
Appears in Proceedings of the 4th Workshop on Hot Topics in System Dependability (HotDep), December 2008

Deprogramming Large Software Systems

Yohann Coppel and George Candea
École Polytechnique F́ed́erale de Lausanne (EPFL), Switzerland

{yohann.coppel, george.candea}@epfl.ch

Abstract

Developers turn ideas, designs and patterns into source
code, then compile the source code into executables. De-
compiling turns executables back into source code, and
deprogrammingturns code back into designs and pat-
terns. In this paper we introduce DeP, a tool for depro-
gramming software systems. DeP abstracts code into a
dependency graph and mines this graph for patterns. It
also gives programmers visual means for manipulating
the program. We describe DeP’s use in several software
engineering tasks: design pattern identification, source
code refactoring, copy-paste detection, automated code
documentation, and programmer fingerprint recognition.

1 Introduction

Programming is the process of turning concepts, pat-
terns, and designs into source code; a compiler then
turns the source code into executables. By analogy
to decompiling—the reverting of executables back into
source code—we definedeprogrammingas the reverting
of source code back into concepts, patterns, and designs.

Such reverse processes are powerful tools for manipu-
lating programs and systems. The fact that decompilers
are not used much as an engineering tool, but mostly as
a means for reverse-engineering, is mainly because those
who need to maintain a software system typically have
access to its source code. The same cannot be said of
programming: the thoughts that programmers had when
writing the code often become unavailable, either be-
cause the programmers leave the company, are forgetful,
or simply because the code has evolved and now embod-
ies a different set of patterns than originally intended.

Lack of access to the patterns and designs behind a
body of code makes it difficult to maintain large code
bases; having a global understanding of a system is often
crucial to being able to transform it in a reliable and pro-
ductive manner. When developers understand the soft-
ware structure, they are better able to identify design
problems and fix them, as well as to extend the software
without introducing new problems.

Some common developer tasks that require good un-
derstanding of the system are code reviews and refac-
toring. During a code review, programmers will of-
ten identify code patterns that can lead, for instance, to
poor performance or race conditions. They may also
try to recognize the design patterns [10] used, in order
to grasp what the code does. Without tool support and
good code documentation, identifying such patterns can
be time-consuming. Refactoring [9]—the restructuring
of an existing body of code without changing its external
behavior—is also common, especially when code bases
increase or APIs change. Tools like Eclipse [8] provide
good support for simple refactoring, like renaming vari-
ables or changing method signatures, but little in the way
of conceptual transformations, such as replacing the use
of an iterator pattern with a visitor pattern [10].

Some more exotic tasks include detecting copy-
pasted code and recognizing programming “finger-
prints.” Copy-pasting code is widely practiced and very
tempting, in order to save time; unfortunately, in the long
run it leads to code that is hard to maintain and may
even have legal implications, depending on which code
base the code was copied from. Detecting copy-pasted
code by searching for code snippets fails when layout or
identifier names are modified. Plagiarism detection tools
use code fingerprinting techniques to determine similar-
ity [15]. We believe fingerprinting can be applied at
higher semantic levels: a programmer often develops a
certain style of programming, leading to a fingerprint
that is found in all code (s)he produces. Recognizing
such fingerprints automatically can help identify code by
origin, with the purpose of rewriting it (e.g., to avoid li-
censing problems) or double-checking it (e.g., because
the originator is suspected of having coded a backdoor
into the system).

The difficulty of such maintenance operations, how-
ever, tends to increase substantially as the number of con-
tributors and the size of the code base increases [3]. As
the cost of maintenance goes up, the quality of mainte-
nance tends to drop, leading to a deterioration of software
quality. It is therefore necessary to develop tools that can
aid programmers in rapidly understanding large bodies
of software at a global level.



2 The Deprogramming Approach

In this paper, we describe preliminary steps toward DeP,
a tool that helps developers deprogram software. Our ap-
proach aims to take static analysis to a higher conceptual
level: whereas traditional static analyzers identify low-
level patterns, like uninitialized variables and potential
race conditions, in DeP we perform static analysis at the
level of design patterns embodied within the code.

DeP operates on Java source code or bytecode and
turns it into an intermediate representation. Of the dif-
ferent possible representations, we chose the dependency
graph, as it is a highly expressive abstraction of the code.
After statically extracting dependencies, DeP utilizes dy-
namic analysis to augment the graph with additional in-
formation.§3 describes dependency graphs in detail.

