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Abstract

Recovering the 3D deformations of a non-rigid surface from asingle viewpoint has applica-
tions in many domains such as sports, entertainment, and medical imaging. Unfortunately,
without any knowledge of the possible deformations that theobject of interest can undergo,
it is severely under-constrained, and extremely differentshapes can have very similar ap-
pearances when reprojected onto an image plane.

In this thesis, we first exhibit the ambiguities of the reconstruction problem when relying
on correspondences between a reference image for which we know the shape and an input
image. We then propose several approaches to overcoming these ambiguities. The core
idea is that somea priori knowledge about how a surface can deform must be introduced
to solve them. We therefore present different ways to formulate that knownledge that range
from very generic constraints to models specifically designed for a particular object or
material.

First, we propose generally applicable constraints formulated as motion models. Such
models simply link the deformations of the surface from one image to the next in a video
sequence. The obvious advantage is that they can be used independently of the physical
properties of the object of interest. However, to be effective, they require the presence of
texture over the whole surface, and, additionally, do not prevent error accumulation from
frame to frame.

To overcome these weaknesses, we propose to introduce statistical learning techniques
that let us build a model from a large set of training examples, that is, in our case, known
3D deformations. The resulting model then essentially performs linear or non-linear inter-
polation between the training examples.

Following this approach, we first propose a linear global representation that models the
behavior of the whole surface. As is the case with all statistical learning techniques, the ap-
plicability of this representation is limited by the fact that acquiring training data is far from
trivial. A large surface can undergo many subtle deformations, and thus a large amount
of training data must be available to build an accurate model. We therefore propose an
automatic way of generating such training examples in the case of inextensible surfaces.
Furthermore, we show that the resulting linear global models can be incorporated into a
closed-form solution to the shape recovery problem. This lets us not only track deforma-
tions from frame to frame, but also reconstruct surfaces from individual images.

The major drawback of global representations is that they can only model the behavior of
a specific surface, which forces us to re-train a new model forevery new shape, even though
it is made of a material observed before. To overcome this issue, and simultaneously reduce
the amount of required training data, we propose local deformation models. Such models

1



describe the behavior of small portions of a surface, and canbe combined to form arbitrary
global shapes. For this purpose, we study both linear and non-linear statistical learning
methods, and show that, whereas the latter are better suitedfor traking deformations from
frame to frame, the former can also be used for reconstruction from a single image.

Keywords: Computer Vision, Monocular 3D Reconstruction, DeformableSurfaces, Sta-
tistical Learning, Convex Optimization
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Résumé

La reconstruction 3D d’une surface deformable en vision monoculaire est un problème
pouvant s’appliquer à de nombreux domaines tels que le sport, le divertissement et l’imagerie
médicale. Malheureusement, en l’absence totale de connaissance des deformations qu’un
objet peut subir, ce problème est fortement sous-contraint, et des formes extrêmement dif-
férentes peuvent avoir des apparences très similaires une fois projetées dans une image.

Dans cette thèse, nous démontrons d’abord les ambiguïtés inhérentes à la reconstruction
à partir de correspondences entre une image de référence pour laquelle nous connaissons la
forme et une nouvelle image, puis nous proposons plusieurs façons de les surmonter. L’idée
centrale est qu’une certaine forme de connaissancea priori de la manière dont une surface
peut se deformer doit être introduite afin de résoudre ces ambiguïtés. Nous présentons donc
plusieurs formulations de cette connaissance variant de modèles très généraux à d’autres
spécifiquement construits pour un objet ou un matériau précis.

Dans un premier temps, nous proposons des contraintes générales formulées comme des
modèles de mouvement. Ces modèles lient simplement les déformations d’une surface
d’une image à la suivante dans une séquence vidéo. Un avantage évident de ces méthodes
est qu’elles sont indépendentes de l’objet en particulier.Cependant, pour être efficaces,
elles nécessitent la présence de texture sur toute la surface, et, de plus, présentent des
risques d’accumuler les erreurs d’une image à l’autre.

Afin de résoudre ces faiblesses, nous proposons d’étudier des méthodes d’apprentissage
statistique nous permettant de construire un modèle à partir d’une collection d’exemples
d’apprentissage, c’est-à-dire, dans notre cas, de déformations 3D connues. Le modèle
résultant consiste essentiellement en une interpolation linéaire ou non entre les données
d’entraînement.

En suivant cette approche, nous proposons dans un premier temps une représentation
globale linéaire qui modélise le comportement de la surfaceentière. Comme toutes les
méthodes d’apprentissage, cette representation est limitée par le fait qu’acquérir des don-
nées d’entraînement peut s’avérer très compliqué. Une grande surface pouvant subir des
déformations complexes, l’apprentissage du modèle requiert un grand nombre d’exemples.
Nous proposons donc une méthode automatique pour générer detels exemples dans le
cas de surfaces inextensibles. De plus, nous montrons que les modèles globaux résul-
tants peuvent être incorporés à une solution analytique au problème de reconstruction 3D.
Ceci nous permet donc non seulement de suivre les déformations dans une séquence vidéo,
mais aussi de retrouver la forme d’une surface à partir d’images individuelles, ce qui évite
l’accumulation d’erreurs.

L’inconvénient majeur des représentations globales est qu’elles ne peuvent modéliser le
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comportement que d’une surface spécifique. Ainsi, un nouveau modèle doit être ré-entraîné
pour chaque nouvelle surface, même si elle est faite d’un matériau observé précédemment.
Afin de surmonter ce problème, et simultanément de réduire laquantité nécessaire de don-
nées d’entraînement, nous proposons des modèles de déformation locaux qui décrivent le
comportement de petites portions d’une surface, et peuventêtre assemblés de manière à
former des surfaces globales de formes arbitraires. Pour cefaire, nous étudions des méth-
odes d’apprentissage statistique linéaires et non-linéaires, et montrons que, alors que les
secondes sont mieux adaptées au suivi de déformations d’image en image, les premières
peuvent aussi être utilisées pour la reconstruction à partir d’une image individuelle.

Mots-Clés: Vision par Ordinateur, Reconstruction 3D Monoculaire, Surfaces Deformables,
Apprentissage Statistique, Optimisation Convexe
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the ill-conditioned linear system into a well-conditionedone. The smaller
singular values have increased and are now clearly non-zero. Since our
motion model introduces more equations than strictly necessary, the other
values are also affected, but only very slightly. . . . . . . . . .. . . . . . . 63
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4.4 Reconstructing an 88-vertices mesh using perfect correspondences that were
corrupted using zero-mean Gaussian noise with variance five, which is
much larger than what can be expected of automated matching techniques.
Top: The original mesh and reconstructed one projected in the synthetic
view used to create the correspondences. As expected, the projections
match very closely. Bottom: The two meshes seen from a different viewpoint. 64

4.5 Distance between the original mesh and its reconstruction for each one
of the 9 deformed versions of the mesh of Fig. 4.4. We plot five curves
corresponding to vertex-to-surface distances obtained with variance one to
five gaussian noise on the correspondences. The distances are expressed as
percentages of the length of the mesh largest side. Note thatknowing the
final shape avoids having a monotonically increasing error.. . . . . . . . . 64

4.6 Reconstructing a deforming sheet of a paper from a 250-frames sequence.
Top: The reconstructed mesh is reprojected into the original images and
closely matches the outline of the paper. Bottom: The same mesh seen
from the side. In spite of local inaccuracies in depth, the overall shape is
correct, which indicates that the ambiguities have been successfully resolved. 65

4.7 Reconstruction results for a plastic sheet, which is much more flexible than
the sheet of paper of Fig. 4.6. In spite of this, the overall shape is again
correctly recovered up to small errors due to erroneous correspondences. . . 65

4.8 A cone of radiusγ is defined for each correspondence. It is centered in
the camera, and its axis goes through the image measurement.3D points
on the surface must reproject inside their corresponding cone on the image
plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Using a mesh imposes constraints on the reconstruction.(a) Without a
mesh, nothing would prevent the 3D points to perfectly matchtheir corre-
sponding image locations. However, this would yield a completely mean-
ingless shape. (b) The barycentric coordinates link several 3D points to-
gether, and thus impose a natural coherence between them. . .. . . . . . . 68

4.10 The SOCP formulation of the correspondence problems isvery sensitive
to outliers, since it minimizes theL∞-norm. (a) With a single outlier,
the minimum cone radiusγ remains very large, and thus allows the cor-
rect matches to reproject far from their corresponding image locations. (b)
Once the outlier is removed,γ can take a much smaller value, which yields
a much better shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.11 Reconstructing a piece of paper using only the correspondences constraints
of Section 4.4.1 but not the deformation constraints of Section 4.4.2. (a)
The reprojection of the mesh is correct. (b) However, the 3D shape as seen
from a side view is completely wrong because the depth ambiguities are
not properly resolved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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4.12 We predict that the orientation of the edge betweenvi andvj at timet + 1
will be the same as at timet. We then constrain the distance between vertex
vt+1

j and its predictioñvt+1
j to be less than some specified value. . . . . . . 71

4.13 Reconstructing an 88-vertices mesh with sharp folds using perfect corre-
spondences that were corrupted using zero-mean Gaussian noise with vari-
ance two. The shape of the reconstructed mesh (blue) corresponds very
closely to the original one (red). The meshes are seen from a different per-
spective than the one used to retrieve the shapes in order to highlight the
differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.14 We compare the results of our SOCP formulation (solid red) against those
obtained using CFSQP, a constrained non-linear least-squares minimiza-
tion (dashed blue) for the 50 frames of the synthetic sequence of Fig. 4.13,
for noise varianceσ = 1 and 2. In the top row, we show the distance
between the original mesh and its reconstruction. Both methods give sim-
ilar results but SOCP is about 50 times faster. In the second row, we give
the median reprojection errors. For both methods, they are less than one
pixel, even though CFSQP performs slightly better. Recall,however, that
SOCP does not precisely minimize the reprojection errors, but enforces the
reprojections to lie in a cone of a given radius. . . . . . . . . . . .. . . . . 73

4.15 Introducing non-convex inextensibility constraints, for noise varianceσ =
1 and 2. Since CFSQP can handle such constraints, we introducethem
into our CFSQP formulation and, as in Fig. 4.14, compare the results (in
blue) against those of SOCP (in red). In addition to being much slower,
CFSQP gives unstable results and fails to converge in some frames after
2000 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.16 Influence of the number of correspondences in each faceton the recon-
struction for noise varianceσ = 2. We decreased the number of corre-
spondences per facet from 10 to 1, and display the median (redline) and
maximum (blue crosses) values of the same errors as in Fig. 4.14. We show
the 3D distance errors in the left image, and the reprojection errors com-
puted for all 10 correspondences per facet in the right one. Note that the 3D
vertex-to-surface distance is little affected by the correspondences, whereas
the reprojection error decreases in a more noticeable manner, which is to
be expected, since, in the first cases, not all correspondences were used
during optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.17 Reconstructing a deforming sheet of paper from a 71 frames video and a
116 frames video. The mesh is reprojected in the image in the top row
and seen from a different perspective in the bottom one. Eventhough
no smoothness constraint was enforced, the algorithm correctly recovered
smooth deformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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4.18 Reconstructing the deformations of a piece of paper with two sharp folds
in it, so that that they are no longer smooth. Note that our method correctly
recovers the creases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.19 Recovering the deformations of a plastic bag with a sharp crease in it from
from an 86 frames video. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.20 Recovering more complex deformations of the plastic bag. The first two
rows depict the reprojection of the mesh into the original images and the
mesh seen from a different perspective as before. In the third row, we
overlay the mean curvature of the recovered surface on the images. The
high curvature areas, shown in red, correspond to the actualcreases that
can be seen in the top row. In the fourth row, we overlay the level-lines
of constantz on the images. We recommend viewing the last two rows in
color as they might be difficult to interpret on a greyscale printed copy. . . . 77

4.21 Recovering the deformations of a piece of cloth from a 50frames video. . . 77

4.22 Recovering the deformations of a piece of cloth with several folds. The
third and fourth rows depict the same curvature and level-line information
as in Fig. 4.20 and are best viewed in color. . . . . . . . . . . . . . . .. . 78

4.23 Another example of a different deformation of that samecloth in a 61
frames sequence. The third and fourth rows depict the same curvature and
level-line information as in Fig. 4.20 and are best viewed incolor. . . . . . 79

5.1 Hexagonal triangulations. (a) Rectangular mesh used tomodel a piece of
paper. (b) Triangular mesh used to model a spinnaker. (c) Stitching a
rectangular patch for the body part and two triangular ones for the sleeves
lets us model a t-shirt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Specifying the 3D shape of the rectangular mesh and subdvided triangle.
(a) We fix the shape of the bottom row from left to right by rotating each
facet with respect to its left neighbor. For each following row, we only need
to set the angle between the leftmost facet and the one below and the angle
between the rightmost facet and its left neighbor. (b) The angles between
the facets of the bottom row are first set from left to right. For each upper
row, only the angle of the first facet need be set. (c) Attaching two patches
together. Because the base of each triangular patch is attached to the body,
only one single angle is required to fully specify their firstrow. . . . . . . . 83

5.3 Determining the position of interior vertices by the intersection of 3 spheres.
The positions of solid lines triangles have already been computed. We seek
to determine the position of pointP. This can be done by computing the
intersection of 3 spheres of known radii centered inC0, C1, andC2, re-
spectively. This yields between two and zero solutions depending on the
configuration of the other triangles. . . . . . . . . . . . . . . . . . . .. . . 84
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5.4 Deformation modes of the meshes of Fig. 5.1. In all figures, y0, the average
mesh, is shown in red. The other two are obtained by taking a single mode
weight to be non zero. A positive value of that weight yields the green
mesh and a negative one the mesh shown in blue. Bending and extension
modes of (a) the flat rectangular mesh, (b) the triangular spinnaker, and (c)
the t-shirt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Image data. (a) An image from an input sequence. (b) One of15 images
used to build a textured 3D model of the spinnaker. For our experiments,
we added black scotch tape on the otherwise white parts of thesail to help
our wide-baseline algorithm to find correspondences between model and
input images such as those depicted by the black lines. (c) Contours de-
tected as texture boundaries. Even though the boundary is not correct ev-
erywhere, thanks to the model and robust estimation we stillrecover the
correct shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Fitting test surfaces created by varying the determining angles. Using 50
deformation modes proved sufficient to reconstruct the surfaces to a good
precision. (a,c) The original shapes are shown as shaded. (b,d) The fitted
ones are displayed as wireframes. . . . . . . . . . . . . . . . . . . . . . .89

5.7 Convergence using synthetic data. (a) Projections of the synthetic surfaces
used as input for the optimization process. (b) Examples of initializations.
(c) Median of the mean distances between the vertices of the recovered
mesh and the synthetic surface as a function of the number of correspon-
dences that were used. The measures are given as a percentageof the
longest side of the initial rectangle. We did not draw error bars because, as
soon as we used more than 50 matches, the first and third quartile of the
mean distances are indistinguishable from the median. . . . .. . . . . . . 90

5.8 Deforming a sheet of paper. Top row: Deformed mesh projected on the
original sequence as a wireframe. Bottom row: Deformed meshshown
as a wireframe model seen from a different viewpoint. Note that even the
back deforms correctly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 Another deforming sheet. Top row: Projected wireframe.Bottom row:
Deformed mesh shaded and seen from a different viewpoint. . .. . . . . . 91

5.10 Deforming fabric. The results are displayed in the samemanner as in
Fig 5.8. Since the fabric is highly textured, borders of the mesh are some-
times mismatched with texture edges, which results in smallmisalignments. 92

5.11 Tracking an inflating balloon with an extensible mesh. Note that the mesh
keeps on covering the same portion of the balloon. In the lastrow, we
re-textured the resulting mesh, and reprojected it into theimages. . . . . . 93

5.12 The inverse behavior as in Fig. 5.11 can be observed whenthe balloon
deflates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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5.13 Tracking an inflating balloon with an inextensible mesh. The portion of
the balloon covered by the mesh becomes smaller and flatter asthe balloon
expands. This also is a correct solution if we do not assume that the mesh
represents a particular portion of the object, but rather models the behavior
of a fixed size part, which is valid when relying on image-to-image matches
only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.14 Superposition of the initial mesh in red and the final onein blue. Left:
When extension is not penalized, the mesh increases as the balloon inflates.
Right: When we enforce the edges to remain of constant length, the surface
remains of same area, but becomes flatter. . . . . . . . . . . . . . . . .. . 95

5.15 3D model of the spinnaker overlaid on the three images used to compute
its reference shape and texture. In each image, we specified 10 correspon-
dences with a CAD model of the spinnaker and used them, along with
automatically detected silhouettes, to deform it. We assume that the spin-
naker did not deform in these images because they were taken in quick
succession by a chase-boat. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.16 Tracking a deforming sheet of paper and a t-shirt. In both cases, we show
the deformed 3D mesh overlaid on the original images in the top row and
then seen from a different viewpoint in the bottom row. . . . . .. . . . . . 96

5.17 Tracking a spinnaker with either one or two cameras. (a,b) Two synchro-
nized images from independently moving cameras, with recovered spin-
naker reprojection. (c) Tracking using only one camera. Note that, once
reprojected on the images, the results are almost indistinguishable. (d) 3D
results with two cameras. Both camera positions are also retrieved. (e) Su-
perposed 3D shapes retrieved using either one (red) or two (blue) cameras.
Note that both shapes are very similar, which indicates thatthe deformation
model provides a good approximation when data is missing. . .. . . . . . 97

5.18 Tracking an extensible surface undergoing anisotropic deformations. In the
top row, we show the original images and, in the bottom row, weoverlay
the recovered 3D grid that stretches appropriately. . . . . . .. . . . . . . 97

5.19 Evaluating the accuracy of our approach. (a,b,c): Images from videos ac-
quired using three synchronized and calibrated cameras. Image (b) belongs
to the video we used to monocularly reconstruct the 3D shape using our
method and, then, re-projecting it into the image. (d) We triangulated the
3D coordinates of the 10 keypoints shown as crosses by manually estab-
lishing correspondences in images (a) and (c). (e) We repeated this oper-
ation every 10 frames and plot the average differences between thex-, y-,
andz-coordinates of those manually computed and those derived from our
automated and monocular reconstruction. (f) We also computed the Eu-
clidean distances between the monocular reconstructions and the manually
computed points, and plot their medians together with values at 25% and
75%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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5.20 (a,b) Original and side views of a surface used to generate a synthetic se-
quence. The 3D shape was reconstructed by an optical motion capture sys-
tem. (c,d) Eigenvalues of the linear system written from correspondences
randomly established for the synthetic shape of (a). (c) Thesystem was
written in terms of 243 vertex coordinates. One third of the eigenvalues
are close to zero. (d) The system was written in terms of 50 PCAmodes.
There are still a number of near zero eigenvalues. (e) First derivative of the
curve (d) (in reversedx-direction). We take the maximum value ofNl to
be the one with maximum derivative, which corresponds to thejump in (d). 100

5.21 Lin-Log plot of the number of equations and number of unknowns as a
function of the number of Extended Linarization iterationsfor the case
of a 10 × 10 square mesh. Note that after 4 iterations, the number of
equations exceeds the number of variables, making the system, in theory,
solvable. However, the size of the system is of the order1012, which makes
its solution intractable in practice. . . . . . . . . . . . . . . . . . .. . . . 102

5.22 Shape recovery of a 200×200mm synthetic mesh imaged by a virtual cam-
era placed 20cm away from it. Each plot shows the mean vertex-to-vertex
3D distance between the recovered surface and the ground-truth as a func-
tion of its mean curvature. The three different curves in each graph corre-
spond to a varying number of correspondences per facet. Leftto right, the
number of outliers grows. Top to bottom, the gaussian noise added to the
correspondences increases. For each experiments, we plot the average over
40 trials. The last row shows in blue recovered shapes for theground-truth
surface of Fig. 5.20(a,b), shown in red. The corresponding mean vertex-to-
vertex distances are 9mm, 19mm and 38mm. This highlights thefact that
even for distances around 40mm, the recovered shape remainsmeaningful. . 105

5.23 Comparison of our closed-form results against the results of constrained
optimization. Optimization was performed on the vertex coordinates using
Matlab’sfmincon function, and starting from the flat position. (a) Mean
vertex-to-vertex distance. (b) Reprojection error. Constrained optimization
is both much slower and far less accurate than our approach. .. . . . . . . 106

5.24 3D registration of a folded bed-sheet to an individual image given a ref-
erence configuration. Top row: Recovered mesh overlaid on the original
image. Middle row: Synthesized textured view using the recovered shape.
Bottom row: Real side view of the sheet from similar viewpoints. Despite
lighting changes, the synthetic images closely match the real ones. . . . . . 107

5.25 Shape recovery of a bed-sheet. Top row: Recovered mesh overlaid on the
original image. Bottom row: Mesh seen from a different viewpoint. . . . . 108

5.26 Shape recovery of a piece of cloth. From top to bottom: Mesh computed
in closed-form overlaid on the input image, side view of thatmesh, refined
mesh after 5 Gauss-Newton iterations. . . . . . . . . . . . . . . . . . .. . 108
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5.27 Shape recovery of the central part of a t-shirt. From topto bottom: Mesh
computed in closed-form overlaid on the input image, side view of that
mesh, refined mesh after 5 Gauss-Newton iterations. . . . . . . .. . . . . 109

5.28 In such cases where a large part of the drawing on the t-shirt is hidden,
or where the image becomes too blurry, not enough feature points could
be found. We therefore fixed a threshold, and only recovered the shape in
images where we found a least 30 SIFT correspondences. Note that, since
we are not tracking the surface, this does not prevent us fromcorrectly
recover the shape in the other frames. . . . . . . . . . . . . . . . . . . .. 110

6.1 Advantages of the local models over global ones. (a) Highly flexible sur-
faces may undergo too complex deformations for the global models, whereas,
locally, these deformations remain relatively simple. (b)A new global
model must be learned for this surface even though it is made of the same
material as the surface in (a). Local models can be combined into surfaces
of arbitrary shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 We used an optical motion capture system to acquire real training data.
Left: We stuck reflective markers as a rectangular grid on thesurface of
interest. Right: We deformed the object in front of six infrared cameras. . . 116

6.3 Decomposing the surface into patches. In this case, the global surfacẽy is
composed of four overlapping patchesy1,..,4. . . . . . . . . . . . . . . . . 117

6.4 Validating the linear deformation models. We compute the mean of the
average vertex-to-vertex distances between test data and the model pre-
dictions, and plot it versus the number of modes. Top: The error for the
cardboard model (left) decreases faster than for the napkinone (right). This
corresponds to our intuition that fewer dimensions are necessary to model
the deformations of a more rigid material. Bottom: We tried to reconstruct
the napkin data using the cardboard model (left), as well as the opposite
(right). We can observe that, since the napkin is more flexible, its deforma-
tions are a superset of those of the cardboard, and thus can model it quite
accurately. This is not the case when trying to reconstruct napkin data with
the cardboard model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Validating the non-linear deformation models. The samereconstruction
error as in the linear case is computed and plotted as a function of the latent
dimension. Top: In the cardboard case (left), we chose latent dimension 4,
since it corresponds to the point where the error stabilizes. In the case
of the napkin (right), we chose to use dimension 7 because of convergence
problems during training in dimensions 8 and 9. These would have required
a larger number of inducing variables, which would have incerased the
computational burden. Bottom: As in the linear case, we can observe that
the cardboard models are unable to reconstruct napkin data,whereas the
inverse is possible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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6.6 We used Isomap to compute the low-dimensional embeddings of our card-
board (left) and napkin (right) data for different latent dimensions. We plot
the residual variances given by Isomap as a function of the dimension. This
confirms our choice of dimension 4 for the cardboard and 7 for the napkin. . 124

6.7 Synthetic images generated from optical motion capturedata (a) Shaded
view of a cardboard surface (b) Similar shaded view for a paper napkin.
(c,d) Images synthesized by texture-mapping using either arich texture or
a much more uniform one. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Comparison of the linear (dashed red) and non-linear (solid blue) mod-
els for cardboard using sequences of synthetic images. No penalization of
extension was used to obtain these results. Top row: For eachof the well-
textured images, we plot, on the left, the mean 3D vertex-to-vertex dis-
tance, and, on the right, the mean reprojection error of randomly sampled
surface points. Bottom row: Same plots for much less textured images.
Note that the non-linear models yield a better 3D reconstruction than the
linear ones. This is to be expected since they suffer less from the absence
of stretching penalty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.9 Same plots as in Fig. 6.8 for the napkin models. This time,the linear
models perform as well as the non-linear ones. This can be explained by
the fact that the deformations of a flexible material remain closer to the flat
shape than that of a more rigid one. Thus, even when stretching, the linear
models yield reasonable 3D errors, but visually less accurate shapes, as can
be checked from the last row of the figure which depicts the linear (left)
and non-linear (right) reconstructions of the same ground-truth (middle)
corresponding to frame 60 of the less-textured sequence. . .. . . . . . . . 126

6.10 3D reconstruction errors for the linear and non-linearmodels when us-
ing inextensibility constraints. Top: Mean vertex-to-vertex distance as a
function of time for the cardboard textured (left) and less-textured (right)
sequences. Bottom: Same plots for the napkin sequences. Note that in
both cases, the linear models strongly benefit from the inextensibility con-
straints, whereas the non-linear ones are less affected. . .. . . . . . . . . . 127

6.11 Reconstructing a rectangular piece of cardboard from asingle video. In
each of the three examples, we show the recovered surface overlaid in red
on the original images, and the surface seen from a differentviewpoint. As
shown in the top rows, a complete absence of texture leads us to retrieve
a surface that is plausible, but not necessary accurate. It is only one of a
whole family of equally likely solutions. However, this problem is fixed by
adding very little image information, as shown in the other two examples.
We then recover deformations that match the real ones. . . . . .. . . . . . 128
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6.12 Reconstructing a rectangular piece of cardboard from asingle video with
linear local models. In the first row, we show the surface recovered with
inextensibility constraints overlaid in red on the original images. In the
middle, we show a side of the surface recovered without penalizing stretch-
ing. In the bottom row, we can see that inextensibility constraints improve
the 3D shape, and therefore should be used in conjunction with the linear
local models. Note that we do not show the reprojection of thecompressed
surface, since it yields similar images as in the first row. . .. . . . . . . . . 129

6.13 Reconstructing a circular piece of cardboard with the same local models.
Note that assembling square patches only allows us to approximate the
object’s outline. This prevents us from using image edges, but does not
stop us from successfully recovering the deformations. In the middle row,
we show the results of the non-linear models, and in the bottom row, those
of the linear ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.14 Despite a very large occlusion, we manage to reconstruct a deforming piece
of cardboard in each frame of a sequence. Note that even if some small
reconstrution errors occur, the global shape neverthelessmatches the true
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.15 Reconstructing a much more flexible paper napkin. As opposed to card-
board, results obtained with non-linear models (first and second rows) are
better than with linear ones (third and fourth rows). This confirms our in-
tuition that complex deformations are non-linear. . . . . . . .. . . . . . . 130

6.16 Reconstructing a different deformation of the same napkin. Even though
there is little texture, the 3D shape of the surface is correctly recovered,
as shown in the bottom row where the surface is seen from a different
perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.17 Reconstructing a napkin of different topology with non-linear (top) and
linear (bottom) models. As with cardboard, assembling square patches
only allows us to approximate the outline of the hole, but still lets us recover
correct deformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.18 Modeling the napkin without explicitly accounting forthe hole. The local
models are replicated to cover the whole rectangular surface. Note that the
surface does not always reproject correctly, as can be seen at the hole upper
boundary. The hole creates discontinuities in the surface,which modifies
the global behavior. It should therefore be modeled explicitly. . . . . . . . . 132

6.19 Using local models to track the same extensible surfaceas in the global
case. In the top row, we show the original images, the second row dis-
plays our results with a global model, and in the bottom row, we show the
surfaces obtained with local models. Note that the improvement in texture
matching most probably comes from using template matching rather than
correspondences. Furthermore, the change of mesh resolution was only
introduced for convenience of use with the local models. . . .. . . . . . . 133
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6.20 Mean vertex-to-vertex distance (left) and mean reprojection error (right)
for the closed-form reconstruction using linear local models. The dashed
red curve corresponds to the closed-form solution, and the solid blue one to
the refined solution after optimization. Top row: The errorswere computed
for the textured cardboard sequence from correspondences synthetically
sampled on the facets of the mesh. Bottom row: Same plots for the textured
paper napkin sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.21 Similar plots as in Fig. 6.20, but with more realistic matches obtained with
SIFT [103]. Left: We plot the errors obtained with syntheticmatches
(dashed red) and with SIFT matches (solid blue) as a functionof time for
the cardboard case. Right: Same plots for the paper napkin sequence. . . . 136

6.22 We studied the influence of the number of modes by computing the solu-
tions with 20 modes rather than the original 75 ones. Left: Weshow the
errors obtained from synthetic matches with 75 modes (dashed red) and 20
modes (solid blue), and from SIFT matches with 20 modes (dotted black)
for the cardboard case. Right: Same plots for the paper napkin sequence. . . 136

6.23 Recovering the shape of a piece of paper. From top to bottom: Mesh com-
puted in closed-form overlaid on the input image, side view of that mesh,
refined mesh after 5 Gauss-Newton iterations. . . . . . . . . . . . .. . . . 137

6.24 Recovering more complex deformations of a piece of paper. From top to
bottom: Mesh computed in closed-form overlaid on the input image, side
view of that mesh, refined mesh after 5 Gauss-Newton iterations. . . . . . . 138

6.25 Reconstructing a sharp fold in a piece of cloth. From topto bottom: Mesh
computed in closed-form overlaid on the input image, side view of that
mesh, refined mesh after 5 Gauss-Newton iterations. . . . . . . .. . . . . 138

6.26 Recovering the shape of a plastic bag. From top to bottom: Mesh computed
in closed-form overlaid on the input image, side view of thatmesh, refined
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1 Introduction

Deformable surface 3D reconstruction from a single viewpoint is an active area of research
in the Computer Vision community. Whereas it seems easy for ahuman being to see the 3D
shape of an object, it becomes a challenging and ambiguous problem for computer-based
techniques. This is especially true when the sensor data is noisy, which is typically the case
when dealing with real images.

The goal of this thesis is therefore to study the ambiguitiesinherent to monocular 3D
deformable surface reconstruction and to propose ways of overcoming them. The common
thread in this work is that real surfaces do not deform randomly and cannot assume com-
pletely irrational shapes. As a consequence, one may introduce some knowledge of what
is feasible and what is not to constrain the recovery and remove the ambiguities. In the
various methods we present here, such knowledge ranges fromgeneric assumptions that
hold for most surfaces with potentially different physicalproperties to much more precise
ones that closely correspond to a specific material.

In the remainder of this chapter, we first describe in more details the problem we ad-
dress and some possible applications of the solutions we propose. We then summarize the
contributions of this thesis.

1.1 Problem Definition

In this work, we seek to recover the 3D shape of a non-rigid surface given an image, or
a sequence of images of the surface deforming in front of a single camera. Furthermore,
we assume that we have a reference image of the object of interest for which we know
the 3D shape. In practice, we may, or may not assume that the camera is fully calibrated
and remains fixed. Similarly, the reference image may, or maynot have been taken from
the same viewpoint or be the first image of the video sequence.Note that requiring a
reference image, even taken from a different angle, does notmean that we can use standard
stereovision techniques since the shape of the object is notthe same in both images. As
will be explained in more details in Section 3.3, the reference image is used to extract the
necessary texture information from which we can retrieve a 3D shape, but not triangulation
with the input image.

Apart from being a fascinating problem, non-rigid 3D shape recovery has applications
in many different domains:

• A first example is medical imaging. For the patient’s well-being, surgery tends to
become less and less invasive. This implies smaller and smaller cuts in the patient’s
skin, which do not give the surgeons a direct view of their work. They only leave
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(a) (b)

Figure 1.1: Surface reconstruction can be applied to medical imaging. (a) Schematic repre-
sentation of non-invasive surgery (b) Augmenting a scene with the reconstruc-
tion of a virtual liver [130].

enough space for small cameras to be introduced into the patient’s body. In such con-
ditions, the resulting images are of poor quality, and make the surgeons’ work much
harder. As shown in Fig. 1.1, having a full 3D representationof the organ’s surface
recovered from the images, or an augmented view of the organs, would certainly help
them greatly.

