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Data-driven precompensator tuning for linear parameter varying
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SUMMARY

Methods for direct data-driven tuning of the parameters of precompensators for LPV systems are
developed. Since the commutativity property is not always satisfied for LPV systems, previously
proposed methods for LTI systems that use this property cannot be directly adapted. When the ideal
precompensator giving perfect mean tracking exists in the proposed precompensator parameterisation,
the LPV transfer operators do commute and an algorithm using only two experiments on the
real system is proposed. It is shown that this algorithm gives consistent estimates of the ideal
parameters despite the presence of stochastic disturbances. For the more general case, when the ideal
precompensator does not belong to the set of parameterised precompensators, another technique
is developed. This technique requires a number of experiments equal to twice the number of
precompensator parameters and it is shown that the calculated parameters minimise the mean squared
tracking error. The theoretical results are demonstrated in simulation. Copyright c© 2008 John Wiley
& Sons, Ltd.
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1. Introduction

It is commonplace to use precompensators based on the inverse of the closed-loop system
to improve the tracking performance of linear time-invariant (LTI) systems. This technique
typically uses the inverse of a model of the closed-loop system for the precompensator.
However, the model will be subject to uncertainty and when this is above a certain level
the tracking performance of the system can be adversely affected [1]. In [2] a data-driven
method is proposed for direct tuning of the parameters of precompensators for LTI systems.
This method minimises the tracking control criterion directly using measured data, rather than
passing first through a system modelling step and then minimising a criterion based on the
uncertain model. This approach means that the achieved tracking is not affected by system
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model uncertainty and leads to high tracking performance. The method is based on parameter
estimation algorithms using instrumental variables, therefore making the parameter estimates
asymptotically unaffected by measurement noise. Additionally, by taking advantage of the
commutativity of LTI transfer operators, it only requires data from one experiment in order to
tune the precompensator. In many applications, however, the LTI assumption is not satisfied
e.g. certain mechatronic systems such as x-y positioning tables where the dynamics change as
a function of position and consequently the method proposed in [2] cannot be applied.

A class of systems whose dynamics change as a function of the operating point are linear
parameter varying (LPV) systems. For LPV systems, methods have been proposed ([3], [4]) to
tune precompensators and feedforward controllers whose parameters also vary as a function of
the operating point. These methods, however, are based on uncertain identified LPV models
and thus, unlike direct data-driven methods, suffer from model uncertainty.

No data-driven precompensator, or feedforward controller, tuning methods for LPV systems
have been proposed to the authors’ knowledge. But, as is the case for LTI systems, system
identification techniques for LPV systems should be adaptable to the tuning of these
controllers.

Research into the problem of identifying LPV systems has been active in recent years (see
e.g. [5], [6], [7], [8]). In [9] a method is proposed for the identification of the parameters of
Single Input Single Output (SISO) LPV systems in input-output form. Each parameter of
the system transfer operator is a linear combination of predefined, operating point dependent
functions. The identification procedure is then one of identifying the coefficients multiplying
these functions, which is a linear regression problem, and so can be computed using the
standard least squares technique. However, as occurs in the LTI case, the least squares
technique generally gives biased parameter estimates. Consistent estimates can be obtained
using instrumental variables [10].

In this paper the application of instrumental variables to the problem of direct, data-
driven tuning of precompensators for LPV systems is considered. It is shown that if the
ideal precompensator giving zero mean tracking exists in the proposed precompensator
parameterisation, the LPV transfer operators commute and a tuning technique is proposed
which gives consistent estimates using measurements from just two experiments. For the more
general case, where the LPV transfer operators do not commute, another algorithm is proposed
requiring a number of experiments equal to twice the number of precompensator parameters.
The algorithm leads to parameter estimates that converge to those that minimise the desirable
mean squares criterion.

The paper is organized as follows. Notation and preliminaries are given in Section 2. The
tuning scheme when the ideal precompensator exists in the precompensator parameterisation
is presented in Section 3. In Section 4, the tuning method for the general case is explained.
Simulation results are presented in Section 5. Finally, some concluding remarks are made in
Section 6.
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Figure 1. System with precompensator

2. Preliminaries

The output of a SISO LPV system G(σ(t), q−1) is given by:

y(t) = G(σ(t), q−1)u(t) + H(σ(t), q−1)e(t)

= G(σ(t), q−1)u(t) + v(t) (1)

where σ(t) ∈ R
nσ is a measurable scheduling parameter vector at time t, H(σ(t), q−1) a,

possibly LPV, transfer operator filtering the sequence of zero-mean, independent random
variables e(t) to give v(t), and q−1 the backward-shift time operator. The scheduling parameter
vector contains the measurable signal(s) which correspond to the system’s current operating
point. It should be noted that G(σ(t), q−1) and H(σ(t), q−1) may be the transfer operators of
either an open or closed-loop system, under the condition that they are uniformly stable for
all σ(t) in the operating zone.

Definition: An LPV transfer operator P (σ(t), q−1), σ(t) ∈ A ⊂ R
nσ :

P (σ(t), q−1) =

∞
∑

k=0

pk(σ(t))q−k, σ(t) ∈ A, (2)

where pk(σ(t)) is the kth impulse response coefficient, is said to be uniformly stable if

|pk(σ(t))| ≤ pk, for t = 0, 1, . . . ,

∞
∑

k=0

pk < ∞. (3)

The output of the system with an LPV precompensator F (σ(t), q−1), when the desired output
yd(t) is applied at the precompensator’s input, is given by (see Fig. 1):

y(t) = G(σ(t), q−1)F (σ(t), q−1)yd(t) + v(t). (4)

The objective of the paper is to calculate the parameters of the precompensator F (σ(t), q−1)
so as to reduce the tracking error:

ǫ(t) = yd(t) − y(t). (5)

In this paper we consider the ideal precompensator to be that which gives zero mean tracking
error. It can clearly be seen from (4) and (5) that the ideal precompensator is that for which:

G(σ(t), q−1)F (σ(t), q−1) = 1. (6)