The graph is used for various types of static analysis,
primarily pattern-matching to recognize design con-
structs and structures (see§4). DeP also provides cus-
tom views of the dependency graph, with the ability to
visually manipulate the underlying source code (see§5).

Finally, DeP can generate new artifacts based on these
analyses, such as code documentation (see§6).

3 Dependency Graphs

The dependency graph is a directed graph that represents
relations (e.g., inheritance or membership) as edges be-
tween nodes representing Java classes, packages, inter-
faces, methods, and fields. Figure 1 shows a small frac-
tion of the graph representation of the JBoss application
server [11], a system with over 350 thousand lines of
code (KLOC); we only show one type of edges.

WebPermissionMapping

AbstractWebDeployer

WebApplication

WebModuleMBean

WebModule

AbstractWebContainer

AbstractWebContainerMBean

Class

Interface

Figure 1: Part of the dependency graph for the
org.jboss.web package in the JBoss application server.

We build the dependency graph of a system in two
steps: one static, one dynamic. The static extraction fo-
cuses on the code’s internal structure and identifies sev-
eral types of dependencies between graph nodes: calls,
read access, write access, extends, implements, method
overload, method overwrite, anonymous type, inner type,

member method, member type, member field, contained
in file, contained in directory, contained in package, etc.

In the dynamic step, we use an improved version of
AFPI [4] to obtain additional information for the graph:
calls that are missed by the static step, member meth-
ods and member types, and, most importantly, error and
exception propagation. AFPI uses fault injection to exer-
cise and observe propagation paths, relying on dynamic
stack traces to find inter-component dependencies; we
added the ability to record the context in which faults
occur. This dynamic analysis adds important informa-
tion, such as indirect relationships arising from the use
of reflection followed by invocations of the reflected API,
which escapes static analysis.

The two steps generate two different graphs, which
DeP needs to merge into a single representation. There is
usually an exact overlap between the two graphs in terms
of nodes, we just need to merge nodes that represent the
same data structure. The AFPI-based graph has a new
type of edges—error propagation—which can simply be
added to the statically-obtained graph. For call, class,
and exception handling edges, we take the union of edges
found in the two graphs, while the member method and
member type edges are equivalent to each other. Edges
of different types between two identical nodes become
parallel edges in the final graph.

The final dependency graph includes a large fraction
of the code’s constructs, but omits implementation de-
tails, such as variable names or sequencing of differ-
ent calls. While such details are crucial to the proper
functioning of the program, they are generally unnec-
essary for understanding the structure of the code. Re-
moving these details helps programmers (and DeP) to
focus only on those elements that matters to the analysis.
The graph is essentially an abstraction of the underlying
source code.

Of course, the choice of which relations to capture in
the graph and which ones to ignore can make a signifi-
cant difference in the quality of the subsequent analyses.
In our current version of DeP, deprogramming focuses on
matching design patterns, and these are usually described
in terms of nodes and their inter-dependencies. There-
fore, the type of representation described above is well
suited. The more types of dependencies are included in
the graph, the richer the kinds of patterns that can be
searched for. As will become evident in the next sec-
tion, extra edges (relationships) between a given pair of
nodes do not slow down the pattern matcher.

An important advantage of the two-step approach to
building the dependency graph is that it is entirely au-
tomatic and can be easily repeated whenever the code
changes. This allows the abstract representation of the
program to closely track the evolution of its source code.

2



4 Finding Design Patterns

We define graph patterns using a small, domain-specific
language. There can be three types of expressions:

• variable definitions of node/edge types to match
(class, method, etc.)

• value definitions, i.e., constraints on each variable
to be used during matching, and

• specification of edges connecting the above nodes.

Consider a pattern, called “sibling envy,” in which a
method, said to be “envious,” calls a static method in an-
other branch of the inheritance hierarchy, as shown in
Figure 2. This is usually bad coding style, because class
inheritance layers are violated. One fix is to make the
common ancestor class provide this method to all its sub-
classes, or to introduce another layer that provides the
method. This way, new classes introduced in the hierar-
chy are aware of the method and can use it accordingly.
DeP can be used to find instances of such bad coding and
fix them.

A

X

extends

util

static

method

Y

extends

envious

method

call

Class

Method

Figure 2: Graph representation of “sibling envy.”