• Many sports could benefit from a system that reconstructs non-rigid 3D shapes from
video. For example, as shown in Fig. 1.2 (a,b), sailors want to analyze the effect of
their maneuvers on the shape of their sails, or, sometimes even more interestingly,
study the sails of their opponents. In this context, video presents a clear advantage
on other sensors that should be placed on the sail itself, thus changing its behavior.
Similarly, one might want to analyze how skis deform during arace to improve their
design, as illustrated in Fig. 1.2 (c).

• The entertainment industry could benefit greatly from improved techniques for video-
based shape recovery. In animation movies, video games, or special effects, many
things are still done manually, image after image. A lot of time could be saved if the
deformations of the clothes of animated characters, such asthose of Fig. 1.3, could
simply be obtained by filming a real person performing some motion, reconstructing
his or her clothes in 3D, and re-applying the resulting deformations to the animated
character. Similarly, as Augmented Reality becomes increasingly popular, it will
become increasingly important to accurately model the environment and its defor-
mations in order to correctly augment the scene with virtualobjects. For example,
this could be used to draw virtual advertisment logos on sportsmen’s clothes, or boat
sails, thus avoiding the need to physically print them and making easy to change
them as necessity dictates.

Unfortunately, recovering the 3D shape of a surface from a single view is an ill-constrained
problem. The high number of parameters and the noisy image information make it imprac-
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(a) (b) (c)

Figure 1.2: Many sports could benefit from 3D shape recovery.(a,b) Sailors are interested
in knowing the shape of their own sails, or of the opponents’ sails (c) Recover-
ing the shape of skis during a race could help improving theirdesign.

tical to solve without prior knowledge of the possible deformations that the surface can
undergo. All the above-mentioned applications therefore require the use of deformation
models, such as those we study in this thesis.

1.2 Contributions

In this work, we focused on the reconstruction of deformable3D surfaces from video se-
quences. As mentioned above, we assume that we are given an image of the surface in
which its shape is known and that we can establish point-to-point correspondences be-
tween that reference image and image sequences in which the surface deforms. Our goal is
to propose algorithms that are as generic as possible to reconstruct the deforming 3D shape
from such data and from additional cues such as surface contours, when available.

A necessary first step, which has been neglected in earlier works, is to study the ambi-
guities of the shape reconstruction problem in this context. To this end, we represent the
surface as a triangulated 3D mesh and use projective geometry techniques to show that
recovering its shape and motion from point correspondencesamounts to solving a linear
system whose unknowns are the 3D coordinates of the mesh vertices. The ambiguities stem
from the fact that this linear system is very ill-conditioned and that a whole subspace of
shapes can be considered as solutions. Additional knowledge and constraints are therefore
required to pick the right one.

We propose different ways of imposing such constraints. They range from very generic
ones that make minimal assumptions on the surface physical properties to much more spe-
cific ones that rely on learning these physical properties. The former are very generic but
only applicable when the image data provides information over the whole surface, which,
in practice, requires the surface to be very textured, as in Fig. 1.4(a,b), since we rely on
point correspondences. By contrast, the latter can operateeffectively on surfaces that are
far less textured, as depicted in Fig. 1.4(c,d), but requiredata from which we infer the
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(a) (b)

Figure 1.3: The entertainment industry could use 3D reconstruction from video for differ-
ent applications. For example, animating the cloth of virtual characters could
be guided by video, thus limiting manual intervention. Images were taken
from [26] and [15].

objects’ properties. The situations for which the various models we have proposed are
effective are summarized in Table 1.1.

Whether dealing with very textured deformable surfaces or relatively untextured ones,
our contribution is to completely formalize the 3D shape andmotion recovery problem and
to derive practical algorithms from this formalization. This is important because most real-
world surfaces combine textured and uniform parts, and practical solutions will have to
deal with this state of affairs. Conceivably, the algorithms that will eventually be deployed
will reconstruct the most textured parts of surfaces, learntheir physical properties from
these reconstructions, and use them to model the less textured parts.

In the remainder of this section, we briefly introduce the different ways to impose the
necessary constraints to overcome the ambiguities inherent to 3D shape and motion recov-
ery from single videos. They will be discussed in more details in the following chapters.

1.2.1 Motion Models

Given a surface of unknown physical properties, one of the most reasonable models is
to relate the deformation in the current frame to that in the previous ones. The resulting
dynamical model is, of course, very rarely exactly correct.However, for optimization
purposes, when one seeks to minimize some error defined as an objective function, such
a simple motion model can prove surprisingly effective. It relieves the need to enforce
surface smoothness, as is done in many current methods, and thus allows the recovery of
complex and possibly discontinuous deformations, such as those that result in sharp folds
and creases, as shown in Fig. 1.4(b).

More formally, in this work, we study two different motion models. The first one sim-
ply seeks to minimize the frame-to-frame motion in depth of the mesh vertices to avoid
implausible configurations. The second one involves formulating the reconstruction as
a Second Order Cone Programming (SOCP) problem solved usingstandard convex op-
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(a) (b) (c) (d)

Figure 1.4: Examples of the surfaces to which we applied our methods. (a) Textured sur-
face undergoing a simple deformation. (b) Methods relying on smoothness
assumptions would typically fail reconstructing such sharp creases. (c,d) With
much less textured surfaces, the shape of uniform parts mustbe infered from
that of the textured ones. This requires deformation modelsthat accurately
represent the properties of the surfaces.

timization techniques [21]. This ensures that the orientation of the mesh edges will not
change drastically between two consecutive frames of the video sequence.

1.2.2 Global Models

While very generic, the approach described above suffers from several limitations. First,
it provides no way to infer the shape of untextured parts of the surface. Second, penaliz-
ing image-to-image motion is only practical if one knows theshape in at least one frame
of the sequence, and does not prevent drift when one tracks from frame to frame. When
the surface’s physical properties can be modeled, these weaknesses can be overcome by
replacing frame-to-frame constraints by regularization ones within individual frames. We
will show that this not only gives us the ability to reconstruct the shape of the whole sur-
face, including untextured portions of it as shown in Fig. 1.4(c,d), but also allows us to
do this in closed-form in single images. In other words, given a set of correspondences,
we can compute the shape without any prior estimate. This is acritical ability if surface
reconstruction techniques are ever to be incorporated intoworking systems that must be
able to initialize and reinitialize themselves automatically.

Since accurately modeling the physics of a surface undergoing large deformations is
extremely complex, an effective way to derive appropriate regularization constraints is to
learn deformation priors from training examples. Given a set of deformed 3D shapes, we
seek to approximate their statistical distribution. This can typically be done in a space of
reduced dimension since the degrees of freedom of the mesh are usually coupled, which
makes the task easier.

The bottleneck in putting this approach into practice is theavailability of databases
of representative shape deformations, which must be quite large since representing de-
formable surfaces as triangulated meshes involves many degrees of freedom. In some
cases, the databases can be obtained by simulation, but not always. To overcome this lim-
itation, we introduce a novel approach to automatically synthesizing such databases for
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Well-
Textured
Surfaces

Poorly-
Textured
Surfaces

Frame-
to-frame
Tracking

Closed-
Form

Solution

Shape
Indep.

Sharp
Creases

Linear
Motion Models

+ - + - + +

SOCP
Motion Models

+ - + - + +

Linear
Global Models

+ + + + - -

Non-Linear
Local Models

+ + + - + -

Linear
Local Models

+ + + + + -

Table 1.1: Summary of what the different models presented inthis thesis can and cannot
handle.

inextensible surfaces. The idea is that the shape of an inextensible triangulated mesh can
be fully determined by a subset of the angles between its facets. Shapes are created by
randomly setting these angles, and are therefore directly registered to one another. We then
apply Principal Component Analysis (PCA) [81], a linear dimensionality reduction tech-
nique, to our database, and use the resulting deformation modes to recover the shape of
surfaces from images.

For this purpose, we first propose a simple least-squares optimization method that recov-
ers the shape in a video sequence by initializing the shape inthe current frame with that of
the previous one. However, this again means tracking the deformations from image to im-
age, and thus suffers from error accumulation, as before. Therefore, to avoid this issue, we
propose a closed-form solution to 3D reconstruction from individual images. As discussed
at the beginning of this section, it starts from the fact that, given a set of correspondences
between a reference image in which the shape is known and an input image in which it is
not, the set of possible shapes lies within a linear subspaceand can be expressed as a lin-
ear combination of vectors forming an orthonormal basis of that subspace. Assuming that
the surface is inextensible then implies that the edges of the mesh that represents it retain
their length, which translates into a set of quadratic equations on the coefficients of the
linear combination. This set of equations can be solved using techniques such as Extended
Linearization [40], thus providing us with the desired result.

1.2.3 Local Models

The approach described above is very effective when the goalis to model a specific surface
for which a model can be created and stored. However, this model cannot be directly
applied to any other surface whose rest shape is different, even if it is made of the same
material. This, nonetheless, can be solved by replacing theglobal models described above
by local deformation models that describe the behavior of small surface patches, which

30



1.3 Thesis Outline

Figure 1.5: Using global representations would involve learning two different models for
these surfaces, even though they are made of the same material. With local
representations, we can use the same model for both cases, and simply need to
combine them to form the correct global shapes.

can be combined into global models using a Product of Expertsapproach [64]. Not only
does this yield a single model per material, as opposed to oneper object shape, as shown
in Fig. 1.5, but it also reduces the necessary amount of training data, since small portions
of a surface can only undergo much simpler deformations thanthe whole surface itself.

Given training data obtained using an optical motion capture system, we learn local
surface deformations models as Gaussian Process Latent Variable Models [94]. This pro-
duces a low-dimensional latent representation of the localshape manifold together with a
mapping from this low-dimensional space to the high-dimensional one. This mapping is
entirely defined by a covariance matrix, which can be taken asa linear or non-linear func-
tion of the latent variables. To represent more accurately the manifold of local deforma-
tions, we first learned non-linear models. While the global models obtained by combining
these non-linear local models proved very effective at tracking deformations from frame
to frame, they were not suited for surface reconstruction from individual images as before.
We therefore turned to the simpler linear models that represent local deformations as lin-
ear combinations of deformations modes. Even though the resulting global models were
slightly less accurate, we found the linear approach to havetwo key advantages. First, the
local models are much easier to build and can be created even in the absence of training
data using the technique introduced in Section 5.1.2. Second, and more importantly, they
still allow for closed-form computation of the shape using the same approach as before.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 describes the related ap-
proaches found in the litterature. In Chapter 3, we formalize the reconstruction problem
and exhibit its ambiguities. In Chapter 4, we describe how toremove the ambiguities by
introducing frame-to-frame constraints in the reconstruction, first as linear constraints, and
then in a convex optimization framework. In Chapter 5, we present our global deformation
models and our method to automatically create the required training data. We show how to
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use them both for frame-to-frame tracking and for reconstruction from individual images.
Chapter 6 introduces our local models together with the corresponding shape recovery
framework. We then compare the various proposed methods in Chapter 7, and conclude in
Chapter 8 by summarizing our results and giving different future directions of research.
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2 Related Work

Modeling the behavior of non-rigid surfaces has been an active area of research for the past
twenty years. Many approaches have been proposed in the context of both Computer Vision
and Computer Graphics. These two fields are closely related,since Computer Vision aims
at solving the inverse problem of Computer Graphics, that isrecovering an object’s shape
as opposed to simulating an object’s deformations. It is therefore not surprising that similar
representations often appear in both domains.

The most popular geometry-oriented techniques can be roughly classified into physics-
based methods, statistical learning based approaches, andalternative shape representations.
While different from our approaches, these methods are strongly related to our own work.
As we will explain in more details in the remainder of this chapter, they suffer from weak-
nesses that we propose to overcome. However, their strengths inspired our work, which
makes them worth discussing in this thesis.

In addition to shape constraints, 3D reconstruction can rely on various sources of image
information, such as using multiple views, or shading. Eventhough in our own work we
mostly rely on texture and edges obtained from a single viewpoint, such information could
potentially be added to our algorithms to make them more robust. The goal of this work is
to study shape recovery from minimal inputs. However, in practice, one should always rely
on all the available sources of information. We therefore review the most relevant works
on these topics as they ultimately would be included in a working system. Note that these
methods could also benefit from our models, since they require conditions that are rarely
satisfied in real life.

2.1 Physics-Based Methods

The initial approach to modeling deformations of non-rigidobjects was inspired by me-
chanical engineering. The key idea is to model the behavior of an object by describing the
true physical laws that govern it. The pioneering work in this field [84] was introduced to
delineate 2D shapes in images, and was quickly extended to 3D[151, 152]. In this for-
malism, a global energy, built as the difference between an internal energy and an external
one, is minimized. The internal energy decribes the physical properties of the object, and
is typically separated into a bending term and a stretching term. The external energy cor-
responds to the image information. Image features act as external forces that deform the
surface of interest.
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2.1.1 The Finite Element Method

The formulation presented by Terzopoulos and his colleagues closely follows the standard
mechanical engineering procedures, where one seeks to study the deformations of struc-
tures such as beams, plates, shells, or full 3D bodies. The usual approach to tackle this
problem is to solve it via the Finite Element Method (FEM) [12, 183]. The structure of
interest is then modeled as a discrete set of elements, such as beams, triangles, or tetrahe-
dra, that are linked by their nodes. Following the laws of mechanics, mass, stiffness, and
damping matrices are built for each element, and assembled to model the whole structure.
One then seeks to solve the system of differential equations

Mü + Du̇ + Ku = f , (2.1)

whereu is the unknown displacement of the nodes,M, D, andK are the mass, damp-
ing, and stiffness matrices respectively, andf is the external forces. This models a full
dynamical behavior, and can be simplified to the static case by neglecting the displace-
ment derivatives. The matrices typically depend on material parameters, such as Young’s
modulus, Poisson’s ratio, shear modulus, and thickness of the structure.

When considering small deformations, that is bearly visible deformations, of a materially
linear object, the matrices in the previous equation remainconstant and the system can be
solved directly. However, the deformations have to be much larger to be observable in
images. The problem is then said to be geometrically non-linear. Additionally, the material
which the object is made of may exhibit a non-linear behavior, such as hyper-elasticiy,
or plasticity. In the presence of either of these two types ofnon-linearities, geometric
or material, the stiffness matrix becomes a function of the displacements, and the whole
problem becomes much more complex. Computing a solution is then very expensive and
often unstable due to phenomena such as buckling or criticalpoints that yield different
solutions.

In the non-linear case, several resolution methods have been studied. First, the Total La-
grangian approach, where the solution is computed startingfrom a reference configuration
that will remain unchanged throughout the computation. Second, the Updated Lagrangian
approach, where the solution is computed in several iterations for which the reference con-
figuration is replaced by the current solution. Finally, thecorotational approach, where
a large deformation is separated into rotations of the elements and small deformations.
Nowadays, the Updated Lagrangian and Corotational approaches are the most commonly
used.

2.1.2 Physics-based Methods for Computer Graphics

Physics-based methods quickly became very popular in Computer Graphics. An extremely
important area of interest is the modeling of clothes [69] because animated virtual char-
acters typically wear garments that deform as they move. In the absence of good de-
formation models, artists must manually design their shapein each frame of a sequence.
Physics-based models therefore constrain the feasible deformations of clothing, and make
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animation much easier. Several cloth models have been proposed, ranging from early ver-
sions [167, 119] that only achieved visually plausible results to much more accurate and
realistic models [26, 27].

Since the physics-based approach typically yields computationally expensive algorithms,
there has been a number of attempts at improving the resolution of such problems. More
specifically, a classical issue was that very small time steps had to be taken to avoid nu-
merical instabilities. Implicit time integration was therefore introduced to overcome this
issue [8]. A comparison of other approaches can be found in [168]. Other techniques have
been proposed to speed up the simulation process, such as theuse of the Boundary Element
Method [79], an alternative to FEM where the original differential equations are replaced
by integral equations over the boundary of the object.

Similarly as advances in mechanical engineering led to improved computer graphics
methods, subdivision surfaces [30, 45], already well-known in the graphics community,
were introduced to the mechanical engineering community inthe context of finite ele-
ments. They involve representing a surface with a coarse mesh, which can then be refined
following a subdivision scheme [102]. This reduced the complexity of the finite element
models, thus yielding more efficient representations [33].

Finally, accurate non-linear FEM was also studied in Computer Graphics for surgery
simulation purposes [126], and for general deformable objects modeling [65, 175, 9].
The corotational approach proved succesful in this contextof large deformations [112,
61], as well as other representations such as discrete shells [56], or invertible finite ele-
ments [78]. Accurate non-linear representations being very complex, simplifications have
been proposed to yield physically plausible deformations based on elastically coupled rigid
cells [20].

2.1.3 The Computer Vision Approach

At the same time as they were introduced in Computer Graphicsfor simulation and ani-
mation purposes, the physics-based models became highly popular in Computer Vision for
non-rigid motion analysis [83]. As in Computer Graphics, the purpose was to constrain
the deformations of an object to plausible ones only. However, the final goal is different
since, in Computer Vision, we seek to recover deformations,rather than simulate them.
This bears similarities with the so-called inverse problemin the FEM, where one seeks to
recover the forces that generated a certain shape, rather than to apply a force to deform an
object.

Many variations of the physics-based models were proposed to reconstruct shapes from
images. Among them, balloons [34, 35] were introduced to solve some issues of the origi-
nal Snakes [84]. The key idea was to modify the external forces that deform the curve,
and add an inflation force that makes the curve, or surface, expand. Deformable su-
perquadrics [150, 108] were proposed to reconstruct more complex shapes by modeling
both global and local deformations. Finally, another approach [105, 106] proposed to fol-
low more closely the FEM formulation, and to model a deformable surface as a thin-plate

35



2 Related Work

under tension. Surveys of the different formulations are available in the field of medical
imaging [107] and in a more general context [110]. Furthermore, the use of the Boundary
Element Method has also been advocated to track deformable objects in 2D [54] and in
3D [55].

Modeling a surface as a finite element mesh yields representations that are of high di-
mensionality, since the meshes can be formed of many vertices, which, in conjunction with
the computationally expensive FEM resolution methods, makes the problem impractical.
To overcome these weaknesses, modal analysis emerged from the mechanical engineer-
ing community to reduce the number of degrees freedom by coupling the existing ones
through vibration modes. These vibration modes are obtained by solving the generalized
eigenproblem

Kφ = ω2Mφ , (2.2)

whereK andM are the stiffness and mass matrices of Eq. 2.1, and the individualφ andω
define a mode and its frequency. The displacement of the mesh nodes is then given as

u =

m
∑

i=1

wiφi , (2.3)

wherewi corresponds to the amplitude of modei. In the full case,m = 3×number of
nodes. Since the modes with lower frequencies have more influence on the global shape
of the surface, it is a valid approximation to discard the ones with higher frequencies, thus
yielding a lower-dimensional problem.

Its ability to reduce the number of degrees of freedom quickly made modal analysis
popular in the Computer Vision and Computer Graphics communities. Initially intro-
duced for image segmentation [122, 123], it was also succesfully applied to medical imag-
ing [114, 113, 115]. While computationally efficient, modalanalysis as applied in com-
puter vision assumes a constant stiffness matrix, which implies linearly elastic deforma-
tions. This however never is the case, since it is only true for barely visible deformations.
Such models are therefore only rough approximations of the true non-linear behavior.

There has been some interest in better modeling the true physics of deformable objects
via the non-linear finite element method in Computer Vision.However, unlike in Computer
Graphics where one can tune the forces and material parameters that yield good deforma-
tions, recovering the shape of a surface from images requires a stable objective function
to minimize. Some approaches have nonetheless been proposed for fitting a mesh to 3D
range data [70, 80, 157], or for video-based shape recovery [158, 15]. However, these
methods follow an analysis-by-synthesis approach, and manually set simulation parame-
ters, until the ones that give the resulting shape that best matches the data are found. Only
recently [75] has a true non-linear FEM formulation been proposed to recover the defor-
mations of beam structures in the image plane, where image features act as forces, as was
originally proposed for the Snakes. However, to the best of our knowledge no similarly ac-
curate model has yet been demonstrated in the case of automatic 3D surface shape recovery
from noisy image measurements.
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2.1.4 Relations to our Work

The physics-based approach is very attractive, since it aims at modeling the true behavior
of an object. Nonetheless, it suffers from several weaknesses. First, computing the appro-
priate matrices relies on the knowledge of material parameters which are often unknown.
Second, building an accurate model is as much an art as a science, and even mechanical en-
gineering experts often have to manually tune their models.Finally, optimizing such mod-
els yields computationally expensive algorithms whose objective functions exhibit many
local minima.

However, modal analysis is strongly related to some of the approaches we studied in this
work. Representing the deformations of a surface as a linearcombination of modes yields
effective low-dimensional models. Since this still requires potentially unknown physical
constants, we will build such models following a statistical learning approach. Nonethe-
less, the general idea remains the same, and the resulting vibration modes look similar, as
shown in Chapter 7. Furthermore, FEM models attempt to describe the local relationships
between neighboring vertices of a mesh. Our local models follow a similar purpose, but in
a statistical learning context.

2.2 Learned Global Models

Due to the complexity of accurately modeling the physics of highly deformable surfaces,
statistical learning approaches have become an attractivealternative that takes advantage
of observed training data. Active Shape Models (ASM) [38] are an early example of
such models. They avoid the application-specific tayloringof the Snakes [84] to delinate
shapes from images. Rather than guessing unknown material parameters, shape statistics
are learned from available examples and used to constrain the deformations of contours.

2.2.1 Statistical Learning Methods

Many surface parameterizations rely on a large number of degrees of freedom. This, for
example, is the case when specifying the shape of a triangulated surface in terms of its
vertex coordinates. However, these degrees of freedom are often coupled and therefore
lie on a much lower-dimensional manifold. Rather than explicitly adding constraints to
the problem at hand, the core idea behind statistical learning is to express the problem in
terms of its low dimensional representation, thus implicitly enforcing the constraints. The
different methods are divided into linear and non-linear ones.

In the linear dimensionality reduction case, an exampley is linked to its latent, possibly
low-dimensional, representationx through the linear relationship

y = y0 + Sx + ǫ , (2.4)

wherey0 is the mean data value, andǫ accounts for noise, usually taken as gaussian dis-
tributed. The matrixS contains the new basis vectors, which can be obtained by several
different techniques.
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The best-known method is Principal Component Analysis (PCA)[81], where the columns
of S are taken as the eigenvectors of the data covariance matrix.In the context of non-rigid
surfaces, this naturally sorts the deformations from low tohigh frequencies, as was the case
with modal analysis. A probabilistic interpretation of PCAwas also introduced [153], in
which the distribution of the data in the new space is built from the eigenvalues of the data
covariance matrix. Other standard examples of linear dimensionality reduction techniques
are Independent Component Analysis (ICA) [36] where the basis is chosen as to minimize
the dependencies between its components, and Canonical Correlation Analysis (CCA) [68]
whose basis vectors are taken as the least correlated ones.

In many cases, however, the low-dimensional manifold onto which the training examples
lie is not linear. Therefore, a linear model gives high probabilty to truly unlikely data,
or vice-versa. As a result, several non-linear dimensionality reduction techniques were
introduced. The initial method was kernel PCA [134], where PCA was applied in a higher
dimensional feature space, related to the input space through a non-linear mapping based
on kernel functions.

In a different context, several geometry-based techniqueswere proposed to retrieve
the shape of the low-dimensional manifold. Isomap [149] andLocally Linear Embed-
ding (LLE) [132] were introduced simultaneously, and both rely on k-nearest-neighbors
to learn the latent representation. The former finds a low-dimensional space that enforces
the geodesic distances between pairs of points to remain unchanged, whereas the latter as-
sumes that a complex manifold is locally linear and tries to unfold it to a lower dimension.
Other techniques such as Laplacian Eigenmaps [14] have since been proposed to overcome
the weaknesses of Isomap or LLE. A common failure of these techniques is the absence
of an inverse mapping from the low-dimensional space to the high-dimensional one. Such
a mapping must then be learned separately, in terms of RadialBasis Functions (RBF) for
example, which makes such non-linear techniques prone to errors both in the direct and the
inverse mappings.

An alternative, possibly non-linear, learning technique is the Gaussian Process Latent
Variable Model (GPLVM) [94], which was originally introduced as a generalization of
probabilistic PCA. It introduces a mapping from the low-dimensional latent representation
to the high-dimensional one written as,

y =
∑

i

wiφi(x) + ǫ , (2.5)

wherewi are the weights of the possibly non-linear functionsφi of the low-dimensional
representation of the manifoldx. Since this mapping is linear in terms ofwi, these weights
can be marginalized out. For any functionk that results in a non-negative definite kernel
matrix K, such thatKi,j = k(xi,xj), this marginalization yields a conditional density
which corresponds to a product ofD Gaussians with covarianceK, and can be written as

p(Y |X,Θ) =
1

√

(2π)ND|K|D
exp

(

−
1

2
tr

(

K−1YYT
)

)

, (2.6)
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whereY andX are the matrices containing theN D-dimensional training examples and
their latent representations respectively, andΘ contains the kernel hyper-parameters.

Several variations of the original GPLVM have been proposed. First, they have been
adapted to account for dynamics, thus yielding the GaussianProcess Dynamical Model
(GPDM) [169]. A weakness of the GPLVM is that the kernel function is defined between
each of the latent variables of the training examples, whichmakes them computationally
expensive. To overcome this issue, sparse representationshave been proposed [96], where
the kernel is defined in terms of a much smaller number of inducing variables. Finally,
recently, a Hierarchical Gaussian Process Latent VariableModel (HGPLVM) was intro-
duced [97] to express conditional independencies in the data.

2.2.2 Learned Models for Non-Rigid Modeling

In Computer Vision, the linear learning techniques quicklybecame very popular. The
original Active Shape Models [38] were quickly extended to full 2D Active Appearance
Models (AAM) [37, 104] to track 2D face deformations. In thiscase, the model is separated
into shape and texture components, both modeled as linear combinations of basis vectors.
Adaptations of this were also proposed to group appearance and shape in a single vector and
to mix physics-based approaches with statistical learning[116]. The AAM were quickly
turned into Morphable Models [19] designed to recover the full 3D shape of a face. They
were used both to model the shape of the head of a new person in aneutral expression [131,
44] and to model various expressions of a same face [18]. Theywere combined to AAM
to further account for appearance of the face instead of shape only [176].

The linear models have also been learned for non-rigid structure-from-motion [25]. The
basic idea of this approach is to recover the 3D motion of points tracked throughout a
video sequence. To prevent the 3D points from moving completely independently, their
relative deformations are modeled as a linear combination of basis vectors. Such basis
shapes can either be known a priori [1], or learned online [24, 156, 154] and their number
automatically determined [10]. The standard approach relied on an orthographic camera
model, but was extended to perspective camera [101, 164]. Other works showed how non-
rigid structure-from-motion could also be used for recovering the relative motion of several
rigid objects [177, 178]. A weakness of non-rigid structure-from-motion techniques is their
sensitivity to missing data. Since they rely on tracked points, they typically tend to fail in
real-life conditions, where points may disappear. Only very recently has this problem been
alleviated by using hierarchical priors [155]. The remaining drawback of such methods is
that they require a sufficiently long video sequence to inferdeformation modes. This limits
their applicability to relatively simple deformations.

In the context of articulated body tracking, statistical learning techniques have similarly
been studied. A first approach [16] used linear models in 2D for tracking and recognizing
hand gestures. This was further used to track the whole humanbody in specific motions,
such as walking [140] or golf swings [159]. In these cases, PCA was applied to motion
sequences rather than static poses. The human body models used were very rough ap-
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proximations of true human shapes, which was improved upon since by using the SCAPE
model [5, 7] that relies on PCA modes to describe body shape. Human body poses and
motions were quickly found to be lying on highly non-linear manifolds. Therefore, several
methods investigated the use of the GPLVM to model [57], and track [161, 117] such mo-
tions. Further applications were proposed to introduce dynamics in such non-linear models
through the GPDM [160], and, recently, through the HGPLVM [4].

2.2.3 Relations to our Work

Learned models have proved very effective for many applications. They alleviate the need
of unknown material parameters while yielding accurate representations of objects or ma-
terials statistics. However, some issues remain unsolved.First, gathering enough examples
to build a meaningful database represents a very significantamount of work, especially in
the case of highly deformable surfaces having many degrees of freedom. Second, regis-
tering the examples typically involves a painstaking process. In the case of faces [19] for
example, laser scans first had to be aligned and then remeshedin order to have the same
topology. Finally, all the proposed methods learn global models, which makes them valid
only for a particular object. In the case of non-rigid surfaces, it would be more appropriate
to model the behavior of a specific material than that of an individual surface, as is the
case with physics-based approaches. These are some of the issues that we addressed in this
work.

2.3 Alternative Shape Constraints

Physics-based models and statistical learning methods have been intensely researched for
deformable surface modeling purposes. However, many different shape constraints and
parameterizations have also been studied. Again, several of these approaches were first
introduced in the Computer Graphics field for simulation purposes, and were later adapted
to recover deformations from images.

2.3.1 Using Control Points

Modeling a deformable surface as a triangulated mesh typically yields many degrees of
freedom. However, as mentioned earlier, many of these degrees of freedom are coupled,
which can be enforced by using physics-based constraints orby representing the deforma-
tions as a combination of basis shapes. An alternative solution to modeling this coupling
is to represent the motion of all mesh vertices as a function of a much smaller number of
control points. The fine mesh is then obtained by interpolating the deformation between
these control points.

One way to achieve this is through the use of Free-Form Deformations. Originally
introduced for animation purposes [135], they were quicklyadapted to recover shapes
from images [43]. Interpolation can be done through Bézier volumes [39], polynomial
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curves [170], or B-splines [90, 48, 49]. A disadvantage of standard free-form deformations
is their lack of ability to model local deformations. This was overcome by introducing
Dirichlet Free-Form Deformations for animation of a hand [109], but also for computer
vision purposes [72, 74]. A remaining drawback of free-formdeformations techniques is
that there is no automated way to create appropriate sets of control points.

An alternative to explicitly relying on control points thatdefine the shape of a surface is
the multi-resolution approach [66]. In this case, the deformation of an initial coarse mesh is
computed, and, following a subdivision surface approach [30, 45], the mesh and its defor-
mations are then refined. Several subdivision schemes have been proposed [102, 47, 87].
Such multi-resolution approaches were also used with dynamic vertex connectivity [88],
and for mesh editing [184]. In the latter context, criticismwere made that the editable re-
gions were restricted by the initial coarse mesh. Laplaciansurfaces [144, 181] were thus
proposed to overcome this problem. To the best of our knowledge, multi-resolution meth-
ods have not been applied in the context of image-based shaperecovery. A drawback of
these techniques is that the surface is interpolated, whichtends to yield visually pleasing
results but may not correspond to what is observed in images.

2.3.2 Imposing Additional Constraints

Several constraints have been applied to the particular case of developable surfaces. The
properties of such surfaces, such as isometry and vanishingGaussian curvature have proved
effective to recover their shape from single views [58]. More precise constraints, such as
parallelism of lines, have been used to flaten curved documents in images [100]. A quasi-
minimal parameterization of such surfaces was introduced [124]. In this work, the shape
of a developable surface was modeled as a function of the end points of its directix lines.
Finally, a recent work [125] proposed to set bounds on distances between feature points to
reconstruct inextensible surfaces. However, this only reconstructed sparse points and the
final surface shape was obtained with a thin-plate splines model, which relies on unknown
parameters.

In this thesis, we will also study the use of inextensiblity constraints to help image-based
recovery. As we will show later, representing the shape of a surface as a linear combina-
tion of modes does not enforce inextensibility. We will therefore prevent the mesh from
shrinking or stretching by explicitly introducing such constraints into our algorithms. Addi-
tionally, we will introduce our own alternative constraints, and study how simple dynamics
can help 3D reconstruction from video sequences. This approach differs from the existing
techniques, and will result in two very generally applicable motion models.

2.4 Alternative Image Constraints

In addition to studying various shape constraints to improve the accuracy of 3D reconstruc-
tion, using as many sources of image information as possiblehas also been an important
research direction. Most standard approaches, including ours, rely on texture, which will
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be presented in more details in the rest of this thesis. However, other image cues some-
times are available. The most popular ones are triangulation from multiple views, shading
information, and silhouettes. They are usually combined and applied in conjunction with
shape priors to make the reconstruction more robust.

