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Abstract acceptable level of service is [16]. For example, an SLO

for an online brokerage may stipulate that all transactions
Are self-healing database-centric multitier services complete within 1 second, regardless of how much middle-
utopia or just a hard puzzle? We argue for the latter and ware, databases, or networks are involved. Dependable and
aim to identify the missing pieces of this puzzle. We ad-predictable databases are not enough to meet all SLOs.

vocate robust and scalable learning-based approaches to  Today’s services have difficulty meeting their SLOs. A
self-healing that we expect to work well for a large class recent study [21] found that 72% of the top-40 web sites
of multitier services. We identify performance-availabil  suffer user-visible failures, such as items not being added
problems (PAPs) as the most relevant target for self-hgalin - shopping carts or various error messages. Walmart.com ex-
and argue that PAPs are best addressed macroscopically,perienced a 10-hour outage during the 2006 Thanksgiving
outside the realm of individual tiers. Finally, we lay out traffic surge [27]. Such deviations from correct and desired
a research agenda for learning-based approaches to self-behavior, ofailures can cause user dissatisfaction and sub-
healing, to enable wider deployment of self-healing multi- stantial financial loss; for instance, a 22-hour outage ayeB
tier services. in 1999 cost the company more than $3 Million in customer
credits and $4 Billion in market capitalization [13].

Failures occur both due to system faults (such as process
1 Introduction crashes) as well as performance bottlenecks (such as execut
ing a suboptimal database query plan due to stale stajjstics
in all tiers of the service. Almost always, the root cause is

q ::%r a Iong_ttrl1me mt the hliory (?f C(t)mpl#ng ;t(w)eri Werehtthe fallibility of humans, e.g., they introduce softwaregby
alabases Wit cusiom-written clients. € =0s Drought yisconfigure systems, fail to update statistics in a timely

abOUt the web and "thin clients,” and databases starFed h,'d'fashion, or replace the wrong hardware. Itis therefore com-
ing behind web servers. As the scalc—_:‘ of such services in- elling to build systems that self-heatross all tiersand
creased, stored procedures made their way out of databases, | - the day-to-day involvement of humans in the opera-
into a new tier—the application server—running so-called .. ;

“business logic.” The recent emergence of compute utili tion of the service.

ties (e.g., Amazon Elastic Cloud, Sun Grid) are adding yet Furthermore, recovery from service failure ought to be

another dimension to the architecture of services we havegu'f(k when it g(écurs_, b?cause e\I/ery mlnu;e?go;c;g? (g.g.,
come to expect at our fingertips. While more architectural rokerages and banking firms can lose up to ' minute

churn can be expected in future, it has become clear that?fdow_rllnl;r:ef[lGP. While there are mamechsmsmaaac_i—b
database-centric computing infrastructures will be multi lly avaiiable for ast recovery (e.g., microre _ootmg nest
tiered, requiring what once was one database administra!1aVing components [6], killing runaway queries), there is a

tor (DBA) to become a growing organization of specialized dea_rth of SU|'FapIpoI|C|esto invoke these_mechar_usms auto-
professionals. matically, efficiently, and correctly on failure. Withoubp

This multitier computing infrastructure consists of ser- cles and_ automated ways to_de_r_|ve policies, humans remain
: . . in the failure-recovery loop; limiting recovery to sloweas-h
vices our society can no longer do without (e.g., Amazon,

eBay, Google). Users now expect the same ubiquity angMan t_|mescales rath_er than machlnetlmescales._ .
reliability from these services as that offered by the phone ~ ThiS paper describes a research agenda to identify ro-
system and electricity grid. These services are required toPust policies that work in practice and that can be learned

meetservice-level objectivesr SLOs that specify what an automatically. In support of this agenda, we develop a cat-
egorization of solutions for self-healing. While most pre-

*The author was supported in part by a grant from IBM. vious work on self-healing focused on either recovery from




Failure | Candidate fix

Deadlocked threads Microreboot EJB [6], kill hung query

Java exceptions not handled correctliMicroreboot EJB [6]

Aging [26] Reboot at appropriate level to reclaim leaked resourcds [26

Suboptimal query plan Update statistics for tables in query [1], re-optimize pbgkdesign (e.g., [12]
Read/write contention on table block Repartition table to balance accesses across partiti@hs [1

