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Run-to-run control is a technique that exploits the repetitive nature of processes to iteratively adjust the inputs
and drive the run-end outputs to their reference values. It can be used to control both static and finite-time
dynamic systems. Although the run-end outputs of dynamic systems result from the integration of process
dynamics during the run, the relationship between the input parameters p (fixed at the beginning of the run)
and the run-end outputs z (available at the end of the run) can be seen as the static map z(p). Run-to-run
control consists in computing the input parameters p* that lead to the reference values zref. Although a wide
range of techniques have been reported, most of them do not guarantee global convergence, that is, convergence
toward p* for all possible initial conditions. This paper presents a new algorithm that guarantees global
convergence for the run-to-run control of both static and finite-time dynamic systems. Attention is restricted
to sector nonlinearities, for which it is shown that a fixed-gain update can lead to global convergence.
Furthermore, since convergence can be very slow, it is proposed to take advantage of the mathematical similarity
between run-to-run control and the solution of nonlinear equations, and combine the fixed-gain algorithm
with a faster variable-gain quasi-Newton algorithm. Global convergence of this hybrid scheme is proven.
The potential of this algorithm in the context of run-to-run optimization of dynamic systems is illustrated via
the simulation of an industrial batch polymerization reactor.

1. Introduction
In the last 20 years, run-to-run control has developed as an

important tool for process improvement in industry.1 The basic
idea is to exploit the repetitive nature of discontinuous processes
in chemical production, mechanical machining, or semiconduc-
tor manufacturing to determine the subsequent inputs on the
basis of previous run-end measurements.2 In its earliest version,
run-to-run control was mainly motivated by the lack of in situ
measurements for the control of film thickness or electrical
properties in semiconductors. Typically, these quantities could
not be measured in real-time and used for online feedback
control;3 hence, there was the idea of considering process
operation as a succession of runs and of using off-line
measurements to adjust, on a run-to-run basis, the set points of
online controllers.2,3 The fact that run-to-run control requires
only measurements that are available at the end of the run is
one reason that explains its popularity in an industrial setting.
Another reason is the fact that control can be used to improve
process performance. Indeed, it is possible to optimize a process
with the concept of necessary conditions of optimality (NCO)
tracking.4 This way, an optimization problem can be turned into
a control problem, for which the control objective is to satisfy
the NCO. Hence, run-to run control is an efficient tool for
optimizing repetitive finite-time dynamic processes.5,6 The
implementation of run-to-run control is greatly simplified if the
input profiles can be parametrized. This way, the map between
the manipulated and controlled variables can be seen, from a
run-to-run perspective and upon integration of the process
dynamics, as a static map.7 Said differently, a completed run
can be seen as the map z(p) between the parameters p that
characterize the input trajectories and the outputs z measured
at final time.

Regardless of its use for either bringing outputs to desired
reference values (run-to-run control) or iteratively improving
process performance (run-to-run optimization), convergence of
a run-to-run scheme is a critical issue. The reformulation of
the original dynamic control problem into a static control
problem opens the way for the use of fixed-point theory or
Lyapunov-type approaches to enforce stability.8 Recently, tuning
rules that guarantee global convergence to the desired references
zref have been proposed for systems with sector nonlinearities.9,10

Fixed-gain updates have been shown to converge to the global
solution, provided the slope of the upper bounding sector is
known and the gain of the update law is smaller than twice the
inverse of this slope.8 However, fixed-gain updates result in slow
convergence, which is particularly critical in batch processing,
since the slower the convergence, the more runs are needed to
reach optimality.

In this paper, we propose to exploit the similarities between
the two problems of run-to-run control, where the input
parameters p are updated iteratively to bring the run-end outputs
to the desired references z(p*) ) zref, and the problem of solving
sets of nonlinear equations, for which the solution p* to the set
of equations z(p) ) 0 is sought iteratively. The solution of
nonlinear equation systems has been widely studied in the
literature,11,12 and several numerical methods that exhibit fast
convergence are available.11,13,14 This work proposes to combine
the fixed low-gain iterative scheme with a quasi-Newton type
of update to benefit from the faster convergence of Newton-
type algorithms. The gain matrix will be updated via the
Jacobian matrix using for example Broyden’s formula, except
in the neighborhood of a local minimum, where a fixed low
gain will be used. It will be shown that global convergence can
be ensured despite switching between the two algorithms. The
main advantage of this hybrid algorithm, compared to the fixed-
gain algorithm, is its relative high convergence speed, while
still preventing getting stuck in a local minimum.15
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The paper is organized as follows. Section 2 presents the
essence of run-to-run control. The concept of sector nonlinearity
is introduced in section 3, together with the fixed-gain algorithm
and its convergence analysis. Section 4 presents the hybrid
algorithm and the corresponding convergence analysis. The
fixed-gain and variable-gain algorithms are compared on the
same numerical example. Application of the variable-gain
algorithm to the optimization of a simulated industrial batch
acrylamide copolymerization is discussed in section 5. Finally,
conclusions are provided in section 6.