In this work, we focused our research on the monocular case and relied on texture and
silhouettes only. Working in such poor conditions will yield much more generally appli-
cable models, which could be used in conjunction with additional sources of information.
Ultimately, to build a working system, one should always rely on as much information as
possible. However, by developing models that are effectivein poor conditions, we ensure
that they would still be effective in less challenging ones.

2.4.1 Multiple Views

Multiple view geometry has been of huge interest in ComputerVision to solve problems
such as object pose estimation, relative camera pose estimation, and 3D shape reconstruc-
tion [60]. When such information is available, it thereforeseems natural to rely on several
views to reconstruct the shape of non-rigid surfaces, sinceit effectively constrains depth
and mirrors what happens in human vision. Note, however, that deformation models are
still useful to fill the untextured or occluded parts of the surface.

Stereo reconstruction relies on establishing correspondences between points across the
different views. These methods have been applied to reconstruct abitrary scenes with no
prior knowledge of their content [51, 29, 163]. Shape recovery has also been performed
by fitting a known model to noisy stereo data [73]. A survey of multi-view reconstruction
techniques can be found in [137].

Recently, there has been an increasing interest in relying on stereo to recover the complex
shapes of clothes [146]. This constitues a very hard application, since the folds and wrin-
kles of clothing produce many self-occlusions, and make simple matching techniques fail.
Various matching techniques have been proposed, such as spherical matching [145], as well
as different shape representations such as Laplacian surfaces [42]. Such clothes motion
capture has been succesfuly applied with specific markers printed on the garments [171],
and very recently in the absence of such markers [23].

2.4.2 Shape from Shading

Another source of shape information is shading, especiallyfor relatively untextured ob-
jects, such as faces that display few reliable feature points. Shape-from-shading [67] was
originally formulated in the context of Lambertian surfaces of unknown albedo, with a sin-
gle distant point light source. The goal of this approach wasto recover 3D shape from a
single image taken with a fully calibrated camera. Many variations [180] have been pro-
posed since, but shape-from-shading algorithms still suffer from a number of limitations.
Most of them depend on very restrictive assumptions that limit their applicability. Fur-
thermore shape-from-shading is known to suffer from the Bas-Relief Ambiguity [13]. The
same appearance can be obtained by applying a specific class of transformations to the
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shape and to the albedo of the surface. This is also true in thepresence of several distant
light sources or with an unknown viewpoint [179].

Various generalizations of the original Lambertian model were proposed [120, 129] to
remove some of the most severe limitations. The use of interreflections, initially ignored,
was introduced [118, 50]. They were shown to help solving forthe Bas-Relief Ambigu-
ity [31]. Additionally, the effects of shadows [89] and specularities [121] on the accuracy
of the reconstruction were studied. Nowadays, the Lambertian assumptions tend to be
replaced by more accurate models [3].

Shading information has been used in conjunction with othersources of information,
such as stereo [17, 98]. This was successfully applied for cartographic modeling purposes
in conjunction with a 3D mesh representation of the terrain surface [52]. Similarly, lighting
information was combined with deformable models to reconstruct faces [133], and to re-
cover the shape of non-rigid surfaces in 2D [173] as well as in3D [172]. In this last work,
shading was shown to help reducing the ambiguities arising from relying on texture only.
Recently, shadows were used to improve human body pose recovery assuming sufficiently
strong lighting such that they could act as a second image taken from a different camera [6].

Photometric stereo [174] also relies on lighting information, but differs from shape-from-
shading by using several images taken under different lighting conditions. It is far more
reliable and yields outstanding reconstructions when available, but requires an elaborate
setup. As for shading, the influence of specularities were studied in photometric stereo [46].
Examples-based approaches were applied to recover the shape and material type of objects
from images [63]. Recently, it was successfuly applied to the motion capture of clothes
undergoing complex deformations through the use of coloredlights [62].

2.4.3 Shape from Silhouettes

Silhouettes and contours of an object also provide excellent hints as to its shape. In the
case of deformable surfaces, these silhouettes can either be true surface boundaries that
physically exist or occluding contours that depend on the viewpoint. The standard ap-
proach is to detect these silhouettes in images and minimizethe distance between them
and the projected object contours. Extraction of the contours can be done by simple edge
detection [28], or by more sophisticated methods such as Active Contours [84] or space
carving [91].

In the context of non-rigid surfaces, occluding contours were used to reconstruct 3D
objects from images [162, 32, 165, 22, 148]. They were used asexternal image forces
to deform physics-based models [150]. They were also combined with texure for multiple
view reconstruction [41]. In our own work [76, 77], we used animplicit surface formulation
to detect occluding contours and use them to deform various objects such as an upper body,
or a piece of paper in conjunction with inextensibility and smoothness constraints. Finally,
silhouettes have also proved very effective for human body tracking [142, 2].
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2.5 Summary

Many approaches have already been proposed to recover the shape of deformable surfaces
from video. However, each of these approaches has its weaknesses. For physics-based
models, material parameters must be known in advance, and accurate non-linear FEM mod-
els have proved too complex to be of practical use in our field.Existing learned models
rely on training data, but without proposing convenient ways of generating them, and al-
ways are global models only applicable for a specific object.Finally, methods interpolating
between control points provide no guarantee of modeling thetrue object’s behavior, and
constraints for developable surfaces are not generally applicable.

Nonetheless, the existing approaches also have strengths from which we can inspire
our work. Modeling local relations between neighboring vertices, as in the physics-based
approach, allows for re-usability of the models. Representing deformations as linear com-
binations of modes, as in modal analysis, yields effective low-dimensional models, which,
when learned from data, do not even need material parameters. Finally, inextensibility
constraints are very generally applicable, and, while not sufficient on their own, effectively
help disambiguating the reconstruction problem.

In this thesis, we therefore propose to take advantage of thestrengths of the existing
methods, while overcoming their weaknesses. For this purpose, we will study several solu-
tions to the reconstruction problem that range from very generic motion models to learned
deformation models that more accurately correspond to a specific material. Furthermore, to
remain generic, we will only rely on texture and edges. This will prevent us from having to
make strong assumptions, as required by shape-from-shading, or to rely on multiple views
which may not always be available. Nonetheless, when such information is at hand, noth-
ing will prevent it to be introduced in our algorithms, thus yielding an even more robust
system.
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Problem

In this work, our overriding goal is to overcome the ambiguities inherent to monocular 3D
deformable surface reconstruction and to incorporate solutions into robust algorithms. The
first key step is therefore to formalize these ambiguities. To this end, we consider the case
where the image information only comes from correspondences between a reference image
for which we know the shape and the input image. This lets us write down the basic equa-
tions of shape recovery and exhibit its underlying ambiguities. Since, in practice, relying
on correspondences only may not be sufficient, we present alternative image measurements
that have been used in the experiments of this thesis. Nonetheless, these new measurements
only avoid having additional ambiguities, and still leave the initial ones unsolved.

3.1 3D-to-2D Correspondences

The primary source of image information used in this work is texture. More specifically,
most of our methods rely on correspondences between a reference image and an input im-
age as depicted in Fig. 3.1. Several reasons motivated this choice. First, establishing corre-
spondences between two images does not involve strong assumptions, apart from requiring
the surface to be textured. This is in contrast with other approaches such as shape-from-
shading. Second, given a reference image, it can be done froma monocular input and
thus suits our purpose to remain as generic as possible. Finally, correspondences can be
obtained from individual images, as opposed to a video sequence, which lets us go beyond
developping tracking algorithms.

Detecting feature points in images has been of interest for awhile in the Computer
Vision community. In this work, we rely either on the SIFT keypoints detector [103] or
on Harris’s corners detector [59]. Once feature points havebeen detected in two images,
they need to be matched to produce correspondences. When using SIFT, this can be done
by a simple dot-product between specific vector representations of the feature points. For
Harris’s corners, methods based on randomized-trees have proved efficient [99]. From a
large set of views obtained by applying random affine transformations to a reference image,
a tree that models the relationships between neighboring keypoints is built. Each leaf-node
of the tree then corresponds to a specific keypoint, and matching can done by dropping the
feature points of a new image down the tree.

In both cases, we match the current image of interest with thereference image, in which
the 3D shape and the camera calibration are known, as depicted in Fig. 3.2. Under such
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Figure 3.1: Correspondences between a reference image and an input image. The point-to-
point correspondences are shown as red lines going from the first image to the
second one.

assumptions, we can compute the 3D locations of the feature points on the reference image,
by intersecting the ray between the camera center and the 2D image measurement with the
facets of the triangulated mesh. This lets us represent a 3D point in terms of its barycentric
coordinates with respect to the vertices of the facet intersected by the ray. This yields 3D-
to-2D correspondences for the current image, where the 3D positions of the feature points
are defined with respect to the unknown 3D positions of the mesh vertices. To recover
the 3D shape, the idea is then to find the position of the mesh vertices that minimizes the
distance between the detected 2D features and the 3D points locations projected into the
image.

3.2 Single-Image Ambiguities

In this section, we show that recovering the 3D shape of a non-rigid surface from 3D-to-2D
correspondences amounts to solving an ill-conditioned linear system. We then show that
the degeneracies, or near-degeneracies, of this system correspond to depth ambiguities that
can be explained in terms of a piecewise affine projection model. Since we use a single
camera and assume its internal parameters to be known, we express all world coordinates
in the camera referential for simplicity and without loss ofgenerality.

3.2.1 Ambiguities under Perspective Projection

We now show how computing the 3D mesh vertex coordinates given 3D-to-2D correspon-
dences can be formulated as the solution of a linear system and discuss its degeneracies.
We start with a mesh containing a single triangle and extend our result to a complete one.
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Figure 3.2: Obtaining image correspondences. A feature point is detected in the reference
image, shown in the middle. Knowing the reference 3D shape ofthe mesh, on
the left, and the camera projection matrix, we can retrieve the facet to which the
feature point belongs, and define it in terms of its barycentric coordinates. The
feature point can then be matched against points detected inthe input image,
shown on the right. This yields 3D-to-2D correspondences interms of the
unknown 3D mesh vertices in the input image.

3.2.1.1 Projection of a 3D Surface Point

Let qi be a 3D point on the surface of interest. We write its perspective projection as
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, (3.1)

whereA is the internal parameters matrix, andki a scalar accounting for depth. Since we
assume that the camera and world referential are aligned, the camera rotation matrixR is
the 3×3 identity matrix,I3×3, and the translation vectort is zero.

If qi lies on the facet of a triangulated mesh, it can be expressed as a weighted sum of
the facet vertices. Eq. 3.1 becomes
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 = A(aiv1 + biv2 + civ3) , (3.2)

wherevi ,1≤i≤3 are the vectors of 3D vertices coordinates and(ai, bi, ci) the barycentric
coordinates ofqi.

3.2.1.2 Reconstructing a Single Facet

Let us assume that we are given a list ofNf
c such 3D-to-2D correspondences for points

lying inside one single facet. The coordinates of its verticesvi ,1≤i≤3 can be computed
by solving the following equation where theki are treated as auxiliary variables to be
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recovered as well
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ForNf
c > 4, if the columns ofMf had become linearly independent, the system would

then have had a unique solution. However, this is not what happens.
To prove thatMf is rank-deficient, we show that its last column can always be written

as a linear combination of the others as follows. From Eq. 3.2we can write
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This implies that the last column of the matrixMf of Eq. 3.3 is indeed a linear combination
of the previous ones with coefficients(λT

1 , λT
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). In the

general case, none of these coefficients is zero. Furthermore, becauseA has full rank
and the barycentric coordinates are independent in general, the first 9 columns ofMf are
linearly independent. Thus, given the particular structure of the right half ofMf , trying to
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3.2 Single-Image Ambiguities

write any column as a linear combination of the others but thelast one would yield wrong
values on the last three rows, which could only be corrected by using the last column. This
implies that, in general,Mf has full rank minus 1.

3.2.1.3 Reconstructing the Whole Mesh

If we now consider a mesh made ofNv > 3 vertices with a total ofNc correspondences
well-spread over the whole mesh, Eq. 3.3 becomes

Mm
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= 0 , (3.5)

with

Mm =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a1A b1A c1A 0 ... ... −

2

4

u1

v1

1

3

5 0 ... ... ...

... ... ... ... ... ... ... ... ... ... ...

0 bjA cjA djA 0 ... 0 −

2

4

uj

vj

1

3

5 0 ... ...

... ... ... ... ... ... ... ... ... ... ...

alA 0 clA 0 elA ... 0 ... −

2

4

ul

vl

1

3

5 0 ...

... ... ... ... ... ... ... ... ... ... ...

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Coefficients similar to those of Eq. 3.4 can be derived to compute [uNc , vNc , 1]
T as a

linear combination of the non-zero columns of the last row. Since these coefficients only
depend onkNc , on the mesh vertices and on the projection matrix, it can easily be checked
that, as in the single triangle case, the last column of the matrix can be expressed as a
linear combination of the others, which then are linearly independent. Thus matrixMm

of Eq. 3.5 has still full rank minus 1. This reflects the well-known scale ambiguity in
monocular vision.

Representing the problem as in Eq. 3.5 was convenient to discuss the rank of the matrix.
However, in practice, we want to recover the vertex coordinates but are not interested in
having theki as unknowns. We therefore eliminate them by rewriting Eq. 3.5 as

M





v1

...
vNv



 = 0 , (3.6)
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with

M =
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alTl 0 clTl 0 elTl ...
... ... ... ... ... ...

















, and Ti = A2×3 −

[

uiA3

viA3

]

,

whereA3 represents the last row of matrixA andA2×3 its first two rows. By construction,
M has the same rank as matrixMm, therefore the following results are valid for both
representations of the problem.

3.2.1.4 Effective Rank

In the previous paragraph, we showed thatMm has at most full rank minus one. However,
this does not tell the whole story: In general, it is ill-conditioned and many of its singular
values are small enough so that, in practice, it should be treated as a matrix of even lower
rank. To illustrate this point, we projected randomly sampled points on the facets of the
synthetic 88-vertices mesh of Fig. 3.3 (a) using a known camera model. We then computed
the singular values ofM, which we plot in Fig. 3.3 (b).

In Fig. 3.4, we show the effect of adding two of the corresponding singular vectors—
one associated to the zero singular value and the other to a small one—to the mesh in its
reference position.

Even though only one of these values is exactly zero, we can see that they drop down
drastically after the first2Nv = 176. This shows that, even though the matrix may have full
rank minus 1, the solution of the linear system would be very sensitive to noise. Therefore,
in a real situation, we would actually be closer to havingNv ambiguities, which can be
understood in terms of the piecewise affine model we introduce below.

3.2.2 Ambiguities under Piecewise Affine Projection

A piecewise affine camera model is one that involves an affine transform for each facet of
the mesh. This approximation is warranted if the facets are small enough to neglect depth
variations across them.

3.2.2.1 Projection of a 3D Surface Point

As in the perspective case, letqi be a 3D point whose coordinates are again expressed in
the camera referential. We write its projection to a 2D imageplane as

k

[

ui

vi

]

= P′qi , P′ = A′
[

I2×2 0
]

(3.7)
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3.2 Single-Image Ambiguities

(a) (b)

Figure 3.3: Effective rank of matrixM. (a) 88-vertices mesh seen from the same viewpoint
as the one used for reconstruction. (b) Singular values ofM for the mesh of
(a). Note how the values drop down after the2Nv = 176th one, as predicted by
the affine model of Section 3.2.2. The small graph on the rightis a magnified
version of the part of the graph containing the small singular values. The last
one is zero up to the precision of the matlab routine used to compute it and the
others are not very much larger.

wherek is a depth factor associated to the affine camera andA′ is a2 × 2 matrix repre-
senting the internal parameters. As in Section 3.2.1, we study the ambiguities for a mesh
containing first a single triangle and then many.

3.2.2.2 Reconstructing a Single Facet

We can again write a linear system for a single triangle containing Nf
c 3D-to-2D corre-

spondences, with 3D points given by their barycentric coordinates
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= 0 . (3.8)

Since we only have one facet, we also only have one projectionmatrix, therefore a single
k corresponding to the average depth of the facet is necessary, and all[ui, vi]

T can be put
in the same column.

SinceP′ is of size2 × 3, it has at most rank 2. Moreover, we can show that the last
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3 The Monocular 3D Reconstruction Problem

(a) (b) (c)

Figure 3.4: Visualizing vectors associated to small singular values. (a) Reference mesh and
mesh to which one the vectors has been added seen from the original viewpoint,
in which they are almost indistinguishable. (b) The same twomeshes seen
from a different viewpoint. (c) The reference mesh modified by adding the
vector associated to the zero singular value. Note that the resulting deformation
corresponds to a global scaling.

column of the global matrix also is a linear combination of the two first columns ofP′

[
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[
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. (3.9)

The coefficients of Eq. 3.9 are independent of the correspondence considered and are there-
fore valid for any rowi of the matrix. This finally means that, whenNf

c ≥ 3, the rank of
the matrix of Eq. 3.8 is always 6.

3.2.2.3 Reconstructing the Whole Mesh

As discussed above, when there are several triangles, usingthe piecewise affine model
amounts to introducing a projection matrix per facet. However, since in reality we only
have one camera, its internal parameters, rotation matrix,and center are bound to be the
same for each triangle. This only lets us with a variable depth factorki for each faceti
among theNf facets of the mesh. We can then write the system

M′
m
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= 0, (3.10)
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with
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The left half ofM′
m, which is of size2Nc × 3Nv, Nc being the total number of corre-

spondences, has at most rank2Nv becauseP′ has rank 2. Similarly, its right half, which is
of size2Nc ×Nf , has at most rankNf −1, because we can again show that its last column
is a linear combination of the previous ones in a similar manner as was done for the per-
spective case, with the coefficients of Eq. 3.9. This means that for a full mesh,M′

m has at
most rank2Nv +Nf −1. This leaves us withNv +1 ambiguities. This again seems natural
due first to the same scale ambiguity as in the perspective case, and second to the fact that
now each vertex is free to move along the line of sight. This number corresponds to the
number observed in the perspective case of Section 3.2.1.4,except that, in the affine case,
a global scale is different from all vertices sliding along the line of sight, which produces
an extra zero singular value.

3.3 Image Information in Practice

In the previous section, we formalized the ambiguities of monocular shape recovery using
3D-to-2D correspondences. We showed that, even though under perspective projection we
only have a single true ambiguity, we are close to having the same depth ambiguities as
with a piecewise affine camera model, that is one ambiguity per mesh vertex. Furthermore,
these ambiguities appear when we have dense correspondences over the whole mesh. How-
ever, this rarely is the case in practice. Here, we present practical ways of exploiting the
information available from the image. Throughout this work, we will use two complemen-
tary sources of image information: Texture and silhouettes. One constrains the interior
of the surface while the others give us information about itsboundaries and its occluding
contours. In particular, using border information helps constraining the boundary vertices
of the mesh, which belong to fewer facets than those in the middle and are therefore less
constrained by texture.

3.3.1 Texture

There are two different ways of exploiting texture information. Using correspondences
detected as interest points, as explained at the beginning of this chapter, or through template
matching that uses the intensity of the whole image. We first describe the latter, and then
show how it can also serve to obtain dense correspondences over the whole surface.
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3 The Monocular 3D Reconstruction Problem

3.3.1.1 Template Matching

To exploit texture information as comprehensively as possible, one may also rely on im-
age intensity rather than interest points. This can be done through template matching by
treating each mesh facet as an independent template, sampling its barycentric coordinates,
and observing the underlying image pixels intensities. Thevalues of the samples in the
current image therefore depend on the 3D positions of the mesh vertices. Shape recovery
is then done by maximizing the normalized cross-correlation between the templates in the
reference image and in the current image, which can be written as

ETM (y) =

Nf
∑

j=1

γ(P (yref , j, Iref), P (y, j, I)) , (3.11)

whereNf is the number of facets, andP (y, j, I) is the projection of thejthfacet of surface
y in imageI. γ denotes the normalized cross-correlation function, whichis expressed as

γ(T, F ) =

∑

i∈Samples(F (xi, yi) − F̄ )(T (ui, vi) − T̄ )

(
∑

i∈Samples(F (xi, yi) − F̄ )2
∑

i∈Samples(T (ui, vi) − T̄ )2)1/2
, (3.12)

whereT andF are the reference template and the projected input facet forwhich we sample
the barycentric coordinates, and̄T andF̄ indicate their mean intensity values.

It may seem that template matching would better constrain shape recovery than corre-
spondences, and therefore would give fewer ambiguities. However, it only is equivalent to
having extremely dense correspondences, that is one for each pixel covered by the surface.
This is very close to the case we studied in the previous section, where we densely sampled
the barycentric coordinates of a synthetic mesh. This implies that depths would still be
ill-constrained, which leaves us with the same number of ambiguities

The advantage of template matching is that it can be used evenwith poorly textured
surfaces. However, it typically suffers from local minima,since different locations in the
image can look alike. Therefore it can only be applied for tracking, where the initial guess
is close to the true solution. This is not the case when using correspondences, since a
distance function is much easier to optimize.

3.3.1.2 Obtaining Dense Correspondences

To reconstruct surfaces from individual images, template matching is not practical and
correspondences should therefore be favored. Nonetheless, as mentioned above, the surface
deformations are often such that only few matches between the reference configuration and
the current image can be established using the techniques presented at the beginning of
this chapter. Since these might not be sufficient to fully recover the 3D shape, we take
advantage of the fact that non-rigid 2D registration is muchbetter constrained than full
3D shape recovery to obtain dense correspondences. Given the 2D deformations of the
surface in the image plane, we sample the barycentric coordinates of the facets of the 3D
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reference mesh. Starting from the same barycentric coordinates, but this time in the 2D
results, we look for the square image patch most similar to the corresponding one in the
reference image by computing their normalized cross-correlation. Assuming a correct 2D
registration, we obtain matches over the whole surface, that can be slightly misplaced, but
not completely wrong. We now explain how such a 2D registration can be obtained.

3.3.1.3 2D Registration

2D registration has also been of interest in the Computer Vision community. Different
types of shape constraints have been proposed for this purpose, such as deformations based
on Radial Basis Functions [11], or reasoning on self-occlusions [53]. Simple smoothness
constraints based on the neighborhood of mesh vertices havealso been used for non-rigid
surface detection [127, 182]. In the presence of a video sequence, the most effective way
of obtaining an accurate 2D registration is by tracking the surface in 2D using template
matching in a similar manner as for the 3D case. Nonetheless,we will show that this can
be done in closed-form when no video sequence is available.

Most ideas that were introduced in the initial linear formulation of 3D reconstruction are
still valid for the 2D case. The surface is still representedas a triangulated mesh, though
now each of its vertices only has 2 coordinates. We assume that we are given an initial set
of sparse correspondences that relate points on the mesh to image locations, which can be
obtained as described in Section 3.1. Similarly as in the 3D case, a point on the mesh can
be defined by its barycentric coordinates with respect to thefacet it belongs to.

Within this framework, it can easily be checked that we can again write the registration
problem as the solution of a linear system of the form

Mpu = 0 , (3.13)

whereMp is the2Nc × 2Nv matrix equivalent toM in Eq. 3.6, andu is the vector of
concatenated 2D mesh coordinates(xi, yi).

Although in Section 3.2 we claimed that only depths were ambiguous, and therefore 2D
registration could be done by directly solving this system,this is only true with feature
points covering the whole surface. In many real applications, only few matches can be
obtained, and therefore the system becomes ill-conditioned. To overcome this issue, we
propose to introduce a similar regularization as in [127]. Assuming that the mesh topology
is regular, as is the case of hexagonal meshes, we can penalize the bending of a triplet of
neighboring vertices(vi−1,vi,vi+1) that form a line in the rest configuration by minimiz-
ing the deformation energy

Ei = (2xi − xi−1 − xi+1)
2 + (2yi − yi−1 − yi+1)

2 . (3.14)

Since we solve a linear system in the least-squares sense, these equations can be integrated
into our framework by separating theirx- andy-contributions. We can therefore write our
problem as

[

Mp

wbB

]

u = 0 , (3.15)
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Figure 3.5: Using silhouettes information. Texture edges,shown in red, are detected in the
current image. The contour of the current deformed mesh is projected onto
the image, here depicted in blue. We then look in the direction of the normal
of this projected contour for a detected image edge. Finally, we minimize the
distance between the image and projected contours. Note that edge detection
yields wrong edges. Our algorithms must therefore be robustto such erroneous
information.

whereB is the2Nt × 2Nv matrix encoding the regularization equations for theNt triplets
of the mesh, and whose coefficients have values2, or −1. wb is the weight that sets the
relative influence of the correspondence equations and the regularization equations. In
practice, solving this system proved sufficient to obtain a good 2D registration that allowed
us to compute the dense 3D-to-2D correspondences required for 3D reconstruction.

One could think that such a regularization could also be usedfor 3D reconstruction.
However, whereas it is true that deformations inx- andy- directions should be equally
smooth, this is not the case for thez-direction where we expect to see larger deformations.
One could then try to overcome this issue by less penalizing the bending in this direction.
However, this would yield constraints that are sensitive tothe global rotation of the surface.

3.3.2 Silhouettes

In several cases, we use silhouette information in conjunction with texture. This is crucial
near the boundary of the mesh. The vertices in the center of the mesh are relatively well
constrained by texture, since the texture of their six neighboring facets provides informa-
tion about their position. By contrast, the boundary vertices are only influenced by at most
three facets, and can therefore often move more freely. Silhouettes can also help in the
presence of occluding contours, when a part of the texture isnot visible anymore. Such
contours provide information about the surface normals. Detecting an occluding contour
can be done by sophisticated implicit surface representations [76]. In this work, we use a
much simpler approach based on OpenGL rendering of the facets. Using a z-buffer tech-
nique, we can find which facets are hidden by other ones, and thus detect the occuding
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contours.
Boundaries of the mesh and occluding contours are then used as depicted by Fig. 3.5.

We detect edges in the current image by applying a simple Canny edge detector [28], or a
more sophisticated technique [138]. We then project the 3D silhouettes of our mesh in the
image, and sample them. For each such sample, we look in the direction of its 2D normal
for detected image edge points. The shape is finally recovered by minimizing the distance
between the sample and its, possibly multiple, candidate points. This assumes that the true
edge will be the strongest one in the image, and therefore will pull the surface away from
wrong candidates.

Whereas texture and silhouettes are complementary, the latter require having a good
initial guess, since we detect edges around the current position. Trying to match edges
detected in the whole image would lead to local minima, and istherefore not practical.
For this reason, we only used silhouette information for tracking purposes. However, they
could be included in our other approaches to refine the solutions found from texture only.

3.4 Conclusion

In this chapter, we have shown that recovering the 3D positions of the vertices of a trian-
gulated mesh from a single viewpoint using dense correspondences amounts to solving an
ill-constrained linear system. More specifically, we have shown that the ambiguities of the
problem correspond to estimating the depths of the mesh vertices. Furthermore, we have
presented practical ways of exploiting image information.However, even for an ideally
textured surface, correspondences and silhouettes will never fully constrain the reconstruc-
tion. This leaves us with an ill-posed problem, that requires some knowledgea priori of the
plausible deformations of the surface of interest. In the coming chapters, we will propose
several ways of introducing such missing knowledge.
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4 Motion Models

In this chapter, we introduce a first type of constraints to improve the conditioning of shape
recovery from a single viewpoint. We propose two different motion models that will link
the deformations of a surface from one frame to the next. The first is a simple linear motion
model that directly addresses the ambiguities observed in the previous chapter, whereas the
second gives a more plausible approximation to the real dynamical behavior of an object,
and lets us formulate shape recovery as a convex optimization problem.

Whereas deformation models that penalize unlikely shapes are only valid, in the best
case, for a particular material, motion models are much moregenerally applicable. They
follow the idea that the motion of the mesh vertices from one frame to the next cannot be
random, but depends on the previous shape. Such motion can therefore be described by a
particular dynamical model, that approximates the true behavior more or less accurately.
These models predict the location of vertices in the currentframe based on the results in
the previous ones. The actual shape is then taken to be the onethat best matches such a
prediction, while also minimizing the reprojection error.

4.1 Linear Motion Model

A very simple approach is to introduce a minimal set of constraints specifically designed
to overcome the ambiguities discussed in the previous chapter. Since the linear systems
of Section 3.2 are rank-deficient, we need to introduce additional constraints to obtain
acceptable solutions. We show here that frame-to-frame motion can be expressed as a set
of additional linear constraints that make our linear systems well-conditioned, first in the
affine case and then in the projective one. We therefore perform the reconstruction over
several frames simultaneously and simply limit the range ofmotion from one frame to the
next.

4.1.1 Constraining the Affine Reconstruction

Given a temporal sequence ofNI images and the corresponding matricesM′
m

t , 1 ≤ t ≤
NI of Eq. 3.10, we can create a block diagonal matrix whose blocks are theM′

m
t and use

it to write a big linear system that the vertex coordinates inall frames must satisfy simul-
taneously. However, without temporal consistency constraints, the ambiguities remain: As
discussed in Section 3.2.2, when the camera coordinates arealigned with the world coor-
dinates, reconstruction is only possible up to an unknown motion along thez-axis for each
vertex at each time step. To mitigate this problem, it is therefore natural to link thez value

59



4 Motion Models

Figure 4.1: Singular values for a 5 frames sequence under affine projection. Left: Without
temporal consistency constraints between frames, the linear system has many
zero singular values, which implies severe reconstructionambiguities. Right:
Constraining thez coordinates as discussed in Section 4.1.1 leaves the non zero
singular values unchanged but increases the value of the others, thus removing
the ambiguities.

of vertices across time. The simplest way to do this is to write

vt+1
z − vt

z = 0 (4.1)

for all vertices and all times. These constraints and those imposed by the 3D-to-2D corre-
spondences can then be imposed simultaneously by solving with respect toΘ′

M′
sΘ

′ = b′ , (4.2)

where
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,

zfirst
i is thez-coordinate of vertexi in the first frame, in which we assume that the shape is

known, andC is anNv ×3Nv matrix containing a single 1 in each row, which corresponds
to thez-coordinate of one vertex.
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d
c v

v

t

t+1

Figure 4.2: Under a perspective camera model, the depthd of a vertexv at time t + 1
can be obtained by projecting vectorvtvt+1 on the line-of-sight. This is done
through a dot-product between this vector and the normalized direction of the
line-of-sight, which is a non-linear function of the vertexposition.

The number of constraints we add in this manner is equal to thenumberNv × NI of
ambiguities that we derived in Section 3.2.2. Therefore it affects the rank ofM′

s, and
reduces the number of ambiguities to zero as shown in Fig. 4.1. Moreover, these constraints
do not overlap with the ones imposed by the correspondences and can then be considered
as minimal.

4.1.2 Constraining the Perspective Reconstruction

In Section 3.2.2, we showed that ambiguities under perspective projection are similar to
those under piecewise affine projection. It is therefore natural to constrain the reconstruc-
tion in a similar way, that is by limiting the motion along theline-of-sight. However, since
it is not parallel to thez-axis anymore, the constraints become more difficult to express.

Let us consider one vertexv of the mesh at timest andt + 1. We can try minimizing,

d = vtvt+1 · et , with et =
cvt

‖cvt‖
(4.3)

the length of the projection on the line-of-sight of the vector vtvt+1, wherec represents the
optical center of the camera, as depicted by Fig. 4.2. The difficulty comes from the fact that
this constraint is non-linear and can therefore not be introduced into our linear formulation.
We overcome this problem by replacing the exact formulationof d by an upper bound that
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can be expressed linearly as follows:

d2 = (vtvt+1 · et)2 ,

= (et
x(xt+1

c − xt
c) + et

y(y
t+1
c − yt

c) + et
z(z

t+1
c − zt

c))
2 ,

≤ (et
x(xt+1

c − xt
c))

2 + (et
y(y

t+1
c − yt

c))
2 + (et

z(z
t+1
c − zt

c))
2

+ (et
x(xt+1

c − xt
c))

2 + (et
y(y

t+1
c − yt

c))
2

+ (et
x(xt+1

c − xt
c))

2 + (et
z(z
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c − zt

c))
2

+ (et
y(y
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c − yt
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2 + (et

z(z
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2 ,

≤ (3 sin(θmax
x )(xt+1

c − xt
c))

2

+ (3 sin(θmax
y )(yt+1

c − yt
c))

2

+ (3(zt+1
c − zt

c))
2 , (4.4)

wherexc, yc andzc are the coordinates of a vertex in the camera reference system, andθmax
x

andθmax
y are the maximum angles between the camera center and the points projecting on

the left/right, and upper/lower border of the image, respectively.
As in Section 4.1.1, these constraints and those imposed by the 3D-to-2D correspon-

dences can be imposed simultaneously. We rewrite Eq. 4.2 as

MsΘ = b , (4.5)

where

Θ =
[

v1
1
T

... v1
Nv

T
... v

NI

1

T
... v

NI

Nv

T
]T

,

b =
[

0 v
first
1

T
... v

first
Nv

T
0

]T
,

andMs is built by replacing inM′
s the matricesM′

m
t of Eq. 3.10 by the matrixM of

Eq. 3.6 and theC matrices by3Nv × 3Nv matrices, containing a single value in each row
that will constrain thex-, y-, or z-coordinate of one vertex. This value is set to one of the
three coefficients of Eq. 4.4, depending on which coordinatethe row corresponds to.

