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Abstract

The physics reach of the LHC requires unprecedented luminosity and beam in-
tensity in proton-proton collisions. The maximum intensity in the LHC is directly
coupled to the maximum peak beam loss rate and the cleaning efficiency from the
collimation system. A sophisticated LHC collimation system is implemented in two
cleaning insertions and in the experimental areas. In a first phase 88 collimators
are installed, being controlled by 344 stepping motors in total. The work of this
PhD analyzes the achievable cleaning efficiency with realistic imperfections, defines
the required collimator settings and establishes available tolerances for collimator
setup and transient optics changes. An optimal setup strategy can optimize clean-
ing efficiency, ensure passive protection, maximize tolerances, minimize the required
beam time for setup of the system and support the expected evolution in LHC beam
intensity. Such an optimized strategy is described.

Key words: LHC, collimation, cleaning efficiency, machine protection, commis-
sioning.



Résumé

Les performances prévues dans le cahier des charges du LHC exigent une lumi-
nosité et une intensité des faisceaux sans précédent pour un collisionneur proton-
proton. L’intensité maximum dans le LHC est directement liée au maximum du taux
de pertes de particules ainsi qu’à l’efficacité du système de collimation. Ce système
sophistiqué de collimation (ou de “nettoyage”) est mis en œuvre dans deux insertions
dédiées et dans les zones proches des expériences. 88 collimateurs sont installés et
contrôlés par 344 moteurs pas à pas. Le travail de cette thèse de doctorat analyse
l’efficacité de la collimation qu’on peut obtenir en tenant compte d’imperfections
réalistes, définit les positions nécessaires des collimateurs et établit les tolérances
acceptables à la fois pour les positions des collimateurs et pour les changements
transitoires d’optique. Une stratégie optimale de positionnement des collimateurs
permet de maximiser l’efficacité du nettoyage, de fournir une protection passive, de
maximiser les tolérances, de réduire le temps de faisceau nécessaire pour le position-
nement du système et de rendre possible l’augmentation prévue de l’intensité du
faisceau dans le LHC. Une telle stratégie d’optimisation est décrite dans cette thèse.

Mot-clé: LHC, collimation, efficacité de nettoyage, protection de la machine,
commissioning.



Contents

1 Introduction 1

2 The Large Hadron Collider 3
2.1 The LHC experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The LHC superconducting magnets . . . . . . . . . . . . . . . . . . . 6
2.3 The LHC cleaning insertions . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 LHC layout and optics . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Nominal optics . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Special optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Theory of Beam Loss and Collimation 15
3.1 Basic linear beam dynamics . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Transverse motion . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Longitudinal motion . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Aperture and beam stability . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Geometrical aperture and beam acceptance . . . . . . . . . . . 20
3.2.2 Dynamic Aperture . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 LHC available aperture . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Beam halo population and beam loss mechanisms . . . . . . . . . . . 22
3.3.1 Regular beam losses . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Irregular beam losses . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Interaction of protons with jaw material . . . . . . . . . . . . . . . . 27
3.5 Theory of multistage betatron and momentum collimation . . . . . . 30

3.5.1 Betatron cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Momentum cleaning . . . . . . . . . . . . . . . . . . . . . . . 34

4 The LHC Collimation System 37
4.1 Design goals of the LHC collimation system . . . . . . . . . . . . . . 37

4.1.1 Quench limit of the LHC superconducting magnets . . . . . . 38
4.1.2 Cleaning inefficiency . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Maximum beam load at the collimators . . . . . . . . . . . . . 41
4.1.4 Performance reach from cleaning efficiency . . . . . . . . . . . 42
4.1.5 Performance reach from collimator induced impedance . . . . 43

i



ii Contents

4.2 Phased implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Further implementation phases . . . . . . . . . . . . . . . . . 45

4.3 Phase 1 collimation system . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Collimator hardware design . . . . . . . . . . . . . . . . . . . 46
4.3.2 Cleaning insertions . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Protection elements . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.4 Phase 1 limitations . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.5 Beyond phase 1 limitations . . . . . . . . . . . . . . . . . . . . 58

4.4 Installation stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Simulation Setup of Cleaning Efficiency Studies 61
5.1 LHC optics files for SixTrack . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 “SixTrack” for collimation studies . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Scattering routine . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Input files for tracking . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Simulation output files . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Maps of particle losses . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Impact parameter and efficiency . . . . . . . . . . . . . . . . . . . . . 69

6 Simulations for LHC Collimation Commissioning 73
6.1 Efficiency of the LHC collimation system after ideal beam based setup 73

6.1.1 Perfect machine at injection energy . . . . . . . . . . . . . . . 73
6.1.2 Perfect machine at collision energy . . . . . . . . . . . . . . . 75
6.1.3 Beam loss maps during collimator beam based alignment . . . 80
6.1.4 Tolerance budget for collimation . . . . . . . . . . . . . . . . . 82
6.1.5 Performance reach of minimal collimation systems . . . . . . . 82
6.1.6 Performance of collimation during the energy ramp . . . . . . 90

6.2 Impact of imperfections . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.1 Jaw flatness errors . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.2 Collimator setup errors . . . . . . . . . . . . . . . . . . . . . . 101
6.2.3 Machine alignment errors . . . . . . . . . . . . . . . . . . . . 102
6.2.4 Non ideal closed orbit . . . . . . . . . . . . . . . . . . . . . . 105
6.2.5 Summary on imperfections . . . . . . . . . . . . . . . . . . . . 106

6.3 Impact of off-momentum beta-beat . . . . . . . . . . . . . . . . . . . 107

7 Test Results on Collimation Commissioning 111
7.1 Collimator coordinate system . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Tests with stored proton beam . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 LHC collimator prototype in the SPS . . . . . . . . . . . . . . 112
7.2.2 Beam conditions . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.3 Collimator beam based alignment: centering jaws . . . . . . . 115



Contents iii

7.2.4 Collimator beam based alignment: adjusting the jaw angle . . 119
7.2.5 Full beam scraping . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.6 Comparison between beam based alignment and beam scrap-

ing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.7 Beam loss response with stored beam . . . . . . . . . . . . . . 127

7.3 Robustness tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.1 Experimental apparatus in 2006 . . . . . . . . . . . . . . . . . 133
7.3.2 Beam based alignment with pulsed beam . . . . . . . . . . . . 135
7.3.3 Permanent jaw deformation . . . . . . . . . . . . . . . . . . . 137
7.3.4 Jaw temperature . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Optimized Strategy for LHC Collimation Commissioning 143
8.1 Goals of the commissioning strategy . . . . . . . . . . . . . . . . . . . 143
8.2 Performance assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 One-stage collimation for pilot beam . . . . . . . . . . . . . . . . . . 145

8.3.1 Required collimators . . . . . . . . . . . . . . . . . . . . . . . 145
8.3.2 Performance reach . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3.3 Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3.4 Collimator settings in experimental insertions . . . . . . . . . 148

8.4 Minimal two-stage collimation for 43 bunches . . . . . . . . . . . . . 149
8.4.1 Required collimators . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.2 Performance Reach . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4.3 Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4.4 Collimation Settings in Experimental Insertions . . . . . . . . 151

8.5 Four-stage collimation with initial system for higher intensities . . . . 152
8.5.1 Required collimators . . . . . . . . . . . . . . . . . . . . . . . 152
8.5.2 Performance Reach . . . . . . . . . . . . . . . . . . . . . . . . 152
8.5.3 Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.5.4 Collimation Settings in Experimental Insertions . . . . . . . . 155

8.6 Four-stage collimation with the full phase 1 system for higher intensities155
8.6.1 Required collimators . . . . . . . . . . . . . . . . . . . . . . . 155
8.6.2 Performance Reach . . . . . . . . . . . . . . . . . . . . . . . . 156
8.6.3 Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.6.4 Collimation Settings in Experimental Insertions . . . . . . . . 157

8.7 Synthesis of Beam Commissioning Plan . . . . . . . . . . . . . . . . . 158
8.8 Collimation master table . . . . . . . . . . . . . . . . . . . . . . . . . 161

9 Conclusions 163

A Phase 1 collimator database 165
A.1 Beam1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.2 Beam2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



iv Contents

B Beam loss maps during collimator beam based alignment 169



List of Figures

2.1 Basic layout of the Large Hadron Collider. . . . . . . . . . . . . . . . 4
2.2 Superconducting dipoles in the LHC tunnel . . . . . . . . . . . . . . 6
2.3 Stored beam energy for different proton storage rings . . . . . . . . . 7
2.4 Horizontal and vertical orbits of the two beams at IP1 and IP2 . . . . 10
2.5 Horizontal and vertical orbits of the two beams at IP5 and IP8 . . . . 11

3.1 Reference frame for Beam 1 and Beam 2 in the LHC . . . . . . . . . . 16
3.2 Example of phase focusing . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Example of trajectories in the longitudinal phase space for accelerated

particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Example trajectory of one particle experiencing Multiple Coulomb

Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Particle hitting a primary collimator plotted in the transverse nor-

malized phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Secondary collimator jaws necessary to catch particles scattered by a

primary collimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Impact on a skew primary collimator . . . . . . . . . . . . . . . . . . 34
3.8 Trajectory of an off-momentum particle impacting on a primary hor-

izontal jaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Maximum allowed proton loss rate for local slow continuous losses as
a function of the energy . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Layout of the phase 1 collimation system for the two beams . . . . . . 47
4.3 Scheme of the LHC collimator . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Top and front view of a secondary collimator jaw assembly . . . . . . 48
4.5 Two jaws enclosed in a vacuum tank and RF fingers . . . . . . . . . . 49
4.6 Scheme of multi-stage cleaning system . . . . . . . . . . . . . . . . . 50
4.7 Azimuthal angle for skew collimators . . . . . . . . . . . . . . . . . . 51
4.8 Horizontal β-function and dispersion in the betatron cleaning insertion 51
4.9 Horizontal β-function and dispersion in the momentum cleaning in-

sertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.10 Phase advances along the momentum cleaning insertion . . . . . . . . 54
4.11 Aperture at the triplet magnets as a function of the βz* values . . . . 56

v



vi List of Figures

5.1 Particle distribution in phase and real space for a horizontal halo . . 64
5.2 Gaussian distribution of the halo particles in the longitudinal plane . 64
5.3 Particle distribution in phase and real space for a radial halo . . . . . 65
5.4 Example of a jaw with non-zero flatness . . . . . . . . . . . . . . . . 66
5.5 Example of a trajectory of a particle lost in an LHC interaction region 67
5.6 Example of loss map with a 10 cm resolution . . . . . . . . . . . . . . 68
5.7 Impact parameter b as a function of the number of turns . . . . . . . 69
5.8 Inefficiency curves for various impact parameters . . . . . . . . . . . . 70
5.9 Local cleaning inefficiency for various impact parameters . . . . . . . 71

6.1 Loss map for the horizontal halo of Beam1 at injection energy and
optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 βx and βy functions around IP8 . . . . . . . . . . . . . . . . . . . . . 75
6.3 Loss map for the Beam1 vertical halo at collision energy and optics . 76
6.4 Losses of particles which experienced single diffractive scattering at

the primary collimators . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Number of particles absorbed at the collimators and lost in the ma-

chine aperture for different beam halos . . . . . . . . . . . . . . . . . 79
6.6 Loss map for beam based alignment of a secondary collimator at in-

jection energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.7 Loss map for beam based alignment of a secondary collimator at col-

lision energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.8 η̃cold

max for different collimator layouts at injection energy . . . . . . . . 83
6.9 η̃cold

max for different commissioning scenarios of the nominal full phase 1
collimation system at 7 TeV . . . . . . . . . . . . . . . . . . . . . . . 86

6.10 η̃IR6
TCSG for different commissioning scenarios of the nominal full phase 1

collimation system at 7 TeV . . . . . . . . . . . . . . . . . . . . . . . 87
6.11 Imax at 7 TeV as a function of IR6 and IR7 collimator settings . . . . 88
6.12 Stability limits at top energy as a function of the collimator openings 89
6.13 η̃cold

max at IR7 as a function of different settings and optics at 7 TeV . . 90
6.14 Current in the main dipoles MB and magnetic field B versus time . . 91
6.15 Loss map for the Beam1 vertical halo at the end of the energy ramp . 93
6.16 Loss map for the Beam1 horizontal halo at the end of the energy ramp 94
6.17 Comparison of η̃cold

max between IR7 and IR8 for vertical and horizontal
halo at different energies . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.18 Half gaps of the IR7 TCPs and TCSGs shown as a function of the
beam energy for different collimator settings . . . . . . . . . . . . . . 97

6.19 η̃cold
max for various collimator settings as a function of the beam energy . 98

6.20 Flatness measurements for the different collimators . . . . . . . . . . 100
6.21 Approximation used to simulate 1 m long jaws with outwards and

inwards deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.22 Illustration of various setup errors applied to the collimator jaws in

simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



List of Figures vii

6.23 Loss map for a horizontal halo of Beam1 with one seed of jaw flatness
errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.24 Cleaning inefficiency η̃cold
max for 20 different seeds of machine alignment

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.25 Horizontal closed orbit x at collision for Beam1 . . . . . . . . . . . . 105
6.26 Local cleaning inefficiency for various error scenarios . . . . . . . . . 106
6.27 Variation of βx and Δx as a function of particle momentum offset . . 107
6.28 Phase space cut as a function of particle momentum offset for the IR3

horizontal primary collimator . . . . . . . . . . . . . . . . . . . . . . 108
6.29 Phase space cut from all horizontal collimators in LHC . . . . . . . . 109

7.1 Operational naming conventions for the collimator jaws . . . . . . . . 112
7.2 Schematic view of the movement control and instrumentation for the