2. Run-to-Run Control

This section first shows how a finite-time dynamic process
can be viewed as a static map relating input parameters available
before the run and output variables measured at the end of the
run. Then, the concept of run-to-run control for static processes
is briefly introduced.

Reformulation of a Finite-Time Dynamic System as a
Static Map. Consider the following finite-time dynamic system:

where x(t) is the n-dimensional state vector, u(t) is the
m-dimensional input vector, F is the system equations, xo is the
initial conditions, z is the q-dimensional run-end output vector,
h is the output equations, and tf is the final time of the dynamic
system.

Let the infinite-dimensional input u(t) be parametrized using
a finite number of parameters p ∈ Rm, with which the inputs
can be expressed as u(t) ) U (p).16 The final states can also be
expressed in terms of the input parameters p as follows:

which generates a static map between the input parameters p
and the run-end outputs z, as shown in Figure 1:15

Run-to-Run Control of a Finite-Time Dynamic Process.
Consider the control of a repetitive finite-time dynamic process
that is characterized by two independent time variables, the run
time t, t ∈ [0, tf], and the run index k, k ) 1, 2, .... With run-
to-run control, the repetitive nature of batch processes is
exploited, whereby relevant information from the previous
batches is used for computing the inputs of the subsequent run.
Contrary to online control, where the input profiles are adjusted

online using run-time measurements, the idea here is to compute
the input profiles of the (k + 1) run from the input profiles of
the kth run and the corresponding run-end measurements.

Note that the number of manipulated inputs m has to be
greater or equal to the number of measured outputs q. In the
case where m > q, input decoupling4 is typically performed to
formulate a q × q square control problem. As input decoupling
is not the focus of this article, a square system will be assumed
for simplicity, that is, m ) q. Figure 2 represents schematically
the run-to-run adaptation of the input parameters based on
feedback, for which the inputs pk, and thus the profiles uk[0, tf],
are iteratively updated such that zkf zref as kf ∞. With the
multivariable proportional controller K, the run-to-run control
law reads

which contains integral action. The run delay seen in Figure 2
amounts to a complete batch operation. The run-to-run control
scheme is described algorithmically as follows:

1. Parameterize the input profiles, uk[0, tf] ) U (pk).
2. Start with k ) 1 and pk ) p1.
3. Implement the kth input profiles uk[0, tf] open loop and

measure the run-end outputs zk.
4. Determine the difference between the measured and the

reference run-end outputs and compute pk+1 according to
eq 5.

5. Set k: ) k + 1 and return to step 3. Repeat until zk ) zref

to some predefined accuracy.
Note that run-to-run control can also be used for process

optimization. Indeed, if the references to follow correspond to
the process optimality conditions, optimality can be achieved
via run-to-run NCO tracking.

3. Fixed-Gain Run-to-Run Control Algorithm for
Systems with Sector Nonlinearities

This section describes the concept of sector nonlinearity,
presents a fixed-gain algorithm for performing run-to-run
control, and analyzes its convergence property. It will be shown
that the assumption of sector nonlinearities is sufficient to
guarantee global convergence.

Sector Nonlinearity. A class of nonlinearities with agreement
between the local (linear) and global pictures is considered. It
is assumed that there exists a full-rank m × m matrix Hj and a
scalar R > 0 such that

Note that this assumption implies that there exists a p* for which
z ) 0. Using the notation ∆p ) p - p*, the classical definition
of sector nonlinearity is (z - !Hj∆p)T(RHj∆p - z) > 0, with 0
e ! e R.10 This means that the nonlinear function lies between
the two linear functions !Hj∆p and RHj∆p, as shown in Figure
3. Condition 6 is a special case of sector nonlinearity with ! )
0 and R > 0. Note that z(p) can be of any nature, for example
discontinuous, within the defined sector.

Figure 1. Static map between the input parameters p and the run-end outputs
z of a finite-time dynamic process.

Figure 2. Run-to-run control of a finite-time dynamic process.

ẋ(t) ) F(x(t), u(t)), x(0) ) xo (1)

z ) h(x(tf)) (2)

x(tf) ) xo + ∫0

tf F(x, U (p)) dt ) F (p) (3)

z(p) ) h(F (p)) ) H (p) (4)

pk+1 ) pk - K(zref - zk) (5)

zTz < RzTH̄(p - p*), ∀p * p* (6)
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Fixed-Gain Algorithm. Consider the run-to-run control
scheme of Figure 2. The following adaptive control law can be
used, which is derived from the standard Newton-Raphson
method:

where Jk ) (∂z/∂p)|pk is the Jacobian of z(p) at p ) pk, zk )
z(pk), and γ is the scalar gain of the update law.