Fig. 4.3 shows how the singular values of the system are affected by introducing our
depth constraints. As in the affine case, we can see that the smaller singular values have
increased and are now clearly different from zero. Since this was our only goal in adding
constraints, this justifies our approach to liberalizationby minimizing the upper bound ofd
of Eq. 4.4 instead ofd itself. Note that because we added more equations than was strictly
necessary, the other singular values also increased, but only very slightly.

In practice the correspondences are never perfect and include noise and outliers. We
therefore solve Eq. 4.5 in the least-squares sense and takeΘ to be

Θ∗ = argmin
Θ

(MsΘ − b)TW(MsΘ − b) , (4.6)

whereW is a diagonal matrix of ones for the lines corresponding to projection constraints
and a user-defined weight for those that correspond to the depth constraints. The weight
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Figure 4.3: Singular values for a 5 frames sequence under perspective projection. Left:
Without temporal consistency constraints between frames,the linear system is
ill-constrained. Right: Bounding the frame-to-frame displacements along the
line of sight using the linear expression of Eq. 4.4 transforms the ill-conditioned
linear system into a well-conditioned one. The smaller singular values have
increased and are now clearly non-zero. Since our motion model introduces
more equations than strictly necessary, the other values are also affected, but
only very slightly.

is designed to give comparable influence to both classes of constraints and directly affects
how much the small singular values increase.

4.2 Experimental Results

In the previous sections, we developed theoretical basis for reconstructing the shape of
a deformable surface from 3D-to-2D correspondences in a video sequence. We showed
that constraining the variations in depth from frame to frame is sufficient, in theory, to
formulate the reconstruction problem in terms of solving a well-conditioned linear system.
In this section, we show that this indeed produces valid reconstructions in practice.

We present results obtained using both synthetic data and real images. In both cases,
the deformations of the meshes were retrieved by solving thelinear system of Eq. 4.5 for
whole sequences with known deformations in the first and lastframes. This was done using
Matlab’s implementation of sparse matrices and resolutionof linear systems with known
covariance matrix in the least square sense. In our experiments, the covariance matrix sim-
ply is the weight matrix of Eq. 4.6, which weighs differentlythe correspondences equations
and the constraints. Additionally, we assumed that the shape of the surface in the last frame
of the sequence is also known, thus adding an extra set of constraints similar to those link-
ing the first and second frames. This nonetheless is essentially aesthetic and is not a true
requirement of our approach.
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Figure 4.4: Reconstructing an 88-vertices mesh using perfect correspondences that were
corrupted using zero-mean Gaussian noise with variance five, which is much
larger than what can be expected of automated matching techniques. Top: The
original mesh and reconstructed one projected in the synthetic view used to
create the correspondences. As expected, the projections match very closely.
Bottom: The two meshes seen from a different viewpoint.

Figure 4.5: Distance between the original mesh and its reconstruction for each one of the 9
deformed versions of the mesh of Fig. 4.4. We plot five curves corresponding to
vertex-to-surface distances obtained with variance one tofive gaussian noise on
the correspondences. The distances are expressed as percentages of the length
of the mesh largest side. Note that knowing the final shape avoids having a
monotonically increasing error.

4.2.1 Synthetic Data

We deformed the 88-vertex mesh of Fig. 3.3(a) to produce 9 different shapes and 9 corre-
sponding sets of 3D-to-2D correspondences using a perspective projection matrix. We then
added Gaussian noise with mean zero and variance ranging from one to five to the image
locations of these correspondences. Fig. 4.4 depicts the reconstruction results overlaid on
the original mesh with noise variance five. The differences are hard to see, even though this
represents far lower precision than what can be expected of good feature point matching
algorithms.

To quantify the differences between the meshes, we plot the distances between the two
meshes in Fig. 4.5 for each one of 9 different shapes, given increasing noise variance. The
distances are expressed as percentages of the mesh largest side. With a noise variance one,
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Figure 4.6: Reconstructing a deforming sheet of a paper froma 250-frames sequence. Top:
The reconstructed mesh is reprojected into the original images and closely
matches the outline of the paper. Bottom: The same mesh seen from the side. In
spite of local inaccuracies in depth, the overall shape is correct, which indicates
that the ambiguities have been successfully resolved.

Figure 4.7: Reconstruction results for a plastic sheet, which is much more flexible than the
sheet of paper of Fig. 4.6. In spite of this, the overall shapeis again correctly
recovered up to small errors due to erroneous correspondences.

they are of the order of 0.25% for vertex-to-surface distance, which works out to 0.025cm
for a 10cm×7cm mesh. This is very small given that we incorporate very little a priori
knowledge into our reconstruction algorithm.

4.2.2 Real Data

We now present results on two real monocular video sequencesacquired with an ordinary
digital camera. The longest one is 250 frames long, which shows that, even though our
approach involves solving a very large system, it is sparse enough to use a standard Matlab
routine. In both cases, we automatically establish 3D-to-2D correspondences between the
first frame, where the 3D pose is assumed to be known, and the others by first tracking the
surface in 2D and then computing a dense matching as explained in Section 3.3.1.2. This
results in noisy correspondences with a number of mismatches at places where there is not
enough texture to guarantee reliable matches.

Fig. 4.6 depicts our reconstruction results for a relatively inelastic piece of paper in a 250-
frames sequence and Fig. 4.7 those for a much more flexible sheet of plastic in a 147-frames
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sequence. In both cases, the global shape is correct, which confirms that the ambiguities
have been correctly handled. However, because we impose no smoothness constraint of
any kind, there are also local errors that are caused by the mismatches present in our input
data. If the goal were to derive a perfect shape from a set of noisy correspondences, we
could mitigate the effect of erroneous matches by introducing a robust estimator into the
least-squares minimization of Eq. 4.6.

Since our technique does not introduce any prior on the physical properties of the target
surface, we were able to reconstruct both the paper and plastic without changing anything
to our system.

4.3 Convex Optimization

Even though the constraints introduced in the previous section exactly address the ambi-
guities of our problem, they almost never accurately model the true dynamical behavior
of a non-rigid surface. Indeed, these constraints enforce the motion along the line of sight
to be zero, which is only true when the surface does not deform. Another drawback of
the previous approach is that the linear formulation of the correspondence problem does
not exactly minimize the reprojection error. It is equivalent to applying a Direct Linear
Transformation (DLT) [60], since the reprojection of a 3D point on the image plane would
involve a division by the depth factork, thus yielding non-linear terms, as can be checked
in Eq. 3.1. Instead of the distance in the image plane betweenthe projected 3D point and
its corresponding measurement, our linear formulation describes an error at some depth,
which varies from one correspondence to another and makes them influence the global error
differently. The true reprojection error is a non-linear function of the 3D point coordinates,
and thus cannot fit our linear formulation.

It was recently shown that several computer vision problemssuch as triangulation, cam-
era resectioning and homography estimation can be formulated as convex optimization
problems [82, 85]. Such formulations involve solving an optimization problem for which
the objective function and the constraints are convex. Linear programming (LP), Second
Order Cone Programming (SOCP) and Semi-Definite Programming (SDP) are examples
of classes of convex optimization problems. Some QuadraticProgramming (QP) problems
and Quadratically Constrained Quadratic Programming (QCQP) problems can also be writ-
ten as convex optimization problems. Finally, quasi-convex optimization is a relaxation of
convex optimization where the function is not strictly convex, but has a single minimum
over a convex domain. More details on convex optimization can be found in [21].

In the various computer vision applications described in [82, 85], the correspondence
problem is formulated as a Second Order Cone Programming feasibility problem. This is a
particular type of convex optimization problems where no function is minimized. Instead,
one looks for a vectorX that satisfies them constraints

‖AiX + bi‖2 ≤ (ci
TX + di) , for i = 1, ...,m . (4.7)

Such problems can be solved very effectively using available packages such as SeDuMi [147].
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Figure 4.8: A cone of radiusγ is defined for each correspondence. It is centered in the
camera, and its axis goes through the image measurement. 3D points on the
surface must reproject inside their corresponding cone on the image plane.

In the particular context of reprojection error, it has beenshown that minimizing the
L∞−norm could be done by iteratively solving such an SOCP feasibility problem. In
other words, given a set of correspondences, one can find the solution that minimizes the
largest reprojection error. The drawback of this formulation is its sensitivity to outliers,
since a single mismatch would yield a high maximum reprojection error, thus allowing
large variations of the solution. Fortunately, a solution was proposed in [141]. However,
such a quasi-convex formulation has only been demonstratedfor rigid objects. Here, we
extend this approach to deformable 3D surfaces.

4.4 SOCP for Deformable Surfaces

In this section, we show that recovering the 3D shape of a deformable surface from a single
video sequence can be formulated as an SOCP problem, as described by Eq. 4.7. As in our
earlier linear formulation, we obtain dense 3D-to-2D correspondences using the technique
described in Section 3.3.1.2, and assume that the camera projection matrixP is known and
remains constant. This does not mean that the camera cannot move, but that we can only
recover a relative motion of the surface with respect to it.

4.4.1 Correspondences as SOCP Constraints

As in the linear case, we can consider a 3D pointqi defined by its barycentric coordinates
(ai, bi, ci), and its corresponding image measurement[ui vi]

T . The projection ofhi =
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(a) (b)

Figure 4.9: Using a mesh imposes constraints on the reconstruction. (a) Without a mesh,
nothing would prevent the 3D points to perfectly match theircorresponding
image locations. However, this would yield a completely meaningless shape.
(b) The barycentric coordinates link several 3D points together, and thus impose
a natural coherence between them.

[

qT
i 1

]T
given the camera projection matrixP is

[

ui

vi

]

=

[

P1hi

P3hi
P2hi

P3hi

]

,

wherePk refers to thekth row of the projection matrix. We define the reprojection error
in the image plane as

∥

∥

∥

∥

P1hi

P3hi
− ui,

P2hi

P3hi
− vi

∥

∥

∥

∥

=
‖(P1 − uiP3)hi, (P2 − viP3)hi‖

P3hi
. (4.8)

Note that this, as opposed to the linear formulation, is the true reprojection error, which is
a non-linear function of the mesh vertices.

Ideally, we would want the reprojection error to be zero for all qi , 1 ≤ i ≤ Nc for
which we have found a corresponding image point(ui, vi). In practice, due to noise, this is
never possible. Therefore, as in [82], we introduce an additional variableγ and write our
problem as

min
γ,y

γ subject to γ ≥ 0 and

‖(P1 − uiP3)hi, (P2 − viP3)hi‖ ≤ γP3hi , (4.9)

for i = 1, ..., Nc .

wherey is the concatenation of the three coordinates of all the meshvertices. Intuitively,
γ represents the radius on the image plane of the cone centeredin the camera and whose

68



4.4 SOCP for Deformable Surfaces

(a) (b)

Figure 4.10: The SOCP formulation of the correspondence problems is very sensitive to
outliers, since it minimizes theL∞-norm. (a) With a single outlier, the mini-
mum cone radiusγ remains very large, and thus allows the correct matches to
reproject far from their corresponding image locations. (b) Once the outlier is
removed,γ can take a much smaller value, which yields a much better shape.

axis goes through the image measurement, as depicted in Fig.4.8. A singleγ is used for
all the correspondences, thus enforcing all the reprojection errors to be less thanγ.

For a fixed value ofγ, because theqi, and therefore also thehi are linear combinations
of the vertex coordinates, Eq. 4.9 defines an SOCP feasibility problem as described by
Eq. 4.7. We can then find the minimalγ using a bisection algorithm at each step of which
we solve the corresponding SOCP feasibility problem. This yields reprojection errors that
are all smaller than the minimumγ found, and therefore minimizes theirL∞-norm.

Note that the fact that the 3D points are on the surface of a mesh plays a critical role, as
illustrated by Fig. 4.9. Without this constraint, they could move independently from each
other. Since nothing would then prevent them to match their 2D projection within a zero-
radius cone, this would result in a perfect but meaningless solution. However, forcing them
to remain on the surface of the deformable mesh avoids that problem, since the barycentric
coordinates that define the 3D points impose a natural coherence between them.

A common criticism of SOCP formulations of the correspondence problem is that they
are very sensitive to outliers. Indeed, the minimalγ will take the value of the worst corre-
spondence, therefore allowing the reprojection errors of correct matches to be worse than
they should, as shown in Fig. 4.10. However, Sim et al. [141] proposed a method to re-
move the outliers and get the correct pose of a rigid object using an SOCP approach. They
showed that, at the end of the bisection algorithm, the set ofmatches whose reprojection
error equals the minimalγ contains outliers. Therefore, removing these points and re-
optimizing in the same manner as before yields a better pose.In our implementation, we
apply the same idea and iterate the bisection algorithm withthe correspondences having a
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(a) (b)

Figure 4.11: Reconstructing a piece of paper using only the correspondences constraints
of Section 4.4.1 but not the deformation constraints of Section 4.4.2. (a) The
reprojection of the mesh is correct. (b) However, the 3D shape as seen from a
side view is completely wrong because the depth ambiguitiesare not properly
resolved.

reprojection error less than the previous minimalγ, until we reach a maximal reprojection
error of 2 pixels. In practice, this only implies running thebisection algorithm at most 5
times.

4.4.2 Additional Constraints

In general, solving the minimization problem of Eq. 4.9 without additional constraints
yields a surface whose points project at the right place but whose overall shape may nev-
ertheless be wrong, as shown in Fig. 4.11. As shown in Chapter3, the global scale of
the surface can vary without affecting the reprojection error, and, more damagingly, given
noisy data, the depth of the vertices is hard to precisely estimate because many different
shapes can yield very similar projections.

At the begining of this chapter, we introduced a linear motion model that precisely re-
duced these ambiguities. However, the particular form of the constraints never truly models
the real dynamic behavior of a surface, since it assumes thatthe depths of the vertices re-
main unchanged. Another approach to address this problem isthe use of penalty functions.
They are usually designed either to prevent the mesh from folding sharply or to stop it from
expanding or shrinking. The former results in a loss of generality as surfaces that crease
cannot be modeled properly, while the latter typically involves a non-convex term to force
the edges of the mesh to retain their original length.

Here, we introduce a weaker and more generic motion model that fits into our SOCP
framework: As shown in Fig. 4.12, we avoid the orientation ofthe edges to change irra-
tionally between two consecutive frames. In the meantime, our constraints also ensure that
an edge will not stretch or compress too much, thus partiallysolving the global scale ambi-
guity. Independently of the surface’s curvature, this is generally applicable when tracking
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Figure 4.12: We predict that the orientation of the edge betweenvi andvj at timet + 1
will be the same as at timet. We then constrain the distance between vertex
vt+1

j and its predictioñvt+1
j to be less than some specified value.

it in a 25 frames-per-second video sequence. Furthermore, it can be expressed as a convex
constraint as follows.

Let us assume that we know the shape of the mesh at timet and let us consider an edge
linking verticesvt

i andvt
j in this configuration. Assuming that the orientation of thisedge

will be similar at timet + 1, if the positionvt+1
i of vertexi at that time were known, we

could predict that of vertexj to be close to

ṽt+1
j = vt+1

i + Li,j

vt
j − vt

i

‖vt
j − vt

i‖
, (4.10)

whereLi,j is the original length of the edge. In practice we do not knowvt+1
i but we can

nevertheless require that
‖vt+1

j − ṽt+1
j ‖ ≤ λLi,j , (4.11)

whereṽt+1
j is defined in Eq. 4.10. This constraint fits perfectly within our SOCP frame-

work and we can add one for each edge to those of Eq. 4.9. Note that these additional
constraints allow the mesh to expand or shrink, but only within an amount controlled by
the user-defined valueλ. Given a mesh that satisfies the SOCP constraints, we handle the
remaining scale ambiguity by rescaling it so that its area remains the same as in the initial
position. As will be shown in Section 4.5, this results in a system that is now sufficiently
constrained to yield good reconstructions.

4.5 Experimental Results

In the previous section, we showed how convex optimization can be applied to the prob-
lem of recovering the 3D shape of a surface from a single videosequence. We presented
constraints that do not prevent the surface from folding sharply, by making assumptions on
the frame-to-frame deformations of the object. Our method relies on 3D-to-2D correspon-
dences and only requires the pose in the first frame of the sequence to be known.
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Figure 4.13: Reconstructing an 88-vertices mesh with sharpfolds using perfect correspon-
dences that were corrupted using zero-mean Gaussian noise with variance two.
The shape of the reconstructed mesh (blue) corresponds veryclosely to the
original one (red). The meshes are seen from a different perspective than the
one used to retrieve the shapes in order to highlight the differences.

We first validate our approach using synthetic data. We then use ordinary videos to
demonstrate that it produces good results for very different kinds of materials. In all our
experiments, both for synthetic and real data, the value ofλ in Eq. 4.11 was set to 0.1,
independently of the properties of the surface and of its deformations.

4.5.1 Synthetic Data

As a first experiment, we synthetically deformed the 88-vertices mesh shown in Fig. 4.13
by applying forces to randomly chosen vertices and stronglypenalizing stretching of its
edges. This produced a sequence of 50 different shapes, fromwhich we could obtain
correspondences by projecting 3D points defined by their randomly chosen barycentric
coordinates using a perspective projection matrix. We thenadded gaussian noise with mean
zero and variance one and two to their image locations. Fig. 4.13 shows the reconstruction
results for variance two from a different perspective. The differences are very small even
though the surface folds very sharply in some frames. The largest errors are in the depth
direction, as could be expected since motion in that direction is hard to measure using
point correspondences. The deformation constraints of Section 4.4.2 resolve most of the
resulting ambiguities but still leave some uncertainty.

To compare the performance of SOCP against another powerfuloptimization technique,
we reimplemented our tracking algorithm using CFSQP [93], which provides C functions
to solve constrained minimization problems using Sequential Quadratic Programming. We
reformulated our problem as the minimization of the sum of squared reprojection errors
under the deformation constraints of Section 4.4.2. The toprow of Fig. 4.14 shows the
median vertex-to-ground-truth-surface distances for noise variances 1 and 2 for each one
of the frames in the synthetic sequence. The distances are ofthe order of 0.1cm for a
mesh of size 10cm×7cm. Both the SOCP and CFSQP implementations produced roughly
comparable errors. However, even though SOCP was coded in Matlab whereas CFSQP
was coded in C, SOCP was about 50 times faster than CFSQP: It took only 15 minutes
against 12 hours to process the whole sequence on the same 3.0GHz PC. The second row
of Fig. 4.14 shows the median reprojection errors over the correspondences. CFSQP yields
slightly higher accuracy, but the errors still remain underone pixel for SOCP. This can
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σ = 1 σ = 2

Figure 4.14: We compare the results of our SOCP formulation (solid red) against those
obtained using CFSQP, a constrained non-linear least-squares minimization
(dashed blue) for the 50 frames of the synthetic sequence of Fig. 4.13, for
noise varianceσ = 1 and 2. In the top row, we show the distance between
the original mesh and its reconstruction. Both methods givesimilar results
but SOCP is about 50 times faster. In the second row, we give the median re-
projection errors. For both methods, they are less than one pixel, even though
CFSQP performs slightly better. Recall, however, that SOCPdoes not pre-
cisely minimize the reprojection errors, but enforces the reprojections to lie in
a cone of a given radius.

be explained by the fact that SOCP does not minimize the reprojection errors, but finds a
solution such that these errors are smaller than a given value.

Since CFSQP can handle non-convex constraints, we replacedthe deformation con-
straints of Section 4.4.2 by constraints that prevent the mesh edges from changing their
length. In theory, this should be more appropriate when tracking inextensible surfaces. In
practice, as shown in Fig. 4.15, even though CFSQP performs better in some frames, it
is less stable than SOCP. This is particularly visible towards the end of the sequence. In
some frames, CFSQP failed to converge even after 2000 iterations, which explains why it
is even slower than before and highlights the complexity of the problem when non-convex
constraints are used.

In Fig. 4.16, we show the influence of the number of correspondences on the quality of
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σ = 1 σ = 2

Figure 4.15: Introducing non-convex inextensibility constraints, for noise varianceσ = 1
and 2. Since CFSQP can handle such constraints, we introducethem into our
CFSQP formulation and, as in Fig. 4.14, compare the results (in blue) against
those of SOCP (in red). In addition to being much slower, CFSQP gives un-
stable results and fails to converge in some frames after 2000 iterations.

Figure 4.16: Influence of the number of correspondences in each facet on the reconstruc-
tion for noise varianceσ = 2. We decreased the number of correspondences
per facet from 10 to 1, and display the median (red line) and maximum (blue
crosses) values of the same errors as in Fig. 4.14. We show the3D distance
errors in the left image, and the reprojection errors computed for all 10 cor-
respondences per facet in the right one. Note that the 3D vertex-to-surface
distance is little affected by the correspondences, whereas the reprojection er-
ror decreases in a more noticeable manner, which is to be expected, since, in
the first cases, not all correspondences were used during optimization.

our reconstruction in the case of a variance 2 gaussian noise. We decreased the number
of correspondences in each facet from 10 to 1 and tracked the surface throughout the 50
frames of the sequence. For each frame, we computed the median vertex-to-ground-truth-
surface distance and median reprojection error for all 10 correspondences per facet. For
each number of correspondences per facet, we display on the left image, the median and
maximum values of such 3D distances over the sequence, and onthe right image, the
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Figure 4.17: Reconstructing a deforming sheet of paper froma 71 frames video and a 116
frames video. The mesh is reprojected in the image in the top row and seen
from a different perspective in the bottom one. Even though no smoothness
constraint was enforced, the algorithm correctly recovered smooth deforma-
tions.

median and maximum values of such reprojection errors over the sequence. The number
of correspondences has little influence on the 3D distances,since the vertices can slide
along the true surface without changing these measures. Thereprojection errors are more
strongly affected, but note that, from 4 correspondences per facet, they drop below one
pixel. Additionally, for cases with less than 10 correspondences per facet, the reprojection
error is affected by matches that were not taken into accountduring optimization, and that
therefore tend to increase the error. Of course, this still assumes at least one correspondence
in each facet. With such a weak deformation model, if some facets did not contain any, the
reconstruction would inevitably degrade. This would especially be the case for facets on
the boundary of the surface, since their vertices are constrained by fewer neighbors than
the ones in the middle.

Finally, we compared the results of the SOCP motion model with those obtained with
the linear motion model introduced in Section 4.1.2. For this purpose, we used data recon-
structed from an optical motion capture system, as explained in more details in Chapter 6.
The results of this comparison are shown in Figs. 7.11 and 7.13 of Chapter 7, where we
compare all our methods together. From these plots, it is obvious that the SOCP formula-
tion performs better than the linear one. This is not surprising since the linear constraints
were only designed to be the minimal ones that address our ambiguities, and because SOCP
truly models the reprojection error.
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Figure 4.18: Reconstructing the deformations of a piece of paper with two sharp folds in it,
so that that they are no longer smooth. Note that our method correctly recovers
the creases.

Figure 4.19: Recovering the deformations of a plastic bag with a sharp crease in it from
from an 86 frames video.

4.5.2 Real Data

We now show reconstruction results of real deformable surfaces made of paper, cloth,
and plastic. The video sequences were acquired with an ordinary digital camera. Due to
their very different physical properties, the behavior of the surfaces ranges from smooth
deformations for the paper to sharp folds and creases for thecloth and plastic. However,
no parameter tuning was necessary to obtain these results with our algorithm.

Smooth Deformations As a first experiment on real data, we considered a sheet of
paper that we modeled as an 88-vertex mesh. Fig. 4.17 shows that we can retrieve the
correct shape of a surface that deforms smoothly, even though our formulation involves no
penalty term on the curvature of the reconstructed surface.

Sharper Folds Because we do not penalize curvature, nothing stops our method from
recovering the correct shape in the presence of folds and creases, as demonstrated by the
reconstruction of the pre-folded sheet of paper of Fig. 4.18, the plastic bag of Figs. 4.19
and 4.20, and the piece of cloth of Figs. 4.21, 4.22 and 4.23.
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Figure 4.20: Recovering more complex deformations of the plastic bag. The first two rows
depict the reprojection of the mesh into the original imagesand the mesh seen
from a different perspective as before. In the third row, we overlay the mean
curvature of the recovered surface on the images. The high curvature areas,
shown in red, correspond to the actual creases that can be seen in the top row.
In the fourth row, we overlay the level-lines of constantz on the images. We
recommend viewing the last two rows in color as they might be difficult to
interpret on a greyscale printed copy.

Figure 4.21: Recovering the deformations of a piece of clothfrom a 50 frames video.

4.6 Conclusion

In this chapter, we introduced two different motion models to overcome the ambiguities
of monocular reconstruction that were formalized in the previous chapter. The first model
is linear and penalizes depth motion from one frame to the next. It directly addresses the
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Figure 4.22: Recovering the deformations of a piece of clothwith several folds. The third
and fourth rows depict the same curvature and level-line information as in
Fig. 4.20 and are best viewed in color.

observed ambiguities, and can therefore be considered as the minimal set of constraints re-
quired for monocular reconstruction. However, being minimal, these constraints typically
never hold for real sequences and make a poor prediction of the surface shape. Furthermore,
formulating the correspondence problem as the solution to alinear system only approxi-
mates the true reprojection errors and leads to treating thecorrespondences unequally.

We then replaced our initial linear formulation of the correspondence problem by a con-
vex optimization one that correctly models the reprojection errors. This let us define more
appropriate motion constraints that penalize excessive frame-to-frame changes of edge ori-
entation, as well as excessive edge length variations over the whole sequence. This yielded
results that are both accurate and less sensitive to noise than with the previous method.
Furthermore, it proved effective to retrieve the shape of smoothly deforming surfaces as
well as surfaces undergoing complex folds and creases.

Nonetheless, this formulation still has weaknesses. First, it requires the presence of cor-
respondences over the whole surface, because such generic constraints are not sufficient to
interpolate the shape of untextured parts from the texturedones. Additionally, motion mod-
els have the disadvantage to link results from one frame to the next, therefore increasing the
risk of accumulating reconstruction errors throughout thesequence. Finally, this represen-
tation uses all the vertex coordinates as unknowns, whereasis it widely accepted that the
possible deformations of a surface lie on a much lower dimensional manifold. Rather than
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Figure 4.23: Another example of a different deformation of that same cloth in a 61 frames
sequence. The third and fourth rows depict the same curvature and level-line
information as in Fig. 4.20 and are best viewed in color.

explicitly adding constraints that enforce the resulting shapes to remain on this manifold,
it would be more efficient to use parameters that implicitly encode these constraints. This
is what we propose to do in the upcoming chapters, by introducing deformation models
learned from training examples.
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5 Global Deformation Models

In this chapter, we introduce global deformation models that are learned from training
data. Whereas so far we have parameterized the global shape of a surface in terms of the
vertex coordinates of its mesh representation, we now modelit as a linear combination of
modes, or basis shapes, which involves far fewer parameters. The methods presented in this
chapter are directly inspired by Active Appearance Models [37], Morphable Models [19]
and Structure-from-Motion approaches [25, 24, 154], whichwe discussed in Section 2.2.

A well-known issue with such representations is that they depend on training examples
that can be very hard to obtain and even harder to register together. Even though this
has been done for faces [19], and is therefore feasible, it involved a painstaking manual
process which would be even harder for generic deformable surfaces. In structure-from-
motion [24, 156, 154], this has been addressed by learning the bases online from the input
video. However, this requires a large number of images, and produces bases that only de-
scribe the particular deformations observed in that sequence. Here, we rather propose to
use modes learned offline from training examples. We consider the case of inextensible
surfaces, and propose a way of automatically creating deformed versions of a single topol-
ogy, thus directly yielding registered shapes. From these shapes, we compute deformation
modes and use them to reconstruct surfaces from monocular videos. Even though our basis
shapes were constructed from inextensible surfaces, we show that they let us reconstruct
extensible ones.

Finally, in this framework, we show that reconstruction canbe done in closed-form given
a single input image. Following the same linear formulationof the correspondence prob-
lem as before, we overcome the depths ambiguities by introducing quadratic equations
accounting for inextensibility and solving the resulting system. This alleviates the need of
a video sequence, and lets us recover the shape of surfaces from individual images.

5.1 Inextensible Triangulations

One of the simplest ways to model a deformable surface is to represent it as a triangulated
mesh parameterized in terms of its vertex coordinates. Thisparameterization, however,
does not account for the fact that, in a real surface, the vertices cannot move independently
from one another. By contrast, if we constrain the triangulation edges to retain their original
length, the number of degrees of freedom (dofs) decreases very significantly. At first sight,
considering inextensible surfaces only can seem very restrictive. However, at the level of
details that a standard camera can capture, many ojects, such as sheets of paper, clothes, or
sails, are inextensible. Furthermore, as we will show later, our final representation will still
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(a) (b) (c)

Figure 5.1: Hexagonal triangulations. (a) Rectangular mesh used to model a piece of paper.
(b) Triangular mesh used to model a spinnaker. (c) Stitchinga rectangular patch
for the body part and two triangular ones for the sleeves letsus model a t-shirt.

have the ability to model stretchable surfaces, and therefore lacks no generality.

5.1.1 Dofs of Inextensible Triangulations

We seek to characterize the number of dofs of a triangulation—containingNv 3D vertices,
Nf facets, andNe edges—that has a planar topology, which means it can be unfolded to
a plane and has an actual boundary that can form an arbitrary polygon. In general, such a
triangulation has3 dofs per vertex. However, forcing the edges to retain their length when
the triangulation deforms, imposes one quadratic constraint per edge and the total number
of degrees of freedom drops to

Nd = 3Nv − Ne . (5.1)

Let N b
e be its number of boundary edges andN i

e = Ne − N b
e the number of interior ones.

Since theN b
e boundary edges each belong to only one facet whereas theN i

e internal ones
belong to two, we have

3Nf = 2N i
e + N b

e . (5.2)

Furthermore, according to Euler’s well known formula, if the triangulation has no holes,

Nv + Nf − Ne = 1 . (5.3)

Substituting Eqs. 5.2 and 5.3 into Eq. 5.1 yields

Nd = 3 + N b
e . (5.4)

In other words, the number of degrees of freedom of an inextensible triangulation grows as
the number of its boundary edges. In this chapter, we exploitthis behavior in the case of
regular hexagonal triangulations such as those of Fig. 5.1(a,b), which can easily be stitched
together to model more complex surfaces such as the t-shirt of Fig. 5.1(c).

More specifically, the regular grid of Fig. 5.1(a) hasNx × Ny vertices,N b
e = 2(Nx −

1)+ 2(Ny − 1) boundary edges, and therefore2Nx + 2Ny − 1 degrees of freedom, which
is much smaller than the3NxNy it would have without the inextensibility constraints.
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(a) (b) (c)

Figure 5.2: Specifying the 3D shape of the rectangular mesh and subdvided triangle. (a)
We fix the shape of the bottom row from left to right by rotatingeach facet with
respect to its left neighbor. For each following row, we onlyneed to set the
angle between the leftmost facet and the one below and the angle between the
rightmost facet and its left neighbor. (b) The angles between the facets of the
bottom row are first set from left to right. For each upper row,only the angle
of the first facet need be set. (c) Attaching two patches together. Because the
base of each triangular patch is attached to the body, only one single angle is
required to fully specify their first row.