LHC prototype collimator used during the SPS tests . . . . . . . . . 113
7.3 Main view of the graphical user interface for the steering of the LHC

collimator jaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Setup of the Beam Loss Monitors installed downstream of the collimator116
7.5 Beam based alignment technique . . . . . . . . . . . . . . . . . . . . 116
7.6 Example of beam based alignment during MD1 . . . . . . . . . . . . 118
7.7 Angular adjustment procedure . . . . . . . . . . . . . . . . . . . . . . 120
7.8 Observed beam loss signals and jaw position during various adjustments121
7.9 Sketch of a horizontal secondary collimator installed in the LHC tunnel122
7.10 Beam scraping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.11 Beam current measured by the BCT and jaw movements as a function

of time for two independent tests . . . . . . . . . . . . . . . . . . . . 124
7.12 Beam current measured by the BCT as a function of the jaw position 125
7.13 Measured beam loss response to a jaw movement from 50σx down to

2.3σx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.14 Measured beam loss response to a jaw movement from 5.8σx to 5.4σx 129
7.15 Jaw movements and beam loss signals versus time during tune change 130
7.16 Zoom of the BLM signal versus time after a change in the horizontal

tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.17 Tank of the prototype collimator equipped with four windows for the

measurements with the Laser Doppler Vibrometer . . . . . . . . . . . 134
7.18 Scheme of the TT40 installation for robustness tests of a LHC proto-

type collimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.19 Scheme of impacts on the collimator jaw in TT40 . . . . . . . . . . . 135
7.20 Measured beam loss versus jaw position for beam based alignment of

the collimator jaw in TT40 . . . . . . . . . . . . . . . . . . . . . . . . 136
7.21 Measured beam loss versus jaw position for beam based alignment of

the collimator jaw in TT40 . . . . . . . . . . . . . . . . . . . . . . . . 136
7.22 Cu plate model of the collimator prototype used during 2004 tests . . 137



viii List of Figures

7.23 Comparison between the deformation of the jaws measured after the
2004 and 2006 robustness tests . . . . . . . . . . . . . . . . . . . . . . 139

7.24 Measured temperature of collimator jaw and cooling water for beam
hits with different intensity and impact parameter . . . . . . . . . . . 140

7.25 Temperature measured by the downstream temperature sensor as a
function of the impact parameter . . . . . . . . . . . . . . . . . . . . 141

7.26 Temperature measured by the downstream temperature sensor as a
function of the number of impacting batches . . . . . . . . . . . . . . 141

8.1 Maximum beam intensity reach for a minimal one-stage cleaning system147
8.2 Tolerance budget as a function of beam energy for a one-stage system 147
8.3 Maximum beam intensity reach for a minimal two-stage cleaning system150
8.4 Tolerance budget as a function of beam energy for a two-stage cleaning

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.5 Maximum beam intensity reach for the collimation system as installed

for the 2008 run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.6 Tolerance budget as a function of beam energy for the full phase 1

system and the 2008 collimation complement . . . . . . . . . . . . . . 154
8.7 Tolerance budget as a function of beam energy for the full phase 1

system and the 2008 collimation complement . . . . . . . . . . . . . . 154
8.8 Maximum beam intensity reach for the full phase 1 system . . . . . . 157
8.9 Number of needed collimators per beam as a function of the perfor-

mance reaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.10 Maximum local cleaning inefficiency at 7 TeV for the analyzed colli-

mator complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.11 Estimate of beam time required for manual beam based alignment of

the analyzed collimator complements . . . . . . . . . . . . . . . . . . 160
8.12 Available tolerance budget for collimator setup at top energy . . . . . 161
8.13 Available tolerance budget for transient orbit change at top energy . . 161
8.14 Available tolerance budget for transient beta-beat at the primary col-

limators at top energy . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.1 Loss map for beam based alignment of a secondary collimator at in-
jection energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 Loss map for beam based alignment of an absorber at injection energy 170
B.3 Loss map for beam based alignment of a secondary collimator at col-

lision energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.4 Loss map for beam based alignment of an absorber at collision energy 171
B.5 Loss map for beam based alignment of the IR2 tertiary horizontal

collimator at collision energy . . . . . . . . . . . . . . . . . . . . . . . 171
B.6 Loss map for beam based alignment of the IR2 tertiary vertical colli-

mator at collision energy . . . . . . . . . . . . . . . . . . . . . . . . . 172



List of Figures ix

B.7 Loss map for beam based alignment of the IR5 tertiary horizontal
collimator at collision energy . . . . . . . . . . . . . . . . . . . . . . . 172

B.8 Loss map for beam based alignment of the IR5 tertiary vertical colli-
mator at collision energy . . . . . . . . . . . . . . . . . . . . . . . . . 173



x List of Figures



List of Tables

2.1 Nominal beam parameters for LHC operation with protons . . . . . . 5
2.2 Nominal beam parameters for LHC operation with Lead ions . . . . . 5
2.3 Nominal horizontal and vertical tunes and chromaticities for the nom-

inal LHC optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Crossing and separation schemes plus βz* values for injection and

several collision optics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Crossing schemes plus βz* values for several special optics . . . . . . 12

3.1 Mechanical and optics tolerances used to calculate the LHC transverse
aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Minimum available apertures at injection and collision optics for warm
and cold magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Typical transverse and longitudinal emittance growth times induced
by the intrabeam scattering process in the LHC . . . . . . . . . . . . 23

3.4 Typical values for τTouschek for the LHC . . . . . . . . . . . . . . . . . 24
3.5 Stopping power for several materials . . . . . . . . . . . . . . . . . . 28
3.6 Radiation length for several materials . . . . . . . . . . . . . . . . . . 29
3.7 Cross-sections for point like interactions between a proton and a nucleon 30
3.8 Cross-sections for pN interactions and Rutherford scattering for sev-

eral materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Values for μopt and δz′ for the LHC at injection and top energy . . . . 33
3.10 Optimal secondary collimator jaw phase locations and orientations . . 35

4.1 Number of protons inducing the quench of a superconducting magnet 38
4.2 Maximum allowed proton loss rate and local loss rate for continuous

slow losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Specifications for LHC collimators in case of normal losses . . . . . . 42
4.4 Beam load deposited in collimators for failure scenarios . . . . . . . . 43
4.5 Nominal betatron collimator settings . . . . . . . . . . . . . . . . . . 52
4.6 Nominal momentum collimator settings . . . . . . . . . . . . . . . . . 52
4.7 Nominal settings of the injection protection devices . . . . . . . . . . 55
4.8 Nominal settings of the extraction protection elements . . . . . . . . 55
4.9 Settings of tertiary collimators in the experimental regions . . . . . . 57
4.10 Nominal settings of the absorbers for physic debris . . . . . . . . . . 57

xi



xii List of Tables

5.1 Starting beam size and spread for on momentum particle distribution 69

6.1 η̃cold
max for the nominal machine and injection energy . . . . . . . . . . . 74

6.2 η̃cold
max for the nominal machine and collision energy . . . . . . . . . . . 76

6.3 η̃cold
max for beam based alignment of TCSGs, TCLAs and TCTs . . . . . 80

6.4 List of collimators installed in the LHC ring for the 2008 run . . . . . 84
6.5 η̃cold

max for the “Collision at 450 GeV” optics with a reduced system of
collimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Collimator half gaps for different commissioning scenarios and the
early collision optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.7 Collimator half gaps for different options of scenario 2 . . . . . . . . . 88
6.8 Collimator settings as a function of the beam energy . . . . . . . . . 92
6.9 Collimator settings as a function of the beam energy . . . . . . . . . 96
6.10 Optimal collimator settings as a function of the energy . . . . . . . . 97
6.11 Horizontal and vertical r.m.s magnet misalignments for different fam-

ilies of machine elements . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.12 Synchrotron and betatron oscillation frequencies for LHC . . . . . . . 109

7.1 SPS beam condition and design optics parameters . . . . . . . . . . . 115
7.2 Summary of beam based alignment results for 2006 . . . . . . . . . . 117
7.3 Summary of the results for beam centering with full beam scraping . 126
7.4 Comparison between beam profile measurements and beam scraping . 126
7.5 Comparison between beam centre positions determined through beam

based alignment and beam scraping procedures . . . . . . . . . . . . 127
7.6 Decay times for two tail measurements . . . . . . . . . . . . . . . . . 129
7.7 Summary of BLM signals for different settings of collimators and var-

ious tune changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.8 BLM signal amplitude and delay with respect to the first peak . . . . 132
7.9 Beam condition during high intensity TT40 tests . . . . . . . . . . . 133
7.10 Extraction and measurement conditions . . . . . . . . . . . . . . . . . 138

8.1 Collimator settings for machine commissioning with pilot beam . . . 146
8.2 Tertiary collimator settings for operation with pilot beam . . . . . . . 148
8.3 Collimator settings for machine commissioning with 43 bunches . . . 149
8.4 Tertiary collimator settings for collisions at 5 TeV . . . . . . . . . . . 151
8.5 Collimator settings for the initial machine commissioning run with

the 2008 system of collimators . . . . . . . . . . . . . . . . . . . . . . 153
8.6 Tertiary collimator settings and crossing angles for collisions at 5 TeV 155
8.7 Collimator settings for machine operation with the full phase 1 system

at higher intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.8 Tertiary collimator settings for the optics foreseen for collisions at 7 TeV158

A.1 List of phase 1 collimators for Beam1 . . . . . . . . . . . . . . . . . . 165
A.2 List of phase 1 collimators for Beam2 . . . . . . . . . . . . . . . . . . 167



Chapter 1

Introduction

On September the 10th 2008 the first proton beams were circulating in the Large
Hadron Collider (LHC) at CERN, 14 years after the approval of the project.

The LHC is designed to accelerate two counterrotating beams of 3.2·1014 protons
and 4.1·1010 heavy ions up to 7 TeV and 574 TeV respectively. More than 5000 su-
perconducting magnets (including correctors) are installed along the 27 km machine
circumference and are kept at temperatures between 1.8 K and 4.5 K to guide and
focus the circulating beams.

Each proton beam of the LHC stores an energy of up to 360 MJ. This stored
energy corresponds to about 86 kg of TNT explosive and could melt 500 kg of cop-
per. The superconducting magnets would quench after an energy deposition of
5 mJ s−1 cm−3, a tiny fraction of the stored energy. A 0.001% fraction of the stored
energy can damage metal if deposited instantaneously. A sophisticated system of
collimators is therefore needed to handle the LHC beams in the superconducting
magnets by providing beam cleaning and passive machine protection.

The LHC collimation system is constructed and installed in several phases. This
phased implementation relies on the fact that difficulties and performance goals for
the LHC are distributed in time, following the natural evolution of the machine
performance.

The phase 1 LHC collimation system consists of 88 collimators for the two beams
(7 times more collimators than in TEVATRON) which are set to different openings to
implement a multi-stage cleaning and protection system. Two insertions in the LHC
ring are dedicated to momentum and betatron cleaning. The remaining collimators
protect the most sensitive parts of the machine (injection, extraction and interaction
regions).

The LHC system is the first collimation system that must be active during the
full machine cycle, from injection up to physics and extraction.

LHC collimators consist of two parallel, fully movable jaws of special materials.
The two jaws define a gap for free passage of the beam core. The particles in the
beam tails (or halo) are intercepted and cleaned by the jaw material. In total one
needs to set up more than 340 independent degrees of freedom in order to commission

1



2 1. Introduction

this system.
Robustness was defined as the priority for phase 1 collimators closest to the beam.

Primary and secondary collimators must withstand an energy deposition of 2MJ
(0.6% of total stored energy corresponding to 0.5 kg of TNT) in case of expected
failures.

The collimation system is characterized by a cleaning efficiency. This term defines
the fraction of particles that hit a primary collimator and are stopped in the cleaning
insertion. For the 7 TeV protons the cleaning efficiency must be above 99.99% in
order to prevent quenches in the superconducting magnets for the specified LHC
beam loss rates. It is noted that this imposes a strong challenge (stop a 7TeV
proton in collimators distributed over a 200 m cleaning insertion). The small beam
size in the LHC and the required cleaning efficiency imposes small gaps of down to
2.5 mm over 1 m long jaws. Setup and beam tolerances are challenging and can be
as small as 30μm, the width of a human hair.

The commissioning of the sophisticated LHC collimation system imposes that
important questions are addressed: 1)What is the best order and method to set
up collimators such that required cleaning efficiency is achieved? 2)What setup
accuracy is needed for different intensities? 3)How must the collimators be set
during the energy ramp and other parts of the cycle? 4)How must unavoidable
collimator and machine imperfections be handled? 5)Can the system be set up in
stages of increasing number of collimators?

This PhD work addresses these questions which will have a crucial impact on the
performance and luminosity of the LHC during its commissioning to nominal beam
intensity.

An optimized strategy for the commissioning of the collimation system is devel-
oped, based on simulations and experimental tests in the SPS proton accelerator.
Special emphasis is put on intensity reach, imperfections and available tolerance
budgets.



Chapter 2

The Large Hadron Collider

Particle colliders accelerate and store high energy charged beams that are collided
inside high energy physics experiments. The higher the energy of the colliding beams
and the higher the event rate, the wider is the spectrum of the generated particles.
It is the hope that new high energy colliders like the Large Hadron Collider (LHC)
allow the discovery of new particles and forces.

The LHC [1] is a circular accelerator with a 26.659 km circumference situated
at the border between Switzerland and France at an average depth of 100m un-
derground. It is formed by eight arcs hosting 23 FODO cells [2] and eight straight
sections (IRs) where the experimental regions and the utility insertions are located
(see Fig. 2.1).

