1/4π(f, f) � log q
q

.

Trivially, |M(f)| � q∆/4 log3(q). To bound |L(f, 1/2)| we appeal to Theorem 1.1, so that for all
ε > 0

Max
f∈H2(q)

|M(f)L(f, 1/2)|4

4π(f, f)
�ε q

−1/48+∆+ε.

Thus (6.3) is satisfied so long as ∆ < 1/48. Note that the convexity bound |L(f, 1/2)| �ε q
1/4+ε

would have been insufficient for our purpose.
Thus we are left with estimating the sum

1
ζ(2)

∑h

f

L(f, 1/2)4M(f)4ωf (qκ)

We take κ to satisfy 4(∆/2)+κ < 1/15. This lets us treat ωf (qκ) as a perturbation of the mollifier
and use the techniques of section 5. Specifically, we write

Θ(~z, `) := ν(~z, `)

 ∑
`=m1m2m3m4

µ(m1)µ(m2)
mz1

1 m
z2
2

µ(m3)µ(m4)
mz3

3 m
z4
4


where ν is as in (5.3). Using the Hecke recursion, we rewrite the “perturbed” mollifierM(f)4ωf (qκ)
as

M(f)4ωf (qκ) =
1296

log(M)4
1

(2πi)4

∫
(2)4

∑
m2(dn′)1/26qκ

δdn′=2

dm2

∑
`

λf (n′`)
(n′`)1/2

Θ(~z, d`)(6.4)

×η(~z)
∏
i<j

ζ(1 + zi + zj)
M z1+z2+z3+z4d~z

z4
1z

4
2z

4
3z

4
4

.

To compute ζ(2)−1
∑h

f

L(f, 1/2)4M(f)4ωf (qκ) we use (6.4), replacing λf (n′`) by MD(n′l) +

MOD(n′l)+MOOD(n′l). We deal here with the sum of the two first terms (see section 5.2.1), the
off-off-diagonal term is similar. We write

Φ(s, t; `) :=
∑

abd=`

µ(a)
a1+s+2t

τ(b)
bt

1
ds

∏
pα||ad

(α+ 1− 2αp−(1+s+t)

1 + p−(1+s+t)
)
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for the arithmetic function defined in formula (5.4). Including ωf (qκ) simply involves replacing∑
`

J(s, t; `)
`

Θ(~z, `)

in (5.5) by ∑
m2(dn′)1/26qκ

δdn′=2

dn′m2

∑
`

J(s, t, `n′)
`

Θ(~z, dl)

(6.5) =
[ ∑

m2n6qκ

1
n2m2

∑
dn′=n2

Θ(~z, d)Φ(s, t;n′)ν(s, t, ~z; d, n′)
]∑

`

J(s, t; `)
`

Θ(~z, `)

with

ν(s, t, ~z; d, n′) =
∏
p|dn′

(
1 +O(p−1/4)

)
uniformly for <es,<et,<ezi > −1/4. Since the sum is against n2, the first factor and all its
partial derivatives of low order are bounded by an absolute constant in the domain of the contour
shifts (so this factor brings no new poles). We can remove the constraint m2n 6 qκ at the cost of
an error term of size O(q−κ/2), which we can ignore, and convert the first factor into

ζ(2)
∑

n

1
n2

( ∑
dn′=n2

Θ(~z, d)Φ(s, t;n′)ν(s, t, ~z; d, n′)
)

(note that the ζ(2) compensates for the ζ(2)−1 in 1/4π(f, f)). The second factor exactly matches
(5.5), so that it contributes as before. Thus, the main terms for the harmonic and the natural
averages are proportional. What remains is to compute the proportionality constant: it will turn
out to be 1.