It can be shown that, for γ ) 1 and the initialization point
sufficiently close to the minimum, the Newton-Raphson method
converges quadratically.13 Unfortunately, if applied without any
additional caution, this method has two main drawbacks:

1. It assumes the knowledge of the Jacobian Jk at all iterates
pk. However, it often happens that the expression z(p) is not
known, as only the values of zk are available, for example, via
run-end measurements or through numerical integration of a
dynamic system.

2. There can be points pk for which the Jacobian Jk loses
rank, for example, for the minima of z(p). These points can
make the algorithm diverge since the inverse of the Jacobian is
not defined.

To circumvent the issue of Jacobian estimation, it is proposed
for systems exhibiting sector nonlinearities, to choose Jk ) Hj ,
with Hj a constant full-rank m × m matrix that satisfies eq 6.
The resulting fixed-gain algorithm reads:

Global Convergence of Fixed-Gain Algorithm. The con-
vergence of the fixed-gain run-to-run controller (eq 8) is
investigated next for the case of sector nonlinear systems.

Theorem 1. Consider z(p) with z(p*) ) 0. Let Hj be a full-
rank m × m matrix and R a strictly positive scalar such that zTz
< RzTHj (p - p*), ∀p * p*. Also, consider the update law pk+1

) pk - γHj-1zk, with the scalar gain γ. Then, for 0 < γ < 2/R,
pkf p* and zkf 0 as kf ∞.

Proof. The proof is based on Lyapunov direct method10 and
uses the Lyapunov function candidate Vk :) V(pk) )
∆pk

THj THj∆pk with ∆pk ) pk - p*. The fact that Vk > 0, ∀pk *
p*, and V(p*) ) 0 follows from V being quadratic and Hj full
rank.

It will be verified that Vk+1 < Vk, ∀pk * p* and Vk+1 ) Vk

for pk ) p*. For this, the update law (eq 8) is rewritten as

with ∆pk ) pk - p*.
Consider first the case ∆pk ) 0, that is, pk ) p*. By definition

of p*, zk ) 0 and ∆pk+1 ) ∆pk ) 0. Hence, Vk+1 ) Vk ) 0.
Consider now the case ∆pk * 0. Equation 9 can be expressed

as

which, substituted into eq 6 with z ) zk and p ) pk, gives

with M ) Hj THj .
Since ∆pk+1

T M∆pk ) ∆pk+1
T Hj THj∆pk is the scalar product of

Hj∆pk+1 and Hj∆pk, the Cauchy-Schwartz inequality allows
writing13

Substituting ∆pk+1
T M∆pk+1 in eq 11 by its lower bound (eq 12)

and rearranging gives

Since the difference between the two factors in eq 13 is

the first factor of eq 13 has to be positive and the second factor
has to be negative for the inequality to be verified. It follows
that

and

or

From 0 < γ < 2/R, it follows that (2 - Rγ) > 0. Then,
rearranging eq 11 and using ∆pk+1

T M∆pk < ∆pk
TM∆pk gives

Hence, it follows that Vk+1 < Vk for all ∆pk * 0.
Remarks: (1) It is interesting to note that the Lyapunov

function used in the proof is Vk ) zjk
Tzjk, with zjk being the linear

estimate of zk, that is, zjk ) Hj∆pk. (2) The main difficulty with
this algorithm lies in its potentially slow rate of convergence.
Indeed, a large sector (large R) calls for a small gain (small γ,
slow convergence). Hence, R should be chosen as the smallest
value that still satisfies eq 6. Even with this choice, the rate of
convergence may be extremely slow.

4. Hybrid Run-to-Run Control Algorithm for Systems
with Sector Nonlinearities

As seen in the previous section, the similarity between solving
sets of nonlinear equations and run-to-run control can be

Figure 3. One-dimensional example of sector nonlinearity.

pk+1 ) pk - γJk
-1zk (7)

pk+1 ) pk - γH̄-1zk (8)

∆pk+1 ) ∆pk - γH̄-1zk (9)

zk ) -1
γ

H̄(∆pk+1 - ∆pk) (10)

∆pk+1
T M∆pk+1 + (Rγ - 2)∆pk+1

T M∆pk +
(1 - Rγ)∆pk

TM∆pk < 0 (11)

∆pk+1
T M∆pk+1 g

(∆pk+1
T M∆pk)

2

∆pk
TM∆pk

(12)

(∆pk+1
T M∆pk + (Rγ - 1)∆pk

TM∆pk)(∆pk+1
T M∆pk -
∆pk

TM∆pk) < 0 (13)

Rγ∆pk
TM∆pk > 0

∆pk+1
T M∆pk

∆pk
TM∆pk

> (1 - Rγ)

∆pk+1
T M∆pk

∆pk
TM∆pk

< 1

(1 - Rγ) <
∆pk+1

T M∆pk

∆pk
TM∆pk

< 1 (14)