Two counter rotating proton or Lead ion beams (Beam 1 clockwise, Beam 2 coun-
terclockwise), will be injected into the machine in IR2 (Beam 1) and IR8(Beam 2)
and accelerated up to the nominal top energy (see Table 2.1 and 2.2) by the RF
cavities located in IR4. The two beams will then be brought into collision at the
four interaction points (IPs) where the main experiments are placed: ATLAS (IP1),
ALICE (IP2), CMS (IP5) and LHCb (IP8). In normal conditions the beams will
collide for several hours (Physics) and at the end of this period or in case of a failure
detection, the beams will be aborted by the dump system located in IR6.

2.1 The LHC experiments

The LHC will provide proton-proton and heavy ion collisions with a centre-of-mass
energy of 14 TeV and 1.15 PeV respectively. The event rate at the experiments is
described by the luminosity (L) that for a Gaussian beam is given by [3]:

L =
N2

b nbfrevγ

4πεnβz∗ F, (2.1)

where Nb and nb are number of particles per bunch and number of bunches per
beam respectively and frev is the revolution frequency. The luminosity L varies in

3
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Figure 2.1: Basic layout of the Large Hadron Collider (LHC). Beam 1 circulates
clockwise and Beam2 counterclockwise. Collisions take place in the four interaction
regions where experiments are located: ATLAS (IP1), ALICE (IP2), CMS (IP5)
and LHCb (IP8).

inverse proportion to the transverse normalized emittance εn and the β-function at
the IPs (βz*) (see 3.1.1). A geometric correction factor F is necessary to take into
account the luminosity reduction induced by the crossing angle that is imposed to
the colliding bunches in order to avoid parasitic collisions. Table 2.1 lists the beam
parameters for nominal machine operation with protons. The LHC is designed to
reach a peak luminosity of 1034 cm−2s−1 in ATLAS [4] and CMS [5]; these are multi-
purpose detectors dedicated to investigation of the broadest range of Physics possible
and to the Higgs Boson discovery. LHCb [6] is a low luminosity (L=1032 cm−2s−1

for βz* =50 m) specialized detector with the main aim of explaining the asymme-
try between matter and antimatter in the universe by studying the “beauty quark”
Physics. Two further experiments TOTEM [7] and LHCf [8], installed upstream and
downstream of the high luminosity IPs (IP5 and IP1 respectively), have been devised
to detect particles coming out from the experiments with small deviation angles in
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Table 2.1: Nominal beam parameters for LHC operation with protons [1].

Protons Injection Collision
Energy [GeV] 450 7000
Relativistic γ 479.6 7461

Number of particles per bunch 1.15·1011

Number of bunches per beam 2808
Stored energy per beam [MJ] 23.3 362

Bunch spacing [ns] 25
Transverse normalized emittance [μmrad] 3.75

Longitudinal emittance (4σ) [eV s] 1 2.5
Revolution frequency [kHz] 11.245

βz* at IP1 and IP5 [m] 11 0.55
βz* at IP2 [m] 10 10
βz* at IP8 [m] 10 1↔50

Geometric factor at IP1 and IP5 − 0.836
Peak Luminosity in IP1 and IP5 [cm−2s−1] − 1034

order to measure the elastic scattering cross section. Finally, ALICE [9] is dedicated
to the studies of the “quark-gluon” plasma generated by Lead ion collisions. The
nominal beam parameters for ion operation are summarized in Table 2.2.

Table 2.2: Nominal beam parameters for LHC operation with Lead ions [1]. The
βz* values at the omitted IPs are the same as in table 2.1

.

Lead ions Injection Collision
Energy [GeV] 36900 574000

Energy per nucleon [GeV] 177.4 2759
Relativistic γ 190.5 2963.5

Number of particles per bunch 7·107

Number of bunches per beam 592
Stored energy per beam [MJ] 0.245 3.81

Bunch spacing [ns] 100
Transverse normalized emittance [μmrad] 1.5

Longitudinal emittance (4σ) [eV s] 0.7 2.5
Revolution frequency [kHz] 11.245

βz* at IP2 [m] 10 0.5
Geometric factor at IP2 − 1

Peak Luminosity in IP2 [cm−2s−1] − 1027
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2.2 The LHC superconducting magnets
The high beam energy of the LHC can be reached thanks to the use of supercon-
ducting magnets for bending and focusing the beams. In the LHC tunnel 1232 main
dipoles (MB), 386 main quadrupoles (MQ) plus more than 4000 correctors are op-
erated at cryogenic temperatures of 1.8 K and 4.5 K. A picture of superconducting
magnets in the LHC is shown in Fig. 2.2.

Figure 2.2: Superconducting dipoles in the LHC tunnel.

The superconducting magnets are sensitive against heating from the beam or
other sources. They loose their super-conductivity (quench) after an energy de-
position per second of 5 mJ cm−3 (corresponding to 5 mW cm−3 ) when run at the
nominal field for the 7 TeV optics (i.e. 8.33 T for the MB) and in case of continu-
ous heating [10]. In addition quenches are also provoked by transient heating. The
energy required for inducing a quench depends in this case on the loss duration δt:
about 30 mJ cm−3 are expected to cause a quench at 7 TeV if δt ≥8 ms. more details
on the quench limit are given in chapter 4.

2.3 The LHC cleaning insertions
The stored energy per beam in the LHC at top energy corresponds to 362 MJ for
protons and 3.81 MJ for ions. The LHC, when operated with protons, exceeds the
stored energy handled at TEVATRON (Fermilab, USA) and HERA (Desy, Ger-
many) by 2 orders of magnitude (see Fig. 2.3). The stored energy is about 10 orders
of magnitude above the quench limit of the superconducting magnets. Even small
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Figure 2.3: Stored beam energy for different proton storage rings [11].

fractional losses of beam can induce quenches. It is then evident that a powerful
cleaning system against beam induced losses is needed to avoid quenches of the su-
perconducting magnets. For this reason two machine insertions are dedicated to
beam cleaning: momentum cleaning in IR3 and betatron cleaning in IR7. These are
insertions without superconducting magnets, where several collimators are installed
to intercept and scatter the beam halo particles before they are lost in the supercon-
ducting aperture of the machine. A large fraction of the electromagnetic showers,
that are generated by interactions of the halo particles with the collimator jaws, is
swept away by bending magnets located downstream of the collimators, the so called
dogleg magnets [1]. The energy deposition is then concentrated in the cleaning re-
gions where the room-temperature magnets are tolerant to energy deposition. The
cleaning insertions are described in detail in chapter 4.

2.4 LHC layout and optics

For the studies presented in this report the version V6.500 of the optics has been
used for defining the LHC sequence and the strength of the magnets. The design
tune and chromaticity values for this optics are listed in Table 2.3 (see chapter 3 for
definitions).
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Table 2.3: Nominal horizontal and vertical tunes and chromaticities for the nominal
LHC optics at injection and collision energy.

450GeV 7TeV
Qx 64.28 64.31
Qy 59.31 59.32
ξx 2.00 2.00
ξy 2.00 2.00

2.4.1 Nominal optics

The main differences between injection and collision optics in the LHC are the beam
crossing and separation schemes and the βz* values at the IPs. The closed orbit be-
tween the two beams differs from zero in the four straight insertions dedicated to the
experiments. This is done with the purpose of avoiding unwanted parasitic interac-
tions when bringing the beams into collision at the interaction points . At injection
energy, this separation is achieved by activating the separation of the beams in the
plane that is orthogonal to the one where the collisions take place (see Table 2.4,
Fig. 2.4 and Fig. 2.5). A vertical crossing is used for IP1 and IP2 (Fig. 2.4) and a
horizontal crossing for IP5 and IP8 (Fig. 2.5). Initially, a 17 m injection βz* was
envisaged for IP1 and IP5 and several studies in this report refer to this optics.
Recently, an 11 m option for βz* was adopted, when the possibility of performing
collisions at injection energy was investigated (see 2.4.2 ). No significant differences
in the loss patterns around the LHC ring were expected and observed in simulations
due to this change.

Table 2.4 shows three different options for machine nominal optics at top energy.

1. The “lowb.coll_all” and the “lowb.all” optics are completely equivalent from
the point of view of the collision schemes and they foresee beam impacts at
the four IPs.

2. “Lowb.all” is intended mainly for the operation of the machine with heavy ions
and has not been used for the studies in this thesis.

3. Finally, collisions are allowed only at the high luminosity interaction points
(IP1 and IP5) in the “lowb.coll” case. The spectrometers of Alice and LHCb
are switched off. This optics has the same βz* values as the “lowb.coll_all”
file.
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Table 2.4: Crossing and separation schemes plus βz* values for injection and several
collision optics (V6.500).

injection optics
Crossing Separation Spectrometer β* [m]

old new
IP1 ON ON − 17 11
IP2 ON ON OFF 10 10
IP5 ON ON − 17 11
IP8 ON ON OFF 10 10

lowb.coll_all optics
Crossing Separation Spectrometer β* [m]

IP1 ON OFF − 0.55
IP2 ON OFF ON 10
IP5 ON OFF − 0.55
IP8 ON OFF ON 10

lowb.coll optics
Crossing Separation Spectrometer β* [m]

IP1 ON OFF − 0.55
IP2 ON ON OFF 10
IP5 ON OFF − 0.55
IP8 ON ON OFF 10

lowb.all optics
Crossing Separation Spectrometer β* [m]

IP1 ON OFF − 0.55
IP2 ON OFF ON 0.50
IP5 ON OFF − 0.55
IP8 ON OFF ON 1.00
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Figure 2.4: Horizontal and vertical orbits of the two beams (Beam 1 red line, Beam 2
black line) at IP1 (top) and IP2 (bottom) for injection (left) and the “lowb.coll_all”
collision (right) optics. The s coordinate is following the Beam 1 direction.
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Figure 2.5: Horizontal and vertical orbit for the two beams (Beam1 red line, Beam 2
black line) at IP5 (top) and IP8 (bottom) for injection (left) and the “lowb.coll_all”
collision (right) optics. The s coordinate is following the Beam 1 direction.
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2.4.2 Special optics

This PhD work is mainly centred on studying different scenarios for the commis-
sioning of the LHC collimation system. With this scope special optics other than
the nominal ones have been analyzed and they are listed in Table 2.5.

Table 2.5: Crossing schemes plus βz* values for several special optics (V6.500).

Collision at 450GeV
Crossing Separation Spectrometer β* [m]

IP1 OFF OFF − 11
IP2 OFF OFF OFF 10
IP5 OFF OFF − 11
IP8 OFF OFF OFF 10

Energy ramp (from 450GeV upto 7 TeV)
Crossing Separation Spectrometer β* [m]

IP1 ON ON − 11
IP2 ON ON OFF 10
IP5 ON ON − 11
IP8 ON ON OFF 10

Early collision optics (7TeV)
Crossing Separation Spectrometer β* [m]

IP1 ON OFF − 2
IP2 ON OFF ON 10
IP5 ON OFF − 2
IP8 ON OFF ON 2

a ) “450 GeV collision optics”: the option of bringing the two beams into collision
at 450 GeV was considered in view of a possible commissioning of the machine in
2007 at low intensity (43 bunches of 4·1010 protons each). This should have been
an engineering run with the scope of testing the full hardware and calibrating
the experiments and the acquisition devices more than performing any Physics
studies. Anyway a pre-squeeze of the βz* from 17m down to 11 m (IP1 and IP5)
was planned and, due to the low intensity, head-on collisions with no crossing angle
would have been performed. The beam commissioning, however, was delayed and
the 2007 run at 450 GeV was cancelled. The nominal injection optics was since
then modified and βz*=11 m became the standard value for IP1 and IP5. This
allows to reduce the number of steps for achieving the nominal squeezed optics
and leaves the opportunity open for easily performing collisions at 450 GeV during
beam commissioning.
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b )“Ramp”: After injection the two beams must be accelerated up to 7 TeV and this
is one of the most delicate stages of the machine commissioning. Detailed studies
were devoted to the definition of the best collimation settings as a function of the
beam energy. For this analysis the nominal injection crossing scheme with the
new injection βz* values were kept during the full ramp.

c )“Early collision”: This optics has the nominal crossing and separation schemes
foreseen for the “lowb.coll_all” and the “lowb.coll” files but with βz* values of 2 m
in IP1, IP5 and IP8 and of 10 m in IP2. A low intensity machine operation is
foreseen for this scenario.
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Chapter 3

Theory of Beam Loss and
Collimation

Beams in circular accelerators are constituted by bunches of particles that can be
described as a statistical distribution of points (typically a Gaussian). The motion
of each particle in the horizontal and vertical planes are presented according to
basic principles of linear beam dynamics. The transverse oscillation frequencies are
much higher than the typical phase oscillation frequency and this allows to treat
the longitudinal degree of freedom independently. Particles in the core of the bunch
perform stable oscillations but several processes can kick these particles into the
tails of the distribution, determining the population of the so called primary halo.
Halo particles with high oscillation amplitudes become unstable and are lost at the
mechanical aperture of the machine. Moreover, accident scenarios can induce fast
losses of a large fraction of the beam particles. A multistage collimation system
allows to intercept the halo particles providing halo cleaning and passive protection
to the machine.

3.1 Basic linear beam dynamics

3.1.1 Transverse motion

The beam particles in a circular accelerator are guided by dipolar bending magnets,
which curve the beam and make it follow the ideal orbit, and by quadrupoles which
focus the beam. These magnetic fields are linear and the motion of one particle in
the x-y transversal plane [2] is given by the equation:

z(s) =
√

εzβz(s) · sin (φz(s) + φz0) + Dz(s)δp (3.1)

where z is used from now for either x or y, s is the longitudinal coordinate (see
Fig. 3.1), δp=Δp/p is the momentum offset and Dz is the dispersion.

15
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Figure 3.1: Reference frame for Beam 1 and Beam 2 in the LHC. The positive x-axis
points outwards with respect to the ring for Beam 1 and inwards for Beam 2.