A fact which should be noted is that due to the time-varying nature of the transfer operators,
commutativity does not apply to them, in general. In fact, the backward-shift operator should
obey a non-commutative multiplicative operation i.e. q−i

(

σ(t)q−ju(t)
)

= σ(t − i)u(t− i − j).
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2.1. Precompensator parameterisation

The precompensator is parameterised such that F (σ(t), q−1) is linear in its parameters and
can be expressed as:

F (ρ, σ(t), q−1) = βT (σ(t), q−1)ρ (7)

where

β(σ(t), q−1) =
[

β1

0(q−1)
(

σ(t)T β2

0(q−1)
)

, β1

1(q−1)
(

σ(t)T β2

1(q−1)
)

, . . . , β1

nβ
(q−1)

(

σ(t)T β2

nβ
(q−1)

)]T

, (8)

and ρ ∈ R
nρ , with nρ = (nσ + 1)(nβ + 1), is the vector of controller parameters:

ρ = [ρ0

0, ρ
1

0, . . . , ρ
nσ

0
, ρ0

1, ρ
1

1, . . . , ρ
nσ

1
, . . . , ρ0

nβ
, ρ1

nβ
, . . . , ρnσ

nβ
]T . (9)

The β
j
i (q

−1) are linear discrete-time transfer operators, which can be any orthonormal basis
functions, such as Laguerre or Kautz. In the sequel, however, for clarity of presentation, we
suppose that β1

i (q−1) = 1 and β2

i (q−1) = q−i. This choice means βT (σ(t), q−1) is given by:

β(σ(t), q−1) = [σ0(t), σ1(t), . . . , σnσ
(t), σ0(t)q

−1, σ1(t)q
−1, . . . , σnσ

(t)q−1, . . . ,

σ0(t)q
−nβ , σ1(t)q

−nβ , . . . , σnσ
(t)q−nβ ]T (10)

where σj(t) represents the jth element of σ(t). This parameterisation allows a wide range
of dependence on the scheduling parameter to be described. For example each σj(t) could
represent a function of a different scheduling parameter. Alternatively the σj(t) could be a set
of orthogonal basis functions of a single scheduling parameter e.g. polynomials:

σj(t) = σ̄j(t), (11)

where σ̄(t) is the single scheduling parameter.
These choices lead to the following expression for F :

F (ρ, σ(t), q−1) =
[

ρ0

0
σ0(t) + ρ1

0
σ1(t) + · · · + ρnσ

0
σnσ

(t)
]

+
[

ρ0

1σ0(t) + ρ1

1σ1(t) + · · · + ρnσ

1
σnσ

(t)
]

q−1 + . . .

+
[

ρ0

nβ
σ0(t) + ρ1

nβ
σ1(t) + · · · + ρnσ

nβ
σnσ

(t)
]

q−nβ . (12)

Remark: In the special case that the desired output yd(t) and scheduling parameter σ(t)
are known a priori, they can be used to improve the tracking of systems with a time delay.
This improvement is achieved by setting β1

i (q−1) = qδ, where δ equals the system’s time delay.
This fact can be illustrated via the following example. Consider the noise-free system with a
time delay m:

y(t) = −a1(σ(t))y(t − 1) − a2(σ(t))y(t − 2) + u(t − m). (13)

We want y(t) = yd(t), so substituting this equality into the above equation gives:

u(t − m) = yd(t) + a1(σ(t))yd(t − 1) + a2(σ(t))yd(t − 2) (14)

or

u(t) = yd(t + m) + a1(σ(t + m))yd(t + m − 1) + a2(σ(t + m))yd(t + m − 2),
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which shows that the structure required for perfect tracking is achieved by choosing δ = m.
This implies that values of σ(t) and yd(t) at t + δ should be used at time t, which is possible
if they are known in advance. Unfortunately, in many applications, i.e. those where σ(t) is
measured in real time, advanced knowledge of σ(t) will not be available.

2.2. Single realisation behaviour and ergodicity

It is often useful to be able to equate the time average properties of a signal over a single
realisation with the ensemble average taken over many realisations. Signals with this property
are called ergodic and Theorem 2B.1 in [11] indicates when certain types of nonstationary
signals can be ergodic in the correlation.

Theorem 2B.1 [p. 55 in [11]] Let {Pθ(q
−1), θ ∈ Dθ} and {Mθ(q

−1), θ ∈ Dθ} be uniformly
stable families of filters, and assume that the deterministic signal w(t), t = 1, 2, . . . , is subject
to

|w(t)| ≤ Cw, ∀t. (15)

Let the signal sθ(t) be defined, for each θ ∈ Dθ, by

sθ(t) = Pθ(q
−1)vl(t) + Mθ(q

−1)w(t) (16)

where

vl(t) =

∞
∑

k=0

lk(t)el(t − k) = L(t, q−1)el(t) (17)

and el(t) is a sequence of independent random vectors with zero mean values, E{el(t)e
T
l (t)} =

Λt and bounded fourth moments, and {L(t, q−1), t = 1, 2, . . .} is a uniformly stable family of
filters. E{·} denotes the mathematical expectation. Then:

sup
θ∈Dθ

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[

sθ(t)s
T
θ (t) − E{sθ(t)s

T
θ (t)}

]

∥

∥

∥

∥

∥

→ 0 w.p. 1, as N → ∞, (18)

where ‖ · ‖ is the Frobenius norm.

3. Tuning when LPV transfer operators commute

As mentioned previously, in general, time-varying operators do not commute. One case,
however, where they do is when the two operators considered are reciprocal. Thus, in the
case that the precompensator’s parameterisation and parameters are such that (6) is satisfied
then F (ρ0, σ(t))G(σ(t)) = G(σ(t))F (ρ0, σ(t)) = 1, where ρ0 are the parameters satisfying (6).
This fact gives an idea for a tuning scheme for the precompensator’s parameters.