∆pk+1
T M∆pk+1 < (Rγ - 1)∆pk

TM∆pk + (2 - Rγ)∆pk+1
T M∆pk

< ∆pk
TM∆pk

(15)
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exploited to generate a run-to-run controller derived from the
Newton-Raphson’s most simple expression. In the context of
sector nonlinear systems, using an appropriate fixed estimate
of the Jacobian allows finding an upper bound for the controller
gain that ensures global convergence. However, convergence
can be rather slow, which, in the case of run-to-run control,
can be very penalizing. In this section, it is proposed to push
the use of the aforementioned similarity further. An hybrid run-
to-run control algorithm, which combines variable-gain and
fixed-gain updates, will be proposed. The main idea is to update
the estimate of the Jacobian as long as there is no risk of being
stuck in a local minimum, and to switch back to an inner loop
using the fixed-gain algorithm discussed in the previous section,
whenever this risk is high. Global convergence of the hybrid
algorithm is proven.

As oscillations will typically occur around the solution, the
Jacobian update is not only useful to increase the rate of
convergence, but also to limit the oscillations around the solution
by taking advantage of the quadratic convergence of quasi-
Newton algorithms.

Hybrid Algorithm. To improve the rate of convergence, it
is proposed here, instead of choosing Jk as the constant, to update
the estimate of the Jacobian as in eq 7.

Let Bk denotes this estimate at the kth iterate, δk ) zk+1 - zk

and sk ) pk+1 - pk. Assuming that the solution is reached at
the next iteration, that is, zk+1 ) 0, the following secant equation
can be written from eq 7:

Except for the case of a single nonlinear equation, eq 16 has an
infinite number of solutions for Bk+1. Hence, the challenge is
to pick a solution with good properties. Broyden’s method17

updates the matrix Bk at each iteration so that the new estimate
satisfies the secant eq 17. Given an initial matrix B0 (often a
finite-difference approximation to the Jacobian matrix), Broy-
den’s method generates subsequent matrices using the update
formula:

Other formulas, for example the BFGS formula, could also
be used for this update.11,14,18 However, as the focus of this
paper is to investigate the benefits of adding a fast outer loop
to the globally convergent but slow fixed-gain controller, we
will not discuss the various update laws that could be used as
an alternative to Broyden’s method. Furthermore, in the context
of this study with each function evaluation corresponding to a
complete batch operation, it is preferred that the Jacobian update
does not call for extra runs. For instance, the standard line search
step, although very appealing, could lead to a significant increase
in the number of runs.19

The hybrid algorithm combines variable-gain and fixed-gain
updates. The variable-gain update obeys eq 7, with γ ) 1,
Jk ) Bk, and Bk updated according to eq 17, while the fixed-
gain update is given by eq 8. Let us define the function f(pk) )
zk

Tzk. The algorithm proceeds as follows: the variable-gain update
is used as long as f(pk) decreases sufficiently. Note that f will
not be used thereafter as a function to minimize but rather as a
test function to determine whether it is useful to switch from a
variable-gain to a fixed-gain update. In other words, the
algorithm proceeds with gain adaptation as long as

where $, 0 < $ < 1, is a scalar that is introduced to guarantee
a certain reduction in f at each iteration. If the descent rate is
smaller than $, and the solution has not been reached yet as
indicated by f(pk) > ε, with ε a small positive scalar, then a
local minimum of z(p) is being approached. In such a case, the
algorithm switches to the fixed low-gain update until f(pk) has
decreased sufficiently, upon which the algorithm switches back
to the variable-gain update. The fact that f will decrease
sufficiently using the fixed-gain update is guaranteed by
Theorem 1. In fact, f can be seen as a Lyapunov function, that
is, a measure of global convergence.

Solving the set of equations z(p) ) 0 through minimization
of f ) z(p)Tz(p) is a very standard approach, for which many
techniques have been proposed. The two main differences
between these techniques and what is proposed thereafter regard
the assumption made regarding f and the convergence property.
When f is used explicitly as the function to be minimized using
gradient-based algorithms, global convergence to some station-
ary point can be proven. Most of these investigations assume
that f is twice-continuously differentiable,20,21 or that z(p) is
Lipschitz continuous.22 Here, the continuity of z is not required,
and global convergence will be established such that z(p)f 0,
regardless of the initialization point.

The proposed algorithm is described in Figure 4, and its
convergence will be investigated in the next subsection. B0 is
initialized as Hj unless a better guess is available. Furthermore,
the iterations performed using the fixed low-gain update can
be considered as a single step during which p and z change by
δk and sk, respectively. From these variations, a Jacobian update
can be performed using eq 17.

Global Convergence of Hybrid Algorithm. Global conver-
gence of the hybrid algorithm is proven next.