The pattern would be specified in DeP as follows:

def Class = elements.TypeElement
def Call = Relation.CALL

val A,X,Y : Node = Class
val util,envious : Node = Method
val call : Edge = Call

X--[static_method]-->util
X--[extends]-->A
Y--[extends]-->A
Y--[method]-->envious
envious--[call]-->util

Using DeP to search for this pattern in an application
might find a code snippet like the one in Figure 3. Find-
ing all instances of sibling envy can give a programmer a
quick way to fix all such problems in a large code base.
A better way to write this code would be to place the

class SimpleBrowser{}
class CompliantBrowserextends SimpleBrowser{

static boolean checkIfValid(String url){
//...

}
}
class MobileBrowserextends SimpleBrowser{

private void openUrl(String url){
if (!CompliantBrowser.checkIfValid(url))

//...
}

}

Figure 3: Sample code illustrating “sibling envy.”

checkIfValid()method in theSimpleBrowserclass, since
it is to be used in multiple subclasses.

Finding design patterns in a dependency graph is sim-
ilar to the subgraph isomorphism problem [17]: we need
to find a correspondence between nodes and edges of a
graph (the pattern) and nodes and edges of an unspecified
subgraph in another graph (the dependency graph).

There exist various algorithms to find subgraph iso-
morphisms, and we chose VF2 [6]. It is based on a depth-
first search strategy, with a set of efficient pruning rules
to restrict the search to a set of feasible solutions. In
other words, any time a node is added to the solution,
if the new solution does not satisfy a set of feasability
rules, the search tree is pruned immediately. Such ag-
gressive pruning ensures the search is efficient in large
graphs, while preserving completeness.

DeP’s pattern-matching is a slight variation of the iso-
morphism problem, in that we can accept a solution if
an edge between two nodes is present in the dependency
graph, but not in the pattern. Therefore, in our imple-
mentation of the VF2 algorithm, we removed two prun-
ing rules. Also, in the original isomorphism problem,
nodes and edges are not typed, whereas in DeP nodes and
edges often have different types. To take advantage of
this specificity, we added two early matching rules to the
algorithm: (a) during the search for a node to be included
in the solution, we immediately eliminate any node from
the graph that does not match the node in the pattern
definition; this restriction helps reduce considerably the
scope of the search; and (b) same restriction applied to
edges. In the VF2 algorithm, when the set of pair candi-
dates to be included in the mapping is computed, none of
the pairs in this set include a non-matching node.

The modified matching algorithm is complete, i.e., it
finds all instances of the specified pattern; in other words,
there are no false negatives. We can get, however, false
positives. In practice, we found the rate of false positives
to be low—in all our tests on real systems (JBoss, JEdit,

3



Azureus, and Jython) we encountered a maximum false
positive rate of 4%. All false positives resulted from the
pattern definition, and we were able to eliminate all false
positives by suitably respecifying the pattern.

Although the graph isomorphism problem is NP-
complete, our implementation performs well for large
dependency graphs. For example, completing a search
for the 5-node “sibling envy” pattern in JBoss (>350
KLOC) takes on the order of minutes on a regular work-
station. There are plenty of opportunities left for opti-
mization, especially given that the search is paralleliz-
able, thus being a good fit for multi-core architectures.

Figure 4 shows a screenshot of DeP’s pattern matching
dialog window. In the upper part, users gives the pattern
definition using the language described earlier; it is pos-
sible to define several patterns at a time, all of which are
to be searched for. Then the scope of the search is speci-
fied (either the entire graph, or a subgraph opened in an-
other window). The number of solutions can be limited
to some upper bound; 0 indicates “all.” Search results
are shown in the lower portion, as they are found. By
clicking on them, the user can open a view containing
the matched subgraph.

Results

Elapsed time
/ ETA

Nb. of threads

Nb. of
solutions

Search scope

Pattern
definition

Figure 4: The pattern definition dialog in DeP.

DeP provides a library of well-known design patterns
that the programmer can reuse directly or to define cus-
tom patterns. Patterns still have to be specified in the lan-
guage described above, but it is straightforward to pro-
vide a graphical interface to make pattern construction
and manipulation more intuitive. One can also imagine a

command-line interface that could be used by automated
commit hooks in source control systems to reject new
code that has bad coding patterns. Programmers doing
code reviews can add such patterns to a pattern database,
enabling other programmers to check their code for these
patterns before submitting for review.

5 Refactoring

Refactoring [9] is a frequent task in the lifetime of large
software projects. Although refactoring is well known
and understood, it is often difficult to safely perform
structural changes in production code, and decisions on
what to refactor require global knowledge of the system.
Techniques for automatically finding candidate code for
refactoring is still an open area of research [13, 16], as
current approaches yield high rates of false positives.