3.1. Tuning scheme

We have that the tracking error of the system, with a precompensator, is given by:

ǫ(t) = yd(t) − G(σ(t), q−1)F (ρ, σ(t), q−1)yd(t) − v(t). (19)

In the absence of noise, and when G(σ(t), q−1) and F (ρ, σ(t), q−1) are commutative, the same
tracking error would be obtained if the positions of the system and the precompensator were
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Figure 2. Precompensator tuning scheme

swapped so that F acts as a post-compensator. Using this idea, it is possible to estimate ǫ(t)
from one set of data obtained from the system without a precompensator as:

ǫ̂(t) = yd(t) − ŷ(t) = yd(t) − F (ρ, σ(t), q−1)ym(t)

= yd(t) − F (ρ, σ(t), q−1)G(σ(t), q−1)yd(t) − F (ρ, σ(t), q−1)v(t)

= yd(t) − F (ρ, σ(t), q−1)z(t) − F (ρ, σ(t), q−1)v(t) (20)

where z(t) and ym(t) are the noise-free and noisy outputs, respectively, of the system when
yd(t) is applied as the input (see Fig. 2).

3.2. Algorithm

It is possible to express ǫ̂(t) in linear regression form as:

ǫ̂(t) = yd(t) − F (ρ, σ(t), q−1)ym(t) = yd(t) − φT
m(t)ρ (21)

where:

φm(t) = [σ0(t)ym(t), σ1(t)ym(t), . . . , σnσ
(t)ym(t),

σ0(t)ym(t − 1), σ1(t)ym(t − 1), . . . , σnσ
(t)ym(t − 1), . . . ,

σ0(t)ym(t − nβ), σ1(t)ym(t − nβ), . . . , σnσ
(t)ym(t − nβ)]T . (22)

The precompensator parameters can then be found by the minimisation of a quadratic cost
function:

JN
m (ρ) =

1

2N

N−1
∑

t=0

ǫ̂2(t), (23)

where N is the number of data points for which yd(t) is defined. The minimiser of this criterion
is given by:

ρN
mLS =

[

1

N

N−1
∑

t=0

φm(t)φT
m(t)

]−1

1

N

N−1
∑

t=0

φm(t)yd(t). (24)

Unfortunately when F (ρ, σ(t)) is placed as a post-compensator, it filters the noise v(t) also,
as seen in Fig. 2. Therefore the parameters which minimise the variance of the tracking error
estimate will not be the same as those which minimise the variance of the true tracking error.

The Instrumental Variables (IV) method can be used, nonetheless, to give consistent
estimates of the true minimising parameters ρ0. For the IV estimates to converge to the
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true values, the IV vector must be correlated with the non-noisy component of ym(t), but not
with the noise v(t). Many choices of IV vector satisfy these conditions, such as a vector of time
shifted versions of yd(t). The choice considered in this paper is to use a vector similar to φm(t),
but with ym(t) obtained from a second experiment, performed in the same way as the first.
The second experiment will, however, be affected by a different, independent noise realisation.
This choice has been made as it leads to an IV vector that is strongly correlated with the
non-noisy component of ym(t), and so leads to parameter estimates with low variances. The
IV estimate is thus given by:

ρN
mIV =

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2

(t)

]−1

1

N

N−1
∑

t=0

φm1(t)yd(t), (25)

where φm1(t) and φm2(t) are the φm(t) from the two experiments using ym1(t) and ym2(t)
respectively.

The consistency of the IV estimate is not directly obvious as, unlike the standard LTI
case, the signals considered contain nonstationary stochastic components. The applicability
of ergodicity type results typically used in consistency analysis is not, therefore, immediately
evident. An analysis is thus performed in the next subsection which demonstrates that the
IV method does indeed lead to consistent estimates, despite the presence of these types of
disturbances.

3.3. Consistency of the IV estimate

To see that the IV method gives consistent estimates we begin by rewriting (25) as:

ρN
mIV =

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]−1

1

N

N−1
∑

t=0

φm1(t)φ
T
z (t)ρ0

=

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]

1

N

N−1
∑

t=0

φm1(t)
(

φT
m2(t) − φT

v2(t)
)

ρ0

=ρ0 −

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]−1

1

N

N−1
∑

t=0

φm1(t)φ
T
v2(t)ρ0, (26)

where φz(t) and φvi(t) are similar to φmi(t), but ymi(t) is replaced by z(t) and vi(t) respectively.
Additionally φmi(t) = φz(t) + φvi(t).

In order for the parameter estimates to be consistent i.e. that ρN
mIV converges almost surely

to ρ0 as N → ∞, it is necessary that:

i) lim
N→∞

1

N

N−1
∑

t=0

φm1(t)φ
T
m2

(t) be nonsingular. (27)

ii) lim
N→∞

1

N

N−1
∑

t=0

φm1(t)φ
T
v2(t)ρ0 = 0, (28)

where 0 is the zero vector.
Condition i) is a persistency of excitation condition. It is similar to the persistency of

excitation condition found in methods for the identification of input-ouput form LPV models,
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as similar signals are involved i.e. noisy output signals multiplied by functions of the scheduling
parameter. Consistency of excitation for LPV identification was first considered in [9] and
sufficient conditions for polynomial type coefficient dependence on the scheduling parameter
are given. It is shown that if the system input signal is ‘sufficiently rich’ then persistency of
excitation is ensured if the scheduling parameter ‘visits’ nσ + 1 distinct points infinitely many
times, where nσ is the order of the polynomial dependence. More recently [12] produced more
general sufficient conditions for other types of coefficient dependence.