Theorem 2. Consider z(p) with z(p*) ) 0. Let Hj be a full-
rank m × m matrix and R be a strictly positive scalar such that
zTz < RzTHj (p - p*),∀p * p*. Then, the algorithm given in
Figure 4 exhibits global convergence to z ) 0 for 0 < γ < 2/R.
Moreover, f(pk

0) ) zk
0T

zk
0 acts as a Lyapunov function.

Proof. For f(pk
0) ) zk

0T
zk

0 to be a Lyapunov function, it needs
to be positive definite and decrease with k; f is positive definite
since it is a quadratic function. Also, f(p*) ) 0. To prove that
f(pk+1

0 ) < f(pk
0), ∀k, two cases need to be distinguished:

(1) If the variable-gain update generates a point for which
eq 18 is satisfied, then f(pk+1

0 ) < (1 - $)f(pk
0) < f(pk

0).
(2) Otherwise, the algorithm switches to the fixed low-gain

update. For this case, it can be shown by contradiction that
f(pk+1

0 ) < f(pk
0). Indeed, assume f(pk+1

0 ) g (1 - $)f(pk
0). At the

exit of the inner loop, pk+1
0 is set equal to pk+1

j . Also, because of
the decision to enter the (k + 1) iteration, f(pk

0) ) zk
0T

zk
0 > ε > 0.

Hence, f(pk+1
j ) g (1 - $)ε. On the other hand, since the fixed-

gain update is asymptotically convergent, there always exists a
j for which f(pk+1

j ) < σ, for any nonzero positive σ. This leads
to a contradiction and, thus, it can be stated that f(pk+1

0 ) <
(1 - $)f(pk

0) < f(pk
0).

Hence, the condition 18 must be satisfied for all k, and f(pk
0)

is a Lyapunov function for the variable-gain update that
converges exponentially toward 0.

Remarks: (1) The same way Vk ) zjk
Tzjk is a Lyapunov function

for the inner loop, f(pk
0) ) zk

0T
zk

0 is a Lyapunov function for the
outer loop. (2) Since f(pk

0) ) zk
0T

zk
0 is a Lyapunov function for

the variable-gain update but not for the fixed-gain update, zk
jTzk

j

can grow from one iteration to the next in the inner loop. (3) If
Bk ) Hk, the variable-gain update will be in the descent direction

Bk+1sk ) δk (16)

Bk+1 ) Bk +
(δk - Bksk)sk

T

sk
Tsk

(17)

| f(pk+1) - f(pk)

f(pk) | > $ (18)
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∂fk )∂f/∂p|pk ∂p ) -zk
THkBk

-1zk ) -zk
Tzk < 0. (4) If many calls

to the inner loop are needed, it might well happen that the
modified algorithm converges slower than the fixed-gain update.
This means that there are many points where a full Newton
step does not decrease f. In practice, this would correspond to
problems that are very difficult to solve and for which a fixed
low-gain update would be a robust solution. (5) In the proposed
algorithm, the fixed-gain update replaces standard line-search
procedures. In other words, instead of trying to satisfy the
Goldstein conditions23 that are based on the gradient of the
objective function, “small” steps are done until the local
minimum that is approached is jumped over.

Numerical Example. This section presents a simple numer-
ical example, which will be used to compare the performances
of the fixed-gain and variable-gain (hybrid) algorithms. Consider
the 2 × 2 control problem, where a static system is controlled
such that z )[z1, z2]T needs to be iteratively driven to its target
value [0, 0]T, by manipulating p )[p1, p2]T.

The static system and its controller are depicted in Figure 5.
A sector nonlinearity with ! ) 0 and R ) 4.67 can be defined

for this system. It follows that the maximum gain for the fixed-
gain update is γmax ) 2/4.67 ) 0.428. Using the controller K )
γI2×2, with 0 < γ < γmax, results in global convergence of
zkf [0, 0]T, regardless of the initial point p0. As convergence
can be slow, the benefits of using the variable-gain controller
are investigated next.

The static system is such that f ) zTz has at least three minima,
two local ones and the global one p* )[0, 0]T ∀p1, p2 ∈
[-10; 10] as shown in Figure 6. Hence, the use of gradient-
based algorithms for the minimization of f, as a way to solve

z(p) ) 0, typically leads to one of the three solutions, depending
on the initialization point p0. To ensure reaching the true
solution, a global optimization algorithm must be used.

Figure 7 to Figure 9 illustrate the convergence using both
the fixed-gain and hybrid updates from three different initializa-
tion points. Both approaches converge to the global solution. $
and ε are fixed to 0.01, which means that the algorithm switches
to the fixed low-gain update whenever the outer loop does not
succeed in reducing the function f by at least 1% between
successive iterations. Table 1 shows the converged values with
the two algorithms and the corresponding number of function
evaluations needed to achieve convergence. With the specified
values of $ and ε, only few calls to the inner loop are necessary.