Buffer contention Repartition memory across various buffers [24]

Bottlenecked tier Provision more resources to tier [25]

Source code bug Reboot tier/service, notify administrator

Table 1. Sample failures and fixes in a multitier J2EE service

Unknown (1%)

Unknown IS

Operator

25%

HW (6%

14%

\
HW

SW
Operator

Figure 1. Causes of failures in three large

. . Figure 2. Time to recover from failures in
multitier services (based on [18])

three large multitier services (based on [18])

faults (e.g., [7]) or repair of dynamic performance bottle- \jicrorebootsare fine-grained reboots of application com-
necks (e.g., [25]), we treat performance-availabilitylpro  ponents, usually done orders of magnitude faster than full
lems (PAPs) as a unit. Finally, we provide a roadmap of service restarts; details are in [6]. Note from Table 1 that
problems we believe need to be solved to complete the puzsome failure types are specific to each tier, but others can
Zle of self-healing database-centric multitier services. arise in more than one tier. Furthermore, some failures, (e.g

) . bottlenecks) can shift dynamically across tiers [25].
Example 1 Examples during presentation are drawn flom 15 qware and software are not the only perpetrators of
a multitier web service nameRUBIS [20]—an auction  f5jres: the humans who configure, manage, and operate
site written as a J2EE application _[17]_ and modeled afte_r the service can make mistakes. [18] reports a study of
eBay—running on the JBoss application server. JBosS in-gaice dependability, where they analyze error logs and
cludes an embedded web server. AMySQL server Compriseg,jjre.tracking databases from three large-scale riertit
the database tier. A J2EE application consists of reusable o services. The results are summarized in Figure 1: hu-

Java modules called Enterprise Java Beans (EJBS). Usersyan gperator error is clearly the most prominent source of
interact with a J2EE application through servlets and Java 5| res.

Server Pages hosted on the web server, which invoke meth- 5o rator-induced failures tend to take longer to recover,

ods on the EJBs. In turn, these methods may call methods,g jt s the human component of the system that needs to

on other EJBs, submit queries or updates to the databaseecoyer from the failure it has caused. Fortunately, humans

tier, and so on. can adapt and learn on their own. [18] reports how long it
took to recover from the various categories of failures i th

2 Failures in a Multitier Service three services they studied, as shown in Figure 2.

When a failure is detected in a multitier service, an ef- 3 Manual Vs. Automated Healing
fectivefix needs to be identified and applied quickly. Table
1 lists sample failures related to hardware/software aad th A common approach used to identify fixes for failures to-
corresponding fixes for a multitier J2EE-based web service.day, which we term thenanual rule-based approagctvorks



as follows. Domain experts create rules that map symp-4 Automated Identification of Fixes

toms of different types of failure to specific fixes that sttbul

be applied when these symptoms are observed. Typical4,1 Prerequisites and Caveat

rules have aiif-thenformat and involve thresholds, e.g., “if

the miss rate in the database buffer-cache over the last Ipetecting failures A self-healing service requires robust

hour exceeds 35%, then increase the cache size.” Typicallyyyays to detect failures as soon as they happen [4]. (TellMe

these rules are established prior to production and carnot b Networks, a service operator, estimates that over 75% of the

changed thereafter without human intervention. _ time they spend in recovering from an application-levet fai
Static predefined rules work well for simple services yre is spent detecting the failure [7].) Some services have

Wh.ere all pogsib!e failures are known in advance or where ayser-activity monitors and SLO-compliance monitors that

universal quick fix can solve most problems. However: detect potential failures by monitoring changes in service

level metrics, e.g., the number of searches done per minute.