To show Condition ii) further analysis is required. We have that:

1

N

N−1
∑

t=0

φm1(t)φ
T
v2

(t) =
1

N

N−1
∑

t=0

φz(t)φ
T
v2

(t) +
1

N

N−1
∑

t=0

φv1(t)φ
T
v2

(t). (29)

Considering the first matrix on the right hand side of (29), each of its elements is the sum over
time of products of terms such as σj(t)z(t−n) and σi(t)v2(t− p). Then, referring to Theorem
2B.1 given in Subsection 2.2, we can define:

s(t) =

[

σj(t)z(t − n)
σi(t)v2(t − p)

]

=

[

0
σi(t)H(σ(t − p), q−1)e2(t − p)

]

+

[

σj(t)G(σ(t − n), q−1)yd(t − n)
0

]

=

[

v1
1(t)

v1
2
(t)

]

+

[

w1
1(t)

w1
2
(t)

]

(30)

where w1
1(t), w1

2(t), v1
1(t) and v1

2(t) have their obvious definitions. The signals w1
1(t) and

w1
2
(t) satisfy (15), due to the assumed uniform stability of G(σ(t), q−1) and the boundedness

of σj(t) and yd(t). Also v1
1
(t) and v1

2
(t) fit in with the desired form of (17) due to the

assumed uniform stability of H(σ(t), q−1). The components of s(t)sT (t) give, amongst others,
σj(t)z(t − n)σi(t)v2(t − p). So by applying Theorem 2B.1 we can state that:

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[φz(t)φ
T
v2(t) − E{φz(t)φ

T
v2(t)}]

∥

∥

∥

∥

∥

→ 0 w.p. 1, as N → ∞,

and, as z(t) and v(t) are not correlated, E{φz(t)φ
T
v2(t)} = 0 implying:

lim
N→∞

1

N

N−1
∑

t=0

φz(t)φ
T
v2

(t) = 0 w.p. 1.

A similar result for the second matrix on the right hand side of (29) can be derived using
Theorem 2B.1 i.e. that:

lim
N→∞

1

N

N−1
∑

t=0

φv1(t)φ
T
v2(t) = 0 w.p. 1

and combining these two satisfies Condition ii), showing the parameters estimates obtained
with the IV method to be consistent.
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3.4. Noisy scheduling parameters

The values of the scheduling parameter σj(t) used in the calculation of ρN
mIV will often also

be measured. They are, therefore, susceptible to measurement noise as well. In the case that
the noise-to-signal ratio is very low, the effect of this noise can be neglected. However, if the
ratio is not negligible the measurement noise may lead to biased parameter estimates.

The effect of noisy scheduling parameter measurements on the consistency of certain LPV
identification methods has already been considered in [10]. It was shown that if the scheduling
parameter is uncorrelated with the output signal and the dependency on it is affine, then
consistent parameter estimates are obtained using an IV vector with scheduling parameter
values measured during a second experiment. It will be shown in this section that a similar
result holds for the consistency of the estimated precompensator parameters.

We express the noisy, measured scheduling parameter vector σv(t) as the sum of a noise-free
component and a noisy component i.e.

σv(t) = σ(t) + vσ(t). (31)

σv(t) ∈ R
nσ and vσ(t) ∈ R

nσ are, therefore, stochastic vectors, and additionally vσ(t) is
assumed zero-mean and to have independent realisations. The measured regressor vector is
now given by:

φv
mi(t) = φmi(t) + φσ

mi(t), (32)

where φmi(t) is as defined in (22) for experiment i and

φσ
mi(t) = [vT

σi(t)ymi(t), v
T
σi(t)ymi(t − 1), . . . , vT

σi(t)ymi(t − nβ)]T . (33)

The IV estimate is then given by:

ρN
mIV =

[

1

N

N−1
∑

t=0

φv
m1(t)φ

vT

m2(t)

]−1

1

N

N−1
∑

t=0

φv
m1(t)yd(t). (34)

3.4.1. Consistency of the IV estimate with noisy scheduling parameters

To show that using this estimate consistent estimates can be obtained we start by rewriting
(34) as:

ρN
mIV =

[

1

N

N−1
∑

t=0

φv
m1

(t)φvT

m2
(t)

]−1

1

N

N−1
∑

t=0

φv
m1

(t)φT
z (t)ρ0

=

[

1

N

N−1
∑

t=0

φv
m1

(t)φvT

m2
(t)

]−1

1

N

N−1
∑

t=0

φv
m1

(t) (φv
m2

(t) − φσ
m2

(t) − φv2(t))
T

ρ0

= ρ0 −

[

1

N

N−1
∑

t=0

φv
m1(t)φ

vT

m2(t)

]−1

1

N

N−1
∑

t=0

φv
m1(t) (φσ

m2(t) − φv2(t))
T

ρ0. (35)

For the estimate to be consistent we require, in a similar fashion to before, that:

i) lim
N→∞

1

N

N
∑

t=1

φv
m1

(t)φvT

m2
(t) be nonsingular. (36)

ii) lim
N→∞

1

N

N
∑

t=1

φv
m1(t) (φσ

m2(t) − φv2(t))
T

= 0. (37)
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10 M. BUTCHER, A. KARIMI AND R. LONGCHAMP

As before, Condition i) is a persistency of excitation condition.
Condition ii) can, again, be analysed using Theorem 2B.1. We first consider the matrix

φv
m1

(t)φσT

m2
(t). This contains the following cross-product type terms:

σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − n) = [σj(t) + vσ1,j(t)]ym1(t − p)vσ2,i(t)ym2(t − n). (38)

Considering (38), it is clearly equal to:

σj(t)
[

G(σ(t − p), q−1)yd(t − p) + H(σ(t − p), q−1)e1(t − p)
]

vσ2,i(t)
[

G(σ(t − n), q−1)yd(t − n) + H(σ(t − n), q−1)e2(t − n)
]

+vσ1,j(t)
[

G(σ(t − p), q−1)yd(t − p) + H(σ(t − p), q−1)e1(t − p)
]

vσ2,i(t)
[

G(σ(t − n), q−1)yd(t − n) + H(σ(t − n), q−1)e2(t − n)
]

. (39)

So, referring to Theorem 2B.1, we can write:

s2(t) =

















0
σj(t)H(σ(t − p), q−1)e1(t − p)

vσ2,i(t)G(σ(t − n), q−1)yd(t − n)
vσ2,i(t)H(σ(t − n), q−1)e2(t − n)
vσ1,j(t)G(σ(t − p), q−1)yd(t − p)
vσ1,j(t)H(σ(t − p), q−1)e1(t − p)

















+

















σj(t)G(σ(t − p), q−1)yd(t − p)
0
0
0
0
0

















=

















v2
1(t)

v2
2
(t)

v2
3
(t)

v2
4(t)

v2
5
(t)

v2
6(t)

















+

















w2
1(t)

w2
2
(t)

w2
3
(t)

w2
4(t)

w2
5
(t)

w2
6(t)

















. (40)

In order to write v2
4
(t) = vσ2,i(t)H(σ(t − n), q−1)e2(t − n) and v2

6
(t) = vσ1,j(t)H(σ(t −

p), q−1)e1(t − p) it is necessary that vσ,j(t) and e(t) are uncorrelated. This condition is
reasonable so long as the scheduling parameter is not the system output y(t). If they
are correlated the expected value of their product is non-zero and does not satisfy the
theorem’s assumptions on the stochastic component. The ergodicity of the signals used in
the identification method is, thus, not provable in this case.