Figure 4. Hybrid algorithm that combines variable-gain and fixed low-
gain updates. The variables and functions are noted pk

j and zk
j ) z(pk

j ),
respectively, with k being the iteration number of the outer loop and j being
the iteration number of the inner loop. The update of Bk uses δk ) zk+1

0 -
zk

0 and sk ) pk+1
0 - pk

0.

Figure 5. Run-to-run control of the numerical example.

Figure 6. Contour of the objective function f ) zTz with the location of
three minima.

Figure 7. Evolution of z and p with the fixed-gain and variable-gain updates
for p0

a ) [1.5, 1.5]T. The vertical dashed line indicates the iteration number
at which the variable-gain algorithm has converged.

1414 Ind. Eng. Chem. Res., Vol. 50, No. 3, 2011



As a result, the proposed hybrid algorithm is between three and
six times faster than the fixed low-gain update.

Remarks: (1) Figure 7 to Figure 9 show that the hybrid
algorithm reaches the neighborhood of the solution faster than
the fixed low-gain algorithm. (2) Upon reaching the solution,
the fixed-gain algorithm can oscillate around p* as observed in
Figure 7, thus penalizing the convergence rate. On the other
hand, the quadratic convergence of quasi-Newton algorithms
prevents these oscillations in the neighborhood of the solution,
thus resulting in an even larger reduction in the number of
iterations.

5. Case StudysRun-to-Run Control for Optimizing a
Batch Polymerization Process

This section discusses the dynamic optimization of a simu-
lated industrial batch inverse-emulsion copolymerization reactor.
To keep this description as concise as possible, we will focus
on the reformulated static optimization problem. A comprehen-
sive presentation of the model is available elsewhere.7

Dynamic Process Model. The inverse-emulsion copoly-
merization of acrylamide and quaternary ammonium cationic
monomers, a heterogeneous water-in-oil polymerization process,
is considered. A seventh-order simplified model has been
developed using industrial data:7

where M1w and M2w are the concentrations of the two comono-
mers in the aqueous phase, Q0, Q1, Q2 are the zeroth-, first-,
and second-order moments of the molecular weight distribution,
fi is the initiator efficiency, CTA is the concentration of the chain
transfer agent. RiT

• is the total concentration of radicals with
terminal monomer groups of type i in the aqueous phase. In
addition, the following quantities are used:

The other quantities, mainly rate constants, are described
elsewhere.24,25

Optimization Problem Formulation. The operation is
discontinuous and characterized by the repetition of several
batches. There is a considerable amount of uncertainty in the
form of plant-model mismatch and unmeasured process distur-
bances. The objective is to optimize productivity by adjusting
the temperature profile between the beginning and the end of
the reaction. Until very recently, the industrial practice has been
to operate isothermally, with the temperature level chosen with
the following in mind:

Heat remoVal limitation: Due to the exothermicity of the
reactions, the reactor temperature is such that the minimal
cooling temperature in the jacket approaches its lower bound.
Hence, a higher reactor temperature would lead to an undesirable
runaway situation.

Molecular weight specification: The reactor temperature is
chosen to meet the molecular weight specifications. A higher

Figure 8. Evolution of z and p with the fixed-gain and variable-gain updates
for p0

b ) [8, -3]T. The vertical dashed line indicates the iteration number
at which the variable-gain algorithm has converged.

Figure 9. Evolution of z and p with the fixed-gain and variable-gain updates
for p0

c )[10, 10]T. The vertical dashed line indicates the iteration number
at which the variable-gain algorithm has converged.

Table 1. Converged Values and Required Number of Iterations for Three Different Initialization Points: p0
a ) [1.5, 1.5]T, p0

b ) [8, -3]T, and p0
c

) [10, 10]T

p0
a p0

b p0
c

algorithm converged p* no. runs converged p* no. runs converged p* no. runs

fixed-gain [0, 0]T 31 [0, 0]T 24 [0, 0]T 23
hybrid [0, 0]T 8 [0, 0]T 5 [0, 0]T 8
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temperature in the early part of the batch would speed up the
reaction but also modify the structure and properties of the
polymer. However, the reactor temperature can be increased at
the end of the reaction (once conversion is above 98.5%) to
boost the consumption of residual acrylamide.

To increase productivity, the following minimum-time opti-
mization problem is formulated:

where tf is the final time to be minimized, T(t) is the reactor
temperature profile, x(t) is the 7-dimensional state vector, F is
the system eqs 19, and xo is the initial conditions. The system
is subject to constraints that can be divided in two categories:
(1) Terminal constraints 22 and 23. Xc is the lower bound on
the final conversion X(tf), and Mj w, c is the lower bound on the
final average molecular weight Mj w(tf). (2) Path constraints 24
and 25. Tj, in, min is the lower bound on the coolant temperature
Tj, in(t) at the jacket inlet, and Tmax is the upper bound on the
reactor temperature T(t).