. : If such external metrics are not available readily, then-met
becomes hard to foresee all possible failures. In such

) . rics internal to the system can be monitored [7].
scenarios, the rules may be incomplete and could be- ™ i o
come incorrect over time since they do not evolve as Universal set of fixes One of the prerequisites for a self-

the workloads or the underlying system configuration healing service is a complete set of fixes for all possible fai
change. ures. This requirement may seem unreasonable, but in the

extreme case, a fix can be as general as alerting an admin-
2. Such rules are usually well understood on a per-tier istrator that manual intervention is needed, or perfornaing
basis only (e.g., [12]); these per-tier rules may have full service restart.

complex, unpredictable, and unwanted interactions in petecting success/failure of fixesAfter applying a fix, a
a dynamic multitier service. self-healing system needs robust ways to determine whether

3. To guarantee correct behavior in dynamic settings,the fix worked. Failure detection techniqu_es can be used
rules are often made coarse-grained at the expense ohere, but care should be taken to let the service recovegr full
quick recovery, e.g., “do a full database restart if any Automation irony: As described by psychologist J. Rea-
failure is observed.” son [19], human tasks are processed at one of three cog-

nitive levels: skill-based (common repetitive tasks)erul
The problems with a manual rule-based approach to fix hased (symptoms are pattern-matched to previous instances
identification motivate arautomated learning-basedp-  and the corresponding solution is invoked), and knowledge-
proach that works as follows: based (reasoning from basic principles). Most administra-
i . - . tion and healing of systems occurs at the first two levels.

o Collect data abqut conflguratlor_l, activity, and fa|lu_res Automating these tasks leaves human operators less pre-
from preproduction and production runs of the service. pared to handle tasks at the knowledge-based level, because

e Use the collected data to learn (i.e., generate or pa-they lose practice; as a result, the exceptional situatians
rameterizeynopsesepresenting the service’s behav- Pe handled neither by human nor machine. The balance
ior. Such synopses include statistical (e.g., BayesianPetween intra-system visibility and automation needs to be
network, clustering) and performance (e.g., queuing considered carefully in a self-healing service.
network, failure-propagation paths [5]) models learned
from data, as well as operators for data transformation4.2 Data Collection
(e.g., aggregation, feature selection) [28]. A learning-based approach to fix identification benefits

from the collection of different classes of data about sErvi
performance and failures:

1. As services expand in features, size, and complexity, it

e Query the current synopses for the bestHixwhen a
failure is observed, and appH to the service. Check
whetherF recovers the service to a working state, and
update the synopses with the newly-gathered dafa. If
fails to recover the service, then query the updated syn-
opses for a new fix. Repeat this process until a correct
fix is found or a threshold is reached when a general
costly fix (e.g., full service restart or manual interven-
tion) can be applied to recover the service. e The path (control and data flow), resource utilization,

and timing of requests through the multitier service.

e Multidimensional time-series data containing values of
status variables, performance counters, and configura-
tion parameters over time. Example attributes include
CPU utilization, number of EJB calls, number of index
accesses, and number of requests that violated SLOs.

The rest of this paper discusses different techniques to im-
plement an automated learning-based approach. e Data on the success and failure of attempted fixes.



Invasive Vs. noninvasive data collectionlt is important unigue symptoms of each failure with an effective fix

to balance the benefits of collecting more data for analy- for that failure. We discuss a technique that we are de-
sis with the overhead of data collection. Furthermore, only veloping, calledrixSym that implements a signature-
“noninvasive” instrumentation data collected with common based approach.

profiling tools—with no changes to application or system

software—may be available from proprietary or legacy sys- 4.3.1  Diagnosis via Anomaly Detection

tems. Itis typical that large multitier services contaifftso ) ) o o
ware from many different vendors, e.g., an Apache web Anomaly detection (e.g., [8]) seeks to identify irreguties
server, a BEA WebLogic application server, and an Ora- in a service based on a characterization of its regular, or
cle database server [10]. It is unlikely that such services baselingbehavior. Three phases are involved:

will support a uniform invasive instrumentation framework
that can collect, e.g., flow and timing data about requests
flowing through all tiers of the service. As we will see in o Establish the baseline behavior of the service and its
Section 4.3, techniques for fix identification differ in thei components.

data requirements.