Additionally it is not possible to establish the ergodicity of the signals when the scheduling
parameter has the polynomial dependence discussed in (11) which is of an order greater than
1. The reason is that we would have higher order moments of the noise term affecting σ̄(t),
which are non-zero mean. This, in turn, would imply that vσ,j(t) is non-zero mean and thus
v2
4
(t) and v2

6
(t) are non-zero mean, violating the theorem’s assumptions.

With these conditions in mind, we see that amongst the elements of s2(t)s
T
2
(t) are all the

cross-terms found in (39), and thus:

∥

∥

∥

∥

∥

1

N

N
∑

t=1

[σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − n) − E{σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − n)}]

∥

∥

∥

∥

∥

→ 0 w.p. 1, as N → ∞. (41)
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DATA-DRIVEN PRECOMPENSATOR TUNING FOR LPV SYSTEMS 11

Now since the vector vσ(t) is assumed zero-mean, uncorrelated with the system output and to
have independent realisations we have that:

E{σv1,j(t)ym1(t−p)vσ2,i(t)ym2(t−n)} = E{σv1,j(t)ym1(t−p)ym2(t−n)}E{vσ2,i(t)} = 0. (42)

This result implies that:

lim
N→∞

1

N

N−1
∑

t=0

σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − n) = 0 w.p. 1 (43)

which in turn implies:

lim
N→∞

1

N

N−1
∑

t=0

φv
m1

(t)φσT

m2
(t) = 0 w.p. 1. (44)

We next consider the second matrix in (37) φv
m1

(t)φT
v2

(t). This contains the following cross-
product type terms:

σv1,j(t)ym1(t − p)σi(t)v2(t − n). (45)

Under similar conditions on the scheduling parameter, Theorem 2B.1 can be used to show
that:

lim
N→∞

1

N

N−1
∑

t=0

σv1,j(t)ym1(t − p)σi(t)v2(t − n) = 0 w.p. 1 (46)

and so:

lim
N→∞

1

N

N−1
∑

t=0

φv
m1

(t)φT
v2

(t) = 0 w.p. 1. (47)

(44) and (47) imply that Condition ii) is satisfied by the IV estimate (34) so when Condition
i) is also satisfied the estimate is consistent despite the contamination of the scheduling
parameter measurements by noise.

4. Tuning when LPV transfer operators do not commute

In general condition (6) is unlikely to be satisfied by a precompensator with the linear
parameterisation proposed. In this case, the order of the precompensator can be increased
until the condition is approximately satisfied and the method of the previous section can be
used. In practice, however, the order required to approximately satisfy (6) may be too large to
be implemented on the real system. A method that can be used in this situation is therefore
developed below.

The signal u(t) = F (ρ, σ(t))yd(t) can be expressed as:

u(t) = F (ρ, σ(t))yd(t) = φT (t)ρ (48)

where

φT (t) = [σ0(t)yd(t), σ1(t)yd(t), . . . , σnσ
(t)yd(t),

σ0(t)yd(t − 1), σ1(t)yd(t − 1), . . . , σnσ
(t)yd(t − 1), . . . ,

σ0(t)yd(t − nβ), σ1(t)yd(t − nβ), . . . , σnσ
(t)yd(t − nβ)]. (49)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; –:1–6
Prepared using acsauth.cls



12 M. BUTCHER, A. KARIMI AND R. LONGCHAMP

It is now possible to write the output as:

y(t) = G(σ(t), q−1)F (ρ, σ(t), q−1)yd(t) + v(t)

= G(σ(t), q−1)φT (t)ρ + v(t)

= xT (t)ρ + v(t), (50)

where x(t) = G(σ(t), q−1)φ(t) ∈ R
nρ .

The tracking error (5) can then be expressed as:

ǫ(t) = yd(t) − xT (t)ρ − v(t) (51)

or in vector form as:
ǫ = yd − Xρ − v, (52)

where the vector ǫ is given by:

ǫ = [ǫ(0), ǫ(1), . . . , ǫ(N − 1)]T , (53)

yd and v are defined similarly, and the matrix X is:

X = [x(0), x(1), . . . , x(N − 1)]T . (54)

The aim is to find ρ such that the average tracking error is small, therefore a logical objective
is to minimise its mean squared value i.e. to find the ρ that minimises:

JN (ρ) =
1

2N
E

{

ǫ(ρ)T ǫ(ρ)
}

, (55)

where the dependence of ǫ on ρ has been shown explicitly.
The minimiser of (55) is given by:

ρN
LMS =

[

1

N
XT X

]−1
1

N
XT yd. (56)

In the case that G(σ(t), q−1) were known exactly, X could be calculated, followed by ρN
LMS .

G(σ(t), q−1) is never known exactly, however, and the model uncertainty leads to a non optimal
ρ.