The first term on the right of eq. 3.1 represents the betatron oscillation function
in the selected plane. The optical function βz gives the amplitude modulation of
this oscillation. φz and φz0 are respectively the phase advance and the initial phase
of the betatron oscillation and φz can be defined as:

φz(s) =
∫ s

0

ds

βz(s)
. (3.2)

The number of betatron oscillations per revolution is calculated dividing the phase
advance over one turn by 2π; this quantity is called the machine tune Qz. The
tune must be an irrational number in order to avoid resonances which would am-
plify any existing perturbation and would induce a growth of the particle oscillation
amplitude.

The particle trajectory in the phase space z−z′ (with z′(s) = dz(s)
ds

) is represented
by an ellipse of the form:

εz = γz(s)z
2(s) + 2αz(s)z(s)z′(s) + βz(s)z

′2(s) (3.3)

where

αz(s) = −1

2

dβz(s)

ds
(3.4)

and

γz(s) =
1 + α2

z(s)

βz(s)
. (3.5)
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βz, αz and γz are called the “Twiss parameters” and they define the machine optics.
The shape of the ellipse changes at the different s locations while the area (πεz)
does not change if the energy of the particle is kept constant and stochastic effects
are neglected.

A beam is constituted by many particles which can be represented as a statistical
distribution of points in the transversal phase space. It is then possible to define
a “root mean square emittance” εrms,z =

√
< z2 >< z′2 > − < zz′ >2 that allows to

introduce the “betatronic beam size” σz and “divergence” σz′ as:

σz(s) =
√

εrms,zβz(s) (3.6)

and
σz′(s) =

√
εrms,zγz(s). (3.7)

Generally the beam particles in z − z′ are well approximated by a Gaussian
distribution; particles within 3σz represent the beam core while the tails of the
distribution above 3σz are populated by the beam halo particles. It is also possible
to define a quantity called normalized emittance εn,z that does not vary with the
energy and reads:

εn,z = γβrelεrms,z (3.8)

with the relativistic factors of βrel = v
c

(v: particle velocity, c: speed of light in
vacuum) and γ = (1 − β2

rel)
− 1

2 .
The second term on the right side of eq. 3.1 is the dispersive orbit and is the

product of the periodical dispersion function Dz and the particle momentum offset
δp. This term vanishes for an on-momentum particle and in the region of the machine
with zero dispersion. Off-momentum particles see a quadrupole strength different
from the nominal one. This induces a tune spread defined as:

ΔQz = ξz
Δp

p
. (3.9)

The term ξz is called chromaticity.
The “beam size” can be defined taking into account this contribution as:

σbeam
z (s) =

√
εrms,zβz(s) + (Dz(s)σp)

2 (3.10)

where σp is the rms momentum spread of the beam particles.

3.1.2 Longitudinal motion

The particles in synchrotrons are accelerated by radio frequency (RF) cavities. The
electric field inside the cavities varies sinusoidally with angular frequency ωRF and
particles must be placed in the accelerating part of the RF period. For this reason
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the beam is bunched and ωRF is an integer multiple of the revolution frequency ωr.
A particle with charge q at each passage across a cavity gains an energy

ΔE = qV̂ sin ϕ(t) (3.11)

where V̂ is the peak accelerating potential of the cavity and ϕ is the phase of the
particle with respect to the RF phase [2]. Particles circulating in the machine are
also subject to dissipative phenomena (as for example synchrotron radiation) which
contribute to momentum deviation Δp = ΔE/c. The length of the orbit L varies
as a consequence of the momentum deviation according to:

ΔL

L
= αc

Δp

p
(3.12)

where αc is the “momentum compaction” factor. The ideal particle always crosses
the cavity with the same phase ϕs that corresponds to the nominal energy gain and
is called “synchronous phase”. The other particles of the bunch reach the RF cavity
with a small advance/delay with respect to the nominal one and get a different
energy gain. The principle determining the longitudinal stability of the bunch is
called “phase focusing” [12] and depends for a given particle on the relation:

ΔT

T
=

(
αc − 1

γ2

)
Δp

p
(3.13)

with T being the revolution period. Two different regimes are defined by eq. 3.13 if
the transition energy γtr =

√
1
αc

is introduced:

• below transition when γ < γtr

• above transition when γ > γtr.

Below transition the stability of the bunch requires 0<ϕs<π/2, which corresponds
to the rising part of the sinusoid defined in eq. 3.11 (see Fig. 3.2). In this case more
energetic particles reach the cavity earlier than the synchronous one (ϕ(t)<ϕs) and
gain less energy. This implies that these particles will be closer to ϕs at the following
passage. On the other hand less energetic particles approach ϕs due to the higher
acceleration they get by crossing the RF cavity at ϕ(t)>ϕs. Analogous arguments
allow to establish that the longitudinal stability condition above transition is satisfied
if π/2<ϕs<π. Particles with small longitudinal amplitude hence follow bounded
trajectories and perform “synchrotron oscillations” around the ideal particle. Their
equation of motion is:

ϕ̈ +
Ω2

s

cos ϕs

(sin ϕ − sin ϕs) = 0 (3.14)
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Figure 3.2: Example of phase focusing for particles (blue dots) close to the syn-
chronous one (red dot) in case of operation below transition.

where Ωs is a constant. This motion is intrinsically non-linear and determines the
existence of a trajectory defined as “separatrix” that delimits the region of longitu-
dinal stability: in case of acceleration, particles outside this region lose energy turn
by turn and are finally lost. The area in the ΔE-ϕ phase space enclosed in the
separatrix is the “RF bucket” (see Fig. 3.3) while the space occupied by the bunch
delimits the “longitudinal emittance” defined as:

εs = πσtσEb
E0. (3.15)

σt is the bunch length in seconds, σEb
is the rms energy spread of the bunch particles

and E0 is the nominal energy. The half-height of the RF bucket ΔEb defines the
“energy acceptance” of the machine and reads:

ΔEb = k′′ ·
√

1 −
(

π

2
− ϕs

)
· tan ϕs (3.16)

with k′′ being a constant. In the LHC, for a 400MHz RF system, ΔEb =9.68·10−4 Δp/p
at injection energy of 450 GeV and ΔEb =3.53·10−4 Δp/p at 7 TeV [13].

3.2 Aperture and beam stability
The machine aperture is one of the most important parameters for a circular accel-
erator since it plays a crucial role in beam stability and beam intensity lifetime (see
3.3.1). As an effect of several processes, described in section 3.3, some beam parti-
cles drift towards the walls of the machine where they are lost. The loss locations
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Figure 3.3: Example of trajectories in the longitudinal phase space for accelerated
particles. The centre of the RF bucket coincides with the synchronous phase ϕs

and the red line defines the separatrix delimiting the region of longitudinal stability.
ΔEb is the half height of the bucket [14].

and the time particles take before being lost depend on the mechanical aperture of
the machine and on lattice and beam parameters as described in the following.

3.2.1 Geometrical aperture and beam acceptance

The geometrical aperture Ageom of an accelerator is given by the physical space de-
limited by the vacuum chamber and by the different elements installed along the full
length (Lm) of the machine: i.e. beam screens, collimators, diagnostic equipments,
etc. In order to avoid losses, the geometric aperture Ageom at each location must be
bigger than the maximum oscillation amplitude of the beam particles. The maxi-
mum emittance that can be accepted by the machine is called “beam acceptance”
and is related to the geometrical aperture Az

geom in the considered plane z according
to the formula:

εmax
z = mins∈[0,Lm]

[
(Az

geom(s)− | Dz(s)(ΔEb) |)2

βz(s)

]
. (3.17)

Ideally, the vertical plane is dispersion free and the particles follow a pure beta-
tron oscillation. In this case the acceptance depends only on the ratio between the
minimum geometrical aperture and the maximum β-function.



3.2. Aperture and beam stability 21

3.2.2 Dynamic Aperture

Non-linear magnetic field components are due to unavoidable multipole field errors,
to sextupoles, which are used for machine chromaticity correction, and to higher
order correctors. The non linear fields act on all the beam particles and their effect
increases with the amplitude of the betatron oscillations. Particles with an ampli-
tude bigger than the so called “dynamic aperture” (Adyn) become unstable due to
non linearities and are lost after a certain number of turns. This process is called
diffusion. Beam core particles are stable and ideally have a constant amplitude
A < Ageom. In reality several processes, described in the next section, transport
some particles out of the core. These particles form the primary beam halo which
slowly diffuses towards Adyn. Studies for the LHC demonstrated that the particle
diffusion speed away from the core of the beam is of the order of 5.3 nm/turn at
around 6σz [15].

For an ideal machine we have Adyn > Ageom but this is not the case for a non-
linear machine like the LHC. Tracking simulations and analytical models allowed to
define Adyn =12σz at injection energy and 10σz at 7 TeV [16]. For these studies the
dynamic aperture was defined as the radius of the maximum area, in the transverse
plane, that shows a stable behavior after 105 turns (∼ 10 s in the LHC).

3.2.3 LHC available aperture

The target aperture for the LHC corresponds to a horizontal and vertical accep-
tance of 8.4σz (pure betatron) [17]. A model was used to calculate the effective
LHC available transverse aperture around the ring. This was done by taking into
account the mechanical and optical tolerances listed in Table 3.1 and using the LHC
optics version V6.5. Results show that at injection energy (450 GeV) the main aper-

Table 3.1: Mechanical and optics tolerances used to calculate the LHC transverse
aperture [18].

Tolerance Design value
Magnet manufacturing errors ≤1.6 mm
Transverse magnet alignment ≤1.6 mm

Allowance for separation/crossing schemes ≤1.5 mm
Allowance for spurious dispersion 27% of arc (normal.)
Allowance for beam energy offset 0.05%

Allowance for closed orbit (radial), injection ≤4.0 mm
Allowance for closed orbit (radial), collision ≤3.0 mm

Allowance for beta-beat (Δβ/β) 21%

ture limitations come from the arcs with their superconducting dipole (MB) and
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quadrupole (MQ) magnets. At top energy (7 TeV) the arc aperture is no longer crit-

Table 3.2: Minimum horizontal Aaperture
x and vertical Aaperture

y available aperture at
injection and collision optics for warm and cold magnets [18].

Injection Collision
Warm Cold Warm Cold

Beam1 Aaperture
x [σ] 6.78 7.88 28.10 8.90

Aaperture
y [σ] 7.68 7.79 8.34 8.43

Beam2 Aaperture
x [σ] 6.68 7.70 27.6 8.13

Aaperture
y [σ] 7.65 7.60 8.69 8.75

ical due to the adiabatic damping of the beam emittance during acceleration. On
the other hand, the achievement of the design luminosity requires the squeeze of βz*
to 0.55 m in IP1 and IP5. This is obtained by changing the IP optics with dedicated
superconducting magnets, called “triplets”, where βz grows up to about 4500 m. The
triplets in IR1 and IR5 constitute the aperture bottlenecks for the collision optics.
Minimum horizontal and vertical available apertures at injection and collision optics
for warm and cold magnets are listed in Table 3.2.

3.3 Beam halo population and beam loss mecha-
nisms

The beam halo particles can be lost at the mechanical aperture of the machine
after a certain number of turns. Moreover, the halo is continuously repopulated
by particles of the beam which are transported out from the core due to several
processes. Some of these processes are induced by normal machine operation (i.e.
beam-beam, tune shift, orbit and chromaticity change, etc.) and unavoidable beam
dynamics instabilities; in this case we speak about “regular beam losses”. When
on the other hand accidental beam instabilities and sudden fast increases of beam
losses are caused by machine failures or operational errors we refer to “irregular beam
losses”.

3.3.1 Regular beam losses

The beam intensity N versus time t can be described as:

N(t) = N(0) exp
(
− t

τ

)
. (3.18)
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Here, τ is the exponential beam lifetime and gives the time needed to reduce the
initial beam population N(0) to a fraction 1/e. Processes causing regular beam
losses are introduced in the following.

3.3.1.1 Intrabeam scattering (IBS)

The IBS process refers to multiple small-angle Coulomb scatterings of particles be-
longing to the same bunch. A continuous exchange of energy between the interacting
particles induces the coupling of horizontal, vertical and longitudinal emittances [19].
The evolution of the bunch depends on the initial energy: below transition (see 3.1.2)
the motion is bounded and the increase of beam size in one direction is compen-
sated by a decrease in the other two dimensions. Above transition no equilibrium
condition exists and the bunch emittance increases continuously in all directions.
This is the case for the LHC that works above transition already at injection energy
(γtr=55.68). Growth times τtrans and τlong for the transverse and longitudinal emit-
tances at injection and collision energy are listed in Table 3.3. These values have
been computed using the Bjorken-Mtingwa theory implemented in the “MAD-X”
optics code [20]. According to this theory the IBS growth rate in longitudinal and
transverse planes can be defined for a Gaussian beam as [21]:

1

τlong

=
1

σp

dσp

dt

1

τtrans

=
1

εz
1/2

dεz
1/2

dt
. (3.19)

Table 3.3: Typical transverse and longitudinal emittance growth times induced by
the intrabeam scattering process in the LHC at injection and collision energy [1].

τtrans[hours] τlong[hours]
450GeV 38 30
7TeV 80 61

If the energy transfer from the transverse to the longitudinal plane is big enough
to remove particles from the longitudinal dynamic aperture we speak of the Tou-
schek effect. The bunch population Nb decreases in time t according to [22]:

Nb(t) = Nb(0)
1

1 + αNb(0)t
(3.20)

while the number of RF uncaptured particles increases as:

Ncoast(t) = Nb(0)
αNb(0)t

1 + αNb(0)t
(3.21)
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creating the so called “coasting beam”. The Touschek lifetime can then be defined
as τTouschek = 1

αNb(0)
where α is a constant value which depends on the shape of the

beam. Values for the LHC are listed in Table 3.4 and refer to a round beam.