The optimal reactor temperature profile is computed numeri-
cally using the simplified dynamic model. On the basis of the
shape of the nominal optimal solution, the reactor temperature
profile is approximated as follows (so-called semiadiabatic
policy):7

Isothermal arc: The first part is approximated by an isother-
mal arc. The reactor temperature is maintained constant at the
value used in practice. This arc ensures that (i) the heat removal
limitation is satisfied and (ii) a copolymer with the same average
molecular weight as for the isothermal policy is produced during
the major part of the reaction.

Adiabatic arc: The second part, which expresses the intrinsic
compromise between conversion and quality, is approximated
by an adiabatic arc. The flow rate of the cooling fluid circulating
through the jacket is set to zero. The heat generated by the
reaction leads to an exponential temperature increase.

As a consequence, the temperature profile can be parametrized
using only two parameters: (i) the switching time between the
isothermal and adiabatic arcs, tsw, and (ii) the free final time tf.
Despite its intrinsic dynamic nature, from a run-to-run perspec-
tive, the relation between the decision variables tsw and tf and
the controlled variables (maximal temperature, final molecular
weight, and final conversion) can be seen as a static map.26,27

In other words, upon completion, each run can be seen as a
map between the variables tsw and tf that characterize the
temperature trajectory and the output values T(tf), Mj w(tf) and
X(tf) available at final time. Hence, the optimization problem
20-25 can be rewritten as the following static optimization
problem:7

Since (i) the constraint on molecular weight is less restrictive
than that on reactor temperature, (ii) the final time is determined
upon meeting the desired conversion, and (iii) the terminal
constraint on reactor temperature is active at the optimum, the
optimization problem reduces to

The concept of static map can be easily understood with this
example. Although T(tf) results from the integration of the
dynamic model, it only depends on the possible heat generation
once the control loop is opened. In other words, T(tf) depends
on the amount of reactants left at t ) tsw, that is, it is a function
of tsw. Hence, run-to-run control can be used to enforce T(tf) )
Tmax as depicted in Figure 10.

Minimal-Time Operation via Run-to-Run Control. The
batch reaction time can be minimized by adapting the switching
time tsw to meet the terminal constraint T(tf) ) Tmax. This
problem is equivalent to solving the algebraic nonlinear equation
z(tsw) ) T(tf) - Tmax ) 0 for tsw, which can be done by adapting
the switching time tsw via the proposed hybrid algorithm. To
ensure global convergence, one needs to verify the assumptions
of Theorems 1 and 2.

Since the final temperature decreases with increasing switch-
ing time, the static gain between the input tsw and the output
T(tf) is negative. Hence, the notations ∆p ) tsw - tsw* and z )
Tmax - T(tf) will lead to a sector definition for z(∆p) consistent
with Figure 3. Figure 11 shows that z(∆p) lies between two
linear functions of ∆p, z ) 0 and z ) R∆p. As was done in the
numerical example, (z(∆p)Tz(∆p))/(z(∆p)T∆p) is computed to
determine R ) 12.23. Hence, according to Theorem 2, the
hybrid algorithm will converge to the optimal solution tsw* ,
provided 0 < γ < 2/12.23 ) 0.164. With $ fixed to 0.01, no
call to the inner loop was necessary, and convergence was
achieved after 4 runs with ε ) 10-6.

Simulation results for the run-to-run adaptation on a 1-ton
reactor are presented in Figure 12 (reactor temperature profile)
and Figure 13 (molecular weight and conversion profiles). It is
seen that the run-to-run optimization reduces the switching time,
which increases the reactor temperature at final time. Table 2
shows that the batch time is reduced by about 40%.

Remarks: (1) The temperature profile for all runs remains
within bounds, that is, no constraint violation occurs. (2) Run-
to-run adaptation of the semiadiabatic policy is applicable to
any recipe, provided a feasible initial guess of the switching
time and batch-end measurements of reactor temperature are
available. (3) Run-to-run adaptation can reject variations that
persist over several batches. However, since no control is
available during the second arc, within-run variations cannot
be handled. This can be dealt with by the introduction of a
backoff on Tmax. (4) This run-to-run adaptation has been
implemented in practice. A 35% -reduction in reaction time was
observed.7 Compared to the 40% predicted in simulation, the
difference of 5% can be explained by the introduction of a
backoff on Tmax (1.8 instead of 2). (5) Using the fixed low-gain

min
T(t),tf

tf (20)

s.t. ẋ(t) ) F(x(t), T(t)), x(0) ) xo (21)

X(tf) g Xc (22)

Mj w(tf) g Mj w,c (23)

Tj,in(t) g Tj,in,min (24)