It is possible to obtain an estimate X̂ of the matrix X without the use of a model through
a series of experiments on the real system. This can be seen to be the case by noting that the
element Xt,j of the matrix X is the output of the system G(σ(t), q−1) when the jth element
of φ(t) is applied as an input. Thus for each column of X an experiment can be carried out on
the real system i.e. nρ experiments in total. In reality an estimate, rather than the exact value,
of X will be found as each experiment will have its own noise realisation vj(t). The estimate
of X is:

X̂ = X + V, (57)

where V is a matrix whose t, jth element is vj(t). Substituting X̂ in for X in (56) we have:

ρ̂N
LMS =

[

1

N
(X + V )T (X + V )

]−1
1

N
(X + V )T yd

=

[

1

N
(XT X + V T X + XT V + V T V )

]−1
1

N
(X + V )T yd. (58)
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Therefore when X̂ is used in place of X in (56) the presence of the noise in the experiments
performed to find X̂ will mean that the minimising value ρN

LMS cannot be calculated i.e.
ρ̂N

LMS 6= ρN
LMS .

One way of dealing with this problem is to use instrumental variables again. This time two
estimates of X , X̂1 and X̂2, are used. They are obtained from two sets of the nρ experiments
previously described. The IV estimate is then given by:

ρ̂N
IV =

[

1

N
X̂T

1 X̂2

]−1
1

N
X̂T

1 yd. (59)

Remarks:

1. The same G(σ(t), q−1) should be used at each t for all the experiments i.e. when different
signals u(t) are applied. It is therefore necessary that the scheduling parameter σ(t) be
independent of u(t), which may not be the case for certain quasi-LPV systems where
the scheduling parameter can be an input-dependent, internal variable. Nonetheless,
a number of LPV systems found in practice do satisfy this requirement, such as x-y
positioning tables where the dynamics of one stage depend on the position of the other
and not their own.

2. The specific choice of instrumental variables obtained from a second set of experiments
is used because it can be shown that consistent estimates of the true minimiser of (55)
are obtained using them, as will be shown in the next subsection. This is not necessarily
possible for a general choice of instrumental variables which are just correlated with the
system input and not with noise affecting the output. A disadvantage of this specific
choice is that, due to the second set of noise realisations affecting the instrumental
variables, the variance of the estimates can be large when the number of data measured
is small.

4.1. Consistency of estimates

To demonstrate that the IV estimate (59) converges to the true minimiser of (55) when N → ∞
we first write:

ρ̂N
IV =

[

1

N
(X + V1)

T (X + V2)

]−1
1

N
(X + V1)

T yd

=

[

1

N
(XT X + V T

1
X + XT V2 + V T

1
V2)

]−1
1

N
(X + V1)

T yd (60)

where V1 and V2 denote matrices of noise realisations associated with the first and second set
of experiments. For ρ̂N

IV to converge to ρN
LMS we require V T

1
X + XT V2 + V T

1
V2 and V T

1
yd to

converge to zero as N → ∞. This can be shown to be the case by noting that the i, jth element
of the matrix V T

1 X is given by:

[V T
1

X ]i,j =
N−1
∑

t=0

v1i(t)Xt,j

=

N−1
∑

t=0

[H(σ(t), q−1)e1i(t)][G(σ(t), q−1)φj(t)], (61)
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14 M. BUTCHER, A. KARIMI AND R. LONGCHAMP

where v1i(t) corresponds to the t, i element of V1, and v1i(t) = H(σ(t), q−1)e1i(t). Theorem
2B.1 is applicable to this time sum and can be used to show that:

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[v1i(t)Xt,j − E{v1i(t)Xt,j}]

∥

∥

∥

∥

∥

→ 0 w.p. 1, as N → ∞, (62)

and since E{v1t,iXt,j} = 0 we have

lim
N→∞

1

N

N−1
∑

t=0

v1t,iXt,j = 0 w.p. 1

This result can be applied to each element of V T
1

X , and similar results hold for XT V2, V T
1

V2

and V T
1 yd. Therefore, ρ̂N

IV → ρN
LMS as N → ∞ almost surely.

4.2. Noisy scheduling parameters

As was the case for the method in the previous section, it is possible that the values of
scheduling parameters used will have been measured and thus contaminated by noise. For
example consider the case when the precompensator is tuned to control the lower axis of an
x-y positioning table whose dynamics depend on the position of the upper axis. In this case the
scheduling parameter would be the position of the upper axis. This can either be the position
reference signal or the measured position. The former may not be a very good measure of the
true position and the latter is affected by noise. When the noise is negligible its effect can be
neglected and the IV estimate (59) can be used. However, when this is not the case, it will be
shown that, under certain conditions on the scheduling parameter, by using two independent
sets of scheduling parameter measurements, the IV estimate will lead to consistent estimates.

We have that the noisy, measured scheduling parameter vector σv(t) is expressed as the sum
of a noise-free component and a noisy component as in (31). When this is used to construct
the φ(t) vector, the noisy φ(t) for the ith set of experiments is given by:

φv
i (t) = φi(t) + φσ

i (t), (63)

where φi(t) is as defined in (49) for the set of experiments i and

φσ
i (t = [vT

σi(t)yd(t), v
T
σi(t)yd(t − 1), . . . , vT

σi(t)yd(t − nβ)]T . (64)

It is therefore the elements of φv
i (t) that are now used as the inputs for the nρ experiments.

This will lead to the new estimate of X :

X̂v
i = X + Xσ

i + Vi. (65)

The IV estimate is now:

ρ̂N
IV =

[

1

N
X̂vT

1
X̂v

2

]−1
1

N
X̂vT

1
yd. (66)

4.2.1. Consistency of the IV estimate with noisy scheduling parameters

To demonstrate that the IV estimate (66) converges to the true minimiser of (55) when
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N → ∞ we first write:

ρ̂N
IV =

[

1

N
(X + Xσ

1 + V1)
T (X + Xσ

2 + V2)

]−1
1

N
(X + Xσ

1 + V1)
T yd

=

[

1

N
(XT X + XT Xσ

2
+ XT V2 + Xσ

1
X + Xσ

1
Xσ

2
+ Xσ

1
V2 + V T

1
X + V T

1
Xσ

2
+ V T

1
V2)

]−1

×
1

N
(X + Xσ

1 + V1)
T yd (67)

For ρ̂N
IV to converge to ρN

LMS we require XT Xσ
2 + XT V2 + Xσ

1 X + Xσ
1 Xσ

2 + Xσ
1 V2 + V T

1 X +
V T

1
Xσ

2
+ V T

1
V2 and (Xσ

1
+V1)

T yd to converge to zero as N → ∞. In a similar analysis to that
previously presented in Subsection 4.1 this can be shown to be the case under the assumptions
that the scheduling parameter is not correlated with the output and the its dependence is
affine.