Furthermore, this number of dofs includes the six that correspond to a rigid motion and can
be ignored for our purposes. The triangulation of Fig. 5.1(b) hasNs vertices per side and
was built by recursively subdividing a single triangle. It hasNs(Ns + 1)/2 vertices and
N b

e = 3(Ns − 1) boundary edges, which results in3Ns dofs instead of3Ns(Ns + 1)/2.
The t-shirt of Fig. 5.1(c) is modeled by combining a rectangular patch for the body part

and two triangular ones for the sleeves. In this case, the number of dofs of the triangular
patches is reduced because they have common edges with the rectangular patch. As a
result, the total number of dofs resulting from assembling the triangular and rectangular
patches is less than the sum of dofs of each patch taken separately.

5.1.2 Angle-Based Parameterization

Here we show that the shape of a wide class of inextensible meshes can be parameterized
in terms of a small numberNa of determining anglesbetween theirs facets. We present
procedures for choosing theNa angles so that the number of degrees of freedom of Eq. 5.4
can be written as

Nd = Na + 6 , (5.5)

where the6 degrees of freedom added toNa represent the rigid motion.

5.1.2.1 Simple Triangulations

Let us first consider theNx × Ny mesh of Fig. 5.1(a). As shown in Fig. 5.2(a), if we
constrain the horizontal, vertical and diagonal edges to retain their original lengths, only
the facets of the bottom row and the first and last facets of each upper row need be set
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C0

C2C1

S0

S1

S2r0

r1
r2

P

Figure 5.3: Determining the position of interior vertices by the intersection of 3 spheres.
The positions of solid lines triangles have already been computed. We seek to
determine the position of pointP. This can be done by computing the inter-
section of 3 spheres of known radii centered inC0, C1, andC2, respectively.
This yields between two and zero solutions depending on the configuration of
the other triangles.

to completely determine the shape of the grid. Each one of theremaining vertices can
then be computed as the intersection of three spheres centered on previously computed
vertices, as illustrated by Fig. 5.3. It can be easily checked that this requires specifying
Na = 2(Nx − 1) + 2(Ny − 2) − 1 determining angles and the 6 degrees of freedom that
fix the position and orientation of the first facet. This corresponds to the predicted total of
Nd = 2Nx + 2Ny − 1 dofs derived in Section 5.1.1. In other words, the chosen subset of
angles gives us a model with the right number of degrees of freedom.

In the case of the subdivided triangle withNs vertices per side of Fig. 5.1(b), we use the
very similar construction depicted by Fig. 5.2(b). The total number of determining angles
is Na = 2(Ns − 2) + (Ns − 2) = 3Ns − 6. To this number, we must add the six dofs
required to fix the position and orientation of the first facetin space to get the expected
total ofNd = 3Ns dofs discussed in Section 5.1.1.

5.1.2.2 Complex Triangulations

As discussed in Section 5.1.1, we modeled the t-shirt of Fig.5.1(c) by combining a rectan-
gular patch for the body part and two triangular ones for the sleeves. We parameterize the
rectangular patch as before. As shown in Fig. 5.2(c), because the base of each triangular
patch is attached to the body, only one single angle is required to fully specify their first
row. The remaining rows of the triangles can then be specifiedas before.
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(a) (b) (c)

Figure 5.4: Deformation modes of the meshes of Fig. 5.1. In all figures,y0, the average
mesh, is shown in red. The other two are obtained by taking a single mode
weight to be non zero. A positive value of that weight yields the green mesh
and a negative one the mesh shown in blue. Bending and extension modes of
(a) the flat rectangular mesh, (b) the triangular spinnaker,and (c) the t-shirt.

Note that this approach is very general and could be extendedto any surface without
holes that can be unfolded to a planar polygon of arbitrary shape: Any polygon can be
triangulated without adding any interior vertex [136]. Thedual graph of such a triangu-
lation, that is, the graph connecting the centers of neighboring facets, cannot contain any
cycle because such a cycle would have to enclose at least a vertex, which would then be
an interior vertex. This implies that we can build the triangulation by sequentially insert-
ing triangles in such a way that each new one, except the first,has a single common edge
with one already present. Given this order, we can representthe individual triangles as
hexagonal triangulations attached to each other and parameterize them as discussed above.

5.1.3 Dimensionality Reduction

The angle-based parameterization we introduced above reduces the number of parameters
required to specify the shape of an inextensible mesh. However, it is not particularly well
adapted to fitting surfaces to image data for several reasons. First, it imposes an arbi-
trary graph structure among the vertices and specifies the coordinates ofchild vertices as a
function of those ofparentvertices, which tends to degrade the performance of optimiza-
tion algorithms. Second, computing the actual shape involves solving quadratic equations
representing the intersection of three spheres, which is computationally expensive. Addi-
tionally, intersecting 3 spheres may result in two solutions for some configurations or none
at all for others, which makes this parameterization impractical for optimization purposes.
Finally, its number of dofs still depends on the mesh resolution.

We therefore use the angle-based parameterization as an intermediate representation that
lets us sample the set of possible shapes by randomly drawingthe angles from a uni-
form distribution between two bounds. In practice, the angles were drawn in the range
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[−π/6, π/6], or in the range[−π/9, π/9], depending on the expected flexibility of the
surface at hand. The sampled shapes can then be used as training data for dimensional-
ity reduction techniques, which will yield the true deformation model. Our representation
in terms of determining angles gives us an enormous advantage over usual training data
acquisition methods, since the resulting shapes are all deformed version of a single topol-
ogy. Therefore there is no need of the usual painstaking 3D scan alignment and remeshing
process, as, for example, was the case in [19].

Since all the resulting deformed meshes have the same topology, we form a3Nv vector
for each one by concatenating the coordinates of itsNv vertices. We then apply Principal
Component Analysis on these vectors, which involves the eigen-decomposition of the data
covariance matrix. By retaining only the firstNm ≤ Nd << 3Nv principal components,
we can approximate the vector of coordinates of any mesh as

y = y0 +

Nm
∑

k=1

xksk , (5.6)

wherey0 is the vector corresponding to an undeformed mesh, thesk are the principal
components or modes, and thexk are weights that specify the surface shape and act as low-
dimensional latent variables. In other words, the shape of amesh can now be expressed
as a function of the vectorx = [x1 ... xNm ]T . Note that, in some sense, this is similar to
modal analysis where the object’s behavior is described by superposing its natural strain
and vibration modes [122]. However, unlike modal analysis,we do not require the kind of
physical knowledge that building the appropriate stiffness matrix requires.

Fig. 5.4 depicts the influence of two of the most significant modes in the case of the
meshes of Fig. 5.1. Giving weight to the first produces bending and, to the second, exten-
sion. The presence of extension modes may seem surprising since all the samples we used
to learn the model are instances of the same inextensible mesh. However, given that the de-
formations are not linear when expressed in terms of 3D coordinates, there is no reason for
the manifold of all resulting shapes to lie on a hyperplane. Intuitively, by using PCA, we
consider theNm-dimensional ellipsoid that includes this manifold without being limited to
it. This produces not only extension modes but also rigid ones that we discard.

In practice, the presence of these extension modes makes themethod more general: On
one hand, if the surface whose deformations we seek to recover is truly inextensible, we
can incorporate a term that prevents extension or shrinkinginto our optimization scheme.
On the other hand, the presence of the extension terms lets useffectively model stretchable
materials using a low-dimensional deformation model. In theory, it should be possible to
remove those extension modes by replacing PCA by a non-linear dimensionality reduction
technique. However, this would not help much without using adatabase that is much
closer to the true physics. This is because a non-linear technique is very likely to force the
model to stick much closer to the training data. In some sense, that would negate one of
the strengths of our approach that does not require either accurate training data or precise
knowledge of the physics, both of which are often hard to obtain. Furthermore, as shown in
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(a) (b) (c)

Figure 5.5: Image data. (a) An image from an input sequence. (b) One of 15 images used
to build a textured 3D model of the spinnaker. For our experiments, we added
black scotch tape on the otherwise white parts of the sail to help our wide-
baseline algorithm to find correspondences between model and input images
such as those depicted by the black lines. (c) Contours detected as texture
boundaries. Even though the boundary is not correct everywhere, thanks to the
model and robust estimation we still recover the correct shape.

Chapter 7, learning a non-linear global model from real dataproved intractable in practice
due to the memory requirements and the complexity of the learning algorithm.

5.2 Shape Recovery by Tracking

We outline here our approach to using our models to take full advantage of the available
image information, acquired using one or more cameras, while ignoring erroneous data.
Note that this approach is defined as tracking, since it relies on image-to-image correspon-
dences in addition to the usual model-to-image matches. However, it does not rely on any
motion model as the methods described in the previous chapter.

Recall from Section 5.1.3 that the shape of the mesh is controlled by the vectorx of
weights assigned to the PCA modes. To handle the potentiallymoving camera, or cameras,
we introduce a vector of extrinsic parametersκ for each one and define the state vector

Θ =
[

κ1, . . . , κNp ,x
]T

, (5.7)

whereNp is the number of cameras being used. Note that this formulation can handle both
one single camera and multiple cameras that may move with respect to each other.

We use the image data to writeNo observation equations of the form

Oi( · ,Θ) = ǫi , 1 ≤ i ≤ No , (5.8)

whereOi is a differentiable objective function associated to a particular type of image
data, andǫi an error term. Here we consider the functionsOm, Ot andOc derived from
model-to-image point correspondences, image-to-image point correspondences, and con-
tour information respectively.
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Model-to-image correspondences. As shown in Fig. 5.5(a,b), when a textured 3D
model of the object in its rest position is available, we use afast wide-baseline feature
matching technique [99] to compute correspondences between surface 3D locationsq and
2D image features. We defineOm(q,Θ) as the Euclidean distance in the image plane
between the projection ofq and the corresponding image feature.

Image-to-Image Correspondences. Given a couplemi = (u1
i ,u

2
i ) of correspond-

ing points in two different images of the surface found usingthe same technique as be-
fore [99], we defineOt(mi,Θ) as follows: We back-projectu1

i to the 3D surface and
reproject it into the second image. We then takeOt(mi,Θ) to be the Euclidean distance in
the image plane between this reprojection andu2

i .

Boundary and Occluding Contours. As shown in Fig. 5.5(c), given the last known
shape of the target object, we predict the location of the projection boundaries and occlud-
ing contours. We then sample these 2D contours and look for the closest edge or texture
boundary in the normal direction [138]. We takeOc to be the Euclidean distance between
the projection and the image edges.

As we saw in Section 5.1.3, a linear combination of principalcomponents can result in a
mesh that expands or shrinks. To model surfaces that do not stretch, we force edge lengths
to remain constant by introducing a penalty term

ED =

Nv
∑

i=1

∑

vj∈N (vi)

(‖vi − vj‖ − Li,j)
2 , (5.9)

wherevi is a vertex of the mesh,N (vi) represents the set of all its neighbors, andLi,j is
the initial edge length. Finally, we take the global objective functionE we minimize to be

E =
1

2

No
∑

i=0

wiρ
(

∥

∥Oi( · ,Θ)
∥

∥

2
, r

)

+ wDED , (5.10)

where thewi is the weight associated to the particular type of observation i and designed
so that the derivatives of all observations are of commensurate magnitude,wD is a user-
defined weight, andρ a robust estimator whose radius of confidencer progressively de-
creases during the optimization. As discussed in [127], this scheme allows convergence
from arbitrary starting positions. A small, or zero,wD lets the mesh stretch or shrink.
Note, that besides the term that constrains the length, we introduce no other shape regular-
ization term.

5.3 Experimental Results

In this section, we present results obtained with our tracking algorithm. Using synthetic
data, we first show that the linear model is sufficient to recover complex 3D shapes, and that
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(a) (b) (c) (d)

Figure 5.6: Fitting test surfaces created by varying the determining angles. Using 50 defor-
mation modes proved sufficient to reconstruct the surfaces to a good precision.
(a,c) The original shapes are shown as shaded. (b,d) The fitted ones are dis-
played as wireframes.

the reconstruction is insensitive to initial conditions. Finally, we present results obtained
on real sequences.

5.3.1 Synthetic Data

Recall from Section 5.1.2 that we created the deformed mesh samples by varying a number
of determining angles between the mesh facets. Arguably, using a much smaller number of
principal components could fail to cover all possible such deformations and result in prin-
cipal components unable to describe some configurations. Todisprove this, we generated
a number of test meshes such as the ones of Fig. 5.6(a,c) by randomizing the determining
the angles in a similar fashion. We then reconstructed them by minimizing the 3D vertex-
to-vertex distance with respect to the PCA coefficientsx. As can be shown in Fig, 5.6(b,d),
usingNm = 50 principal components was sufficient to accurately fit the resulting shapes.

To demonstrate that our optimization process is well-posedand insensitive to initial con-
ditions, we ran our system on synthetic data. We created randomly deformed versions of
the rectangular mesh such as the ones shown in the first columnof Fig. 5.7 and used them
to produce large numbers of synthetic model-to-image correspondences. For each test-run,
we started from a different random initialization such as the ones of the second column of
Fig. 5.7 and minimized the objective function of Eq. 5.10 using random subsets of the cor-
respondences. In the third column of the figure, we plot the median of the mean distances
between the vertices of the recovered mesh to the correct oneas a function of the number
of correspondences that were used. More precisely, given a numbern between 5 and 600,
we picked four different subsets ofn correspondences and ran the algorithm with 100 dif-
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(a) (b) (c)

Figure 5.7: Convergence using synthetic data. (a) Projections of the synthetic surfaces used
as input for the optimization process. (b) Examples of initializations. (c) Me-
dian of the mean distances between the vertices of the recovered mesh and
the synthetic surface as a function of the number of correspondences that were
used. The measures are given as a percentage of the longest side of the initial
rectangle. We did not draw error bars because, as soon as we used more than 50
matches, the first and third quartile of the mean distances are indistinguishable
from the median.

ferent initial shapes for each. As soon as enough correspondences are used, the algorithm
consistently converges towards the correct solution.

5.3.2 Real Images

Here we demonstrate the capabilities of our method to recover the possibly large defor-
mations of different kinds of objects that cover a wide rangeof physical properties. The
images have been acquired using ordinary camcorders. First, we present pure tracking re-
sults obtained by using image-to-image correspondences and silhouettes only, and then we
show our results of combined tracking and detection by adding model-to-image matches.

5.3.2.1 Tracking Results

We first applied our method to tracking deformable surfaces in monocular sequences using
frame-to-frame matches and silhouettes. This assumes, as in the previous chapter, that the
shape in the first frame in known. For these results, we further assumed that the camera is
fixed, and thus the state vectorΘ only contains the shape parametersx. Simply keeping
the number of principal components we use low is enough to enforce smoothness without
having to explicitly add a regularization term. However, insome cases, we had to fix some
coordinates of the meshes to avoid ambiguities due to the chosen viewpoints.
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Figure 5.8: Deforming a sheet of paper. Top row: Deformed mesh projected on the original
sequence as a wireframe. Bottom row: Deformed mesh shown as awireframe
model seen from a different viewpoint. Note that even the back deforms cor-
rectly.

Figure 5.9: Another deforming sheet. Top row: Projected wireframe. Bottom row: De-
formed mesh shaded and seen from a different viewpoint.

Fig. 5.8 depicts the tracking of a piece of paper starting from an undeformed position.
Even though there is texture at only one place on the paper, the whole model deforms
correctly. This includes the back of the sheet that is not actually seen in the video. Another
deforming sheet of paper is shown in Fig.5.9. The chosen viewpoint makes it difficult to
clearly see the deformation in the first frames. Our algorithm nevertheless retrieves the
precise 3D shape throughout the whole sequence. In both cases, we used 30 principal
components.

Fig. 5.10 shows the behavior of our algorithm when applied toa cloth-like material that
is more flexible and required the use of 45 principal components instead of the 30 used
before. The deformation is mostly perpendicular to the image plane, which again makes it
challenging to track. As can be seen in the figure, the reprojected shape closely matches
the object in the images, except occasionally near the corners. This can be attributed to the
fact that, because the fabric is very textured, our approachto detecting edges can become
confused and should be replaced by a more sophisticated one.

As mentioned before, some of the PCA modes account for extension and stretching.
Therefore, we used an inflating and deflating balloon to test our algorithm’s behavior when
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Figure 5.10: Deforming fabric. The results are displayed inthe same manner as in Fig 5.8.
Since the fabric is highly textured, borders of the mesh are sometimes mis-
matched with texture edges, which results in small misalignments.

the surface can globally stretch or shrink. In all the balloon examples presented here, the
initial mesh shapes were obtained by scanning the balloons before starting inflation or
deflation and fitting our mesh models to the scans.

All the results shown above involved the use of the penalty term ED of Eq. 5.9 to force
the mesh edges to retain their original lengths. In Fig. 5.11, we allow the mesh to stretch
by setting the weight of thisED term to zero. The last row of the figure displays an
augmented version of the mesh. Indeed, having the 3D mesh lets us re-texture it, and
project it onto the original image, thus creating a new virtual balloon. Since we are not
tracking the whole balloon, but only its textured part, we only use correspondences and
ignore edges. The mesh then expands along with the balloon, which is made possible by
principal components such as the one depicted by the bottom row of Fig. 5.4. As shown in
Fig. 5.12, the opposite behavior is observed when the balloon deflates.

Finally, Fig. 5.13 depicts the results obtained on the same sequence as in Fig. 5.11 when
penalizing the edge length variation. Because the surface cannot stretch, it ends up covering
a smaller fraction of the balloon and gets flatter as the balloon inflates. This also is a
correct representation if we do not assume that the mesh is attached to a precise area of
the surface, but rather models the behavior of a fixed size part, which is valid since we use
image-to-image correspondences only. Our parameterization does not force any vertex to
correspond to one particular point on the object and the meshcan slide along the object
surface. Fig. 5.14 shows the superposed meshes in the first and last frame of the sequence
for the case where extension is not penalized, and for the case where it is. It can indeed
be noted that the final shapes are rather different, but can both be considered as correct
depending on the expected behavior of the model.
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Figure 5.11: Tracking an inflating balloon with an extensible mesh. Note that the mesh
keeps on covering the same portion of the balloon. In the lastrow, we re-
textured the resulting mesh, and reprojected it into the images.

5.3.2.2 Tracking and Detection

We now present results obtained by optimizing the full criterion of Eq. 5.10 using model-
to-image correspondences in addition to correspondences with the previous image, and
optionally silhouette information. This runs at between 0.3 and 2.5 frames/second when
using 40 modes and 1024x768 images, the faster rate being obtained when not using sil-
houettes. Recall from Section 5.2 that we use an optimization schedule that lets us start
from arbitrary positions, which means that this does not require any manual intervention at
run-time. As shown in the figures of this section, the resulting shapes are accurate enough
for correct reprojection. However, enforcing temporal consistency only over image pairs
might leave a residual 3D jittering motion across frames when creating videos. Therefore,
this jitter can be eliminated by reoptimizing our criterionusing the same observations as
before, but over larger sets of 8 overlapping frames, and enforcing temporal coherence by
penalizing the second derivatives of all parameters.

We represent both the sheet of paper and the elastic surface,which was cut out of an
inflatable balloon, of Fig. 5.16 and 5.18 as a30 × 20 rectangular grid. We model the
spinnaker using a 153-vertex triangle. The t-shirt mesh is made of 2 sleeves that are 45-
vertex equilateral triangle attached to a9× 25 rectangular grid. We used 45 PCA modes to
track the sheet of paper, 10 for the balloon, 40 for the spinnaker and 50 for the t-shirt.

The rest shape of the spinnaker is not planar and NorthSailsTM gave us the CAD model
that was used to design it, thus allowing us to fit a triangularmesh to it. This gave us
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Figure 5.12: The inverse behavior as in Fig. 5.11 can be observed when the balloon deflates.

the initial shape from which we computed the deformation modes. To create the textured
model needed for automated run-time operation, we developed a software tool that allows
us to manually supply a few image-to-model correspondencesin images such as those of
Fig. 5.15, which donot belong to the test video. By feeding these correspondences along
with automatically detected silhouettes into the optimization framework of Section 5.2, we
recover the spinnaker’s shape into the images and, thus, a textured model. In the specific
case depicted by Fig. 5.15, we only supplied 10 correspondences per image, which did
not take long to do. In short, our deformation modes not only lead to robust and automated
run-time operation but can also be used to limit the requiredamount of manual intervention
during model building.

These experiments display several strengths of our method.First, for the deforming
sheet of paper of Fig. 5.16 and spinnaker of Fig. 5.17, our system proved robust enough to
process sequences of more than 1500 frames acquired both indoors and outdoors without
getting lost or drifting. When the image data was too weak, 3Dshape recovery became
temporarily less accurate but the system soon recovered.

The t-shirt example of Fig. 5.16 shows that even though the resulting PCA modes repre-

94



5.3 Experimental Results

Figure 5.13: Tracking an inflating balloon with an inextensible mesh. The portion of the
balloon covered by the mesh becomes smaller and flatter as theballoon ex-
pands. This also is a correct solution if we do not assume thatthe mesh rep-
resents a particular portion of the object, but rather models the behavior of a
fixed size part, which is valid when relying on image-to-image matches only.

Figure 5.14: Superposition of the initial mesh in red and thefinal one in blue. Left: When
extension is not penalized, the mesh increases as the balloon inflates. Right:
When we enforce the edges to remain of constant length, the surface remains
of same area, but becomes flatter.

sent global deformations, we can still track very local ones, such as only one moving sleeve,
by superposing these modes. Finally, in the case of the stretching surface of Fig. 5.18, we
can see that not only global extension can be modeled, but also anisotropic stretching. This,
again, is due to the fact that local deformations can be accurately described by appropriately
superposing global modes.

All these results were generated using a single video sequence per object except in the
spinnaker case where we used either one or two cameras. In this case, the two cameras
were hand-held by two people on a chase-boat so that they movewith respect to each other
in an unpredictable fashion and do not form a stereo-rig in the usual sense of the term.
Our framework is powerful enough to handle this case and to take full advantage of all the
available information, even in such non-standard conditions. As shown in Fig. 5.17, once
reprojected on the images, the results are almost indistinguishable. Of course, because
a single camera cannot see both sides of a curvy object, the quality of the 3D results is
bound to be better when using two cameras looking from very different angles so as to see
different parts of the object. However, the superposition of both 3D results in Fig. 5.17(e)
shows that, in this case, the model approximates the hidden part well. This behavior is
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Figure 5.15: 3D model of the spinnaker overlaid on the three images used to compute its
reference shape and texture. In each image, we specified 10 correspondences
with a CAD model of the spinnaker and used them, along with automati-
cally detected silhouettes, to deform it. We assume that thespinnaker did
not deform in these images because they were taken in quick succession by a
chase-boat.

Figure 5.16: Tracking a deforming sheet of paper and a t-shirt. In both cases, we show the
deformed 3D mesh overlaid on the original images in the top row and then
seen from a different viewpoint in the bottom row.

consistent over the whole video sequence.
Finally, to estimate the accuracy of our reconstructions, we acquired three videos of

another sheet of paper using three calibrated and synchronized cameras. We used one to
monocularly reconstruct the deforming shape using our method. We used the other two
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(a) (b) (c) (d) (e)

Figure 5.17: Tracking a spinnaker with either one or two cameras. (a,b) Two synchronized
images from independently moving cameras, with recovered spinnaker repro-
jection. (c) Tracking using only one camera. Note that, oncereprojected on
the images, the results are almost indistinguishable. (d) 3D results with two
cameras. Both camera positions are also retrieved. (e) Superposed 3D shapes
retrieved using either one (red) or two (blue) cameras. Notethat both shapes
are very similar, which indicates that the deformation model provides a good
approximation when data is missing.

Figure 5.18: Tracking an extensible surface undergoing anisotropic deformations. In the
top row, we show the original images and, in the bottom row, weoverlay the
recovered 3D grid that stretches appropriately.

to triangulate thex-, y-, andz-coordinates of 10 selected points by manually establishing
correspondences every 10 frames of the 70 frames-long sequences. These points—the
four corners of the sheet plus six additional ones spread over its surface—are depicted
by Fig. 5.19(d) and were chosen to be representative of the whole surface. As shown in
Fig. 5.19(e), the largest average errors occur in thez-direction, which was to be expected
since it is close to the viewing direction. In Euclidean terms, this corresponds to the median
errors of Fig. 5.19(f), which are in the order of 1cm. This is quite small considering that
this was achieved using a single camera that was approximately 1.5 meter away from the
29.7cm×21.0cm rectangular sheet of paper.
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(a) (b) (c)

(d) (e) (f)

Figure 5.19: Evaluating the accuracy of our approach. (a,b,c): Images from videos ac-
quired using three synchronized and calibrated cameras. Image (b) belongs
to the video we used to monocularly reconstruct the 3D shape using our
method and, then, re-projecting it into the image. (d) We triangulated the
3D coordinates of the 10 keypoints shown as crosses by manually establish-
ing correspondences in images (a) and (c). (e) We repeated this operation
every 10 frames and plot the average differences between thex-, y-, andz-
coordinates of those manually computed and those derived from our auto-
mated and monocular reconstruction. (f) We also computed the Euclidean
distances between the monocular reconstructions and the manually computed
points, and plot their medians together with values at 25% and 75%.

5.4 Closed-Form Solution to Non-Rigid 3D Registration

In Section 5.2, we have presented an optimization approach to recovering the shape of a
non-rigid surface from a video sequence. In this section, wewill now show that, when us-
ing model-to-image correspondences only, this can also be done in closed-form. The major
advantage of this is that we can now reconstruct a deformablesurface from individual im-
ages and a reference configuration. Furthermore, this also completely prevents the results
from drifting troughout a video sequence.

As in Section 3.2.1, we first formulate 3D reconstruction as the solution to a linear sys-
tem. We then show that the depths ambiguities can be overcomeby solving a system of
quadratic equations accounting for constant edges lengths, which can be done in closed-
form using linearization techniques. Since modeling the deformations in terms of the ver-
tices coordinates involves too many parameters for the problem to be tractable, we then
show how our global models can be introduced in this framework.
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5.4.1 Linear Formulation

Let us consider the 3D registration of a mesh to an input image, given a reference configu-
ration. As in Chapter 3, we assume that we are given a set ofNc 3D-to-2D correspondences
between the surface and the image. Each correspondence relates a 3D point on the mesh,
expressed in terms of its barycentric coordinates with respect to the vertices of the facet to
which it belongs, and a 2D feature in the image.

Additionally, we assume the camera to be calibrated and, therefore, that its matrix of
intrinsic parametersA is known. To simplify our notations without loss of generality, we
express the vertex coordinates in the camera referential.

Let us first set aside our linear deformation model and consider the reconstruction of the
3D coordinates of theNv mesh verticesvi , 1 ≤ i ≤ Nv. Recall from Section 3.2.1 that,
in this framework, the correspondence problem can be formulated as the solution to the
linear system

My = 0 , (5.11)

whereM is the2Nc × 3Nv matrix of Eq. 3.6, andy =
[

vT
1 ... vT

Nv

]T
.

As detailed in Section 3.2.1, although solving this system yields a surface that reprojects
correctly on the image, there is no guarantee that its 3D shape corresponds to reality. This
stems from the fact that, for all practical purposes,M is rank deficient. More specifically,
even when there are many correspondences, one third, i.e.Nv, of the eigenvalues ofMTM

are very close to zero, as illustrated by Fig. 5.20(c). As a result, even small amounts of noise
produce large instabilities in the recovered shape.

This suggests that additional constraints have to be added to guarantee a unique and
stable solution. Following what was proposed in the previous part of this chapter, we
will argue that imposing inextensibility of the surface yields a closed-form solution to the
problem.

5.4.2 Inextensibility Constraints

Following the idea introduced in [111] in the context of rigid object pose recovery, we
write the solution of the linear system of Eq. 5.11 as a weighted sum of the eigenvectors
li , 1 ≤ i ≤ Nv of MT M, which are those associated with the eigenvalues that are almost
zero. Therefore we write

y =

Nv
∑

i=1

βili , (5.12)

since any such linear combination ofli is in the kernel ofMTM and produces a mesh that
projects correctly on the image. Our problem now becomes finding appropriate values for
theβi, which are the new unknowns.

We are now in a position to exploit the inextensibility of thesurface by choosing theβi

so that lengths of theNe edges are preserved. Suchβi can be expressed as the solution of
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Figure 5.20: (a,b) Original and side views of a surface used to generate a synthetic se-
quence. The 3D shape was reconstructed by an optical motion capture system.
(c,d) Eigenvalues of the linear system written from correspondences randomly
established for the synthetic shape of (a). (c) The system was written in terms
of 243 vertex coordinates. One third of the eigenvalues are close to zero. (d)
The system was written in terms of 50 PCA modes. There are still a number
of near zero eigenvalues. (e) First derivative of the curve (d) (in reversedx-
direction). We take the maximum value ofNl to be the one with maximum
derivative, which corresponds to the jump in (d).

a set of quadratic equations of the form
∥

∥

∥

∥

∥

Nv
∑

i=1

βil
j
i −

Nv
∑

i=1

βil
k
i

∥

∥

∥

∥

∥

2

=
∥

∥

∥
v

ref
j − v

ref
k

∥

∥

∥

2
, (5.13)

wherelji is the 3×1 sub-vector ofli corresponding to the coordinates of vertexvj , andvref
j

andv
ref
k are two neighboring vertices in the reference configuration.

Typical closed-form approaches to solving systems of quadratic equations involve lin-
earizing the system and introducing new unknowns for the quadratic terms. This results in
a system of the form

Db = d , (5.14)

whereb = [β1β1, · · · , β1βNv , β2β2, · · · , β2βNv , · · · , βNvβNv ]T is the vector of quadratic
terms of sizeNv(Nv +1)/2. D is aNe×Nv(Nv +1)/2 matrix built from the knownli, and
d is theNe × 1 vector of edge lengths in the reference configuration. Unfortunately, since,
in hexagonal meshes, the number of edges grows as3Nv, the number of quadratic unknown
terms in the linearized system quickly becomes larger than the number of equations.
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5.4 Closed-Form Solution to Non-Rigid 3D Registration

Here, we solve this problem by using Extended Linearization[40], a simple and powerful
approach to creating new equations in a linearized system. It has been shown to perform
better than Groebner bases with a large number of parameters, and can be considered as
a generalization of relinearization which introduces new equations that link the quadratic
terms together to make them coherent. The idea is to multiplythe original set of equations
by the monomials, and linearize the resulting system. In ourparticular case, we can, for
example, multiply the existing quadratic equations by eachof the linear terms, thus creating
new equations of the form

β1
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∥

∥

∥
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.

Let bc = [β1β1β1, · · · , β1β1βnv , β1β2β2, · · · , β1β2βnv , β2β2β2, · · · , βnvβnvβnv ]
T , and

bl = [β1, · · · , βnv ]T . The resulting system can be written as

[

Dl
XL D

q
XL Dc

XL

]





bl

b

bc



 =













d1
...
0
...













, (5.15)

with

Dl
XL =









0 · · · 0
· · · · · · · · ·
−d1 0 · · ·
· · · · · · · · ·









, (5.16)

D
q
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D
1,1
1 · · · D
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1 · · · D
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, and (5.17)

Dc
XL =









0 · · · · · · · · · 0
· · · · · · · · · · · · · · ·

D
1,1
1 · · · D

Nv ,Nv

1 0 · · ·
· · · · · · · · · · · · · · ·









, (5.18)

and where we only explicitly show the first line of the original system of Eq. 5.14 and its
product withβ1. D

i,j
1 stands for the coefficient on the first line ofD corresponding to the

productβiβj .
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Figure 5.21: Lin-Log plot of the number of equations and number of unknowns as a func-
tion of the number of Extended Linarization iterations for the case of a10×10
square mesh. Note that after 4 iterations, the number of equations exceeds the
number of variables, making the system, in theory, solvable. However, the
size of the system is of the order1012, which makes its solution intractable in
practice.

Unfortunately, we can show that, when dealing with relatively large meshes, multiplying
the inextensibility equations by all theβi is not practical to solve the system of Eq. 5.14.
Given a hexagonal mesh for whichNe ∝ 3Nv, the number of equations after Extended
Linearization isNeq = (Nv + 1)Ne ∝ 3N2

v + 3Nv . Since, the new equations also give
rise to new unknowns, the linear and cubic terms, the total number of variables becomes
Nu = Nv + Nv(Nv + 1)/2 + Nv(Nv + 1)(Nv + 2)/6. For the system to be solvable, we
need

Neq ≥ Nu

⇔ 3N2
v + 3Nv ≥ Nv + Nv(Nv+1)

2 + Nv(Nv+1)(Nv+2)
6

⇔ 0 ≥ Nv(N
2
v − 12Nv − 7) .