Passive Vs. active data collectianTo guarantee that the
synopses learned are fairly representative of actualcrvi
behavior, it may be inadequate to rely solely on data col-
lected through passive observations of the service in pro-
duction use, e.g., by monitoring logs. Instead, the sys-

tem may need to bstimulatedactively for comprehensive  Example 2 Suppose the data from the application-server
data collection [22, 23]. For example, during preproduttio tier contains attributes representing the number of times a
(e.g., testing and deployment), the service can be subjecte EJB of one type calls an EJB of another type. DNtbe

to different types and rates of workloads, and injected with 3 haseline window sizand N, be acurrent window size
various failures; while recording data about observed be-with N, < N,. We can analyze data about EJB method
havior. Active stimulation techniques have been developedinyocations from the las¥, minutes to build a baseline that

to learn intercomponent dependencies and failure propagacaptures how calls from each EJB type are split across the
tion paths (e.g., [5]). Workloads and failures for multitie  other EJB types. Then, the EJB method invocations from
services have been studied extensively—as evident from thehe |astV,. minutes can be monitored to determine when the
number of surveys, benchmarks, and tools available (e.9.behavior of one or more EJBs deviates significantly from the
[2, 18, 20])—lowering the barrier to develop effective ac- baseline behavior. (Deviation can be detected, e.g., using
tive stimulation techniques. the x2 statistical test; see [4].) Such a deviation indicates

For clarity of presentation, we will assume that the potential EJB failure, so a likely fix is to microreboot the
data collected from the service is a multidimensional row- gJB [7].

e Collect data about the service.

e Detect and classify anomalies, which are deviations of
the current behavior from the baseline.

We give a simplified example, based on [8], to show how
anomaly detection can be used for fix identification.

and-column time-series with schemg, X5, ..., X,,. At-

tributes X1, ..., X,, are metrics of performance or failure, The biggest strength of anomaly detection is its ability to
either measured directly from different tiers of the seevic find fixes for new failures experienced by a service (i.e.,
or derived from measured metrics. failures encountered for the first time), as well as failures

that occur rarely. Potential disadvantages include:
4.3 Building and Querying Synopses ) o . )

e Since monitoring data available from the service may
be limited (see Section 4.2), anomalies can escape de-
tection. In Example 2, invasive data collection at the
level of EJB method invocations was required to detect

¢ Diagnosis-basedapproaches first diagnose the cause and fix failures in the application-server tier.
of the failure, then suggest a fix based on the cause
found. We discuss three diagnosis-based approaches
based, respectively, on: (i) anomaly detection, (i)
correlation analysis, and (iii) performance-bottleneck

Broadly, automated learning-based techniques for fix
identification use one of two approaches:

e Capturing the baseline behavior of a complex multitier
service is a nontrivial task. It is hard to determine a
good value for the baseline window si2g. To avoid
contamination, the baseline behavior may need to be

analysis. R A -
captured when the service is not experiencing signif-
e Signature-basedapproaches do not attempt to diag- icant failures. Furthermore, the baseline may need to
nose the cause of each failure. Insteadlassifier be updated as workloads or the system configuration

is learned to associateignatures[11] representing change.



e There is a delicate balancing act for the current win- _
dow sizeN... Short)V.. can lead to many false positives ~ProcedureFixSym .
(spurious anomalies detected), while lafgecan lead ~ Input: Set of candidate fixef' = (F1, ..., Fi); Xu,..., X, are

to false negatives (undetected anomalies). attributes repres_entlng the performance_ and failure o®etri
collected from different tiers of the service;

1. /*initialize the synopsis; domain knowledge may be used *
4.3.2 Diagnosis via Correlation Analysis 2. init_synopsis(S);

. L 3. while (true)
The correlation-based approach is similar to the anomaly-, Wait for next failure data point = (X1=z1,. . ., Xx=a2);

detection-based approach except in how the cause of a fail5' fixed= false:count= 0:

ure is diagnosed. Correlation analysis proceeds by identif ¢ /* loop until a correct fix is found or threshold is reachéd *
ing attributes in the data that are correlated strongly yath 7. while (Ifixedandcount< THRESHOLD)

predictive of) a failure-indicator attribute; illustrat@ext. 8. [* use current synopsis to determine probable fix */
9. probFix=suggest fi x(S, f, F);