4.3. Input weighting

In practice the precompensator that minimises the tracking error may lead to the saturation
of certain signals in the real system, most notably the plant input. It can, therefore, be of
interest to be able to influence the magnitude of this input signal when tuning the parameters
of a precompensator. In general, the input that is at risk of saturating, and therefore in need
of reducing, can be described as:

uW (t) = U(σ(t), q−1)u(t) + Hu(σ(t), q−1)e(t)

= U(σ(t), q−1)u(t) + vu(t). (68)

It should be noted that in the case where G(σ(t), q−1) describes an open-loop, stable system,
it is normally the signal u(t) that we wish to influence and so U(σ(t), q−1) = 1 and
Hu(σ(t), q−1) = 0. In the case that G(σ(t), q−1) represents a closed-loop system uW (t) may
be an internal input, such as the plant input, so U(σ(t), q−1) will have another form and
Hu(σ(t), q−1) will be non-zero.

It is possible to affect the magnitude of uW (t) by including a term weighting on it in the
cost function:

JN (ρ) =
1

2N

[

E
{

ǫ(ρ)T Wǫǫ(ρ)
}

+ E
{

uT
W (ρ)WuuW (ρ)

}]

, (69)

where Wǫ and Wu are positive- and positive-semidefinite weighting matrices, respectively, and
uW is defined similarly to ǫ in (53).

Additionally, similarly to (50), we can write:

uW (t) = U(σ(t), q−1)φT (t)ρ + vu(t)

= xT
u (t)ρ + vu(t). (70)

Therefore we can write:

uW (ρ) =











xT
u (0)

xT
u (1)
...

xT
u (N − 1)











ρ = Xuρ.
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16 M. BUTCHER, A. KARIMI AND R. LONGCHAMP

The minimiser of (69) is thus:

ρN
LMS =

[

1

N
(XT WǫX + XT

u WuXu)

]−1
1

N
XT yd. (71)

In the same way that X is not known exactly, neither is Xu, but an estimate X̂u can be
obtained using the same experiments used to estimate X . This time not only the system
output y(t) should be measured during the experiments but also the input to be weighted
uW (t). Because this input can also be affected by noise, it is necessary to use measurements
from two experiments again and use the IV estimate:

ρ̂N
IV =

[

1

N
(X̂T

1 WǫX̂2 + X̂T
u1WuX̂u2)

]−1
1

N
X̂T

1 yd. (72)

It should be noted that input weighting was not considered for the method in Section 3,
as there the aim was to identify the precompensator that satisfies condition (6) exactly. This
would not be possible if a trade-off is made with the reduction of the input signal amplitude.

5. Simulation results

Simulations are used to demonstrate the effectiveness of the proposed methods.

5.1. Simulation 1

The first method, presented in Section 3, is applied to a system represented by the following
transfer operator:

G(σ(t), q−1) =
1

a0(σ(t)) + a1(σ(t))q−1 + a2(σ(t))q−2
(73)

where

a0(σ(t)) = 1 − 0.2σ̄(t) + 0.7σ̄(t)2,

a1(σ(t)) = 1 − 0.5σ̄(t) + 0.2σ̄(t)2,

a2(σ(t)) = 1 − 0.7σ̄(t) − 0.1σ̄(t)2.

The precompensator satisfying condition (6) and giving perfect mean tracking can be
represented exactly using the parameterisation proposed and thus the first method can be
employed to find the correct parameters; they being:

ρ0 = [1,−0.2, 0.7, 1,−0.5, 0.2, 1,−0.7,−0.1]T. (74)

The desired output yd(t) is a pseudo random binary signal (PRBS) with an amplitude of
1 and a shift register length of 12, giving N = 4095. The noise transfer operator is given
by H(σ(t), q−1) = 1 − G(σ(t), q−1), as could be the case when G(σ(t), q−1) represents the
complementary sensitivity function of a closed-loop system. Its input e(t) is taken as a zero-
mean, normally distributed, stationary white noise with a variance of 0.015. The scheduling
parameter is chosen as σ̄(t) = 0.5 + 0.4 sin

(

2πt
3

)

. This choice of σ̄(t) satisfies the persistency
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Table I. Results of Simulation 1

Ê{(ρ0 − ρN )T }Ê{ρ0 − ρN} Ê{(ρ0 − ρN)T (ρ0 − ρN)}
P

N−1

i=0
Ê{ǫ2i }

mLS 0.03471 0.0457 4.1872

mIV 0.0000416 0.0123 0.3675

of excitation conditions in [9] as it visits (nσ + 1) distinct points periodically. The v(t)
resulting from these choices has an average standard deviation of 0.1287, where the average
standard deviation is calculated as ( 1

N

∑N−1

t=0
Ê{v2(t)})1/2. The estimated expected value Ê

is evaluated using the ensemble average over 200 simulations, each with a new, independent
noise realisation.

Both the least squares and IV variants of the first method are tested. The orders
corresponding to the precompensator satisfying (6) are used i.e. nβ = 2 and nσ = 2. Measures
of the mean and variance of the distance between the true and estimated parameters are
presented in Table I. Additionally the mean 2-norm of the tracking error achieved in the
absence of noise using the calculated precompensators is shown.

It can be seen that, due to its reduced sensitivity to the presence of stochastic
disturbances, the IV method gives better estimates of the true parameters and thus produces
precompensators that give better tracking performance.

5.2. Simulation 2

A second simulation is carried out to test the effect of noisy scheduling parameter
measurements on the precompensator parameters estimated using the first method, presented
in Section 3.