Table 3.4: Typical values for τTouschek for the LHC at injection and collision energy.
These values are calculated for a round beam [22].

τTouschek [hours]
450GeV 4830.9
7TeV 12077.3

3.3.1.2 Scattering with residual gas molecules

Elastic and inelastic interactions can occur between the circulating protons and the
nuclei of the gas molecules left in the vacuum chamber. This process creates losses
of primary and secondary (in case of inelastic interaction) particles and emittance
growth. Amount and location of the losses depend on the local density ng of the
residual gas, that must be low enough to limit the heat load induced by such losses.
Hydrogen is expected to be the dominant residual gas in the LHC and a density
of H2 molecules of 1.2·1015 m−3 is required for a beam lifetime of 100 hours and a
maximum heat load of 0.1 W·m−1 [1]. The relation between beam lifetime due to
beam-gas interactions τg and ng is given by [23]:

1

τg

= c
∑

i

σini (3.22)

where the sum is evaluated over the different species of gas present in the vacuum
chamber and σ gives the total cross section for the different interactions.

3.3.1.3 Beam-beam effects

In case of head on collisions, elastically scattered particles can populate the beam
halo provoking a transversal emittance growth. Moreover, proton-proton collisions
are the main cause for the decay of the luminosity that varies in time as [1]:

L(t) =
L(0)

1 + t
τ0

(3.23)

where the initial decay time τ0 is given by:

τ0 =
N(0)

L(0)σtotk
. (3.24)
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Here σtot=10−25 cm−2 is the total cross section at 7 TeV, taking into account both
elastic and inelastic interactions, and k is the number of interaction points. The
high luminosity IPs (IP1 and IP5) give the biggest contribution to the luminosity
degradation and τ0 =44.85 hours can be calculated using the parameters reported in
Table 2.1. The time needed to reduce the initial luminosity to a fraction 1/e defines
the luminosity lifetime which for the LHC corresponds to 29 hours (only beam-beam
contribution). Long range electromagnetic interactions between the two beams in the
four interaction regions can also induce emittance growth, beam lifetime limitation
and instabilities. These are non linear interactions, inducing a tune spread both in
the x and y planes that can lead to resonance-related losses of particles. Moreover,
long range beam-beam interactions reduce the dynamic aperture.

3.3.1.4 Synchrotron radiation

Synchrotron radiation is an electromagnetic radiation emitted by ultrarelativistic
particles when bent by electromagnetic fields. The synchrotron radiation is emitted
forward tangentially to the particle trajectory and a fraction of the particle energy
is lost in the same direction. The amount of energy lost per turn is [24]:

U0 =
e2β3γ4

3ε0ρ
, (3.25)

where e is the electron charge, ε0 is the vacuum dielectric constant and ρ is the
bending radius. In the LHC at 7 TeV one finds U0=6.7 keV (ρ=2803.95 m) that
corresponds to a total power irradiated per beam of 3.9 kW. Synchrotron radiation
stays negligible at injection with U0=0.11 eV and an irradiated power of 66 mW per
beam [1]. The RF cavities have to compensate this energy loss but the acceleration is
purely longitudinal: the transverse components of the momentum are not increased
after the passage through the cavities and the motion in the x-y plane is adiabatically
damped. The emittance damping time τε due to synchrotron radiation for a circular
proton machine can be expressed as [25]:

τεj
=

16644

JjE B2
· C

2πρ
(3.26)

where the energy is in units of TeV and the magnetic field is in T. C is the machine
circumference. The term Jj is the “Damping partition number” [26] for the three
space coordinates and is Jx ≈1, Jy=1 and Js ≈2. Transverse and longitudinal
damping time for the LHC at top energy are τεx,y=26 hours and τεs=12.9 hours [1].

Synchrotron radiation damping can partially compensate the emittance growth
induced by other phenomena. The general assumption for the LHC is that this
process just cancels the beam blow up caused by beam beam interactions and RF
noise. The remaining loss mechanisms (IBS, scattering with residual gas, beam-
beam collisions) reduce the assumed luminosity lifetime defined in 3.3.1.3 to about
15 hours.
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3.3.1.5 Operational losses

The experience shows that accelerator operation induces losses due to unavoidable
machine optimization. For example, tune optimization, orbit correction, chromatic-
ity changes etc. will occasionally induce transient lifetime reduction during opti-
mization. Such losses are considered as regular.

3.3.2 Irregular beam losses

In case of equipment failures or operational errors a fast increase of the intensity
loss rate can occur.

3.3.2.1 Fast losses from injection errors

During injection the beam is transferred from the “Super Proton Synchrotron” (SPS)
to the LHC. Transverse and longitudinal matching between the end of the transfer
line and the injection point is required. A transverse mismatch of the beam (different
Twiss parameters) can cause a significant increase in the emittance. Parts of the
beam can be lost in a few turns. In addition, particles injected outside of the RF
bucket (longitudinal mismatch) are lost at the high dispersion regions when the
energy ramp starts.

Fast transient losses can also be induced by misfiring or power failure of the
injection kicker magnets [27]. In this case, the design orbit changes both for the
injected and circulating particles. The full injected batch (288 bunches) can be
instantaneously deflected on any downstream aperture limit. Protection elements
and collimators are designed to safely abort fast losses from injection errors.

3.3.2.2 Fast losses from unsynchronised beam abort

The LHC beam dumping system is formed by 15 extraction kicker magnets MKD
which deflect horizontally the beam towards a set of 15 steel septum magnets
MSD [29] before it is dumped onto special graphite absorber blocks TED. Dilu-
tion kickers paint the beam on the TED block in order to reduce energy density.
The filling pattern in the LHC is constituted by batches of 72 consecutive bunches,
with two bunches separated by 25 ns. The abort gap is defined as the unfilled space
between the first and the last injected batch and corresponds to 3μs. All the MKDs
must be triggered simultaneously and with the correct phase with respect to the
beam abort gap. The accelerator components located downstream of the extraction
region can be exposed to beam losses in case of an asynchronous beam dump. Such
an event is assumed to happen with a rate of one per year. Several failure scenarios
can induce abnormal beam dumps:

• All 15 MKDs are triggered at the same time but they are not synchronized
with respect to the abort gap. The beam enters in the extraction region when
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the kicker voltage is still rising and part of it is swept across the machine
aperture.

• One of the MKDs fires spontaneously and induces a re-triggering of the remain-
ing modules. This is the worst case in term of beam load on the downstream
components. For the LHC the re-triggering time is 1.2μs at injection and
0.7μs at collision energy.

In addition, un-captured particles can populate the abort gap and be lost down-
stream of the dump insertion, even in case of normal operation of the extraction
kickers.

3.3.2.3 Losses from other failures

Injection and extraction errors are fast “single turn” processes and the only solution
to avoid damage is to protect sensitive regions of the machine with special absorbers
and collimators. Errors and malfunctions of various other equipments can produce
slower losses (from few turns up to seconds) [30]. Examples are: quenches of a super-
conducting magnet, problems with the RF system, vacuum leaks, wrong movement
of movable components (collimators, experimental detectors, trip of a power con-
verter for superconducting or warm magnets etc.). In this case a dedicated detection
system (Beam Loss Monitors BLM) allows to monitor beam losses around the ring
and to trigger a beam abort when losses surpass a certain threshold. About 4000
BLMs are installed along the LHC ring and close to elements which are good can-
didates for losses (collimators, machine aperture bottlenecks). The majority of the
detectors (∼3500) of the BLM system consist of ionization chambers, whereas sec-
ondary emission monitors SEM are foreseen for regions with very high loss rate [31],
like the collimators.

3.4 Interaction of protons with jaw material
Halo particles intercepted by the material of collimator jaws undergo different kinds
of interactions:

1. Particles can lose part of their energy by ionization and excitation [32] of
the atoms of the material they are passing through. The average lost energy
rate per unit length −dE

dx
is called “stopping power” and is defined, in units of

MeV·g−1·cm2, by the Bethe-Bloch equation:

−dE

dx
= Kz2Z

A

1

β2
rel

[
1

2
ln

2mec
2β2

relγ
2Tmax

I2
− β2

rel −
δ

2

]
. (3.27)

Here K is a constant, Z and A are atomic number and atomic mass of the
target material, me is the electron mass while z, βrel and γ are respectively
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charge, velocity and relativistic factor of the incident particle. I is the mean
excitation energy1 , Tmax is the maximum kinetic energy that an electron can
gain in one single collision and finally δ is a correction term depending on the
density of the material [32]. Stopping powers for several materials implemented
in the used tracking code (see Chapter 5) are presented in Table 3.5 [33]. These
values refer to injection energy. Small changes are expected for the 7 TeV case,
due to the slow relativistic rise of the −dE

dx
curves at high energy.

Table 3.5: Stopping power for several materials implemented in the tracking code.
The unit of the stopping power is determined by taking into account the correction
factor δ.

Material dE/dx
[GeV/m]

Beryllium 0.55
Graphite 0.68

Alluminium 0.81
Copper 2.69

Tungsten 5.79
Lead 3.40

2. Multiple Coulomb Scattering (MCS) with nuclei of the material atoms.
The particle experiences numerous small deviations (see Fig. 3.4) and the r.m.s

s

x

 x 

Figure 3.4: Example trajectory of one particle experiencing Multiple Coulomb Scat-
tering while crossing a block of material of thickness s. The particle exits from the
block with a deflection angle θx.

1“I is taken as (10±1 eV)·Z for elements heavier than Oxygen” [33]
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deflection angle θx, after having crossed a thickness of material s, is given by
(Molière’s theory [34]):

θx(s) =
13.6 MeV

βrelcp
z

√
s

X0

[
1 + 0.038 ln(

s

X0

)
]
. (3.28)

Here, p is the momentum of the incident particle while X0 is the radiation
length of the material and is defined as “the main distance over which a high-
energy electron loses 1/e of its energy by bremsstrahlung, and 7/9 of the mean
free path for pair production by a high-energy photon” [32]. In Table 3.6 values
of X0 are listed for several materials [33].

Table 3.6: Radiation length for several materials implemented in the tracking code.

Material X0

[cm]
Beryllium 35.28
Graphite 18.80

Alluminium 8.90
Copper 1.43

Tungsten 0.35
Lead 0.56

3. Rutherford Scattering (RS): The particle acquires a large deflection an-
gle as a consequence of an interaction with a nucleus. Defining the momen-
tum transfer t = p · θ, we have that the Rutherford scattering process becomes
dominant for t≥ tcut=0.998·10−3 GeV2. The differential cross section for this
process is [33]:

dσRS

dt
= 4πα2(�c)

Z2

t2
exp(−0.856 · 103 · t · R2) (3.29)

where α≈ 1/137 is the fine-structure constant and R≈ 1.2·10−15·A1/3 is the
radius of the nucleus.

4. Proton-nucleon pn interactions: Here we refer both to proton-proton and
proton-neutron interactions. The relative cross-sections at injection and col-
lision energy for elastic σel

pn and inelastic σinel
pn interactions are listed in Ta-

ble 3.7 [35]. A special case is represented by single diffractive scattering
SD [36] (σSD

pn ): This is a quasi-elastic process where momentum transfer dur-
ing collision implies a high mass excitation state for one of the interacting
particles. Particles experiencing SD scattering have a non-zero probability to
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Table 3.7: Cross-sections for point like interactions between a proton and a nucleon.

Energy σel
pn σinel

pn σSD
pn

[TeV] [mbarn] [mbarn] [mbarn]
0.45 7 33 3.15
7 7.98 38.9 4.9

escape from the collimator jaw and to contribute to the population of the
off-momentum halo, even if particles were on-momentum originally.

5. Proton-nucleus pN interactions: The total cross-section σtot
pN for this kind

of interaction scales with the atomic mass as A0.77 [37] and is given by the
sum of the elastic and inelastic contributions (σel

pN , σinel
pN ). Elastic and SD

scattering due to the interaction of the halo proton with the outer nucleons
must be added. These are obtained by multiplying σel

pp and σSD
pp with neff (A) =

1.6 · A1/3 [38]. Cross section values used in the tracking code are listed in
Table 3.8 [14, 33]. These values are valid in the range between 20 and 240 GeV
but only minor changes are expected for higher energies [37].

Table 3.8: Cross-sections for pN interactions and Rutherford scattering for several
materials included in the tracking code.

Material σtot
pN σinel

pN σRS

[barn] [barn] [mbarn]
Beryllium 0.268 0.199 0.035
Graphite 0.331 0.231 0.076

Alluminium 0.634 0.421 0.34
Copper 1.232 0.782 1.53

Tungsten 2.767 1.65 7.68
Lead 2.960 1.77 9.07

3.5 Theory of multistage betatron and momentum
collimation

Collimators consist of blocks of material, called jaws, which are placed between the
beam and the mechanical aperture of the machine to intercept halo particles. The
distance between the beam axis and the surface of the jaws defines the collimator
half-gap. Primary collimators are the closest elements to the beam and they have
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to intercept the primary halo particles without interfering with the motion of the
core particles. Protons scattered by the primary jaws form the secondary halo and
must be intercepted before they reach the cold aperture of the machine. For this
reason secondary collimators are installed downstream of the primaries, creating a
so called “two-stage cleaning system”. The half-gap of the secondary jaws (n2 in σz

units) must be larger than the half-gap of the primary (n1 in σz units) so that only
protons which experienced an interaction with the primaries are caught. The mutual
retraction must be fixed, taking into account a safety margin for machine errors
(closed orbit, beta-beat), to avoid that a secondary collimator starts intercepting
the primary halo, as no further protection behind is “a priori” foreseen. The tertiary
halo, populated by protons outgoing from the secondary collimators, can be lost
in the machine cold aperture and must be minimized in order to avoid quenches
of superconducting magnets. Further absorbers and protection elements can be
implemented in the most sensitive regions of the machine.