Example 3 Suppose the data collected from the service 10. I* apply the chosen fix to the service */

contains attributesXs, ..., X,, representing performance 11. appl y_f i x(probFix);

metrics from various tiers, and dailure-indicator at- 12 /* check if the applied fix fixed the failure */

tribute Y’ (e.g., representing SLO violations). Correlation 13- fixed= checkfix(probFix);

o a . . 14 /* update the synopsis with the new data point */
analysis—e.g., by building a Bayesian network as in [10] or updatesynopsiss, £, probFix fixed):

py F:Iustenng the dataasin [8]—recom.mends fixes by iden- 16, count= count+ 1.
tifying X; that are correlated strongly witl™. For example, 17.  end while
if an attribute representing method invocations of an EJB 15 it (fixeq /+ threshold exceeded, no fix found yet */

is correlated with failure, then a likely fix is to microredoo 19 Restart the service and notify the administrator;
the EJB. Similarly, if the number of accesses to an index is20. Update synopsis§ with fix found by the administrator;
correlated with failure, then the index can be rebuilt. 21. endif

22. end while
Advantages of correlation analysis include simplicitysea Figure 3. FixSym (signature-based approach)

of implementation, and efficiency. The biggest disadvan-
tage is that correlation between two attribut€sand Y’

can be inferred from data only if a reasonable number of
training data records indicate this relationship. Theiefo 4.3.4 FixSym: A Signature-based Approach
correlation-analysis may fail to find fixes for failures not
seen previously and for failures that occur rarely.

FixSymis a new signature-based approach we are devel-
oping that makes two important changes to the diagnosis-

. L , based approach:
4.3.3 Diagnosis via Bottleneck Analysis

Bottleneck analysis (e.qg., [12]) can diagnose failuresedu o FixSym uses all data used by the diagnosis-based ap-
by bottlenecked resources that arise frequently in meiltiti proaches to learn synopses, and additionally incorpo-
services [25]. Anomaly detection and correlation analysis ~ rates data on the success and failure of attempted fixes.

may fail to pinpoint the root cause of such failures. How-
ever, bottleneck analysis can be done on multidimensional ) ! ) ]
time-series data only if extra information is provided abou for a failure based on information about fixes that
the structure of the service as represented by the attsipute worked previously and ones that did not work; without
e.g., a relationship specifying that an attribute représgn attempting to diagnose the root cause of the failure.
request response time is derived from other attributegrepr
senting the time requests occupy each resource. FixSym works with multidimensional time-series data that
contains attribute$’, . . ., Fj representing the result of at-
Example 4 The techniques proposed in [12] can determine tempted fixes, in addition to regular performance and failur
bottlenecks in the database tier, e.g., read and write con- metrics X, ..., X,, from different tiers. FixSym uses this
tention on a table block. A possible fix for such contention is data to learn a synopsisthat best captures the relationship
to repartition the table and balance accesses across differ amongX;,..., X, and F1,..., F} so thatS can predict
ent partitions. The techniques in [1] can detect when trans- an effective fix given observed values®f, . . ., X,,. Intu-
actions are bottlenecked by suboptimal query plans due toitively, S identifies a subse® of attributes inXy, ..., X,
stale statistics, and recover by scheduling statisticsabgsl that classify the symptoms of working and failed states of
the service in the best manner. The values of attribut€s in

e FixSym focuses on finding a correct and efficient fix



Comparison Manual Diagnosis-based approach Signature-based
metric Anomaly-detect.| Correlation anal. | Bottleneck anal. (FixSym)
Ability to find Depends on Depends on accuracy of diagnosis Depends on historica
correct fixes expert's knowledge evidence & synopsis
Run-time data Almost nil Performance & failure metrics need | Fine-granularity|| Need symptom data,
requirements coverage to pinpoint cause of failure data needed results of fix attempts
Time to find Very fast Fast Accurate synopses Medium Accurate synopses
fix can be slow [3] can be slow (Sec. 5.2
Scalability Poor Easier to scale as systems expand in size, number of intezctians, and dependencie
Adaptivity as Hard to maintain Online base- Online synopsis- Very adaptive Online synopsis-
system evolveg lining needed learning needed (e.g., [25]) learning needed
Ease-of-use Poor for complex, Hard to tune Very good Needs domain- Good

dynamic services

i/p parameters

knowledge i/p’s

Handling new/ || Only if failures fore- Good Bad (needs enough Good Bad (learns from
rare failures seen & rules added representative samples) attempted fixes only)
Table 2. Comparison of different approaches to automated fix identification

denote the signature of these statgsssociates a success- tual number of records, respectively, returned by a quegry

ul fix with each failure signature (symptoms). iffer significantly, update statistics on all tables a

ful fix with h fail t t diff ficantl date statist I tabl (6:1:343
Figure 3 gives an illustration of FixSym. Each observed by Q"

failure data point is input to the current synopsis to deter-

mine a fix. This fix is applied to the service and a check 5 Research Agenda

is made later to determine whether the fix worked or not.