The system used in this simulation is given by:

G(σ(t), q−1) =
1

a0(σ(t)) + a1(σ(t))q−1
(75)

where

a0(σ(t)) = 1 − 0.2σ̄(t) and a1(σ(t)) = 1 − 0.5σ̄(t).

This system is chosen because its coefficients depend affinely on the scheduling parameter.
As discussed in Subsection 3.4, it is not possible to obtain consistent estimates when the
scheduling parameter measurements are noisy if the dependency is not affine. The desired
output yd(t) is the same signal as that used in Simulation 1. The true scheduling parameter is
given by σ̄(t) = 0.5 + 0.4 cos(πt), which satisfies the persistency of excitation conditions in [9].
The noise vσ(t) contaminating the measurements of the scheduling parameter signal is a zero-
mean, normally distributed, stationary white noise with a variance of 0.01. The disturbance
v(t) affecting the output is set to zero in order to better emphasise the effect of the scheduling
parameter noise. Both the least squares and IV variants of the first method are tested. This
time the IV vector uses σj(t) measured during the second experiment. The values nβ = 1 and
nσ = 1 are used as they correspond to the precompensator giving perfect mean tracking whose
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Table II. Results of Simulation 2

Ê{(ρ0 − ρN )T }Ê{ρ0 − ρN} Ê{(ρ0 − ρN)T (ρ0 − ρN)}
P

N−1

i=0
Ê{ǫ2i }

mLS 2.0588 × 10−3 2.0776 × 10−3 4.6624

mIV 2.8789 × 10−8 2.4059×10−5 0.0825

parameters are:
ρ0 = [1,−0.2, 1,−0.5]T . (76)

The results are shown in Table II. Again, the expected value is estimated using the ensemble
average over 200 simulations.

It is clearly evident that, again, the IV variant gives superior parameter estimates over the
LS method. In turn this leads to much better tracking performance.

5.3. Simulation 3

A third simulation is performed to see how the methods behave when condition (6) cannot be
satisfied using the parameterisation proposed. The system used in this simulation is given by:

G(σ(t), q−1) =
b0(σ(t)) + b1(σ(t))q−1

a0(σ(t)) + a1(σ(t))q−1
(77)

where

b0(σ(t)) = 0.5 − 0.4σ̄(t), b1(σ(t)) = 0.2 − 0.3σ̄(t)

a0(σ(t)) = 1 − 0.2σ̄(t), a1(σ(t)) = 1 − 0.5σ̄(t). (78)

The desired output yd(t) and scheduling parameter σ̄(t) are the same signals as those used
in Simulation 2. The values nβ = 1 and nσ = 1 are chosen.

A simulation is first carried out without any disturbances in order to see how the methods
perform. As it is not possible to satisfy condition (6) with the finite order precompensator
used, the first method is not theoretically applicable. It is tested, nonetheless, to see how it
performs. The results are shown in Table III. As the parameters corresponding to the ideal
precompensator do not exist in this case, the distance between those minimising the LMS
criterion, calculated using (56), and those estimated is shown instead. The IV methods are not
tested because in the absence of stochastic disturbances they give the same values.

From Table III we can observe that, as expected, the precompensator calculated with the
general method, presented in Section 4, gives a smaller tracking error. Furthermore the first
method does not find the parameters that minimise the LMS criterion and actually gives
parameters that produce a larger tracking error than that obtained without a precompensator,
clearly illustrating the need for the general method.

The second method is then tested in the presence of disturbances. The noise transfer operator
is, again, given by H(σ(t), q−1) = 1−G(σ(t), q−1) and e(t) is a zero-mean, normally distributed
white noise with a variance of 0.015. The average standard deviation of v(t) this time is 0.1063.
The simulations are again carried out 200 times. The results are shown in Table IV.
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Table III. Results of Simulation 3 in the absence of disturbances

(ρN

LMS − ρN)T (ρN

LMS − ρN)
P

N−1

i=0
ǫ2i

Without precomp. - 3082.5

mLS 10.8023 7605.0

LMS 0 1331.0

Table IV. Results of Simulation 3 in the presence of disturbances

Ê{(ρN

LMS − ρN )T }Ê{ρN

LMS − ρN} Ê{(ρN

LMS − ρN)T (ρN

LMS − ρN )}
P

N−1

i=0
Ê{ǫ2i }

LMS 35.0489 35.0564 2629.5

IV 0.1912 7.9891 1639.7

We see that the presence of the stochastic disturbances causes a large bias in the parameter
estimates found using the LMS technique. This bias, in turn, greatly deteriorates the tracking
performance obtained. The IV technique, however, is much less sensitive to the presence of
the disturbances and the average values of the parameters calculated are much closer to the
true minimising parameters. The negative influence of the disturbances on the variance of the
parameter estimates can be seen to be greater for the IV technique than the LMS technique
due to the second set of noise realisations. Nonetheless, the IV technique still gives better
estimates and an average tracking error that is much closer to the value found in the absence
of disturbances.

6. Conclusions

Direct data-driven tuning methods of precompensators for LPV systems are developed in this
paper. These methods are model-free and minimise the tracking control criterion directly using
measured data. They are, therefore, not affected by model uncertainty. This fact allows high
tracking performance to be achieved compared to model-based methods. The measured data is,
however, affected by stochastic disturbances which will, in general, cause biased estimates of the
precompensator parameters. Instrumental variables are, therefore, used to produce consistent
estimates.

Two techniques are proposed. The first one, applicable when the precompensator and the
system commute, only requires two experiments in order to obtain consistent estimates of
the parameters that give perfect mean tracking. The second one, which does not require that
the precompensator and the system commute, uses a number of experiments equal to twice
the number of precompensator parameters. It is demonstrated that the computed parameters
converge to those minimising the mean squared tracking error in the presence of noise.
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The main benefit of the first method over the second method is clearly the reduced number
of experiments required. However, it is only applicable to the reduced class of LPV systems
that commute with the precompensator. The second method is more general as does not have
this condition and thus is more practically applicable. The use of sufficiently long data lengths
is, however, important in order to keep the variance of the parameter estimates small.
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