A multistage collimation system is needed both for betatron and momentum halo
cleaning; principles and optimization of these processes are presented here.

3.5.1 Betatron cleaning

The betatron cleaning system allows to limit the transverse extension of the beam
halo by “cleaning” particles with large betatron oscillation amplitude. Studies are
performed for a linear uncoupled optics. The normalized coordinates Z and Z ′ are
used, where:

(
Z
Z ′

)
=

1

σz

(
1 0
αz βz

) (
z
z′

)
.

In addition, the aperture of the collimators is assumed to be small enough that the
halo particles drift slowly towards the jaws. Particles which, at the phase location
of the primary collimator, have Z = n1 and Z ′=0 hit the collimator as shown in
Fig. 3.5. In case of a slow diffusion, the impact parameter, defined as the transverse
offset between the jaw surface and the impact point, is much smaller than n1 and
can be neglected. Escaping particles receive a deflection k, due to the effect of the
elastic interactions inside the jaw.

3.5.1.1 One-Dimensional collimation

As a first approximation only the scattering in the same plane of the analyzed halo
is considered. The kick can be positive or negative (case a and b in Fig. 3.5) and can
have different size. The scattered particles are distributed along the lines defined by
Z = n1 and either Z ′>0 (positive kicks) or Z ′<0 (negative kicks). Two secondary
jaws are necessary to intercept scattered particles: one located at a phase advance
μ1 to catch positively kicked particles, and one at μ2 for negatively kicked ones (see
Fig. 3.6).
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Figure 3.5: A particle hitting a primary collimator, set with an opening of n1 σz, is
plotted in the transverse normalized phase space. The particle can receive a positive
(a) or negative (b) kick k in the same plane of its motion. The red lines represent
particles receiving different kicks.
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Figure 3.6: Two secondary collimator jaws, located at a phase advance μ1 and μ2

with respect to the primary, are necessary to catch particles which received positive
(a) and negative (b) kicks. Critical kick and maximum amplitudes defining escaping
particles are indicated.

The collimator jaws intercept only particles having excursions Z > n2 at μ1 and
Z < −n2 at μ2 (see Fig. 3.6), determining the existence of a critical kick kc [39]
defined as:
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kc =
n2 − n1 cos μ

sin μ
. (3.30)

Secondary halo particles with k <| kc | are not captured by the collimators. kc

must be minimized in order to reduce as much as possible the maximum amplitude
Amax =

√
n2

1 + k2
c of the escaping particles. This can be done by optimizing the phase

advance μ, since n1 and n2 are fixed. Optimal values for μ and kc can be derived:

μopt = cos−1
(

n1

n2

)
(3.31)

kc,opt =
√

n2
2 − n2

1. (3.32)

Here, μ1 = μopt and μ2 = π − μopt guarantee that only particles with Amax <| n2 |
do not interact with the secondary jaws. The minimum deflection δz′ required from
a primary collimator such that the deflected particle is intercepted by a secondary
collimator can be defined from eq. 3.32 (transforming back to real space coordinates):

δz′ ≈ σz

βz

√
n2

2 − n2
1. (3.33)

Analogous considerations can be applied to particles impacting on a primary jaw
set at −n1. In this case an efficient cleaning requires one secondary jaw at π − μopt

for positive kicks and one at μopt for negative kicks. Even if in principle only one
primary jaw per plane is needed, the LHC collimators use two jaws, centered with
respect to the closed orbit, in order to insure a more stable cleaning and machine
protection. Calculated values of μopt and δz′ for the LHC are listed in Table 3.9 (see
Table 4.5 for n1 and n2 values at injection and top energy).

Table 3.9: Values for μopt and δz′ for the LHC at injection and top energy.

μopt[deg] δz′[μrad]
Injection 30 23

Top energy 30 6

3.5.1.2 Two-Dimensional collimation

A full decoupling between horizontal and vertical halo is unrealistic and skew pri-
mary collimators are necessary to catch particles having large horizontal and vertical
excursion at the same time. Moreover, particles interacting with a collimator jaw
are scattered isotropically in the transverse plane and further secondary collima-
tors have to be installed at defined phase advances and azimuthal orientations (see
Fig. 3.7).
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Figure 3.7: Impact on a skew primary collimator at coordinates (n1, ψ). The scatter-
ing in the X′-Y′ plane is expressed with polar coordinate (k, φ) and is superimposed
to the X-Y plane (normalized coordinates). Impacting particles can be scattered
isotropically to any φ with different kicks k.

Theoretical and numerical optimization studies allowed to estimate a total num-
ber of four secondary jaws per each primary jaw. Table 3.10 lists the optimum phase
location (μx and μy) and the jaw orientation (ψsec) of the required secondary colli-
mators [40]. The same definition of μopt as for the 1D case is still valid. Scattering in
the planes parallel and orthogonal to the primary jaws were considered as extreme
cases.

3.5.2 Momentum cleaning

The momentum cleaning system catches the “longitudinal” losses induced by off-
momentum particles. While a pure betatron cleaning is achievable in regions of the
machine with dispersion close to zero, off-momentum particles have generally a non
negligible betatron component as well. Momentum cleaning is needed only in the
horizontal plane since the horizontal dispersion is much larger than the vertical one.
Normalized coordinates are used:

(
χ
χ′

)
=

1

σx

(
1 0
αx βx

) (
Dx

D′
x

)
.

The trajectory of an off-momentum particle impacting on a primary horizontal jaw
is shown in Fig. 3.8. The momentum collimators should not intercept particles which
are in the RF-bucket and have stable betatron oscillation below the cut of the be-
tatron collimators. This is avoided by placing the momentum primary collimator
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Table 3.10: Optimal secondary collimator jaw phase locations and orientations evalu-
ated for horizontal, skew and vertical primary jaws in case of parallel and orthogonal
scattering [40]. Here, μopt was evaluated for the 1D case and is defined in eq 3.31.

ψ φ μx μy ψsec

Horizontal 0 0 μopt − 0
0 π π − μopt − 0
0 π/2 π 3π/2 μopt

0 −π/2 π 3π/2 −μopt

Skew π/4 π/4 μopt μopt π/4
π/4 5π/4 π − μopt π − μopt π/4
π/4 3π/4 π − μopt π + μopt π/4
π/4 −π/4 π + μopt π − μopt π/4

Vertical π/2 π/2 − μopt π/2
π/2 −π/2 − π − μopt π/2
π/2 π π/2 π π/2 − μopt

π/2 0 π/2 π π/2 + μopt
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n
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k 
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1 

 

Figure 3.8: The trajectory of an off-momentum particle impacting on a primary
horizontal jaw is shown in the normalized phase space. The centre of the circular
trajectory is shifted due to the effect of the normalized dispersion χ and of the
particle energy offset δE.

at a place of the maximum dispersion. A two-stage cleaning system must be im-
plemented also for momentum cleaning and four secondary collimators are needed.
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The critical kick does not depend on the energy offset when:

χ′ = 0, (3.34)

or, in real space coordinates,

D′
z = −αz

βz

Dz (3.35)

at the location of the primary collimator [39]. In this case the optimum phase ad-
vance of the secondary collimators with respect to the primary collimator is the
same for all off-momentum particles. The conditions defined for the pure betatron
cleaning are applicable also in this case.



Chapter 4

The LHC Collimation System

Collimators in proton machines were historically used to reduce the radiation back-
ground at the experiments. The high energy and intensity reached in the LHC and
the use of superconducting technologies require a sophisticated collimation system
for beam cleaning and machine protection. Two straight sections of the LHC ring
are dedicated to momentum (IR3) and betatron (IR7) cleaning. Moreover, addi-
tional protection devices are installed upstream of the most sensitive components of
the machine. Different materials, length and settings have been chosen for various
collimator types, depending on their function. Several implementation phases are
foreseen to follow the increase in machine performance. The cleaning insertions and
the main characteristics of the LHC collimators are presented in this Chapter.

4.1 Design goals of the LHC collimation system

The energy stored in the LHC at 7 TeV would be sufficient to melt 500 kg of Copper.
Such a high power must be controlled in a superconducting environment so that
tight limitations are imposed on the amount of beam that can be lost. About 10−9

of the total beam power can induce the quench of a superconducting magnet. A
sophisticated system of collimators has been designed for the LHC to provide:

1. Beam cleaning, to intercept efficiently the unavoidable particle losses due to
the continuous population of the beam halo.

2. Passive machine protection, to protect the accelerator against losses following
equipment failures or wrong operation of the machine.

3. Minimization of collimation-related background at the experiments to ensure
a clean data acquisition.

The parameters characterizing the LHC and its collimation system extend the present
state of the art by more than two orders of magnitude [41, 42] (see Fig. 2.3).

37
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4.1.1 Quench limit of the LHC superconducting magnets

Superconducting magnets can stand a limited amount of local heating before quench-
ing. The maximum allowed loss rate depends on the energy of the particles and on
the timescale of the loss process.

4.1.1.1 Transient losses

In case of transient losses the number of protons nq inducing a quench is given
by [10]:

nq =
ΔQc

ε
(4.1)

where ΔQc is the amount of heat per unit volume necessary to increase the temper-
ature of the superconducting coils of the magnet to the transition temperature Tc. ε
is the energy per proton and per unit volume deposited in the coil. Three different
regimes can be identified:

1. The duration of the losses δt is much shorter than the time τmetal needed to
reach a thermal equilibrium inside the coil cable (τmetal =6 ms at 450 GeV and
τmetal =3 ms at 7 TeV) and the heat is concentrated around the impact point.

2. Losses are slow enough (δt ≥ τmetal) that the heat can diffuse in the cable but
is not transferred to the surrounding cryogenic liquid helium.

3. The loss duration allows reaching an equilibrium temperature between the
helium and the cable (δt ≥ τHe where, τHe=44 ms at 450 GeV and τHe= 8 ms
at 7 TeV).

Details on these studies are extensively explained in [10] and Table 4.1 summarizes
the values of nq calculated for the different regimes.

Table 4.1: Number of protons inducing the quench of a superconducting magnet for
transient losses at different time scales.

Energy Time Quench limit for
[TeV] local losses [protons]
0.45 δt < 6 ms 1.0·109

δt ≥ 6 ms 2.7·109

δt ≥ 44 ms 2.5·1010

7.00 δt < 3 ms 4.7·105

δt ≥ 3 ms 8.5·105

δt ≥ 8 ms 3.4·107
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4.1.1.2 Continuous losses

In case of continuous losses the heat deposited on the coils should be constantly
evacuated in order to keep the temperature below Tc. In reality superconducting
cables are covered by an insulating layer that limits the heat exchange with the
superfluid helium. Studies performed in Saclay provided measurements of the power
deposition required for causing the quench of a magnet in a regime of slow continuous
losses [10]. The maximum allowed proton loss rate on the LHC superconducting
magnets Rq was then evaluated for different energies (see Table 4.2) [43].

Table 4.2: Maximum allowed proton loss rate Rq and local loss rate R̃q for continuous
slow losses on the LHC superconducting magnets as a function of the energy.

Energy Rq R̃q

[TeV] [p s−1] [p s−1m−1]
0.45 7.0·108 7.0·108

1 1.6·108 1.9·108

1.5 8.2·107 9.7·107

2 5.1·107 6.1·107

2.5 3.6·107 4.2·107

3 2.7·107 3.1·107

3.5 2.1·107 2.4·107

4 1.6·107 1.9·107

4.5 1.3·107 1.6·107

5 1.1·107 1.4·107

5.5 9.1·106 1.2·107

6 7.6·106 1·107

6.5 6.4·106 8.8·106

7 5.4·106 7.8·106

The energy of the impacting protons is dissipated over a certain length that can
be approximated with the effective length of the secondary particle showers Leff .
The local proton loss rate R̃q inducing a quench can then be defined as:

R̃q =
Rq

Leff

. (4.2)

“Monte-Carlo” programs permitted to compute Leff=1 m at 450 GeV and Leff=0.7 m
at 7 TeV [10]. A linear variation of Leff was assumed to evaluate in this thesis for the
first time R̃q as a function of the beam energy. The results are reported in Table 4.2
and in Fig. 4.1. A numerical fit of the data shows that the variation of R̃q with the
energy is well approximated by the equation:
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R̃q = 1.7 · 108E− 3
2 (4.3)

where the energy is in units of TeV.

 

 

~
 

Figure 4.1: Maximum allowed proton loss rate R̃q for local slow continuous losses
as a function of the energy. The red line shows that R̃q varies with the energy
approximately like E−3/2.

4.1.2 Cleaning inefficiency

Particles escaping from primary and secondary collimators can be lost in the cold
aperture of the machine. The performance of the collimation system is described by
the “global cleaning inefficiency” ηc that measures the leakage rate and is defined,
for a certain aperture Ac, as [44]:

ηc(Ac) =
Np(A > Ac)

Nabs

. (4.4)

Here Np(A > Ac) is the number of particles leaving the cleaning insertion with
a normalized amplitude A > Ac. Nabs gives the total number of particles which
experienced inelastic interactions in a collimator jaw. For the LHC Ac=10σ is con-
sidered as a typical case (aperture of the absorbers see 4.3.2). Inefficiency ηc should
be smaller than 10−3 when operating the machine at top energy, corresponding
to 99.9% efficiency. Another important aspect for the evaluation of the cleaning
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performance is the distribution of losses along the machine. A local concentration
of losses could induce quenches of the superconducting magnets even if the global
cleaning efficiency satisfies the design requirements. On this basis the local cleaning
inefficiency η̃c was introduced [44] and reads:

η̃c =
ηc

Ldil

, (4.5)

where Ldil is the dilution length of the losses. A dilution length Ldil of 50 m was
assumed for early efficiency studies. The development of powerful tracking tools [45]
and detailed machine aperture models [18] allowed to localize losses with a high
resolution (up to 10 cm) (see section 5.3). Local loss spikes were revealed permitting
to identify the critical loss regions of the machine.