T(t) e Tmax (25)

min
tsw,tf

tf

s.t. static map{tsw, tf} f {X(tf), T(tf), Mj w(tf)}
T(tf) e Tmax

Mj w(tf) g Mj w,c

X(tf) g Xc

(26)

min
tsw

tf

s.t. static map{tsw} f {T(tf)}
T(tf) ) Tmax

(27)
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algorithm, 15 runs are necessary to converge to the optimal
solution. Hence, the hybrid algorithm is about 4 times faster,
which is of considerable economic importance. This improve-
ment is because, based on the shape of the static map between
∆p and z (Figure 11), there is no risk of getting stuck in a local
minimum. In other words, in this case, the hybrid algorithm
was found as efficient as a quasi-Newton procedure, but with
the guarantee of global convergence. (6) As a tendency model
of the reactor was used to determine both the slope of the sector
and tsw* , the following question arises naturally: why not use
the value of tsw* directly on the real process? If the reactor were
perfectly known, such a strategy would lead to optimality in
one run. However, in the presence of uncertainty, since tsw* makes

the terminal constraint on T(tf) active, there is a high risk of
constraint violation, especially if the model tends to underes-
timate the amount of reactants that is left in the reactor at tsw* .
If the model upper bounds the sector nonlinearity of the real
process, then global convergence can be enforced. Conversely,
in the less favorable case where the model underestimates this
slope, the model could still be used to determine a robust
estimate of the sector nonlinearity and thus also of the controller
gain, for example via a worst-case scenario. Furthermore, the
model provides an estimate of tsw* that can be used to initialize
the run-to-run scheme. Note that, as long as the number of calls
to the inner loop of the hybrid algorithm remains low, the
performance of the hybrid scheme will not be penalized much
by the conservatism on the controller gain.

6. Conclusions

A new run-to-run control algorithm for systems that are
characterized by sector nonlinearities has been proposed. The
algorithm combines variable-gain and fixed-gain updates in such
a way that, through back-and-forth switching between the two
types of update, (i) fast convergence can be implemented and
(ii) the need for updating a Jacobian matrix close to a local
minimum, where it looses rank, can be avoided. This hybrid
algorithm was shown to be globally convergent. Significant
improvement in convergence speed has been observed and

Figure 10. Run-to-run control for the optimization of the batch polymerization reactor.

Figure 11. Sector nonlinearity for the static map between ∆p ) tsw - tsw*
and z ) Tmax - T(tf).

Figure 12. Simulated reactor temperature profile for switching-time
adaptation using the hybrid algorithm (Tmax ) 2).

Figure 13. Simulated molecular weight and conversion profiles for
switching-time adaptation using the hybrid algorithm (Mj w, c ) 1, Xc ) 0.985).

Table 2. Performance Improvement over 4 Runs (Objective:
Reduction of tf; Constraint T(tf) ) Tmax ) 2)

batch strategy tsw T(tf) tf

0 isothermal 1.00 1.00
1 run 1 0.928 1.01 0.987
2 run 2 0.677 1.38 0.776
3 run 3 0.616 1.59 0.706
4 run 4 0.521 1.99 0.601
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documented through both a simple numerical example and the
run-to-run optimization of a simulated industrial polymerization
process.

This hybrid algorithm has been investigated with regard to
the solution of static optimization problems for which the
solution is determined by active constraints. The constraints in
the optimization problem represent an explicit part of the KKT
conditions. Constraints satisfaction can be ensured after a certain
number of runs since the proposed algorithm is globally
convergent. However, to increase the rate of convergence, the
inputs should be changed more aggressively, thus leading to
potential constraint violation before convergence. To circumvent
this difficulty, a compromise is needed between fast convergence
and convergence from the feasible side of the constraints. A
practical way of implementing this compromise is via appropri-
ate choice of the gain and the introduction of backoffs from
the constraints.

The main limitation of this algorithm is in regard to the
difficulty of determining the slope of the upper-bounding sector.
In practice, a model of the process can be used to estimate this
slope. If the model is not very accurate, modeling errors can
lead to poor estimates. Fortunately, the global convergence
property will not be affected if the model overestimates the
slope. In contrast, if the model underestimates this slope, a robust
value could be determined via, for example, a worst-case
scenario. This approach, though not fully satisfactory, is similar
to what happens in control design, where the model is used to
compute a model-based controller, which is then tuned to
account for modeling errors.

A natural extension of this hybrid algorithm is the incorpora-
tion of a standard line search as an intermediate layer between
the variable-gain and fixed-gain updates. If an acceptable
reduction of the value of the Lyapunov function is not obtained
with the variable-gain update, another point is sought in the
same direction but with a smaller step size. Switching to the
fixed-gain update would then only take place when the latter
fails, that is, when absolutely necessary. This way, the number
of calls to the fixed low-gain update, which penalizes the rate
of convergence, could be minimized. Also, future research could
extend the convergence analysis to other classes of nonlinear
systems, for which convergence has been observed, but not
proven.
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