(These checks are discussed in Section 4.1.) The resultin% 1 Does One Size Fit All?

data point—failure data point and result of attempted fix— )

is_used to update the current synppsis. If the attempted fix Table 2 summarizes the pros and cons of different ap-

ff'“led’ thgn the updated synopsis is usegl to determine a N roaches to automated fix identification that can be applied

fix, and FixSym proceeds as before. This process contmuefo a multitier service. It is clear that no single approach

until a correct fix is found or a threshold is reached when a dominates all others .under all scenarios. For example. the

general and expensive fix (e.g., a full restart and/or netify i ) . L ample, )

. L ) ] . gnature-based approach is good at dealing with scenar

ing the administrator) is applied to get the service back to .05 where same workloads and failures tend to recur. How-

working state. ’

c d to di is-based h FixS . ever, this approach can be ineffective at finding fixes for
ompared 10 diagnosis-based approaches, Fixsym | reviously-unseen or rarely-seen failures. This disadvan

less dependent on which performance and failure metrics : : )
are being collected. (Recall from Section 4.2 that there maytage could be overcome in the following ways:
be constraints on the data that can be collected from dif-
ferent tiers of the service.) Note that FixSym uses these
metrics to represent symptom signatures. FixSym will work
better with more representative data, but it can use whateve
data is available. In contrast, diagnosis-based apprsache
need specific types of data to work. However, FixSym may
fail to find a fix for a previously-unseen failure if the symp-
toms of this failure are very different from those seen so
far.

e Combining the signature-based approach with one or
more of the diagnosis-based approaches that find the
cause of a new failure to recommend a fix.

e Enabling human operators to input their knowledge
about symptoms of failures and fixes for these failures.

e Developing an active-learning approach that attempts
fixes for failures in a feedback-driven loop based on
previous attempts.

Example 5 Database servers maintain statistics about Note that incorporating the signature-based approach into
stored data in order to choose gOOd execution plans for a diagnosis_based approach can improve the overall effi-
queries [1]. Unless these statistics are updated in a timely ciency of the latter by avoiding time-consuming diagnoses
fashion, they can become out of date under heavy transacwhen previously-diagnosed failures occur. These observa-

tional workloads; causing failures due to suboptimal query tions give some interesting directions for future work:
plans. FixSym can enable self-healing under such scenar-

ios, e.g., using a pattern of the form: “when the values of
variablesX.,, and X,.; representing the estimated and ac-

e Perform an empirical study of the different approaches
for automated fix identification, in order to generate



« Adaboost 60 + Nearest Neighbor = K-Means Synopsis Time to generate  Accuracy at
100% ceteepspeT s e sR et ARa e 50 correct fixes | 50 correct fixes
AdaBoost60 | 1740 seconds 98.5%

x‘: SEEEppEEEEEEE RN EEEE

. NI T Nearest neighbof 90 seconds 95.5%

pad®t K-means 90 seconds 87%

[
>

90%

70% o8

Accuracy

60% ot Table 3. Synopsis comparison (running-time)

50% 15

3. Adaboostis anensemble learningechnique that can
1 11 21 31 a1 51 61 71 81 91 produce accurate predictions by combining many sim-
Number of failures seen so far ple and moderately inaccurate synopses \ig@ak

learnerg. (See [14] for a detailed explanation of Ad-

Figure 4. Synopsis comparison (accuracy) aboost.) The number 60 for Adaboost in Figure 4 and
Table 3 is the optimal value in our setting for Ad-

a knowledge-base that a practitioner can use to pick aboost's single configuration parameter, namely, the

the best approach based on the workload, environment, number of weak learners combined to generate the fi-

and requirements of her multitier service. nal synopsis. This number was found based on addi-

tional experiments not shown in this paper.