4.1.3 Maximum beam load at the collimators

The LHC collimation system has to protect the machine both during normal oper-
ation and in case of accident. Therefore, collimators must set the tightest aperture
restrictions in the machine. They receive the highest radiation dose and are the first
objects hit by the beam in case of failure. The total transverse energy density ρE is
defined as:

ρE =
E Ntot

2πσxσy

(4.6)

and is 1 GJmm−2 at the location of the primary collimators (rms transverse beam
size: σx≈σy≈240μm) for nominal beam intensity (Ntot=3.22·1014 p) at E=7 TeV.
Any possible hardware solution for the collimators can only stand a small fraction of
the LHC beam. An accurate estimation of the beam load at the collimators, in case
of regular and abnormal beam losses, was required to finalize the hardware design.

4.1.3.1 Normal losses

The LHC collimators should withstand losses necessary to run the machine close to
the quench limit of the superconducting magnets. The maximum allowed proton loss
rate Rloss at the collimators is given by the quench limit R̃q and the local cleaning
inefficiency η̃c [46]:

Rloss =
R̃q

η̃c

. (4.7)

It is correlated to the beam lifetime through:

τ ≈ Ntot

Rloss

. (4.8)
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Based on operational experience at LEP, RHIC, TEVATRON and HERA, a min-
imum LHC beam lifetime of 0.1 h at 450 GeV and 0.2 h at 7 TeV was specified [11]
for a period ΔT=10 s. The loss rate can reach a peak during the first second of the
acceleration ramp when the expected beam lifetime drops to 20 s and about 5% of
Ntot can be lost (uncaptured beam). A minimum lifetime τ of 1 h is specified for
continuous losses both at injection and collision energy [11]. The loss rate Rloss and
the maximum power deposition Ploss in the collimators were calculated from eq. 4.8
for the beam lifetimes and loss durations just introduced. Results are summarized
in Table 4.3.

Table 4.3: Specified minimum beam lifetimes, loss durations, maximum proton loss
rates and power deposition in the LHC collimators in case of normal losses [11].

ΔT τ Rloss Ploss

[s] [s] [p s−1] [kW]
Injection continuous 1.0 0.8·1011 6

10 0.1 8.6·1011 63
Ramp ≈1 0.006 1.6·1013 1200

Top energy continuous 1.0 0.8·1011 97
10 0.2 4.3·1011 487

4.1.3.2 Abnormal losses

The dump system is too slow (2-3 LHC turns) to provide protection in case of a fast
increase of the loss rate (over one LHC turn), induced by injection and extraction
failures. For this reason, robustness is one of the main design features of the LHC
collimators which must withstand high instantaneous energy deposition without
damage. The specified beam loads over one turn for the various error scenarios
described in 3.3.2 are reported in Table 4.4 [1]. These values refer to the nominal
LHC beam parameters. For the asynchronous beam dump scenario it was assumed
that protons between 5σx and 10σx can impact on a collimator. An average βx of
410 m at the extraction kickers was considered [47].

4.1.4 Performance reach from cleaning efficiency

An estimate of the maximum allowed beam intensity Imax (expressed in number
of protons) at the quench limit is obtained in case of slow continuous losses by
combining eq. 4.7 and eq. 4.8, and reads [46]:

Imax =
τ · R̃q

η̃c

. (4.9)
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Table 4.4: Beam load deposited in collimators for injection and extraction failure
scenarios [1].

Beam Deposited Deposited Duration
energy [TeV] intensity [p] energy [kJ] [ns]

Injection error 0.45 2.9·1013 2073 6250
Asynchronous 0.45 6.8·1011 49 150

dump (all MKDs) 7 4.8·1011 538 100
Asynchronous 0.45 10.2·1011 74 225

dump (one MKD) 7 9.1·1011 1021 200

The higher the local cleaning inefficiency, the lower is the number of particles which
can circulate in the ring without inducing quenches, for a given beam lifetime. The
“equivalent quench limit” η̃q can be calculated from eq. 4.9 as:

η̃q =
τ R̃q

Inom

. (4.10)

Thus we get, for the nominal beam intensity (Inom≡Ntot), the minimum beam life-
times from Table 4.3 and the maximum allowed local loss rates from Table 4.2:

• η̃q=7.8·10−4 m−1 at injection.

• η̃q=1.7·10−5 m−1 at top energy.

Local losses on superconducting magnets must always be compared to η̃q in order to
estimate Imax. For the collimation studies presented in this report Imax is derived
from eq. 4.9 and eq. 4.10 as:

Imax =

(
η̃q

η̃cold
max

)
Inom (4.11)

where η̃cold
max is with the maximum of local losses on any cold element (see section

5.3). The same quench limit values are used for all superconducting magnet types
without distinction, corresponding to an energy deposition of 5 mWcm−3. This is a
conservative assumption for operation of the magnets at the nominal temperature
of 1.9 K while a factor of two lower values can be expected for the MQM and MQY
quadrupole magnets if the temperature rises up to 4.5 K [48].

4.1.5 Performance reach from collimator induced impedance

The LHC collimator jaws are movable (see 4.3.1) in order to follow size and position
of the beam. The smallest jaw openings are about 8 mm at injection and 2.5 mm at
top energy. The presence of the collimator jaws close to the beam has consequences:
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1. The transverse geometric and electrical discontinuity of the vacuum tank cross
section can create electromagnetic trapped modes.

2. Coherent tune shifts are induced by the “resistive-wall impedance” of the col-
limator jaws [49].

Collimator related impedance can lead to an important reduction in the stable beam
intensity Imax since the effect directly depends on the beam intensity. The problem
of trapped modes is addressed by tapering the ends of the jaws (see Fig. 4.4), and
by adding RF fingers (see Fig. 4.5). RF fingers provide electrical contact to the
vacuum tank and pipes. The real part of the impedance (resistive contribution)
can be reduced by increasing collimator gaps (accepting lower cleaning efficiency
see section 6.1.5.3) or by using low resistivity materials. Also, a transverse feedback
system can be used to damp coupled bunch instabilities [50]. In addition two families
of magnetic octupoles are installed in the LHC to provide “Landau damping” of the
coherent beam oscillation modes [51]. This increases the stability of the beam.

4.2 Phased implementation
The LHC collimators ideally should satisfy all the requirements introduced so far
in order to allow reaching nominal and ultimate machine performance. One crucial
point of the collimator hardware design concerns the choice of the jaw materials. A
suitable material should be characterized by:

• Good absorption rate for cleaning efficiency.

• High robustness to withstand normal and abnormal operation without damage.

• Low electrical resistivity to reduce the impedance.

However, the constraints are conflicting. Robustness against damages imposes the
usage of a low Z (atomic number) material to reduce the power deposition in the jaw.
On the other hand, maximum cleaning efficiency would require a high Z material.
Metallic materials could reduce the impedance from the collimators but they would
hardly survive in case of an accident. A phased approach was adopted to address
the various issues [52].

4.2.1 Phase 1

The initial phase 1 collimation system is the central part of the overall system. A
detailed description is given in section 4.3. It is a multi-stage system composed by
primary, secondary collimators and absorbers, located in dedicated cleaning inser-
tions of the LHC ring. In addition, protection elements shield the most sensitive
parts of the machine.
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Maximum robustness and flexibility were defined as the priority for phase 1 even
if this implies initially lower cleaning efficiency and higher impedance. On this basis,
a low Z material was chosen for primary and secondary collimators which then are
highly resistant to beam impact. The phase 1 system will be used, for the whole
lifetime of the LHC, from injection up to the end of the energy ramp for any beam
intensity. The loss rate and the risk of damaging the collimators is higher during
these phases of operation. Phase 1 collimators will also be used initially for cleaning
at high energies and reduced intensities.

4.2.2 Phase 2

A complementary set of secondary collimators will be installed behind existing
secondary collimators in a second phase. The phase 2 collimators should use low
impedance material jaws with a higher cleaning efficiency (for example higher Z).
A higher atomic number results in a bigger energy deposition which would make
phase 2 collimators less robust in case of beam impact. This is the reason why these
collimators will be used only in stable conditions at top energy.

CERN is working on the phase 2 project in collaboration with several US labora-
tories like “Stanford Linear Accelerator Center” (SLAC), “Fermi National Accelerator
Laboratory” (FNAL) and “Brookhaven National Laboratory” (BNL). A cylindrical
Copper jaw prototype has been designed at SLAC that, in the eventuality of a dam-
age, could rotate showing a fresh intact surface to the beam [53]. In case of an
accident, the metallic phase 2 jaws could experience significant plastic deformation
(hundreds of μm) and also surface melting and/or vaporization.

CERN experts are working on alternative designs and are investigating, in collab-
oration with the material science department of the “Ecole Polytechnique Fédérale de
Lausanne” (EPFL), advanced materials combining good characteristics of efficiency,
robustness, electrical and thermal properties.

4.2.3 Further implementation phases

A further strengthening of the collimation system is necessary when approaching
nominal and/or ultimate (1035 cm−2 s−1) luminosity. Two additional collimators
TCLP will be installed per beam downstream of IP1 and IP5. These collimators
absorb the high luminosity collision debris, once LHC exceeds about 30% of the
nominal design luminosity (phase 3).

The number of collimators in the cleaning insertions was reduced by 16 with
respect to the ideal system. This was done to reduce cost and work load for phase 1.
It also limits the collimation-induced impedance budget while a 30% loss in clean-
ing inefficiency is predicted. In case of problems with cleaning efficiency during
operation, these collimators could be added (phase 4) to the existing system.
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4.3 Phase 1 collimation system

The phase 1 collimation system consists of 88 collimators which are installed along
the ring plus 14 collimators in the transfer lines. Fig. 4.2 shows a not in scale
scheme of the ring collimator distribution. The main devices are primary (TCP),
secondary (TCSG) and absorbing (TCLA) collimators. They are located in two
dedicated cleaning insertions in the LHC ring: the momentum cleaning in IR3 and
the betatron cleaning insertion in IR7. The remaining ring collimators protect the
most sensitive parts of the machine like injection (TCLI and TDI installed in IR2 for
Beam1 and IR8 for Beam2) and extraction regions (TCDQA plus a TCSG in IR6).
In addition, tertiary collimators (TCT) are installed upstream of the interaction
regions to protect the triplet magnets. Absorbers (TCL) are located downstream of
the IPs to catch debris from physics collisions coming from the experiments. A list
of all the ring collimators and of their main parameters is given in AppendixA.

4.3.1 Collimator hardware design

LHC collimators use two movable jaws which must be centered and aligned with
respect to the beam envelope. In addition the jaw openings must be varied according
to the changes of the beam dimensions as a function of the energy. Four stepping
motors, one at each end of the jaws, are used for aperture and angular adjustments
while a fifth motor shifts transversally the full collimator tank. A rack and pinion
system limits the maximum jaw tilt to less than 3 mrad and preloaded return springs
can induce some auto-retraction of the jaws in case of motor failure (see Fig. 4.3 [54]).
The jaws contain blocks of different materials, depending on the collimator type,
and are water cooled through a heat exchanger formed by copper-nickel pipes. A
GlidCop support bar presses the cooling pipes against the jaw material by means
of clamping springs. Glidcop plates are used to assemble all components together
(see Fig. 4.3 and 4.4). The clamping system allows to enhance the thermal contact
between jaw and heat exchanger without creating mechanical constraints between
materials having different thermal expansion coefficients. The length of the jaws is
not the same for all the collimator types but is always constituted by a flat part,
determining the jaw active length, and by a 10 cm tapering at both ends to avoid
geometrical impedance effects (see Fig. 4.4). All the jaws are 80 mm wide and 25 mm
deep along the active length.

Two collimator jaws are put in a vacuum tank and the whole apparatus is
mounted on dedicated supports installed in the LHC tunnel [55]. A fast plug in
system has been designed in order to reduce as much as possible the installation
time, especially in view of a future operation in a radioactive environment [56]. A
remote control for robotic mounting and dismounting of highly activated collimators
is also under development.

Fig. 4.5 shows the open tank of a secondary collimator. The front view shows
the RF fingers.
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Figure 4.3: Scheme of the LHC collimator: the two jaws are water cooled and a
clamping system insures a good thermal contact with the cooling pipes. Stepping
motors allow to adjust opening and angle of the collimator jaws.
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Figure 4.4: Top and front view of a secondary collimator jaw assembly. The CFC
jaw measures in total 120 cm: 100 cm of active length plus 10 cm of tapering at each
end (top view). Thermal contact with the cooling pipe is enhanced by a system of
springs located behind the GlidCop support bar (front view).
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Figure 4.5: Two jaws are enclosed in a vacuum tank and can be centered with respect
to the beam closed orbit. The front view shows the RF fingers.