6.1. Computation of the proportionality constant. We proceed exactly as in section 5.4,
using formal Euler products. It is enough to calculate

1
ζ(2)

∑
m,n

1
m2n2

[ ∑
dn′=n2

∑
`

Θ(d`)
`

Φ(n′`)
ζ(2)

]

=
ζ(2)2

ζ(1)10
∑

n

1
n2

∏
pf ||n

(1− p−2)4

(1− p−1)10

 2f∑
i=0

∑
k>0

Θ(pk+i)Φ(pk+2f−i)
pk

 .
By a formal computation (which we performed using MAPLE), using the table of Θ and (5.12),
one can check that for f > 1

(6.6)
f∑

i=0

∑
k>0

Θ(pk+i)Φ(pk+f−i)
pk

=
inf(4,f)∑

i=0

4∑
k=0

Θ(pk+i)Φ(pk+f−i)
pk

= 0.

Thus the only contribution to the main term comes from f = 0 for all primes, that is, from n = 1.
Thus the natural average is the same as the harmonic average, as desired.
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7. Simultaneous non-vanishing

Let χ be a fixed primitive character of conductor D, coprime to q. In this section we use
Theorem 1.4 and the techniques of second moment analysis to prove Theorem 1.5.

We borrow from the methods and notation of [KMV]: we let M := q̂∆ and M ′ := q̂∆
′

with
∆,∆′ > 0, and for P,Q polynomials satisfying P (0) = Q(0) = Q′(0) = 0 we define

M(f) = MQ(f) :=
∑

m<M

λf (m)µ(m)
ψ(m)m1/2

Q(
logM/m

logM
)

with ψ(m) =
∏

p|m(1 + 1/p) (we will take ∆ < 1/48 and Q(x) = x3, giving the mollifier already
considered) and

M(f ⊗ χ) = MP (f ⊗ χ) :=
∑

m<M ′

χ(m)λf (m)µ(m)
ψχ2(m)m1/2

P (
logM ′/m

logM ′ ),

with ψχ2(m) :=
∏

p|m(1− χ2(p)/p).
We have ∣∣∣∣∑∗

f

L(f, 1/2)M(f)L(f ⊗ χ, 1/2)M(f ⊗ χ)
∣∣∣∣

6 (
∑∗

L(f,1/2)L(f⊗χ,1/2) 6=0

L(f, 1/2)2M(f)2)1/2(
∑∗

f

|L(f ⊗ χ, 1/2)M(f ⊗ χ)|2)1/2

6 (
∑∗

L(f,1/2)L(f⊗χ,1/2) 6=0

1)1/4(
∑∗

f

L(f, 1/2)4M(f)4)1/4(
∑∗

f

|L(f ⊗ χ, 1/2)M(f ⊗ χ)|2)1/2

so that

(7.1)
∑∗

L(f,1/2)L(f⊗χ,1/2) 6=0

1 >

∣∣∣∣∑∗

f

L(f, 1/2)M(f)L(f ⊗ χ, 1/2)M(f ⊗ χ)
∣∣∣∣4

(
∑∗

f

L(f, 1/2)4M(f)4)(
∑∗

f

|L(f ⊗ χ, 1/2)M(f ⊗ χ)|2)2
.

Let
Qf⊗χ(P ) :=

∑∗

f

|L(f ⊗ χ, 1/2)M(f ⊗ χ)|2

and
Lf,χ(P,Q) :=

∑∗

f

L(f, 1/2)M(f)L(f ⊗ χ, 1/2)M(f ⊗ χ).

Theorem 1.5 follows from the evaluation of Qf⊗χ(P ) and Lf,χ(P,Q), since the fourth moment has
already been handled in Theorem 1.4. Below we sketch the proof of the following proposition:
Proposition 7.1. Let P,Q be fixed polynomials with P (0) = Q(0) = Q′(0) = 0. For any 0 <
∆,∆′ < 1 we have:

• for χ2 non-trivial,

Qf⊗χ(P ) = 2
|L(χ4, 2)|2

|L(χ2, 1)|2

(
1
∆′

∫ 1

0
P ′(x)2dx+

1
2
P (1)2

)
(1 + o(1))(7.2)

Lf,χ(P,Q) = 2ζ(2)
L(χ4, 2)
L(χ2, 1)

P (1)Q′(1)
∆ log q

(1 + o(1));(7.3)
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• for χ2 trivial, χ(−q) = 1, P ′(0) = 0, and P ′(1)Q′(1) 6= 0,