40%

e Develop effective ways to combine the different ap-
proaches to leverage the strengths and mask the weakThe experiments were conducted on a simulator for a multi-
nesses of individual approaches. tier service that generates time-series data correspgialin
) ) ) ) different failed and working service states. On each failur
» Develop an adaptive algorithm to pick the right com- gy sym is invoked until a correct fix is found, as described
bination of approaches to use automatically in any set-;, saction 4.3.4 and Figure 3.
ting. Thez-axis in Figure 4 shows the number of failures fixed
successfully so far. Therefore, theaxis corresponds to the
5.2 Picking the Right Synopsis number of training samples—each representing the symp-
toms of a failure and a successful fix—available for learn-
An important subproblem in automated fix identification ing the synopsis. Thg-axis shows the accuracy of the cur-
is to pick a good synopsis from the large space of pos-rent synopsis computed on a fixed test set comprising 1000
sible synopses from statistics, machine learning, and per-ailure states (symptoms) and correct fixes generated by the
formance modeling. The main criteria for this choice is simulator. Notice that the ensemble synopsis—which is a
the need to balance an inherent accuracy Vs. running-timestate-of-the-art synopsis in machine learning—convenges
tradeoff in synopsis learning; Figure 4 and Table 3 report good accuracy with much less training samples than the
preliminary experimental evidence of this tradeoff. other synopses. Adaboost reaches 98% classification accu-
Figure 4 represents results from an experiment where weracy with 37 correct fixes. Nearest neighbor takes 85 correct
evaluated the performance of FixSym when using three dif- fixes to reach 98% accuracy. K-means was inferior and only
ferent synopsis techniques from machine-learning [28]:  reached a final classification accuracy of about 87%.
) ) ) ) _ However, Adaboost’s superior accuracy comes at a sig-
1. Nearest neighbors a simple machine-learning algo- pjficant cost in terms of running time, as illustrated in Eabl
rithm that maps a new failure data poiftrecall Fig- 3 Figure 4 and Table 3 illustrate an important challenge we
ure 3) to the data poinf’ that is closest tof among st solve, namely, a self-healing service needs efficient
all failure data points observed so far. The fix recom- gynopsis-learning algorithms that balance the accuracy of
mended forf is the fix that worked foif’. recommended fixes with the time to generate these fixes. In
[3] we report some promising work on this problem. Other

2. K-means clusteringvorks by partitioning the failure , o )
o y P g synopsis-related challenges also arise in self-healing:

data points collected so far into clusters based on the
successful fix found for each point. A representative
data point is computed for each cluster, e.g., the mean
of all points in the cluster. Each new failure data point
f is mapped to the cluster whose representative pointis
closest tof, and the corresponding fix is recommended
for f. The clustering is redone after each failure is
fixed successfully. e Confidence estimates and ranking It becomes easy

e Online learning: Unless the synopses are kept up to
date efficiently as new data becomes available, accu-
racy can drop sharply in dynamic settings. While on-
line learning of synopses is a hard problem, there have
been some promising results recently (e.g., [29]).



to combine multiple approaches for fix identification, and signature-based—and related issues involved in design
as suggested in Section 5.1, if each approach can givang and implementing an automated self-healing multitier
a confidence estimate for the fix it recommends for a service. We showed how existing solutions fall short in
specific failure; we can then rank the fixes and apply several respects, e.g., being limited to a single tierjtgbil
the most promising one. Synopses that give confi- to handle specific types of failures only, requiring specific
dence estimates naturally with predicted values (e.g.,types of instrumentation data, and others. We presented a

Bayesian networks) are very useful in this setting. new signature-based technique, FixSym, that when com-
) ) bined with diagnosis-based techniques can outperform ex-
e Inaccurate, ambiguous, and negative dataRecall isting solutions for automated self-healing. Finally, wep

that FixSym requires synopses to learn from unsuc-yjged a roadmap of problems we believe need to be solved
cessful fixes (negative training samples) in addition to jp, thjs setting.

successful fixes. In general, the self-healing domain
poses some hard requirements on synopses, e.g., th
ability to handle ambiguous and inaccurate data gener-
ated by unsuccessful fixes that were mistakenly classi-
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