DeP helps developers find and judge refactoring tar-
gets in two ways: First, it can be used to search for good
and bad patterns (§4). Second, DeP helps developers un-
derstand the code and its interactions at a higher level of
cognition, thus aiding in more quickly deciding whether
a refactoring target should be pursued or not. Figure 5
shows a screenshot of DeP being used for refactoring.

Figure 5: DeP used in refactoring DepAn [5]: a searched
pattern is highlighted by indicating the node names.

A typical way of using DeP is to select a set of design
patterns to be searched for; results can be visually in-
spected, and the programmer can decide whether to pur-
sue refactoring or not. Nodes and edges can be dragged
around to perform what-if analyses. Once the program-
mer has decided how to refactor, the source code is mod-
ified. We used DeP to refactor DepAn [5], a Google
tool into which we are currently incorporating DeP; we
found several design flaws, corrected them, and submit-
ted patches that were accepted into the development tree.

4



6 More Deprogramming Tasks

DeP enables developers to see programs as aggregations
of code patterns, making a number of additional depro-
gramming tasks possible. Here we describe three such
tasks; their implementation in DeP is still pending.

Copy-Paste Detection: Despite all warnings, pro-
grammers often use copy-paste when they perceive a
refactoring as too expensive. Copy-paste detection tools
are used most frequently to detect illegal copying of
source code [1, 7, 14]. These tools use approximation
methods to handle obfuscation of the copy-paste, such
as identifier renaming or inversion of independent state-
ments.

Deprogramming can complement existing tools by
helping detect copy-paste at higher semantic levels. We
rely on the notion of a “pattern fingerprint” of a source
code artifact: we conjecture that each program has an
identifying fingerprint determined by the patterns it con-
tains and the ways in which these patterns are combined,
just like minutiae in a human fingerprint.

If this conjecture holds, it then becomes possible to use
DeP to check whether code from programA was copy-
pasted into programB: deprogram the two programs in
question, compare their dependency graphs to find code
portions that have identical structure, and then inspect
those code areas. Alternatively, one might generate a
“pattern profile” ofA (i.e., a list of all the patterns that
appear inA) and compare it toB’s profile. The pattern
profiles can be augmented with statistics, such as how
many times a particular pattern is used. Pattern profiles
can also be compared hierarchically: does a subset ofB

contain the same number and types of patterns as some
subset ofA?

In some sense, DeP distills the essence of code, allow-
ing the essences of two pieces of code to be compared.
However, the more we distill and abstract two programs,
the higher the likelihood that they will match. There is
therefore a tradeoff, which we have yet to study.

Design Documentation: Good programmers are ex-
pected to document their code, such that other program-
mers can better understand it and make use of it. Tools
have been developed to ease documentation of APIs,
such as Doxygen [18] and Javadoc [2]. These rely on
annotations in the code, and good programmers are ex-
pected to make liberal use of these annotations. The chal-
lenge with both internal documentation and annotations
is that humans must keep them synchronized with the ac-
tual code. History and experience suggests this is a battle
that cannot be won without better tool support.

We believe DeP can be used to automatically docu-
ment certain aspects of the code. Good code documen-

tation usually contains the general idea behind the code,
the role of each components, expected interactions, etc.
Therefore, design patterns are an important part of code
documentation and design specifications.

Deprogramming can be used to turn the source code
into a dependency graph and identify all known patterns,
good or bad, that appear in the code. Thinking of the
code as an aggregate of patterns, we can automatically
generate text documentation based on the dependency
graph. For example, if Model-View-Controller patterns
are found, the documentation could read “ClassesA, B,
andC are part of a MVC pattern:A is the model,B the
view, andC the controller.” Design patterns can also be
turned into UML diagrams. Such analyses may be par-
ticularly useful after the code has undergone major re-
structuring or after a large volume of contributions have
been incorporated in the code base. DeP can also serve
as a learning tool for new employees, who need to under-
stand the design of a large software product.

Another potential use is to extract relatively formal de-
sign specifications from the code and verify them against
the prescribed design that was handed by architects to the
programmers. Such design specifications can also serve
as models for proving properties about the code.

Programmer Fingerprint Recognition: Identifying
the author of a body of work is always a challenging de-
tective’s task. For instance, detecting forged paintings
or identifying paintings by the same artist has already
entered the computational domain: fake paintings can
be detected by software using features extracted from a
database of digital representations of paintings [12].