Nv being greater than zero, this implies(N2
v − 12Nv − 7) ≤ 0, which is only true for

Nv ≤ 12. In practice, we rarely face cases where 12 vertices are enough to model the
deformations of a surface.

Of course, Extended Linearization can be applied iteratively by re-multiplying the new
equations by the linear terms. Let us assume that, at each iteration, we only consider the
newly created equations, but not the original set, and that we start after a first Extended
Linearization step, to avoid the special case of constant right-handside valuesd. If we
separateN (0)

u = N
(0)
u,1+N

(0)
u,3 into the numbers of linear terms and cubic terms, respectively,
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we can then write the following recursive procedure:

N (i+1)
eq = NvN

(i)
eq ,

N
(i+1)
u,1 = N

(i)
u,1

(

Nv + i

i + 1

)

,

N
(i+1)
u,3 = N

(i)
u,3

(

Nv + i + 2

i + 3

)

,

where a superscript(i) indicates the iteration. The number of equations thereforegrows as
O(N i+1

v ), whereas the number of unknowns isO(N i+3
v /(i + 3)!). As shown in Fig. 5.21,

for the case of a10 × 10 vertices square mesh, after a few iterationsNeq indeed becomes
larger thanNu. However, the size of the system is then of the order1012, which makes it
impossible to solve in practice.

In other words, Extended Linearization cannot deal with a problem as large as ours
and we are not aware of any other closed-form approach to solving systems of quadratic
equations that could. Fortunately, we can address this issue with the help of our linear
deformation model.

5.4.3 Linear Deformation Model

As discussed above, to solve the set of quadratic equations that express edge length preser-
vation, we need to reduce its size to the point where ExtendedLinearization becomes a
viable option. Furthermore, we need to do this in such a way that the solution of the cor-
respondence problem can still be expressed as the solution of a system of linear equations,
as discussed in Section 5.4.1.

To this end, we make use of the linear deformation model described in Section 5.1.3 that
models the plausible deformations of the mesh as a linear combination ofNm deformation
modes. We re-write Eq. 5.6 in matrix form as

y = y0 + Sx , (5.19)

whereS is the matrix whose columns contain the deformation modes and x is the vector
of their associated weights.

In this formulation, recovering the shape amounts to computing the weightsx. Since the
shape must satisfy Eq. 5.11,x must then satisfy

M(y0 + Sx) = 0 . (5.20)

When solving this system, to ensure that the recovered weights do not generate shapes
exceedingly far from our training data, we introduce a regularization term by penalizing
xi with the inverse of the corresponding eigenvalueλi of the data covariance matrix. This
follows the probabilistic interpretation of PCA [153]. We therefore solve

[

MS My0

wrΛ
− 1

2 0

] [

x

1

]

= 0 , (5.21)
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whereΛ is anNm ×Nm diagonal matrix whose elements are theλi andwr is a regulariza-
tion weight that only depends on the maximumλi, and whose precise value has only little
influence on the results.

As shown in Fig. 5.20(d), we have considerably reduced the number of near-zero eigen-
values. The system of Eq. 5.21 is therefore better conditioned than the one of Eq. 5.11,
but still does not yield a well-posed problem that would havea unique solution. This is at-
tributable to the fact that, because the solution is expressed as a sum of deformation modes,
inextensibility constraints, which are non linear, are notenforced.

Nonetheless, we can follow the same procedure as in Section 5.4.2. We write the solution
of the linear system of Eq. 5.21 as a weighted sum of the eigenvectors̃li , 1 ≤ i ≤ Nl ≪
Nm associated with the smallest eigenvalues of its matrix, andfind the weightsβ̃i as the
solution of the linearized system of quadratic equations

D̃b̃ = d̃ , (5.22)

whereb̃ = [β̃1, · · · , β̃Nl
, β̃1β̃1, · · · , β̃1β̃Nl

, β̃2β̃2, · · · , β̃2β̃Nl
, · · · , β̃Nl

β̃Nl
]T now also con-

tains the linear terms arising in the quadratic equations from the mean shapey0. Further-
more, the system also encodes the additionnal linear equation that constrains thẽβi l̃i,Nm+1

to sum up to 1, wherẽli,Nm+1 is the last element of̃li.

Since in practiceNl ≪ Nm ≪ Nv, the system is now much smaller. Therefore a single
iteration of Extended Linearization is sufficient to constrain its solution while keeping it
tractable, even for relatively large numbers of modes—in practice up to 60—thus allowing
complex deformations.

In this formulation, the numberNl of eigenvectors strongly depends on the numberNm

of modes used for the recovery. This is in contrast with [111]that only uses at most 4 of
them, since they deal with rigid objects. However, as shown in Fig. 5.20(e), we can easily
set the maximum number̂Nl of eigenvectors to use by picking the number corresponding
to the maximum first derivative of the ordered eigenvalues curve. We then simply test for
all Nl ≤ N̂l and pick the optimal value as the one that, for a small enough reprojection
error, gives the smallest mean edge length variation. In practice, N̂l was typically about
25 when using 60 deformation modes, while the value ofNl that generates the best results
was around 10.

5.5 Experimental Results

In this section, we present the reconstructions obtained inclosed-form from individual im-
ages and a reference image. Even though some of the results were computed from video
sequences, nothing relates the frames of the sequences together, and no initialization is
required. We first present results on synthetic data to quantitatively evaluate our recon-
struction accuracy, and then show results on real images.
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Figure 5.22: Shape recovery of a 200×200mm synthetic mesh imaged by a virtual cam-
era placed 20cm away from it. Each plot shows the mean vertex-to-vertex
3D distance between the recovered surface and the ground-truth as a function
of its mean curvature. The three different curves in each graph correspond
to a varying number of correspondences per facet. Left to right, the number
of outliers grows. Top to bottom, the gaussian noise added tothe correspon-
dences increases. For each experiments, we plot the averageover 40 trials.
The last row shows in blue recovered shapes for the ground-truth surface of
Fig. 5.20(a,b), shown in red. The corresponding mean vertex-to-vertex dis-
tances are 9mm, 19mm and 38mm. This highlights the fact that even for
distances around 40mm, the recovered shape remains meaningful.
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Figure 5.23: Comparison of our closed-form results againstthe results of constrained opti-
mization. Optimization was performed on the vertex coordinates using Mat-
lab’sfmincon function, and starting from the flat position. (a) Mean vertex-
to-vertex distance. (b) Reprojection error. Constrained optimization is both
much slower and far less accurate than our approach.

5.5.1 Synthetic Data

We first applied our method to images such as those of Fig. 5.20(a), synthesized by project-
ing known deformed shapes using a virtual camera. The deformed shapes were obtained
by recovering the 3D locations of reflective markers stuck ona 200×200mm piece of card-
board with an optical motion capture system. This allowed usto randomly createncf

perfect correspondences per facet to which we added zero mean gaussian noise of variance
σg. Finally, we simulated outliers by setting the image coordinates ofro percents of the
correspondences to uniformly and randomly distributed values.

In Fig. 5.22, we show results as a function of the surface’s mean curvature, the maximum
one being that of Fig. 5.20(a). Each plot includes three curves corresponding toncf =
{5, 1, 1/2}, which depict the mean vertex-to-vertex 3D distance between the recovered
mesh and ground-truth. The plots are ordered on a grid whosex-direction corresponds to
ro = {0%, 5%, 10%} andy-direction toσg = {0, 5, 10}. Each experiment was repeated 40
times, and we show the average results. Note that the error grows with the mean curvature
of the shape, which is natural since the shape becomes more ambiguous when seen from the
viewpoint shown in Fig. 5.20(a). In the last row, we display three shapes reconstructed from
the image of Fig. 5.20(a) with their corresponding ground-truth. Note that even for average
distances of 40mm between the true and recovered shape, the latter remains meaningful
and could be used to initialize an iterative algorithm.

In Fig. 5.23, we compare our results against results obtained with Matlab’s constrained
optimizationfmincon function. We used it to minimize the residual of the linear system
of Eq. 5.11 with respect to the vertex coordinates, under theconstraints that edge lengths
must remain constant. We first tried to use the similar representation in terms of modes.
However, since the constraints could never be truly satisfied, the algorithm would never
converge towards an acceptable solution. This forced us to directly use the vertex coor-
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Figure 5.24: 3D registration of a folded bed-sheet to an individual image given a reference
configuration. Top row: Recovered mesh overlaid on the original image. Mid-
dle row: Synthesized textured view using the recovered shape. Bottom row:
Real side view of the sheet from similar viewpoints. Despitelighting changes,
the synthetic images closely match the real ones.

dinates. To improve convergence and prevent the surface from crumpling, we added a
smoothness term [127]. For all the frames, the initialization was set to the flat position. In
Fig. 5.23(a), we show the mean 3D vertex-to-vertex distancefor the case whereσg = 5,
ro = 0, andncf = 5. The red curve corresponds to our closed-form solution and the blue
one to constrained optimization. Note that our approach gives much better results. Further-
more, it is also much faster, requiring only 1.5 minutes per frame as opposed to 1.5 hours
for constrained optimization. Fig. 5.23(b) shows the reprojection errors for the same cases.

5.5.2 Real Images

We tested our method on a folded bed-sheet, a piece of cloth and a t-shirt deforming in
front of a 3-CCD DV-camera. In all these cases, we first established SIFT [103] correspon-
dences between the reference image and the input one. We thenapplied the closed-form
non-rigid 2D registration technique described in Section 3.3.1.3 to find the correct 2D pro-
jection of the mesh on the image. This let us establish dense 3D-to-2D matches. In the
following results, we never explicily show 2D registrationresults. This would be mean-
ingless, since they would look almost identical to the reconstructed 3D meshes reprojected
onto the images that we show.
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Figure 5.25: Shape recovery of a bed-sheet. Top row: Recovered mesh overlaid on the
original image. Bottom row: Mesh seen from a different viewpoint.

Figure 5.26: Shape recovery of a piece of cloth. From top to bottom: Mesh computed in
closed-form overlaid on the input image, side view of that mesh, refined mesh
after 5 Gauss-Newton iterations.

In the case of the sheet, we deformed it into several unrelated shapes, took pictures from
2 different views for each deformation, and reconstructed the surface from a single image
and a reference configuration. In Fig. 5.24, we show the results on four different cases.
From our recovered shape, we generated synthetic textured images roughly corresponding
to the viewpoint of the second image. As can be seen in the two bottom rows of Fig. 5.24,
our synthetic images closely match the real side views. Additionally, we also reconstructed
the same sheet from the images of a video sequence, and show the results in Fig. 5.25. Note
that no initialization was required, and that nothing linksone frame to the next.

In Figs. 5.26 and 5.27, we show results for images of a piece ofcloth and of a t-shirt
waved in front of the camera. Note that in both cases, the closed-form solution closely
follows what we observe in the videos. To further refine it, weimplemented a simple
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Figure 5.27: Shape recovery of the central part of a t-shirt.From top to bottom: Mesh
computed in closed-form overlaid on the input image, side view of that mesh,
refined mesh after 5 Gauss-Newton iterations.

Gauss-Newton optimization technique, and minimize the residual‖D̃b̃−d̃‖ corresponding
to Eq. 5.22 with respect to thẽβi. In the third row of the figures, we show the refined
mesh after 5 iterations of this scheme. This proved sufficient to recover finer details at a
negligible increase in overall computation time.

In some images of the t-shirt, such as those of Fig. 5.28, the motion blur was too large, or
the drawing was too hidden to allow us to detect enough SIFT features. In such cases where
we obtained less than 30 correspondences, we simply could not register the 2D mesh with
the image, and therefore were unable to recover the shape of the surface. This, nonetheless,
has no influence on the rest of the sequence, since we do not track, but detect the surface.

5.6 Conclusion

In this chapter, we have studied the use of global deformation models to recover the 3D
shape of a non-rigid surface from images. We have first presented a way of automatically
generating deformed versions of an inextensible mesh by varying randomly a determining
subset of the angles between its facets. This let us create registered training examples from
which we could build a linear deformation model using Principal Component Analysis.
We then applied this low-dimensional model to reconstruct 3D surfaces from video using
feature points and silhouettes. Finally, we showed that reconstruction could also be formu-
lated as the closed-form solution to a set of quadratic equations. This alleviated the need of
having a good initialization to the shape recovery process,and let us reconstruct non-rigid
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5 Global Deformation Models

Figure 5.28: In such cases where a large part of the drawing onthe t-shirt is hidden, or
where the image becomes too blurry, not enough feature points could be
found. We therefore fixed a threshold, and only recovered theshape in im-
ages where we found a least 30 SIFT correspondences. Note that, since we
are not tracking the surface, this does not prevent us from correctly recover
the shape in the other frames.

surfaces from individual images.
Even though the approach proposed in this chapter proved successful in many cases,

it still suffers from several weaknesses. First, the manifold of the possible deformations
of a highly flexible material is far from being linear. Therefore, PCA might not be the
best choice to model it, as has already been noticed when PCA proved unable to respect
inextensibility constraints. Second, global models may not always have enough degrees of
freedom to model the complex deformations of a highly flexible surface. Finally, and most
importantly, global deformation models are only valid for aspecific surface. Therefore, a
new model must be built for every new object’s shape, even when it is made of a material
seen before. In the next chapter, we will overcome these issues by introducing local models
that represent the deformations of surface patches and can be combined to form arbitrary
global shapes.
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In the previous chapter, we showed that global deformation models can effectively disam-
biguate the reconstruction problem. However, they do not always have enough degrees of
freedom to handle complex deformations, such as those shownin Fig. 6.1(a). More im-
portantly, a global model is only valid for a specific shape, and cannot be re-used for a
different one, even if it is made of the same material, as illustrated in Fig. 6.1(b).

In this chapter, we show that we can replace the global deformation models by more
flexible local ones. Given a surface made of a homogeneous material, we learn a model that
approximates the behavior of a patch of such material, and replicate it to cover the whole
object of interest. This lets us use the same local models to reconstruct the deformations of
surfaces of arbitrary shapes, as long as they are made of the same material. Furthermore,
since a small patch can only undergo much simpler deformations than a large object, much
fewer examples are required to train the model.

A direct extension of the approach presented in the previouschapter is to model the de-
formations of a surface patch as linear combinations of modes. While effective for shape
recovery, as in the global case, the linear local models do not account properly for prop-
erties such as surface inextensibility. One way to overcomethis difficulty is to explicitly
introduce inextensibility constraints into our algorithms. Another is to replace the linear
models with non-linear ones. In this chapter, we explore both approaches.

More specifically, we learn local representations as Gaussian Process Latent Variable
Models (GPLVM) [94]. This lets us build both linear and non-linear local models de-
pending on the kernel we use. We then show that going from local to global can be done
following a Product of Experts (PoE) paradigm [64]. This yields models that not only
disambiguate the reconstruction and allow for closed-formsolutions, as the global ones
presented in the previous chapter, but also generalize to surfaces of arbitrary shape.

6.1 Learning Local Models

We now show how to learn our local deformation models. As in the global case, this
requires training examples that represent the possible deformations of the surface of inter-
est. However, rather than a global surface, these training examples now are much smaller
surface patches. In theory, any technique that provides a density function over the high-
dimensional space of the training examples would yield a suitable model. However, since
the vertices of the mesh representation of surface patches cannot move independentely,
the degrees of freedom of the training examples are coupled,and thus they lie on a low-
dimensional manifold. We therefore learn models whose probability density functions are
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6 Local Deformation Models

(a) (b)

Figure 6.1: Advantages of the local models over global ones.(a) Highly flexible surfaces
may undergo too complex deformations for the global models,whereas, locally,
these deformations remain relatively simple. (b) A new global model must be
learned for this surface even though it is made of the same material as the
surface in (a). Local models can be combined into surfaces ofarbitrary shapes.

conditioned on a space of reduced dimensionality. This alleviates the need of a number of
training examples that grows exponentially with the dimensionality.

In the remainder of this section, we first propose a linear formulation of the local models,
where the deformation of a patch is represented as a linear combination of modes. Since
this formulation does not perfectly model the manifold of patch deformations, we replace
it with one that more accurately accounts for the non-linearities of such a space. We then
show that the linear models can be seen as a special case of thenon-linear ones.

6.1.1 Linear Local Models

In the previous chapter, we have introduced global models where the shape of a surface
was computed as a linear combination of modes. Such modes were obtained by applying
PCA on a collection of synthetic training examples generated by randomly sampling a set
of determining angles between the facets of a mesh.

Since these models proved effective at disambiguating 3D reconstruction, it seems nat-
ural to follow a similar idea for our local models. Given a setof N deformed surface
patchesY = [y1, · · · ,yN ]T obtained, for example, in the same manner as for the global
case, deformation modes can be taken as the eigenvectorssi of the data covariance matrix
C = YTY.

Under this formalism, the shape of a new patchy′ can be expressed as

y′ = y0 + Sx′ , (6.1)

wherey0 is the mean shape,S is the matrix whose columns are thesi’s, andx′ contains the
weights of the different modes. The number of modes used in this representation is chosen
so as to obtain the desired reconstruction accuracy.
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6.1 Learning Local Models

As was already observed with the global models, and will be shown in the experimental
results of this chapter, such a linear formulation does not yield an accurate representation
of the surface deformations manifold. Indeed, such a space is non-linear and a linear tech-
nique only retrieves its englobing ellipsoid. Thus, for example, inextensibility constraints
are not enforced by this linear formulation. To overcome this weakness, we therefore study
non-linear local models. In theory, this could also have been done for global models. How-
ever, in practice, as will be shown in Chapter 7, learning a non-linear global model is
intractable due to the complexity of the possible deformations and the number of required
training examples.

6.1.2 The Gaussian Process Latent Variable Model

We learn our non-linear local deformation models as Gaussian Process Latent Variable
Models (GPLVM) [94], which have been shown to be effective atrecovering the underlying
low-dimensional structure of high-dimensional data [161,117]. The GPLVM relates a
high-dimensional data set,Y = [y1, · · · ,yN ]T , whereyi ∈ ℜD, and a low dimensional
latent space,X = [x1, · · · ,xN ]T , wherexi ∈ ℜd, using a Gaussian process mapping from
X to Y. The likelihood of the data given the latent positions can beexpressed as

p(Y |X,Θ) =
1

√

(2π)ND |K|D
exp

(

−
1

2
tr

(

K−1YYT
)

)

, (6.2)

where the elements of the kernel matrixK are defined by a covariance function,k, such
that(K)i,j = k(xi,xj), which is entirely determined by the kernel hyper-parameters Θ.

The kernel matrix must be positive definite, but can be eitherlinear or non-linear. Whereas
there exists a single formulation of the linear kernel, as detailed in the following section,
different non-linear covariance matrices can be chosen. Inthis work, we use a non-linear
kernel that is the sum of a Radial Basis Function, a bias or constant term, and a noise term,
and can be written as

k(xi,xj) = Θ1 exp
(

−Θ2‖xi − xj‖
2
)

+ Θ3 + Θ4δi,j , (6.3)

whereδi,j is the Kronecker delta function, andΘl , 1≤l≤4 are the kernel hyperparameters.
Learning a GPLVM [94] involves maximizing the posterior

p(X,Θ |Y) ∝ p(Y |X,Θ) p(X) p(Θ) (6.4)

with respect toX andΘ, wherep(Θ) is a simple prior over the hyper-parameters of the
covariance function, andp(X) encourages the latent positions to be close to the origin.

Given a new test pointy′, inference in the GPLVM is done by maximizingp(y′,x′|X,Y,Θ)
with respect to the latent coordinatesx′ of the test point, or equivalently by minimizing its
negative log likelihood given, up to an additive constant, as

Llocal(x
′,y′) =

‖y′ − µ(x′)‖2

2σ2(x′)
+

D

2
ln σ2(x′) +

1

2
‖x′‖2 , (6.5)
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with mean and variance given by

µ(x′) = y0 + YTK−1k(x′) , (6.6)

σ2(x′) = k(x′,x′) − k(x′)
T

K−1k(x′) , (6.7)

wherey0 is the original mean value of the data, andk(x′) is the vector with elements
k(x′,xj) for latent positionsxj ∈ X.

While effective at learning complex manifolds, the GPLVM suffers from the fact that
its computional cost grows asO(N3), due to the inversion of theN × N kernel matrix.
Sophisticated sparsification techniques have recently been proposed [96] to overcome this
issue. Such techniques introduce a set ofm inducing variablesXu, which allows to split
the covariance matrix into two matricesKu,u andKf ,u. The former is the kernel matrix
for the elements ofXu, and the latter denotes the covariance betweenX andXu. This re-
duces the computational complexity of learning toO(Nm2), and has proved more accurate
than simply using a subset of the data. In our particular case, we use the Fully Indepen-
dent Training Conditional (FITC) approximation [143], which involves an independence
assumption when estimating the probability of the examplesgiven the inducing variables.

In this sparse formulation, learning is done by maximizing the posterior

p(Y |X,Xu,Θ) = N
(

Kf ,uK
−1
u,uXu, diag[Kf ,f − Qf ,f ] + β−1I

)

(6.8)

with respect toX, Xu andΘ, wherediag[B] is a diagonal matrix whose elements match
the diagonal ofB, andQf ,f = Kf ,uK

−1
u,uKu,f .

Finally, for inference, we can re-write the mean and variance of the sparse GPLVM
likelihood p(y′,x′|Xu,Y,Θ) as

µs(x
′) = y0 + YTKu,fA

−1ku , (6.9)

σ2
s(x

′) = k(x′,x′) − kT
u (K−1

u,u − β−1A−1)ku , (6.10)

whereA = β−1Ku,u + Ku,fKf ,u, andku is the vector with elementsk(x′,xj) for latent
positionsxj ∈ Xu.

When used for tracking purposes [161], the likelihood of theGPLVM, sparse or not, is
typically optimized with respect toy′ andx′. This is in contrast with the linear approach
proposed in Section 6.1.1, wherey′ is directly taken as the mean prediction of the model.
The reason for optimizing both variables is that it allows the model to better generalize and
avoid remaining too close from the training examples. Furthermore, this will prove crucial
to combine local models into a global one.

6.1.3 Probabilistic PCA as a GPLVM

We now show that the linear model introduced in Section 6.1.1is a particular case of the
GPLVM, and thus that the framework introduced in the previous section is valid for both
linear and non-linear representations. Given a linear kernel, the GPLVM has been shown
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to be equivalent to probabilistic principal component analysis [95]. The covariance matrix
then becomes

K = XXT + β−1I , (6.11)

whereβ is the inverse noise variance of the model.
When learning a GPLVM under this assumption, the maximum of the likelihood of

Eq. 6.2 can be computed analytically, and is reached for

X = ULVT , (6.12)

whereU is theN × d matrix containing the firstd eigenvectors ofC′ = YYT . L is a
similar matrix as in Eq. 5.21 whose diagonal elements are(λi − β−1)−1/2 whereλi’s are
the eigenvalues ofC′. Finally,V is an arbitrary rotation matrix.

This can be thought of as a dual formulation of probabilisticPCA, since, in its standard
form, the high-dimensional data is related to its low-dimensional representation through
the eigenvectorssi of the data covariance matrixC = YTY. The eigenvectors of both
formulations are linked through the relation

S = YTUΛ− 1

2 , (6.13)

whereS is the matrix whose columns are thesi’s, and their eigenvalues, contained in the
diagonal matrixΛ, are the same.

For inference, the negative log likelihood of a new test point y′ and its latent represen-
tationx′ is still given by Eq. 6.5. Furthermore, by settingV to the identity matrix, we can
use Eqs. 6.12 and 6.13 to rewrite the linear kernel of Eq. 6.11as a function ofS, Y, andΛ.
Substituting this in the mean prediction of Eq. 6.6 lets us obtain, up to a scaling byΛ, the
usual probabilistic PCA mean prediction

µl(x
′) = y0 + Sx′ . (6.14)

Note that this corresponds to the linear formulation introduced in Section 6.1.1.
As mentioned in the previous section, for tracking purposes, the negative log likelihood

of Eq. 6.5 is typically optimized with respect toy′ andx′ to generalize over the training
examples. In the linear case, this can even be achieved by optimizing with respect toy′

only, while still following the model. Since thesi’s are orthonormal, the latent variable
x′ corresponding to the test point can directly be obtained by projectingy′ into the low-
dimensional manifold, which we can write as

x′ = ST (y′ − y0) . (6.15)

Eq. 6.14 then becomes
µl(y

′) = y0 + SST (y′ − y0) . (6.16)

In this formulation, the latent representationx′ does not appear anymore, since it can di-
rectly be computed fromy′. By contrast with the non-linear formulation, this therefore
yields a model whose number of degrees of freedom only depends on the number of ver-
tices of the mesh.
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Figure 6.2: We used an optical motion capture system to acquire real training data. Left:
We stuck reflective markers as a rectangular grid on the surface of interest.
Right: We deformed the object in front of six infrared cameras.

6.1.4 Acquiring the Training Data

As we have seen in Sections 6.1.1 and 6.1.2, learning a local model requires training data.
When dealing with large surfaces, the amount of necessary data to cover the space of
possible deformations can be very large. However, since local patches have fewer degrees
of freedom and can only undergo relatively small deformations, learning local deformation
models becomes easier.

One way to create training examples would be to apply the technique of Section 5.1.2
to obtain deformed versions of the patches. This is perfectly suited for the linear formula-
tion of Section 6.1.1, where the generated modes typically represent deformations sorted
from low spatial frequencies to higher ones. Because the higher frequency modes can be
dropped, the training data does not need to be particularly accurate. By contrast, a non-
linear mapping interpolates more accurately between the training examples than the linear
one, which makes synthetic data inappropriate, as shown in Chapter 7. In this case, it is
important that the training examples be representative of the real behavior of the material
of interest, and thus, real data is required.

6.1.4.1 Real Data Acquisition

To collect training examples from real surfaces, we used a ViconTM optical motion capture
system. As depicted in Fig. 6.2, we stuck 3mm wide hemispherical reflective markers as a
rectangular grid on a surface and deformed it arbitrarily infront of six infrared ViconTM

cameras that reconstruct the 3D positions of individual markers. Since the markers were
positioned to form aP ×Q grid, letỹ = [x1, y1, z1, ..., xP×Q, yP×Q, zP×Q]T be the vector
of their concatenated coordinates acquired at a specific time. Our goal being to learn a local
model, as opposed to a global one, we decomposedỹ into overlappingp × q rectangular
patches centered on individual grid vertices, as shown in Fig. 6.3.

We collected these patches from individual frames in several motion sequences, sub-
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Figure 6.3: Decomposing the surface into patches. In this case, the global surfacẽy is
composed of four overlapping patchesy1,..,4.

tracted their mean, and symmetrized them with respect to their x-, y- andz-axes to obtain
additional examples. This resulted in a large set ofNp p × q patchesyi , i=1,..,Np. Since
the sequences were acquired at 30 Hz, they comprised many similar deformations that do
not bring new information. We therefore retained only a subset Y = [y1, · · · ,yN ]T of
N < Np patches that were different enough from each other based on avertex-to-vertex
distance criterion.

In particular, we used this technique for two different materials: Relatively rigid card-
board and a more flexible tissue paper. For the cardboard, we placed the reflective markers
on a 9×9 grid, and for the napkin, in a 9×7 one. This difference in resolution was only
introduced to facilitate the motion capture and has no bearing on the rest of the approach.
In both cases, the markers were placed 2cm apart in both directions. Out of 10 motion
sequences for each material, we set one aside for validationpurposes and used the other 9
for learning. In each frame, we selected five 5×5 patches for the cardboard and six for the
napkin, and pruned the resulting set such that the minimum distance between correspond-
ing vertices in separate patches was greater than 0.7cm for the cardboard and 1cm for the
napkin. This produced 2032 patches for the cardboard and 2881 for the napkin. The larger
number of the latter reflects the greater flexibility of the tissue paper.

6.2 Global Models as Mixtures of Local Ones

Our ultimate goal is to recover the shape of a surface from images. We therefore need a
global model of the surface of interest. Rather than learning a global representation for a
particular surface, which would imply doing so for every newone, we make use of the local
models introduced in Section 6.1 and combine them using a Product of Experts (PoE) [64]
paradigm. The choice of PoE is a natural one, since they were explicitly designed to model
high-dimensional data subject to low-dimensional constraints, as is the case for a large
surface made of small patches. We represent a global surfaceas a triangulated mesh with
Nv verticesvi = [xi, yi, zi]

T , 1 ≤ i ≤ Nv connected byNe edges. We definẽy′ =

117



6 Local Deformation Models

[vT
1 , · · · ,vT

Nv
]T as the vector of 3D coordinates obtained by concatenating the verticesvi.

6.2.1 PoE for Deformable Surfaces

As mentioned above, PoE [64] are good at representing high-dimensional data subject to
low-dimensional constraints by combining probabilistic models. Each constraint is treated
by an individual expert, which gives a high probability to the examples that satisfy it. The
probability of examples statisfying some constraints but violating others will naturally be
zeroed out by the experts associated with the violated constraints.

In the general case, training a PoE is difficult because one has to identify the experts that
simultaneously maximize the probabilities of the trainingexamples and assign low prob-
abilities to unobserved regions of the data space. However,in the case of homogeneous
surfaces, this task is greatly simplified; We do not need to identify the different experts
since all local patches obey the same deformation rules, i.e. all experts are the same. As
a consequence, one can simply train a single local deformation model corresponding to
one expert and, for inference, replicate it to cover the entire surface as shown in Fig. 6.3.
This simply assumes that maximizing the likelihood of a global shape is achieved through
maximizing the likelihoods of all the patches. Note that thechoice of the patch size influ-
ences both the local and global representations. Smaller sizes result in local models that
are more constrained since less deformations are possible,but impose a higher number of
experts to cover the global surface. Furthermore, we use overlapping patches to enforce
smooth transitions between neighboring experts. However this doesnot impose global
surface smoothness, since the local models may allow for sharp folds.

More formally, lety′
i , 1 ≤ i ≤ S be the vectors of the 3D coordinates of theS over-

lapping patches associated with the experts, wherey′
i ⊂ ỹ′. Note that, because patches

overlap, the same vertex coordinates ofỹ′ appear in severaly′
i’s. Furthermore, note also

that using a single global mesh̃y′ prevents conflicts arising from two experts predicting dif-

ferent shapes for the same mesh protion. Letx′ =
[

x′
1
T , ...,x′

S
T
]T

be the low-dimensional

latent coordinates of each of theS experts. Under our formalism, the conditional probabil-
ity of the global surface can be expressed as

p(ỹ′|x′,M) =

∏

i pi(y
′
i|x

′
i,M)

∫
∏

i pi(y′
i|x

′
i,M)dỹ′

, (6.17)

whereM is a local model described in Section 6.1.
Since the denominator of Eq. 6.17 is constant, we can define a prior over the deformation

of the whole surface according to all the experts whose negative log is

Lpoe(x
′, ỹ′) =

S
∑

i=1

Llocal(x
′
i,y

′
i) , (6.18)

whereLlocal is the local negative log likelihood defined in Eq. 6.5.
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6.2.2 Surface Boundary Effects

As can be observed in Fig. 6.3, vertices in the center of the surface appear in several
patches, whereas those in the corners belong to a single one.As a consequence, the latter
have less influence on the global negative log likelihood given by Eq. 6.18. To prevent
them from moving freely, we re-weight the vertices such thattheir influence is inversely
proportional to the number of patches they belong to. This isdone by replacing in Eq. 6.5
the distance between the patch verticesy′

i and their mean predictionµ(x′
i), by the term

∆(x′
i,y

′
i) =

p×q
∑

j=1

1

V (i, j)
(Wy′

i,j − µj(x′
i))

2 , (6.19)

wherey′
i,j is thejth vertex of patchi andµj(x′

i) its corresponding mean prediction.V (i, j)
is the number of patches for a vertex, which depends on the index in the global represen-
tation of thejth vertex of patchi. Furthermore, we also introduced a 3×3 diagonal matrix
W in Eq. 6.20 that defines the global scales along thex-, y- andz-axes, and accounts for
the difference in scale between the training and testing surfaces. In practice, we allow for
at most 10% scaling. The negative log likelihood of the global surface can then be written

Lglobal(x
′, ỹ′) =

S
∑

i=1

(

∆(x′
i,y

′
i)

2σ2(x′
i)

+
D

2
ln σ2(x′

i) +
1

2
‖x′

i‖
2

)

. (6.20)

6.3 Monocular 3D Tracking

Here, we formulate our reconstruction algorithm as a frame-to-frame optimization prob-
lem. Even though tracking the surface deformations from oneframe to the next increases
the risk of drifting, it might be the only practical solutionin some cases, for example when
the surface is not sufficiently textured to rely on feature points. In such cases, template
matching is more adapted, but yields an objective function with local minima that requires
a good initialization. Similarly, the negative log likelihood of the non-linear local model
is a highly non-convex function and needs a good starting point to converge to a correct
solution, which makes tracking more suitable.