Qf⊗χ(P ) = 8
ζ(2)2ψ(D)2

(log q)2∆′2

(
1
∆′

∫ 1

0
P ′′(x)2dx+ P ′(1)2

)
(1 + o(1))(7.4)

Lf,χ(P,Q) = 8ζ(2)2ψ(D)
P ′(1)Q′(1)
∆∆′(log q)2

(1 + o(1)).(7.5)

From Proposition 7.1, Theorem 1.4, and (7.1) we obtain
Proposition 7.2. For 0 < ∆ < 1/48, 0 < ∆′ < 1,

• For χ2 non-trivial∑∗

L(f,1/2)L(f⊗χ,1/2) 6=0

1 >
4P (1)4Q′(1)4

∆4F (∆)
(
∆′−1

∫ 1
0 P

′(x)2dx+ 1
2P (1)2

)2 (1 + o(1))

• For χ2 trivial∑∗

L(f,1/2)L(f⊗χ,1/2) 6=0

1 >
64P ′(1)4Q′(1)4

∆4F (∆)
(
∆′−1

∫ 1
0 P

′′(x)2dx+ P ′(1)2
)2 (1 + o(1))

where F (∆) is defined in (1.5).
Note in particular that the bounds are independent of the choice of χ, for q sufficiently large.

When χ2 is non-trivial, we can take Q(x) = x3, P (x) = x, ∆′ = 1, and ∆ = 1/48 to get a
non-vanishing fraction of

6.0× 10−12.

When χ2 is trivial, we take P (x) = x2, and get a non-vanishing fraction of

2.9× 10−10.

The proof of Proposition 7.1 follows directly from the techniques of [IS], [KMV], and [V1]. Since
there is essentially nothing new to the proofs, we merely touch on the main points. As always,
one uses the functional equation for L(f ⊗ χ1, s)L(f ⊗ χ2, s) to express the value at s = 1/2
as a rapidly converging sum (the requirement that χ(−q) = 1 when χ2 is trivial arises because
otherwise the functional equation implies that L(f, 1/2)L(f ⊗ χ, 1/2) vanishes identically). One
then uses the Hecke recursion to separate the diagonal term, which is the only main term for the
second moment, from the remainders. One can bound the remainders terms through large sieve
type inequalities, in particular Proposition 1 of [DFI2] and the remark following it, is sufficient
to give the ∆ < 1 upper limit. This leaves us with the main term, which for Qf⊗χ(P ) is

(7.6) 2
∑
d1,d2

χ2(d1)χ2(d2)
d1d2

∑
c

1
c

∑
n

1
n

∑
(m1,m2)=1

µ(m1d1c)µ(m2d2c)
ψχ2(m1d1c)ψχ2(m2d2c)m1m2

×P (
logM ′/(m1d1c)

logM ′ )P (
logM ′/(m2d2c)

logM ′ )W (
m1m2d1d2n

2

q̂D
2 ),

the summation restricted to variables m1,m2, d1, d2, c, n coprime with D. The main term for
Lf⊗χ(P,Q) is similar: multiply (7.6) by 1

2χ(d2
2cnm1m2) and replace the second P by Q (and the

corresponding M ′ by M). The L case also has a second term, involving χ(−q)G(χ)/G(χ), but
this can be analyzed in much the same way and is smaller than the main term by a factor of
1/ log q.

To evaluate (7.6), we proceed exactly as in Section 5 of [KMV] or section 5 of this paper. We
transform W , P , and Q into their integral forms, shift the contours past the origin (where now
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the end contour, Cγ , depends also on χ), and evaluate the residues. This is far easier for the
second moment: the only pole which matters is z1 = z2 = 0. In particular, z1 = −z2 contributes
negligible terms provided that there are “enough” poles, much as z1 = −z2, z3 = −z4 did for
the fourth moment. When the ζ functions are replaced with L(χ) functions, as is the case here,
fewer poles constitute “enough,” which is why we only need P (0) = 0. Finally, we calculate
the constant by which to multiply the residues. This works much the same way as before, with
L(χ4, 2)/L(χ2, 1) replacing ζ(2)/ logM (as one would expect) when χ2 is non-trivial.
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