We believe a similar approach might be applicable to
dependency graphs: a future version of DeP could use
multiple programs written by the same person to gener-
ate a fingerprint of the author’s style. Unlike copy-paste
detection, where we aimed to capture a specific finger-
print of an individual program, here we would use mul-
tiple programs to find identifying features of a program-
mer’s style: preferences for certain patterns or combi-
nations thereof, specific approaches to modularization,
etc. Assuming that every programmer has a unique fin-
gerprint, extracting it and comparing it to a database of
fingerprints might serve in identifying the author(s) of a
program. Such uses of DeP could be used when author-
ship is unknown or is the subject of a dispute.

Whether this is possible or not is still an open
question—unlike painting, programming is considerably
more canonical, thus limiting the programmer’s freedom
of expression. Yet, the constraints of rhyme, meter, and
form in poetry do not seem to have limited the freedom
that makes so many poets easily recognizable from their
verses. Programs, though, often have many authors, each
of whom leaves their fingerprint on the code.

5



7 Conclusion

In this paper we described DeP, a deprogramming tool
that helps view and analyze programs as combinations
of code patterns; it abstracts code into a dependency
graph and mines this graph for patterns. We presented
ideas on how DeP can be used in several software engi-
neering tasks: design pattern identification, source code
refactoring, copy-paste detection, automated code docu-
mentation, and programmer fingerprint recognition. We
believe DeP’s results can be used by other tools com-
monly employed in managing code bases (e.g., source
code repositories) or that perform optimizations or sug-
gest refactoring targets. We used the current DeP proto-
type to understand previously-unknown programs, refac-
tor large code bases, and find common design patterns as
well as patterns of bad coding.

8 Acknowledgments

We would like to thank Lee Carver from Google, who
gave us valuable feedback in early stages of this work,
and the anonymous reviewers, who greatly helped us im-
prove this paper.

References

[1] Moss: A system for detecting software plagiarism
(unpublished). http://www.cs.berkeley.edu/ aiken/-
moss.html.

[2] G. Aitken. Automatically generating Java docu-
mentation: javadoc and the doc comment.Dr.
Dobb’s Journal of Software Tools, 21(7), July 1996.

[3] B. Boehm. Software engineering economics.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[4] G. Candea, M. Delgado, M. Chen, and A. Fox. Au-
tomatic failure-path inference: A generic introspec-
tion technique for software systems. InIEEE Work-
shop on Internet Applications, 2003.

[5] L. Carver and Y. Coppel. DepAn: A direct
manipulation tool for visualization, analysis, and
refactoring of dependencies in large applications.
http://code.google.com/p/google-depan.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (sub)graph isomorphism algorithm for match-
ing large graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6(10), 2004.

[7] J. L. Donaldson, A.-M. Lancaster, and P. H.
Sposato. A plagiarism detection system. InProc.
12th SIGCSE Technical Symposium on Computer
Science Education, 1981.

[8] Eclipse. http://www.eclipse.org, 2008.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts.Refactoring: improving the design of
existing code. Addison-Wesley Longman Publish-
ing Co., 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Profes-
sional, 1995.

[11] JBoss. http://jboss.org.

[12] J. Li and J. Z. Wang. Studying digital imagery of
ancient paintings by mixtures of stochastic mod-
els.IEEE Transactions on Image Processing, 13(3),
2004.

[13] H. Melton and E. Tempero. Identifying refactoring
opportunities by identifying dependency cycles. In
Proc. 29th Australasian Computer Science Confer-
ence, 2006.

[14] L. Prechelt, G. Malpohl, and M. Philippsen. Find-
ing plagiarisms among a set of programs with
JPlag.Universal Computer Science, 8(11), Novem-
ber 2002.

[15] S. Schleimer, D. Wilkerson, and A. Aiken. Win-
nowing: local algorithms for document fingerprint-
ing. In Proc. 2003 ACM International Conference
on Management of Data, 2003.

[16] T. Tourwé and T. Mens. Identifying refactoring
opportunities using logic meta programming. In
Proc. 7th European Conference on Software Main-
tenance and Reengineering, 2003.

[17] J. R. Ullmann. An algorithm for subgraph isomor-
phism.Journal of the ACM, 23(1), 1976.

[18] D. van Heesch. Doxygen manual.
http://www.doxygen.org, 2001.

6