At each timet, we seek to recover a state vectorφt that determines the shape of the

surface. With the non-linear local models, the state is defined asφt =
[

ỹ
′T
t ,x

′T
t

]T
, where

ỹ′
t is the vector of the 3D coordinates of the global surface, andx′

t =
[

x
′T
1,t, ...,x

′T
S,t

]T

denotes the latent variables for the local models. With the linear models,φt = ỹ′
t, because,

as mentioned in Section 6.1.3, the latent representations can be obtained directly from̃y′
t.

Note that both formulations guarantee surface continuity,since the patches share a common
vector of vertex coordinates. This would not have been the case if we had optimized with
respect to the latent variables only, since several expertscan predict different locations for
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the same vertex. Given an imageIt and a local deformation modelM, we look for the
MAP estimateφt, and therefore approximate the posterior

p(φt|It,M) ∝ p(It|φt)p(φt|M) , (6.21)

where p(It|φt) is the image likelihood, and the negative log ofp(φt|M) is given by
Eq. 6.20.

6.3.1 Image Likelihood

To estimate the image likelihood, we rely on texture and edgeinformation. The latter
constrains the boundary vertices which are not as well-constrained by texture as the interior
ones. We assume that both sources of information are independent given the state, which
writes

p(It|φt) = p(Tt|φt)p(Et|φt) . (6.22)

To take advantage of the whole texture, we use template matching. The negative log
likelihood of such an observation is given by

− ln p(Tt|φt) =
1

σ2
T

ETM (ỹ′) , (6.23)

whereETM was defined in Eq. 3.11, andσT is a constant set to the variance of the expected
texture error.

To constrain the boundary of the surface, we first project theborder of the mesh into
the image. We then sample pointsei on this projected boundary, and look in the direc-
tion of their normal for edge pointsui,j detected by Canny’s algorithm. We allow for
multiple hypotheses and retain all the matches within a distancer from the current repro-
jection. Starting from 8 pixels, this distance is iteratively divided by 2 after a fixed number
of optimization steps, until it reaches 2 pixels. The negative log likelihood of the edge
observations is then

− ln p(Et|φt) =
1

σ2
E





1

r2

Ns
∑

i=1

Nh(i)
∑

j=1

‖ui,j − ei(φt)‖
2



 , (6.24)

whereNs is the number of sampled boundary points, andNh(i) is the number of edge
hypotheses for pointi. As for texture,σE is a constant corresponding to the variance of the
expected error. In practice, our method is relatively insensitive to the exact values ofσT

andσE .

6.3.2 Optimization

Reconstruction is performed by minimizing the negative logof the approximate posterior
of Eq. 6.21, which we write, up to an additive constant, as

Ltot(φt) = Lglobal(φt) − ln p(Tt|φt) − ln p(Et|φt) . (6.25)
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Figure 6.4: Validating the linear deformation models. We compute the mean of the aver-
age vertex-to-vertex distances between test data and the model predictions, and
plot it versus the number of modes. Top: The error for the cardboard model
(left) decreases faster than for the napkin one (right). This corresponds to our
intuition that fewer dimensions are necessary to model the deformations of a
more rigid material. Bottom: We tried to reconstruct the napkin data using the
cardboard model (left), as well as the opposite (right). We can observe that,
since the napkin is more flexible, its deformations are a superset of those of the
cardboard, and thus can model it quite accurately. This is not the case when
trying to reconstruct napkin data with the cardboard model.

In practice, we assume that the camera projection matrix is known and remains constant
throughout the sequence. This entails no loss of generalitysince the vertices are free to
move rigidly.

In the first frame of a sequence, we start from the reference shape and, in the non-linear
case, initialize the latent positions of the local models such that their mean predictions best
correspond to the different patches of the reference shape.This is done by optimizing the
negative log likelihood of Eq. 6.5. Then, at every frame, we initialize the state with the
MAP estimate of the previous time and optimize to get the new shape.

When considering large surfaces, the number of degrees of freedom of our optimization
problem quickly becomes large, since it includes the 3D positions of the vertices. To
improve convergence, we introduce a coarse-to-fine approach to optimization. In the first
step we only consider every other row and every other line of the grid representing the
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6 Local Deformation Models

local patches. Therefore, we end up with patches of 3×3 vertices separated by 4cm instead
of 5×5 vertices separated by 2cm. While not changing the number oflocal models that
we use, this drastically reduces the number of vertices to optimize. Furthermore, this only
changes the resolution of the patches, but not their size. Therefore we can still use the same
local deformation models to represent the shape of the patches. This proved most useful
with the non-linear models, since the resulting objective function is much more complex
than in the linear case.

As mentioned in Section 6.1.1, using a linear local model does not enforce the inexten-
sibility of the mesh. This is still the case when using a priorover the latent variables to
prevent them from taking overly large values, since extension typically appears in the first
10 modes. To overcome this issue and prevent the mesh from stretching, we introduce a
prior over the global shapẽy′ whose negative log is

− ln p(ỹ′) =
1

σ2
D

Nv
∑

i=1

∑

vj∈N (vi)

(‖vi − vj‖ − Li,j)
2 , (6.26)

whereN (vi) is the set of neighbors of vertexvi, andσD corresponds to the variance of
the expected extension error and has the same value for everysequence. When using a
linear model, this term is simply added to Eq. 6.25. This prior could also be used in the
non-linear case, since nothing explicitly enforces these constraints. However, as shown
in Section 6.4, even though it yields better accuracy on synthetic results, it did not prove
necessary to reconstruct surfaces from real sequences.

6.4 Experimental Results

In this section, we first validate the local models we learnedfor cardboard and tissue paper,
and then use both synthetic and real data to demonstrate thatthey sufficiently constrain the
reconstruction to achieve accurate results, even when the lack of texture on the surfaces
makes it difficult for texture-based approaches.

6.4.1 Local Models Validation

We used the technique of Section 6.1 to learn models for the two datasets discussed in
Section 6.1.4 for increasing latent dimensions. We then picked the dimensionality that best
fitted our validation set.

In the linear case, this is done by computing the mean prediction given by Eq. 6.16 and
taking the error as the average vertex-to-vertex distance between this prediction and the
true test shape. In the top row of Fig. 6.4, we plot the mean of these values for each of the
dimensions, ranging from 1 to 75. Note that, in the case of cardboard, the curve quickly
decreases, thus indicating that using a small number of modes is sufficient to accurately
represent a large portion of the shape space, whereas for thepaper napkin, more modes
are required. This tallies with our intuition that the manifold of potential deformations of
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Figure 6.5: Validating the non-linear deformation models.The same reconstruction error
as in the linear case is computed and plotted as a function of the latent dimen-
sion. Top: In the cardboard case (left), we chose latent dimension 4, since it
corresponds to the point where the error stabilizes. In the case of the napkin
(right), we chose to use dimension 7 because of convergence problems during
training in dimensions 8 and 9. These would have required a larger number
of inducing variables, which would have incerased the computational burden.
Bottom: As in the linear case, we can observe that the cardboard models are
unable to reconstruct napkin data, whereas the inverse is possible.

the napkin is larger than that of the cardboard. In the bottomrow, we display, on the left,
the same error when trying to reconstruct the napkin test data using the cardboard model,
and, on the right, the opposite. As expected, the napkin model gives good reconstructions
of cardboard data, since the deformations of cardboard are asubset of those of the paper
napkin. The inverse is not true.

In the non-linear case, we picked latent dimensions rangingbetween 1 and 9. For each
patchy′

i extracted from the validation sequence, we infered the corresponding latent vari-
ablesx′

i by minimizing the negative log likelihood given in Eq. 6.5, and computed its mean
prediction from Eq. 6.9. In Fig. 6.5, we plot the same curves as for the linear case. For
the cardboard, the models were all trained using 100 inducing variables. We pickedd = 4
since it corresponds to the point where the error stabilizes. For some larger values ofd, we
can even observe worse results, thus indicating that the model overfits the training data. For
the napkin that has more samples and a greater variety of observed shapes, we had to use
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Figure 6.6: We used Isomap to compute the low-dimensional embeddings of our cardboard
(left) and napkin (right) data for different latent dimensions. We plot the resid-
ual variances given by Isomap as a function of the dimension.This confirms
our choice of dimension 4 for the cardboard and 7 for the napkin.

(a) (b) (c) (d)

Figure 6.7: Synthetic images generated from optical motioncapture data (a) Shaded view
of a cardboard surface (b) Similar shaded view for a paper napkin. (c,d) Im-
ages synthesized by texture-mapping using either a rich texture or a much more
uniform one.

200 inducing variables to make the training process converge. In this case, the higher val-
ues ofd yield slightly better results. However, training in dimensions 8 and 9 suffered from
problems in convergence and would have required a larger number of inducing variables.
Since this would imply a larger computational burden, in ourexperiments we usedd = 7,
which we will show to be sufficient for our purposes. In the bottom row of the figure, it can
again be observed that the cardboard model is unable to correctly predict napkin shapes,
whereas the inverse is possible.

Another way of finding the latent space dimension is to use Isomap [149] to unfold the
high-dimensional shape space to a lower-dimensional manifold. This non-linear technique
has proved efficient at finding the underlying dimension of a problem, but provides no
inverse mapping or density over the shape space. It therefore cannot be used for inference,
as required for tracking, but it allowed us to confirm our latent dimensions. As can be
seen in Fig. 6.6, the residual variance given by Isomap also points to dimension 4 for the
cardboard and 7 for the paper napkin.
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Figure 6.8: Comparison of the linear (dashed red) and non-linear (solid blue) models for
cardboard using sequences of synthetic images. No penalization of extension
was used to obtain these results. Top row: For each of the well-textured images,
we plot, on the left, the mean 3D vertex-to-vertex distance,and, on the right,
the mean reprojection error of randomly sampled surface points. Bottom row:
Same plots for much less textured images. Note that the non-linear models
yield a better 3D reconstruction than the linear ones. This is to be expected
since they suffer less from the absence of stretching penalty.

6.4.2 Synthetic Data

We measured the accuracy of our method on synthetically generated images. Using a
subset of the cardboard and napkin validation data, such as the surfaces in Fig. 6.7(a,b),
we formed two sequences of deforming meshes, textured them and projected them with
known perspective camera to obtain noise-free images, as depicted in Fig. 6.7(c,d). We
then added i.i.d. noise in the range[−10, 10] to the image intensities. We reconstructed
surfaces from a well-textured sequence and from a more uniform one. In Fig. 6.8 and 6.9,
we plot reconstruction errors for both models without penalizing extension of the global
mesh. It can be observed that the linear models perform poorly in the cardboard case. This
can be explained by the fact that the mesh tends to stretch to explain the images, which
gives a large error. This is less noticeable for the napkin sequence, since the deformations
of a more flexible object tend to remain closer to a flat shape. In Fig. 6.10, we show
similar results when using inextensibility constraints for both models. Note that the non-
linear models are less affected by these constraints than the linear ones. This was expected
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Figure 6.9: Same plots as in Fig. 6.8 for the napkin models. This time, the linear models
perform as well as the non-linear ones. This can be explainedby the fact that
the deformations of a flexible material remain closer to the flat shape than that
of a more rigid one. Thus, even when stretching, the linear models yield rea-
sonable 3D errors, but visually less accurate shapes, as canbe checked from
the last row of the figure which depicts the linear (left) and non-linear (right)
reconstructions of the same ground-truth (middle) corresponding to frame 60
of the less-textured sequence.

since the non-linear models give a better approximation of the density in shape space, and
thus should implictly better satisfy the length constraints. In the case of poorly-textured
cardboard, the non-linear results are even degraded with the introduction of inextensibility
constraints. This can be explained by the fact that they are non-convex constraints, and
can prevent the already complex objective function involved by the non-linear models to
converge.
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Figure 6.10: 3D reconstruction errors for the linear and non-linear models when using in-
extensibility constraints. Top: Mean vertex-to-vertex distance as a function
of time for the cardboard textured (left) and less-textured(right) sequences.
Bottom: Same plots for the napkin sequences. Note that in both cases, the lin-
ear models strongly benefit from the inextensibility constraints, whereas the
non-linear ones are less affected.

6.4.3 Real Sequences

We then applied our local models to recover the shape of surfaces made of the same card-
board and paper tissue from real video sequences. Note that even in the cases where the
global shape we track is rectangular, we had to assemble local models to represent it since
the global shape is not the same as that of our training data.

We first applied our approach to the sheet of carboard of Fig. 6.11. The top row of
Fig. 6.11 shows the behavior of our technique when there is absolutely no texture to anchor
the surface. The recovered surface belongs to a family of equally-likely shapes whose ver-
tices can slide across the surface, while their boudaries reproject correctly. Nothing in the
image likelihood prevents this, since all facets look similar. Note that, without using shad-
ing cues, even a human eye could hardly differentiate between two such shapes. However,
as shown in the second example of the figure, adding only very little texture disambiguates
the reconstruction. Finally, when increasing only slighlythe amount of texture, even more
complex deformations can be recovered accurately, as shownin the third example. The
results of this figure were all obtained with non-linear models.

We then tested our linear models on the same sheet of cardboard. With synthetic data, we
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6 Local Deformation Models

Figure 6.11: Reconstructing a rectangular piece of cardboard from a single video. In each
of the three examples, we show the recovered surface overlaid in red on the
original images, and the surface seen from a different viewpoint. As shown in
the top rows, a complete absence of texture leads us to retrieve a surface that
is plausible, but not necessary accurate. It is only one of a whole family of
equally likely solutions. However, this problem is fixed by adding very little
image information, as shown in the other two examples. We then recover
deformations that match the real ones.

observed that the prior over the global mesh that enforces inextensibility was very helpful.
To check if this was still the case in real sequences, we tracked the same sequence with and
without those constraints. As can be checked in Fig. 6.12, inextensibility constraints truly
improve the results.

One of the main advantages of local models over global ones isthat they can be applied
to represent very different shapes and topologies. We therefore assembled local cardboard
models to form the circular shape of Fig. 6.13. Our models being made of rectangular
patches, the mesh we use only roughly approximates the surface boundaries, which pre-
vented us from using edge information. We nevertheless recover the correct 3D deforma-
tions. The second row of the figure shows results obtained with the non-linear models,
and the bottom row, those computed with the linear ones. In this case, the linear models
perform slightly better than the non-linear ones. However,this is to the price of additional
inextensibility constraints. In the top row, we only show the reprojection of the non-linear
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6.4 Experimental Results

Figure 6.12: Reconstructing a rectangular piece of cardboard from a single video with lin-
ear local models. In the first row, we show the surface recovered with inex-
tensibility constraints overlaid in red on the original images. In the middle,
we show a side of the surface recovered without penalizing stretching. In the
bottom row, we can see that inextensibility constraints improve the 3D shape,
and therefore should be used in conjunction with the linear local models. Note
that we do not show the reprojection of the compressed surface, since it yields
similar images as in the first row.

Figure 6.13: Reconstructing a circular piece of cardboard with the same local models. Note
that assembling square patches only allows us to approximate the object’s
outline. This prevents us from using image edges, but does not stop us from
successfully recovering the deformations. In the middle row, we show the
results of the non-linear models, and in the bottom row, those of the linear
ones.
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6 Local Deformation Models

Figure 6.14: Despite a very large occlusion, we manage to reconstruct a deforming piece
of cardboard in each frame of a sequence. Note that even if some small recon-
strution errors occur, the global shape nevertheless matches the true one.

Figure 6.15: Reconstructing a much more flexible paper napkin. As opposed to cardboard,
results obtained with non-linear models (first and second rows) are better than
with linear ones (third and fourth rows). This confirms our intuition that com-
plex deformations are non-linear.

results, since they are almost indistinguishable from thatof the linear ones. Finally, in
Fig. 6.14, we show that our models make our approach robust toocclusions.

We then applied our local models to recovering the shape of a much more flexible pa-
per napkin. In Fig. 6.15, we show non-linear and linear results on the same sequence.
This time, we show both reprojections, since the one of the results obtained with the linear
models is noticeably worse than the other. This could be expected since it is well-known
that highly flexible materials follow a non-linear behavior, which makes linear models not
adapted. Furthermore, folds can appear between two vertices of the mesh, which makes
inextensibility constraints inappropriate, and thus prevents the mesh from matching the im-
age correctly. Nonetheless, thanks to our models, the results remain plausible. In Fig. 6.16,
we show the results of our non-linear models on another sequence of the same napkin.

We applied our napkin models to recover the shape of a surfaceof different topology.
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Figure 6.16: Reconstructing a different deformation of thesame napkin. Even though there
is little texture, the 3D shape of the surface is correctly recovered, as shown in
the bottom row where the surface is seen from a different perspective.

Figure 6.17: Reconstructing a napkin of different topologywith non-linear (top) and linear
(bottom) models. As with cardboard, assembling square patches only allows
us to approximate the outline of the hole, but still lets us recover correct de-
formations.

Fig. 6.17 depicts the results of our non-linear and linear models on a video sequence of
a napkin with a hole. As before, square patches cannot perfectly model the triangular
hole, but still let us recover correct shapes. In this case, one might consider no explictly
modeling the hole, and simply cover the whole rectangular surface with patches. However,
as shown in Fig. 6.18, in some places, such as the upper boundary of the hole, the recovered
shape does not perfectly reproject on the image anymore. This typically corresponds to
the frames where the hole creates discontinuities in the global surface, thus modifying its
behavior. Explicitly modeling the hole allows for such discontinuities.

Finally, since the linear local models do not enforce inextensibility, nothing prevents
us from using them to track stretchable materials, as was demonstrated with our global
models. Therefore, we applied our local models to the same sequence of a stretching
balloon as in the global case. The results are shown in Fig. 6.19, and compared to the
ones obtained with the global model. Note that the local onesseem to better match the
texture of the balloon. However, they were obtained with template matching as opposed to
correspondences, which can explain this improvement.
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6 Local Deformation Models

Figure 6.18: Modeling the napkin without explicitly accounting for the hole. The local
models are replicated to cover the whole rectangular surface. Note that the
surface does not always reproject correctly, as can be seen at the hole upper
boundary. The hole creates discontinuities in the surface,which modifies the
global behavior. It should therefore be modeled explicitly.

6.5 Closed-Form 3D Reconstruction

When there is enough texture to rely on feature points, we show that we can use the linear
local models to perform 3D reconstruction in closed-form.

In Section 5.4, we showed that 3D reconstruction could be formulated as the solution to
a linear system whose unknowns were the modes weights. The matrix of this system con-
tained the correspondence equations as well as the regularization of these weights. Solving
this system directly proved under-constrained. However, we showed that the remaining am-
biguities could be overcome by solving a system of quadraticequations accounting for con-
stant edge lengths, which can be done in closed-form using Extended Linearization [40].
Here, we show that the same formulation is still valid with our linear local models.

6.5.1 Constraining the Reconstruction via Linear Local Mod els

In Sections 3.2 and 5.4, we formulated shape recovery as the solution to a linear system
of equations. Assuming that we have more equations than unknowns, which is true in
practice, we obtain a solution in the least-squares sense. If we observe the first term of
the negative log likelihood of Eq. 6.5, we notice that, when using the mean prediction of
the linear formulation given by Eq. 6.16, it becomes a sum of squares. Therefore, for each

132



6.5 Closed-Form 3D Reconstruction

Figure 6.19: Using local models to track the same extensiblesurface as in the global case.
In the top row, we show the original images, the second row displays our
results with a global model, and in the bottom row, we show thesurfaces ob-
tained with local models. Note that the improvement in texture matching most
probably comes from using template matching rather than correspondences.
Furthermore, the change of mesh resolution was only introduced for conve-
nience of use with the local models.

patchy′ of a surface, we can re-write this term as the least-squares solution to

y′ = µl(y
′)

= y0 + SST (y′ − y0) . (6.27)

Similarly, the prior over the latent variables that prevents them from becoming overly large
can be re-written as solving in the least-squares sense

Λ− 1

2ST (y′ − y0) = 0 . (6.28)

Note that this formulation differs from the original term‖x′‖2 of Eq. 6.5 by a factorΛ−1/2.
This is due to the fact that our modes are normalized, by contrast with the standard prob-
abilistic PCA formulation where the norms of the modes are proportional to the values
on the diagonal ofΛ. This formulation follows that of the regularization in theprevious
chapter and forces the modes weights to conform to the distribution of the training data.

This, in conjunction with correspondence equations, lets us write the solution to 3D
reconstruction under the linear local models as





σ−2
C M 0

T̃ −T̃ỹ0

S̃ −S̃ỹ0





[

ỹ′

1

]

= 0 , (6.29)
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whereT̃ is the matrix containing(I−SST ) for the different patches of the global surface,
thus encoding Eq. 6.27. Similarly,̃S contains theΛ−1/2ST term for each patch to account
for Eq. 6.28. As in Eq. 6.19, the lines corresponding to the error between patch shape and
mean prediction can be weighted according to the number of patches each vertex belongs
to. Finally,σC is a constant set to the variance of the expected reprojection error.

Solving this system yields a shape that reprojects correctly on the image, and simultane-
ously remains close to the linear local models prediction. However, as with global models,
the linear local models do not yield a well-posed problem. The corresponding linear system
still has a number of small eigenvalues, since inextensibility constraints are not enforced.

6.5.2 Inextensibility Constraints

To enforce inextensibility of the mesh, we can follow the same idea as in Section 5.4.2. We
first express the solution of Eq. 6.29 as a linear combinationof the system’sNl eigenvectors
li associated to its smallest eigenvalues. Then, we seek to recover the weightsβi of the
combination that satisfy the inextensibility constraints.

As before, these constraints can be written as quadratic equations, which we can linearize
by introducing new unknowns for the quadratic terms. This results in a system of the form

D̂b̂ = d̂ , (6.30)

with b̂ = [β1, · · · , βNl
, β1β1, · · · , β1βNl

, β2β2, · · · , βNl
βNl

]T . As with global models,̂b
contains the linear terms, since the system also encodes theadditionnal linear equation that
constrains the last coordinates ofβili to sum up to 1. However, since our unknowns are the
vertices coordinates and not the modes weights anymore, no equation of this system links
the linear and the quadratic terms together. Therefore, we could obtain solutions where the
relationships between these terms are violated.

Fortunately, this can again be solved by using Extended Linearization [40]. However, in
this case, as opposed to the global model approach, we simplywant to link the linear and
quadratic terms together. Therefore, we only multiply the last linear equation by the linear
monomials, thus creatingNl additional equations of the form

Nl
∑

j=1

βiβjlj,3Nv+1 = βi , (6.31)

without the need of additional unknowns. This, in practice,proved sufficient to enforce
the constraints between linear and quadratic terms and to obtain a good recovered shape.
Nonetheless, nothing prevents us from using Extended Linearization more extensively as
in the global case. The correct numberNl of eigenvectors to use was chosen in the same
fashion as for the global case, by testing several values andchoosing the one that, for a
small enough reprojection error, gives the smallest mean edge length variation.
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Figure 6.20: Mean vertex-to-vertex distance (left) and mean reprojection error (right) for
the closed-form reconstruction using linear local models.The dashed red
curve corresponds to the closed-form solution, and the solid blue one to the
refined solution after optimization. Top row: The errors were computed for
the textured cardboard sequence from correspondences synthetically sampled
on the facets of the mesh. Bottom row: Same plots for the textured paper
napkin sequence.

6.6 Experimental Results
We tested our closed-form reconstruction on synthetic dataas well as real sequences. Note
that we rely on image correspondences only. This forced us toapply our technique to more
textured objects than when tracking.

6.6.1 Synthetic Data

We used the same synthetic sequences as in the tracking case to quantitatively evaluate our
method. However, rather than using image noise, we sampled the barycentric coordinates
of the facets of the ground-truth meshes to obtain 3D-to-2D correspondences to which we
added zero-mean gaussian noise with variance 5. Fig. 6.20 depicts the same 3D reconstruc-
tion and reprojection errors as for tracking when using all the modes. We further refined
the closed-form solution by using it as an initialization tothe tracking algorithm presented
in Section 6.3. The dashed red curve corresponds to the closed-form solution, and the solid
blue one to the refined solution. Note that the closed-form solution error is close to that ob-
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Figure 6.21: Similar plots as in Fig. 6.20, but with more realistic matches obtained with
SIFT [103]. Left: We plot the errors obtained with syntheticmatches (dashed
red) and with SIFT matches (solid blue) as a function of time for the cardboard
case. Right: Same plots for the paper napkin sequence.
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Figure 6.22: We studied the influence of the number of modes bycomputing the solutions
with 20 modes rather than the original 75 ones. Left: We show the errors
obtained from synthetic matches with 75 modes (dashed red) and 20 modes
(solid blue), and from SIFT matches with 20 modes (dotted black) for the
cardboard case. Right: Same plots for the paper napkin sequence.

tained by tracking the surface, and that refining the solution does not dramatically improve
the results. Since our matches are synthetic, there is no need to test with different textures
and we used only the well-textured images.

To study the more realistic case where we cannot establish correspondences syntheti-
cally, we used SIFT [103] to find matches in noisy textured images. Since SIFT can give
outliers, we iterated five times our closed-form solution with a decreasing weight for the
regularization of the latent variables, and re-weighted the correspondences based on their
reprojection error. In Fig. 6.21, we compare the 3D reconstruction errors obtained with
synthetic matches and SIFT matches. As can be checked from the plots, the solution with
SIFT matches remains close to the synthetic one, except in occasional cases that either
presented too many outliers, or where parts of the surface were lacking correspondences.

We also studied the influence of the number of modes. Rather than taking all 75 modes
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6.6 Experimental Results

Figure 6.23: Recovering the shape of a piece of paper. From top to bottom: Mesh computed
in closed-form overlaid on the input image, side view of thatmesh, refined
mesh after 5 Gauss-Newton iterations.

as in the previous cases, we computed our results with only 20. The errors are depicted
in Fig. 6.22, where we plot the results obtained from synthetic matches with all modes in
dashed red, those obtained from synthetic matches with 20 modes in solid blue, and those
obtained from SIFT matches with 20 modes in dotted black. Note that the number of modes
has little influence on the quality of the results.

6.6.2 Real Images

Finally, we applied our closed-form solution to recover theshape of different surfaces
from real images. For all the following cases, we used dense correspondences obtained as
described in Section 3.3.1.2. Furthermore, since we deal with other materials than the card-
board and paper napkin of the previous sequences, we computed the deformation modes
synthetically, as described in Section 5.1.3 but for small patches of 5× 5 vertices, and used
all of the modes for reconstruction. As before, even though the surfaces recovered here are
rectangular, they were modeled as combinations of linear local representations. Addition-
ally, despite the fact that we used video sequences, the images are treated independently
and nothing links our results from one frame to the next.

As a first case, we recovered the deformations of the piece of paper of Fig. 6.23. In
the first row of the figure, we reprojected our closed-form solution on top of the original
images. In the middle row, we show a side view of our closed-form solution. As with
global models in Section 5.4, we used this solution as an initialization for a simple Gauss-
Newton optimization scheme. We display the refined solutionafter 5 optimization steps in
the bottom row. Fig. 6.24 depicts similar results for a more complex deformation of the
same piece of paper.
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6 Local Deformation Models

Figure 6.24: Recovering more complex deformations of a piece of paper. From top to
bottom: Mesh computed in closed-form overlaid on the input image, side
view of that mesh, refined mesh after 5 Gauss-Newton iterations.

Figure 6.25: Reconstructing a sharp fold in a piece of cloth.From top to bottom: Mesh
computed in closed-form overlaid on the input image, side view of that mesh,
refined mesh after 5 Gauss-Newton iterations.

Since by using synthetic modes, nothing prevents us from reconstructing different ma-
terials, we applied our technique to recover the deformations of a piece of cloth and of
a plastic bag. Figs. 6.25 and 6.26 depict our results on thoses cases. Note that our local
models manage to reconstruct sharp folds and very local deformations.
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Figure 6.26: Recovering the shape of a plastic bag. From top to bottom: Mesh computed in
closed-form overlaid on the input image, side view of that mesh, refined mesh
after 5 Gauss-Newton iterations.

6.7 Conclusion

In this chapter, we have introduced local deformation models to recover the shape of de-
formable surfaces from a single viewpoint. The main advantages of local models over
global ones are that they can be learned from smaller amountsof training data, since small
patches of a surface deform less than the surface itself, andthat they can be assembled to
represent any surface shape and topology using a PoE formalism. Our local models are
formulated as Gaussian Process Latent Variable Models, which let us define linear or non-
linear mappings from a low-dimensional manifold to the high-dimensional shape space.
They can be used both to track deformations from image to image and, when there is
enough texture, to recover the shape of a surface from individual images.
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7 Comparative Results

In this chapter, we compare the different models that we havepresented in Chapters 4, 5,
and 6, as well as other state-of-the-art techniques. First,we compare the deformation
spaces covered by our various learned models. We then evaluate the accuracy of the models
on synthetic and real data. Since the different models sometimes work with different kinds
of inputs, we chose the image sequences accordingly, and, insome cases, only evaluate
some of the models.

7.1 Competing Techniques

As discussed in Chapter 2, many methods have been investigated over the years to constrain
3D shape recovery. Since a majority rely on physics-inspired constraints, for compari-
son purposes, we will consider two physics-based approaches to regularization: imposing
smoothness either by minimizing a simple quadratic term or by performing modal analysis
on a more sophisticated stiffness matrix.

7.1.1 Smoothness Assumptions

A very popular approach to constraining 3D reconstruction is to assume that the surface
is locally smooth. This was a key components of Active Contours [84] and has often
been used for stereovision, or non-rigid 2D registration [127]. In regular 3D meshes, this
amounts to minimizing the sum of the squared curvatures of the surface, which can be
written as

ED =
∑

{i−1,i,i+1}

(2xi−xi−1−xi+1)
2+(2yi−yi−1−yi+1)

2+(2zi−zi−1−zi+1)
2 , (7.1)

where{i−1, i, i+1} spans the set of all triplets of aligned vertices. When reconstructing a
surface from images, we minimize this term together with theusual image term. Whereas
the 2D version of these constraints is perfectly suitable, it becomes unnatural in 3D since
we expect one direction to deform more than the others. As will be shown below, this
indeed limits the applicability of this method.

7.1.2 Physics-based Deformation Modes

The physics-based approach has been very popular in Computer Vision. Since 3D re-
construction often involves high-dimensional models, modal analysis [122, 43] was often
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7 Comparative Results

Figure 7.1: Effect of adding (green) or subtracting (blue) asingle deformation mode to the
rest shape (red). From top to bottom, modes were obtained with real cardboard
data, real napkin data, synthetically generated meshes of two different topolo-
gies, a stiffness matrix for cardboard, and a stiffness matrix for the napkin. The
plots display the first five modes other than global motion.

applied to reduce the number of parameters by describing a deformation as a linear com-
bination of vibration modes. This follows the same idea as our linear models. However, in
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Figure 7.2: Comparison of the reconstruction error as a function of the number of modes
for the different linear global models. On the left, the error was computed on
the cardboard validation data, whereas on the right it was done for the napkin
case. From top to bottom, we display such errors for the cardboard model, the
napkin model, the model obtained from synthetic data, and the physics-based
models.

this case, the modes are obtained by eigen-decomposition ofa stiffness matrix rather than
from training data.

Following this approach, we built such a stiffness matrix for thin shell structures [92],
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Figure 7.3: Residual variance obtained with Isomap on the cardboard (left) and napkin
(right) global training data. These plots suggest latent dimensions 16 for the
cardboard and 30 for the napkin.

which typically correspond to our objects of interest. We then replaced our PCA modes by
the eigenvectors of that stiffness matrix and performed shape recovery in the same manner
as described in the previous chapters.

Another possibility to apply physics-based methods could be to create training data. This
would involve randomly applying forces to a finite element model, and simulate deforma-
tions. However, solving such a problem is known to be very complex, especially in the
case of large deformations of thin structures.

7.2 Comparing Deformation Spaces

In this section, we compare our learned models by measuring their reconstruction errors on
test data, as well as by visually displaying the effect of some of their latent variables. For
the linear local and global models, we can compute the deformation modes by simulating
training data using the angle-based parameterization proposed in Section 5.1.2, by using
real training data as explained in Section 6.1.4, or throughmodal analysis as explained
above.

7.2.1 Global Models

First, we study the global modes obtained with the three different techniques mentioned
above. In Fig. 7.1, we visually compare the first five deformation modes that do not in-
volve a global motion of the surface. In the first row, we show the modes obtained from the
real cardboard data and in the second one, those obtained with the napkin data. The third
and fourth rows depict the modes obtained from synthetic angle-based data with different
topologies, and the fifth and sixth ones, those corresponding to the physics-based models
for the cardboard and for the napkin, respectively. The two different physics-based mod-
els were obtained by using values of Young’s modulus, Poisson’s ratio and thickness that
approximately correspond to the two materials.
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Figure 7.4: Reconstruction errors on synthetic images generated from validation data. We
applied a nicely textured image (left) or a much more uniformone (right) to
ground-truth meshes, and projected them with known camera.The top row
corresponds to a piece of cardboard, and the bottom one to a paper napkin. In
each plot, we show the results for the global models obtainedfrom real data
(red), synthetic data (blue), and modal analysis (black). Note that the latter
performs significantly worse as the others in the napkin case.

As can be seen from the figure, using different parameter values in the physics-based
models produces similar modes, but in a different order. Furthermore, these modes are
quite different from the ones obtained from real and synthetic data. Similarly, the modes
obtained with cardboard data are slightly different from those of the paper napkin, but are
closer to the synthetic ones. As could be expected, changingthe topology of the mesh does
not influence the first few synthetic modes.

We then validated these different models in a similar manneras in Section 6.4.1, by
computing their mean reconstruction error for various testshapes. To do so, we used the
global test shapes that were kept aside during motion capture of the cardboard and napkin
surfaces. As for the local models, we computed the mean prediction given by Eq. 6.16
and took the error as the average vertex-to-vertex distancebetween such prediction and
the true test shape. Fig 7.2 shows such distances as a function of the number of modes
for the cardboard data on the left, and for the napkin on the right. Note that, since the
global napkin and cardboard data do not have the same size, wehad to cut our cardboard
examples to train a new model with the same shape as the napkinone. It can be observed
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7 Comparative Results

Figure 7.5: Visual interpretation of the local deformationmodes. From top to bottom, we
show the cardboard, napkin, synthetic, cardboard stiffness, and napkin stiffness
modes. Note that they closely ressemble the global ones.

that, whereas the models learned from real data yield the curves that decrease fastest on the
test set for the same material, this is not always the case foranother material. By contrast,
the models learned from synthetic data perform relatively well on both test sets, though
slightly worse than the real models. This suggests that, when no real data is available,
using synthetically generated ones still yields good precision.

Even in the global formulation, nothing in theory prevents us from learning a non-linear
model as was done for the local representations. Since training a non-linear model is com-
putationally much more expensive, we applied Isomap to find the correct latent dimension,
to avoid having to learn a model in 50 different dimensions. The resulting residual vari-
ances are shown in Fig. 7.3, and suggest dimensions 16 for thecardboard and 30 for the
napkin. Given these latent dimensions, we then tried to learn non-linear GPLVM’s as with
patches data. Unfortunately, even though we tried several numbers of inducing variables,
learning never converged. Thinking this might have been an artifact of sparsification, we
tried training a full model. However, Matlab ran out of memory. This again strongly con-
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7.2 Comparing Deformation Spaces

Figure 7.6: We computed the mean predicitions of the non-linear local models for the min-
imum (green) and maximum (blue) values for a single latent dimension while
setting the others to zero. Here, we show the deformations along the 4 possible
dimensions for our cardboard model.

Figure 7.7: Same plot as in Fig. 7.6, but for the 7 dimensions of the paper napkin model.

firms the superiority of local models over global ones.
Finally, we compared the accuracy of the different models when using them to recover

the shape of a surface from images. To do so, we applied our method on the same synthetic
images that we used in Section 6.4.2, which were obtained from the cardboard and napkin
validation sets and are depicted by Fig. 6.7. At each frame, we computed the mean vertex-
to-vertex distance between our reconstruction and the ground-truth mesh. In Fig. 7.4, we
show these errors for the textured and more uniform cardboard and napkin sequences. In
the carboard sequence, all models perform roughly equivalently. However, in the napkin
case, the model learned from real data performs best, closely followed by the synthetic one.
Modal analysis has much more troubles recovering the correct shapes. This is probably due
to the fact that the chosen material parameters were not exactly correct. This sensitivity to
parameters reflects the weakness of such representations.

7.2.2 Local Models

We then performed similar comparisons in the case of local models. As for global ones,
we plot the influence of the first five non-rigid modes of the linear models. As can be
seen in Fig. 7.5, even with 5×5 patches, the various approaches yield different modes.
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Additionally, we studied the effect of the different dimensions of the non-linear models.
To do so, we computed the mean predictions given by the modelsby varying a single
latent dimension at a time between its minimum and maximum values, and setting the
others to zero. Note that if the low-dimensional space is notdense, this might not always
be meaningful. Furthermore, since we applied a non-linear technique, a single direction
can represent more complex deformations than in the linear case. The resulting mean
predictions are depicted in Figs. 7.6 and 7.7 for the cardboard and napkin, respectively.

As before, we also compared the reconstruction error for increasing latent dimensions.
We computed the same average mean vertex-to-vertex distances between the model mean
prediction and the true shape as in Section 6.4.1. Having shown in the previous chapter
that the non-linear models perform better in much smaller dimensions than the linear ones,
here we only compare the different linear models. As can be checked in Fig. 7.8, the linear
models trained with real data perform again better on their corresponding test sets, and, as
with global models, the angle-based parameterization yields modes that perform relatively
well independentely of the material.

Since the training examples obtained by randomly varying the determining angles of the
mesh yield good and stable linear models, we tried to use themas training data for a non-
linear GPLVM. We applied Isomap to find the correct latent dimension. Even though the
error in Fig. 7.9(a) is already very low for dimension 4, it really stabilizes at dimension 10,
as shown by the plot in Fig. 7.9(b). In theory, as explained inSection 5.1.2, this number
should be 16, without accounting for translations that wereremoved. The fact that the
determining angles are bounded, and that some of them only yield very small deformations
can explain the difference.

Since we aim at recovering smoother cardboard or napkin data, we can expect the true
dimension to be lower than that. We therefore learned modelsfor dimensions between
1 and 10, and validated them on either the coardboard or the napkin data. The resulting
reconstruction errors are shown in Fig. 7.9(c). Note that these models perform poorly
compared to the ones trained on real data. Furthermore, using sparsification techniques
prevented the training to converge. We therefore had to learn full GPLVM’s, which is
computationally expensive and would make our tracking algorithms excessively slow.

As with global models, we compared the reconstruction accuracy of the different local
models on synthetic images. Fig. 7.10 shows the reconstruction errors on the same se-
quences as in the global case, but with local models. We only plot results obtained with the
different linear models, since a comparison with non-linear ones was shown in the previous
chapter. As can be checked from the figure, the models learnedfrom real data perform best,
especially with poorly-textured surfaces. As with global models, modal analysis gives the
worst results on the napkin data.

7.3 Comparison of our Shape Recovery Techniques

We now compare the performances of the different methods we proposed to recover the
shape of surfaces from images. Since some methods rely more strongly on texture, or
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Figure 7.8: Comparison of the different local models. We plot the average reconstruction
error on cardboard (left) and napkin (right) test patches. From top to bottom,
the models used were obtained from cardboard data, napkin data, synthetic
data, and with modal analysis.

require real training data, we could not always apply all of them to all cases. The results
nonetheless highlight their strengths and weaknesses.
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(a) (b) (c)

Figure 7.9: Learning a non-linear model from synthetic data. (a) Running Isomap on the
data gives a residual error that strongly decreases until dimension 4, but that
truly stabilizes at dimension 10, as shown in the zoomed-in plot (b). (c) We
learned non-linear models for latent dimensions up to 10 andtested them on real
cardboard and napkin data. These models achieve poor performance compared
to those trained on real data.
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Figure 7.10: Reconstruction errors on synthetic images generated from validation data. We
applied a nicely textured image (left) or a much more uniformone (right)
to ground-truth meshes, and projected them with known camera. The top row
corresponds to the piece of cardboard, and the bottom one to the paper napkin.
In each plot, we show the results for the local models obtained from real data
(red), synthetic data (blue), and modal analysis (black).
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Figure 7.11: Reconstruction errors on synthetic well-textured cardboard images using all
the methods discussed in this thesis.

7.3.1 Synthetic Data

We first tested our approaches on the same synthetic images asin the previous section.
However, here we applied our techniques as presented in the previous chapters. There-
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Figure 7.12: Same plots as those of Fig. 7.11, but for much less textured cardboard images.
Since some methods rely on correspondences, we could not apply them to this
case.

fore, linear models, both global and local, were used in conjunction with inextensibility
constraints. Additionally, since preventing the surface to expand or shrink proved use-
ful in many cases, we computed results using inextensibility constraints only. In Figs. 7.11
and 7.12, we show these errors as a function of time for the textured and more uniform card-
board sequences. Figs. 7.13 and 7.14 show similar plots for the paper napkin sequences.
Note that methods that rely on correspondences were only evaluated in the textured cases.

These error plots show us that, with a well-textured surface, most methods perform well,
with the exception of the linear motion model of Section 4.1.2. This was to be expected,
since it really represents the minimal set of constraints tohelp recovery, and does not truly
account for the behavior of deformable surfaces. Similarly, smoothness alone performs
poorly, especially on the cardboard case. By contrast, notethat inextensibility constraints
alone yield a good reconstruction. This implies that the global and local linear models also
perform very well.

When dealing with much less-textured surfaces, the resultsare different. First, the per-
formances of smoothness constraints have further degraded. Second, inextensibility con-
straints cannot be used on their own anymore, since there is no texture to prevent sharp
creases from appearing on the surface. However, when used inconjunction with a defor-
mation model, global or local, they yield good reconstructions.

Furthermore, these experiments show that convex optimization and closed-form methods
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Figure 7.13: Reconstruction errors on synthetic well-textured napkin images. We compare
our methods together and with smoothness and inextensibility constraints.

yield very similar results. This seems natural since they all rely on correspondences, and
approximate inextensibility constraints, though in different ways: In the SOCP method,
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Figure 7.14: Same plots as in Fig. 7.13, but for much less textured napkin images. Since
some methods rely on correspondences, we could not apply them to this case.

we ensure that edges lengths will not change by more than 10%, and in the closed-form
solutions, we solve linearized quadratic equations in terms of parameters that can only
approximately enforce these constraints. As can also be seen from the plots, linear global
and local models used in tracking perform better than in closed-form. The fact that they
rely on template matching and that an objective function is truly minimized is expected to
improve the registration with the image and thus the recovered shape.

An interesting observation is that linear global and local models perform similarly, which
might seem surprising. This suggests that our global modelshave sufficient flexibility
to undergo complex deformations, which might seem to make local models unnecessary.
Nonetheless, global models can only handle the specific surface for which they have been
trained, whereas local ones can be assembled to handle any shape. As will be shown below,
we believe this to be their real strength.

Finally, we note that the linear models perform slightly better than the non-linear ones
when inextensibility constraints are enforced, but worse when they are not. This makes
the non-linear models more attractive when dealing with flexible materials where folds can
appear in-between vertices, as has already been shown in Section 6.4.3. Recall, however,
that they can only be used for tracking purposes, whereas thelinear ones can recontruct
surfaces from individual images.

154



7.3 Comparison of our Shape Recovery Techniques

Figure 7.15: We compared our methods on a real video of a deforming sheet of cardboard.
In order to texture it, and thus make it usable for correspondences-based tech-
niques, we stuck a piece of paper on the cardboard. Since cardboard is more
rigid, its behavior remains unchanged. Top row: Reprojection of the results
obtained with the linear local model. Next rows: Results obtained, from top to
bottom, with linear motion model, convex optimization, linear global model
by tracking and in closed-form, non-linear local models, linear local models
by tracking and in closed form.
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7 Comparative Results

Figure 7.16: Same comparison as in the cardboard case but forthe more flexible napkin.
In this case, we computed correspondences from the results obtained with the
non-linear local models.
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7.3 Comparison of our Shape Recovery Techniques

Figure 7.17: Comparing our approaches on a piece of paper with sharp creases. From
top to bottom, we show the results of the convex optimizationapproach and
the closed-form solutions of global and local models. Methods relying on a
deformation model are not truly adapted to this case, and tend to oversmooth
the surface. Nonetheless their results are reasonable approximations of the
true shapes.

7.3.2 Real Images

We applied our methods to several real sequences of more or less textured surfaces under-
going large deformations. The surfaces were made of cardboard, paper, and more flexible
tissue, which all have very different physical properties.Since some of our approaches
rely on correspondences, we needed to have textured surfaces. For the cardboard, we stuck
a textured piece of paper on top of the surface. Since cardboard is more rigid, this did
not influence its deformations. This allowed us to use our local cardboard model, as well
as methods relying on feature points. Results are depicted in Fig. 7.15, whose first row
shows the mesh obtained with linear local models reprojected on the original images. The
following rows show the results of the different methods seen from a different viewpoint.

As we can see, most models, to the exception of the linear motion model, perform rela-
tively well on this case. The poor results of the linear motion model can be explained by
the fact that, in such a deformation, the motion along the line of sight is large. Therefore,
a method that penalizes it is not adapted. Note that the non-linear models tend to flatten
the top of the bent paper. We believe this to be due to the absence of true inextensibility
constraints, which typically would not allow this to happen.

We then wanted to compare our methods on the paper napkin case, which is much more
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7 Comparative Results

Figure 7.18: We compared the reconstructions with local (top) and global (bottom) models
of a surface with a hole. Even though the global model managesto track the
surface, it oversmoothes the parts where the hole creates discontinuities. This
yields a bad reprojection of the resulting mesh.

flexible. Unfortunately, in this case, we cannot stick texture on it without changing its
properties. Therefore, for methods that rely on correspondences, we established them from
the results of the non-linear local models, by sampling the barycentric coordinates of the
facets and adding gaussian noise with variance 2 to the reprojections of these points. This
is a convoluted way of computing correspondences, but, since we only aim at checking
whether a model can recover complex deformations, it is reasonable. Similar results as in
the cardboard case are depicted in Fig. 7.16. For this experiment, we notice the superiority
of the non-linear local models over the other techniques. Similarly, we observe that the
convex optimization approach performs well. Linear local and global models have troubles
modeling such a flexible surface where inextensibility constraints can be violated since
folds may appear between neighboring vertices. The linear motion model again performs
worst, though not as dramatically as for the cardboard case.
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7.3 Comparison of our Shape Recovery Techniques

Figure 7.19: Comparison of the local and global models on a piece of cardboard from
which a large part was cut out. This simulates the extreme case of a rect-
angular hole where the two opposite parts can move independently. In the
top two rows, we show the results of the local models that correctly recover
the shape. In the middle, we display results obtained with a global model for
which we penalized stretching. For small deformations, this representation
still works, but the two parts cannot be moved far apart, since this would vio-
late inextensibility constraints. Without these constraints, the mesh reprojects
correctly on the images, but gives a meaningless 3D shape, asshown in the
bottom two rows.
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7 Comparative Results

We also evaluated our methods on a sequence of a piece of paperwith sharp creases. This
corresponds to the ultimate flexible case, and is a challengefor methods that favor smooth
results. For this case, we only evaluated the closed-form versions of the linear models,
and compared them to the convex optimization technique. As shown in Fig. 7.17, only our
convex optimization technique manages to recover such a shape precisely. Nonetheless,
both global and local models yield meaningful approximations of the true shape.

Finally, since from results on synthetic data it appeared that optimized global and local
models performed equally well, we applied them on surfaces with holes and cuts to demon-
strate the advantage of local models over global ones. As canbe seen in Fig. 7.18, using a
global model to reconstruct the same napkin with a hole as in Section 6.4.3 yields the same
kind of error as when we used local models without explicitlyaccounting for the hole. The
global model smoothes the discontinuities created by the hole, which results in a surface
that does not reproject correctly. This, nonetheless, onlyrepresents a relatively small hole
compared to the global surface. To study the case of a much larger hole, we cut out a large
piece of a cardboard surface, as shown in Fig. 7.19. This simulates the extreme case where
to opposite sides of the hole can move independently. As can be observed from the figure,
when penalizing stretching of the mesh, the global model only manages to explain small
deformations, and fails to reproject correctly for larger ones, since they would violate in-
extensibility constraints. One could then think of removing such constraints. In that case,
as shown in the last two rows of the figure, the reprojection ofthe mesh is correct, but its
3D shape completely meaningless.
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8 Conclusion

In this thesis, we have presented several solutions to the problem of recovering the 3D shape
of a deforming surface from a single viewpoint. We have shownthat, when using feature
points and representing the surface as a mesh, recovering its shape amounts to solving an
ill-conditioned linear system. This is because the distances between the vertices and the
camera are only poorly constrained by correspondences, which makes 3D shape recovery
much more complex than 2D registration.

This observation lead us to study different approaches to formulating the deformation
models required to resolve the ambiguities. In a first approach, we constrained shape re-
covery by using temporal information. The key observation was that vertices cannot move
arbitrarily between the consecutive frames of a video sequence. The resulting two tech-
niques, that is imposing a linear motion model or using Second Order Cone Programming,
are extremely easy to apply, but are subject to drift as they rely on frame-to-frame tracking.

In a second approach, we introduced the use of shape models. We first proposed a linear
global model and presented a technique to create training shapes automatically by ran-
domly setting values to a set of determining angles between the facets of a mesh. Since
this global model was restricted to represent a particular object shape, we introduced lo-
cal models that can be combined to form any shape, and therefore simulate a particular
material rather than a particular surface. In this framework, we studied both linear and
non-linear models, the latter providing a more accurate representation of the deformation
space. However, when inextensibility constraints can be enforced, both kinds of models
perform similarly.

Comparing our models allowed us to draw several conclusions. First, the convex op-
timization method, assuming enough correspondences are provided, yields very good re-
sults. This is especially true for surfaces with sharp foldsand creases, which the other
approaches tend to oversmooth. Unfortunately, it cannot deal with individual images. The
linear models, global or local, let us solve the reconstruction in closed-form. They can
therefore work on a single image and require no a priori shapeestimate. However, such a
closed-form solution still requires texture. Nevertheless, when there are too few keypoints
on the surface, these models can still be used for tracking. In terms of performance, the
global and local approaches seem to give equivalent results. Nonetheless, the local models
let us represent surfaces of arbitrary shapes. The major disadvantage of linear models is
that their approximation of the shape space is not as accurate as the non-linear ones. This
forced us to use them in conjunction with inextensibility constraints, which may not always
be truly valid, as was the case with the napkin. For such cases, the non-linear local models
are therefore the most adapted. However, they require real training data and yield a much
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8 Conclusion

Figure 8.1: Some of our techniques have been used in a software that computes the shape
of the spinnaker of the swiss sailing team Alinghi.

more complex objective function, which only makes them practical for tracking purposes.

In short, local models should generally be favored, as long as no sharp creases appear on
the surface. Given a video sequence and real training data, the non-linear models are more
appropriate. However, when these two conditions are not satisfied, the linear ones are most
adapted.

8.1 Applications

As mentioned in the introduction, 3D deformable surface reconstruction is applicable in
domains such as medical imaging, entertainment, or sports.Some of our techniques have
already been used for the latter. In a collaboration with theswiss sailing team Alinghi, we
have developed the Deform3D software that integrates Julien Pilet’s image correspondence
technique [128] and reconstructs the shape of a spinnaker from a series of images, such as
the ones of Fig. 8.1. As depicted by Fig. 8.2, our methods havealso been used to recover
the shape of the main sail of the french boat Hydroptère [71],shown in Fig. 8.3.

Several other applications following similar ideas are currently under developement.
Among them, we study the problem of recovering the shape of the wings of a plane in
flight. We also consider applying our techniques to recover the deformations of the rotat-
ing turbine blades of a plane. Finally, in medical imaging, our methods could be of interest
for laparoscopic surgery. First, they could be used to reconstruct the shape of organs from
the noisy laparoscope images. Second, from an external camera, they could help recov-
ering the motion of the patient’s torso, from which the deformations of the organs can be
infered. We are currently trying to find partners in the medical world to put these ideas into
practice.
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8.2 Future Work

Figure 8.2: Similarly as for the spinnaker, our methods wereapplied to recover the shape
of the main sail of the french boat Hydroptère.

8.2 Future Work

Even though the methods developped in this thesis have advanced the state-of-the-art in
deformable 3D shape recovery, many further improvements are possible. One of the major
limitations of our approaches is their need of a reference image in which we know the shape
of the surface. In many real life applications, such an imageis not available and we only
have images of the deformed surface. This problem is relatedto non-rigid structure-from-
motion. However, the current solutions require many framesand only recover relatively
small deformations. Furthermore, they only reconstruct a few 3D points rather than the
whole surface. A challenging topic for future research would be to study the ambiguities
when given two images of the same surface undergoing two different deformations. One
could reasonably further assume that a 3D model is known, butdoes not correspond to
either images. Given these ambiguities, one could study theappropriate constraints to
solve them, and possibly use the ones developped in this work. The main challenge in
solving this problem stems from the fact that we do not know towhich facet of the mesh
a feature point detected on the image belongs. This would create integer programming
problems with new unknowns for the facets indices.

In a more straightforward direction, one could study more deeply the inextensibility
constraints. As shown in this thesis, they are very good at selecting plausible solutions
of an ill-conditioned linear system. However, by themselves, they cannot resolve all the
ambiguities. This was observed in the case of human motion, where one can flip in depth
the links between the joints of a skeleton and still obtain a correct reprojection [142]. In that
work, the ambiguities were solved by exploring all possibleflips of the links, and choosing
the most appropriate ones. In our case, the problem becomes far more complex, since we
are dealing with complete surfaces as opposed to joints thatform a simple tree structure.
Nonetheless, we could find the multiple minima of the quadratic equations accounting for
edges lengths that appear in our closed-form solutions rather than one solution, as is the
case with Extended Linearization. For small meshes, this could be achieved using Groebner
bases. For larger surfaces, the problem has too many unknowns for Groebner bases to be
practical, however, one could consider finding the multiplesolutions of small parts of the
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8 Conclusion

Figure 8.3: Images of the french boat Hydroptère [71].

mesh, and link them together in a consistent manner.
This would give us a way to exploit shading, an important image cue that we have ne-

glected in this work. As mentioned in Chapter 2, it gives a good idea of the shape of a
surface, but relies on very strong assumptions that almost never hold. To make it practical,
it would seem more appopriate to use it as a qualitative measure rather than a quantitative
one. Given the multiple results obtained with inextensibility contraints as described above,
one could then use shading to select the correct one. In such conditions, an approximate
shading model should be sufficient, and should let us find the correct shape even when the
assumptions made by the model are violated. The selection could be done by choosing the
shape that yields maximum mutual information with the image, as was proposed in [166].

Finally, another avenue of research arises from the formulation of our problem in a
different metric space than the standard Euclidean space. Recently, a non-rigid structure-
from-motion method formulated as an optimization problem in a Riemannian manifold has
been proposed [139]. The main advantage of using such a manifold is that it allows to de-
fine geodesic distances and isometric deformations. This was first introduced in Computer
Graphics for simulation purposes [86]. Following this approach, we could implicitely en-
force inextensibility constraints without the need of non-convex constraints. However, the
drawback of the current formulations is that they relate deformations over time, and thus
are inappropriate for shape recovery from a single image.

164



Bibliography

[1] A ANAES, H., AND KAHL , F. Estimation of deformable structure and motion. In
Vision and Modelling of Dynamic Scenes Workshop(2002).

[2] AGARWAL, A., AND TRIGGS, B. 3d human pose from silhouettes by relevance vec-
tor regression. InConference on Computer Vision and Pattern Recognition(2004).

[3] A HMED, A., AND FARAG, A. A new formulation for shape from shading for non-
lambertian surfaces. InConference on Computer Vision and Pattern Recognition
(New York, June 2006).

[4] A NDRILUKA , M., ROTH, S., AND SCHIELE, B. People-tracking-by-detection
and people-detection-by-tracking. InConference on Computer Vision and Pattern
Recognition(Anchorage, Alaska, June 2008).

[5] A NGUELOV, D., SRINIVASAN , P., KOLLER, D., THRUN, S., RODGERS, J., AND

DAVIS, J. Scape: shape completion and animation of people.ACM SIGGRAPH 24
(2005), 408–416.

[6] BALAN , A. O., BLACK , M. J., HAUSSECKER, H. W., AND SIGAL , L. Shining a
light on human pose: On shadows, shading and the estimation of pose and shape. In
International Conference on Computer Vision(October 2007).

[7] BALAN , A. O., SIGAL , L., BLACK , M. J., DAVIS, J. E., AND HAUSSECKER,
H. W. Detailed human shape and pose from images. InConference on Computer
Vision and Pattern Recognition(June 2007).

[8] BARAFF, D., AND WITKIN , A. Large steps in cloth simulation. InACM SIG-
GRAPH(1998), pp. 43–54.

[9] BARBIC, J.,AND JAMES, D. Real-time subspace integration for st.venant-kirchhof
deformable models. InACM SIGGRAPH(2005).

[10] BARTOLI , A., AND OLSEN, S. A Batch Algorithm For Implicit Non-Rigid Shape
and Motion Recovery. InICCV Workshop on Dynamical Vision(Beijing, China,
October 2005).

[11] BARTOLI , A., AND ZISSERMAN, A. Direct Estimation of Non-Rigid Registration.
In British Machine Vision Conference(Kingston, UK, September 2004).

165



Bibliography

[12] BATHE, K.-J. Finite Element Procedures in Engineering Analysis. Prentice Hall,
1982.

[13] BELHUMEUR, P., KRIEGMAN, D., AND YUILLE , A. The Bas-Relief Ambiguity.
International Journal of Computer Vision 35, 1 (1999), 33–44.

[14] BELKIN , M., AND NIYOGI , P. Laplacian Eigenmaps and Spectral Techniques for
Embedding and Clustering. InNeural Information Processing Systems. MIT Press,
Cambridge, MA, 2001, pp. 585–591.

[15] BHAT, K. S., TWIGG, C. D., HODGINS, J. K., KHOSLA, P. K., POPOVIC, Z.,
AND SEITZ, S. M. Estimating cloth simulation parameters from video. In ACM
Symposium on Computer Animation(2003).

[16] BLACK , M. J., AND JEPSON, A. D. Eigentracking: Robust matching and tracking
of articulated objects using a view-based representation.In European Conference
on Computer Vision(1996), pp. 329–342.

[17] BLAKE , A., ZIMMERMAN , A., AND KNOWLES, G. Surface descriptions from
stereo and shading.Image Vision Computing 3, 4 (1986), 183–191.

[18] BLANZ , V., BASSO, C., POGGIO, T., AND VETTER, T. Reanimating Faces in
Images and Video. InEurographics(Granada, Spain, September 2003).

[19] BLANZ , V., AND VETTER, T. A Morphable Model for The Synthesis of 3–D Faces.
In ACM SIGGRAPH(Los Angeles, CA, August 1999), pp. 187–194.

[20] BOTSCH, M., PAULY, M., WICKE, M., AND GROSS, M. Adaptive space deforma-
tions based on rigid cells. InEurographics(2007).

[21] BOYD, S.,AND VANDENBERGHE, L. Convex Optimization. Cambridge University
Press, 2004.

[22] BOYER, E., AND BERGER, M.-O. 3D Surface Reconstruction Using Occluding
Contours.International Journal of Computer Vision 22, 3 (1997), 219–233.

[23] BRADLEY, D., POPA, T., SHEFFER, A., HEIDRICH, W., AND BOUBEKEUR, T.
Markerless garment capture.ACM Trans. Graph. 27, 3 (2008).

[24] BRAND, M. Morphable 3d models from video.Conference on Computer Vision
and Pattern Recognition(2001).

[25] BREGLER, C., HERTZMANN, A., AND BIERMANN , H. Recovering non-rigid 3d
shape from image streams. InConference on Computer Vision and Pattern Recog-
nition (2000).

166



Bibliography

[26] BRIDSON, R., FEDKIW, R., AND ANDERSON, J. Robust treatment of collisions,
contact and friction for cloth animation. InACM Transactions on Graphics (ToG)
(2002), pp. 594–603.

[27] BRIDSON, R., MARINO, S., AND FEDKIW, R. Simulation of clothing with folds
and wrinkles. InACM Symposium on Computer Animation(2003).

[28] CANNY, J. A computational approach to edge detection.IEEE Transactions on
Pattern Analysis and Machine Intelligence 8, 6 (1986).

[29] CARCERONI, R. L., AND KUTULAKOS, K. N. Multi-view scene capture by sur-
fel sampling: From video streams to non-rigid 3d motion, shape and reflectance.
International Journal of Computer Vision 49, 2-3 (2002), 175–214.

[30] CATMULL , E., AND CLARK , J. Recursively generated B-spline surfaces on arbi-
trary topological meshes.Computer Aided Design Journal 10(1978), 350–355.

[31] CHANDRAKER, M., KAHL , F., AND KRIEGMAN, D. Reflections on the general-
ized bas-relief ambiguity. InConference on Computer Vision and Pattern Recogni-
tion (San Diego, CA, June 2005).

[32] CIPOLLA , R., AND BLAKE , A. Surface shape from the deformation of apparent
contours.International Journal of Computer Vision 9, 2 (1992), 83–112.

[33] CIRAK , F., ORTIZ, M., AND SCHRÖDER, P. Subdivision surfaces: A new paradigm
for thin-shell finite-element analysis.International Journal for Numerical Methods
in Engineering 47(2000), 2039–2072.

[34] COHEN, L., AND COHEN, I. Deformable models for 3-d medical images using
finite elements and balloons. InConference on Computer Vision and Pattern Recog-
nition (1992), pp. 592–598.

[35] COHEN, L., AND COHEN, I. Finite-element methods for active contour models
and balloons for 2-d and 3-d images.IEEE Transactions on Pattern Analysis and
Machine Intelligence 15, 11 (November 1993), 1131–1147.

[36] COMON, P. Independent component analysis, a new concept?Signal Processing
36, 3 (1994), 287–314.

[37] COOTES, T., EDWARDS, G., AND TAYLOR , C. Active Appearance Models. InEu-
ropean Conference on Computer Vision(Freiburg, Germany, June 1998), pp. 484–
498.

[38] COOTES, T. F.,AND TAYLOR , C. J. Active shape models - ’smart snakes. InBritish
Machine Vision Conference(1992), pp. 266–275.

[39] COQUILLART, S. Extended Free-Form Deformation: A sculpturing Tool for3D
Geometric Modeling.ACM SIGGRAPH 24, 4 (1990), 187–196.

167



Bibliography

[40] COURTOIS, N., KLIMOV, A., PATARIN , J.,AND SHAMIR , A. Efficient algorithms
for solving overdefined systems of multivariate polynomialequations. InEURO-
CRYPT(Bruges, Belgium, May 2000).

[41] CROSS, G., AND ZISSERMAN, A. Surface reconstruction from multiple views us-
ing apparent contours and surface texture. InNATO Advanced Research Workshop
on Confluence of Computer Vision and Computer Graphics, Ljubljana, Slovenia
(2000), A. Leonardis, F. Solina, and R. Bajcsy, Eds., pp. 25–47.

[42] DE AGUIAR, E., THEOBALT, C., STOLL, C., AND SEIDEL, H.-P. Marker-less
deformable mesh tracking for human shape and motion capture. In Conference on
Computer Vision and Pattern Recognition(Minneapolis, USA, June 2007).

[43] DELINGETTE, H., HEBERT, M., AND IKEUCHI, K. Deformable surfaces: A free-
form shape representation. InSPIE Geometric Methods in Computer Vision(1991),
vol. 1570, pp. 21–30.
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