4.3.2 Cleaning insertions

Conflicting optics requirements make it necessary to use separate insertions for be-
tatron and momentum collimation [57]. The two insertions were designed both on
the basis of the theoretical conditions presented in section 3.5 and empirical opti-
mizations. The layout consists of primary (TCP) and secondary (TCSG) collimators
plus absorbers (TCLA). TCPs and TCSGs have to scatter the beam halo particles in
order to constrain their losses in the beam cleaning insertions. These are two sided
collimators with fiber-reinforced graphite (CFC) jaws. This low Z material limits
the energy absorption in the jaws and makes these devices extremely robust. Sec-
ondary collimators are 1 m long at the flattop. An active length of 60 cm was chosen
for the primary collimators in order to have the best compromise between cleaning
efficiency and robustness [58]. The TCLA active absorbers are located downstream
of the secondary collimators and have to intercept the tertiary halo particles and
the showers produced by inelastic interactions of the protons inside the TCP and
the TCSG jaws. The TCLAs are also two-sided but use a high Z material (copper
jaws with a tungsten inlay) for the 1 m long flattop of jaws: they have to absorb as
much energy as possible.
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4.3.2.1 Betatron cleaning insertion

The layout of the betatron cleaning insertion is sketched in Fig. 4.6. It includes
three primary collimators (one vertical, one horizontal and one skew TCP), eleven
secondary collimators (two horizontal, one vertical and eight skew TCSGs) and
five active absorbers (three horizontal and two vertical TCLAs). For details see
Appendix A. The angle that defines the azimuthal position of the skew collima-
tor jaws is shown in Fig. 4.7. We introduce σ = σz for the x and y plane, and
σ =

√
σx

2 cos2 ψ + σ2
y sin2 ψ for the skew plane, to be used in the following.

        Horizontal                 Vertical                  Skew 

absorber primary secondary tertiary 

5.7 
 

6.7   10   90   

absorber primary secondary tertiary 
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Collision 

Primary halo 
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32   

Betatron cleaning insertion 

Half-gap: 

Figure 4.6: A three-stage cleaning system is set up for the protection of the arc
cold aperture at injection (top). At collision the machine bottleneck is given by
the superconducting triplets. Tertiary collimators are closed defining a four-stage
cleaning system (bottom).

The long straight sections of the LHC provide a phase advance in the two trans-
verse planes (Δμz) of about 200 degrees. This is not sufficient to fulfill the ideal
phase conditions presented in Table 3.10. Numerical simulations allowed to define
the number of collimators, their relative phase advance and azimuthal positions in
order to achieve the best coverage in the available transverse phase space. Colli-
mators were placed in a low dispersion region. High βz locations were preferred for
obtaining larger gap openings and for reducing impedance (one example is shown in
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x 

y 

Figure 4.7: The azimuthal angle ψ for skew collimators is defined by starting from
the positive x-axis and rotating clockwise in the x-y plane.
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Figure 4.8: Horizontal β-function (βx) and dispersion (Dx) in the betatron cleaning
insertion for the Beam1 injection optics. The longitudinal positions of the horizontal
primary (green line) and secondary (blue lines) collimators are shown.

The opening of the collimator jaws depends on the machine available aperture
aring. A strict setting hierarchy is fundamental to guarantee the performance and the
protection required during the different operational stages. The protection elements
must always be set to an aperture aprot < aring. For secondary collimators the
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condition asec < aprot must always be satisfied. The primary collimators (TCP)
must be the closest element to the beam and aprim < asec has to be valid. The
standard betatron collimator settings were defined, according to these rules, for the
nominal injection and collision parameters and are shown in Table 4.5 and in Fig. 4.6.

Table 4.5: Nominal betatron collimator settings at injection and collision energy.

Collimator Half-gap [σ]
Location type Injection Collision

IR7 TCP 5.7 6
TCSG 6.7 7
TCLA 10 10

At injection the tightest aperture limitation is in the arcs (aring≈7.5σ) and the
protection elements (see 4.3.3.1) are set to 6.8σ. The half-gap of the secondary
collimators (TCSG) is 6.7σ. Therefore a 1σ retraction is kept between primary and
secondary collimators. A three-stage cleaning system is then completed, by setting
the active absorbers to 10σ, for protecting the arc cold aperture. At collision, the
aperture of the triplets in the high luminosity insertions (aring≈8.4σ in IR1 and
IR5 for βz*=0.55 m) imposes to close the tertiary collimators (TCT see 4.3.3.3) to
8.3σ. These collimators intercept particles of the tertiary halo escaping from the
cleaning insertions and reduce the losses on the downstream magnets. Primary and
secondary collimators are set to 6σ and 7σ respectively and the TCLA to 10σ. The
TCTs strengthen the betatron system by introducing a fourth stage of cleaning.

4.3.2.2 Momentum cleaning insertion

The LHC momentum cleaning insertion is optimized for horizontal collimation. This
system consists of one horizontal primary, four secondary (all horizontal within
±10 deg azimuthal angles) and four absorbing (three horizontal and one vertical)
collimators. For details see AppendixA.

Table 4.6: Nominal momentum collimator settings at injection and collision energy.

Collimator Half-gap [σ]
Location type Injection Collision

IR3 TCP 8 15
TCSG 9.3 18
TCLA 10 20
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Secondary
collimators
(TCSG)

Primary
collimator
(TCP)

Figure 4.9: Horizontal β-function (βx) and dispersion (Dx) in the momentum clean-
ing insertion for Beam1 injection optics. The longitudinal position of the horizontal
primary (green line) and secondary (blue lines) collimators is shown.

The momentum collimators must intercept off-energy protons which, for example,
are lost at the beginning of the energy ramp. Their openings were defined in order to
intercept particles with Δp/p <-10−3. The nominal settings are listed in Table 4.6.

The horizontal dispersion Dx in IR3 (see Fig. 4.9) is high by design and, at the
location of the primary collimator, eq. 3.35 is valid (for the MAD-X optics version
V6.500: αx=1.72, βx=131.18 m, Dx=2.14 m, D′

x=-0.03). The specifications (as given
in Table 3.10) for the horizontal case can then be applied to this system with a
limited redesign. The horizontal (μx) and vertical (μy) phase advances along the
momentum cleaning insertion with respect to the primary collimator location are
shown in Fig. 4.10. The effective positions of the secondary collimators (blue dashed
lines) show a good agreement with the optimum phases predicted by the theory (red
circles).

4.3.3 Protection elements

Special protection devices shield the most sensitive parts of the LHC.

4.3.3.1 Injection regions

The injection beam stopper (TDI) is used for injection setup and machine protection
in case of failure of the injection kickers. The TDI is a vertical collimator and consists
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Figure 4.10: Phase advances along the momentum cleaning insertion with respect
to the primary collimator location [57]. Red circles indicate the optimum phase
advances for the secondary jaws according to theory (see Table 3.10). Blue dashed
lines define the effective positions of the secondary collimators. Note, that theory
requires four secondary jaws for one primary collimator. One of the secondary
collimators account for two of these jaws such that only three locations for secondary
collimators are retained. The installed system has one additional collimator.

of two 4.2 m long carbon-carbon composite jaws. The upper jaw should intercept
bunches not sufficiently deflected by the injection kickers, while the lower jaw should
catch miskicked circulating beam.

Two supplementary injection protection collimators (TCLI) are installed down-
stream of IP2 (Beam 1) and IP8 (Beam 2). The TCLI are vertical two-sided colli-
mators. Two different designs are required for these collimators:

• TCLIA: These are “two beams in one tank” design collimators located in the
machine regions with common beam pipes for Beam1 and Beam2.

• TCLIB: Classical “one beam in one tank” design, identical to the TCSG type.

The injection protection collimators must be retracted before the beginning of the
energy ramp. Their half-gaps at injection are listed in Table 4.7 and are defined
according to the requirement that aprot < aring.
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Table 4.7: Nominal settings of the injection protection devices. These elements are
fully retracted at top energy.

Collimator Half-gap [σ]
Location type
IR2-IR8 TDI 6.8

TCLIA/B 6.8

4.3.3.2 Extraction region

The power load on the superconducting magnets downstream of the extraction region
(IR6) has been presented in Table 4.4 for the case of asynchronous beam dump.
Two identical, single-sided mobile diluter elements (TCDQA) are installed in IR6
and have to absorb the beam swept over the machine aperture in order to avoid
damage. Each TCDQA is constituted by one horizontal, 3 m long CFC jaw located
at the extraction side (positive x coordinate; see Fig. 3.1). One horizontal TCSG
collimator is placed immediately after the TCDQAs to provide further protection to
the downstream elements. Table 4.8 contains the nominal settings at injection and
collision energies.

Table 4.8: Nominal settings of the extraction protection elements at injection and
collision energies.

Collimator Half-gap [σ]
Location type Injection Collision

IR6 TCDQA 8 8
TCSG 7 7.5

4.3.3.3 Experimental insertions

At top energy the beam has to be squeezed in order to reach the nominal βz* values
at the interaction points. The squeeze implies that the β-function at the triplet
magnets increases and this induces a reduction of the available aperture in these
regions (see Fig. 4.11).

Horizontal (TCTH) and vertical (TCTV) tertiary collimators are installed up-
stream of the triplet magnets to provide protection during squeeze and collision.
They are two-sided collimators formed by 1 m copper jaws with a tungsten inlay.
Tertiary vertical collimators in IR1 and IR5 have the classical one-beam design
(TCTVA identical to the TCLA type), while the TCTV in IR2 and IR8 have a “two
beams in one tank” design (TCTVB). The TCTs have to be closed following the
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Figure 4.11: Aperture at the triplet magnets as a function of the βz* values. This
case refers to the squeeze of Beam1 in IP1 from [59].

squeeze of the beam and, in particular, when the triplet aperture becomes smaller
than the arc aperture (for example, in IR1 when βz*<5 m as seen in Fig. 4.11). Col-
limation studies that are presented in this PhD work, were performed by setting
the collimators in all the experimental regions according to the gap requirements
of the high luminosity insertions, namely to 8.3σ for a βz* of 0.55 m (see Table 4.9
“simulated”). This is a performance optimized setting that allows to distribute the
load of the quartiary halo over all the TCTs. More relaxed gaps can be applied to
the TCTs in IR2 and IR8, for reducing the halo-related background in ALICE and
LHCb (see Table 4.9 “Triplet protection”). This would lead to an increase in the halo
load on the TCTs in IR1 and IR5.

The arc cold aperture at injection shields the triplet aperture so that, ideally,
the tertiary collimators could be kept completely retracted. This setting was used
for the studies presented here (TCTs out, see Table 4.9 “simulated”). Only few losses
were seen in the experimental straight sections. During operation, however, the
TCTs might be closed to the apertures listed in Table 4.9 (“triplet protection”) to
insure a safer machine protection.

Finally, special absorbers (TCL) located downstream of the high luminosity IPs
use two pure copper jaws (1 m flattop) to catch the physic debris coming out from
the interaction points during collisions (see settings in Table 4.9).
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Table 4.9: Settings of tertiary collimators in the experimental regions at collision
(βz*=0.55 m in IP1 and IP5, βz*=10 m in IP2 and IP8) and injection energies
(βz*=11 m in IP1 and IP5, βz*=10 m in IP2 and IP8). The values required for
triplet protection and used for simulations are listed. It is noted that the triplets at
injection are protected by the smaller aperture in the preceding arc. Using TCTs
for protection at injection is therefore a safety measure but not required (see also
text).

Collimator Half-gap [σ]
Location type Triplet protection Simulated

Collision IR1-5 TCTH/V 8.3 8.3
IR2 TCTH/V 45 8.3
IR8 TCTH/V 30 8.3

Injection IR1-5 TCTH/V 9.5 out
IR2-8 TCTH/V 9.2 out

Table 4.10: Nominal settings of the absorbers for physics debris located downstream
of the high luminosity experimental regions. These elements are completely retracted
when collisions do not take place.

Collimator Half-gap [σ]
Location type

IR1-5 TCL 10

4.3.4 Phase 1 limitations

The impedance budget of the LHC is dominated by the contribution of the CFC
collimators installed along the ring. At collision energy, their small half-gaps and
the high resistivity of the jaw material (10−5 Ωm) can cause instability if the beam
intensity is higher than 40% of the nominal one [60]. This estimate takes into account
the beam stabilization provided by the octupoles through “Landau damping”.

The values calculated for the equivalent quench limit η̃q in 4.1.4 show that a
99.998% cleaning efficiency (for the conservative case of Ldil=1 m) is necessary for
a safe machine operation. Studies performed during this PhD and presented in the
following demonstrate that the design cleaning efficiency of the full phase 1 collima-
tion system at top energy is 99.995%, in case of a perfect machine. This implies
that some magnets could quench if Imax>0.37Inom (see section 6.1.2). The basic
limitation comes from concentration of losses above the quench limit in the disper-
sion suppressor just downstream of the betatron cleaning insertion. These losses are
due to particles which experience “single diffractive scattering” (see section 3.4 and
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6.1.2) in the primary collimator jaws and escape from the cleaning insertion without
interacting with any secondary collimator. The cleaning efficiency is expected to
worsen by up to a factor of 11 in the real machine due to unavoidable imperfections
(see section 6.2).

4.3.5 Beyond phase 1 limitations

Different possibilities for the upgrade of the collimation system are under inves-
tigation, in order to improve the cleaning efficiency and to reduce the collimator
induced impedance. The implementation of phase 2 collimators should reduce the
impedance of the machine from the high resistivity of CFC secondary phase 1 jaws.
On the other hand the new collimators will not solve the efficiency problem linked
to the single diffractive scattering at the TCPs. Possible solutions to the problem
are being studied:

• Higher efficiency TCPs.

• Magnetic collimators.

• Cryogenic collimators [61].

• Electron lens [62].

• Crystals [63].

Between all listed options, performance studies are presently concentrating on
the possibility of adding 2 additional “cryogenic” collimators for each beam in the
IR7 dispersion suppressor at the location of the loss peaks.

4.4 Installation stages
For the commissioning of the LHC different stages with increasing beam intensity
are planned [64]. A number of sub-systems of collimators have been defined which
have specific tasks in order to meet the current LHC requirements. Collimators
are installed in phases, compatible with the LHC commissioning and operational
schedule. This phased approach relies on the fact that difficulties and performance
goals for the LHC are distributed in time, following the natural evolution of the
machine. The installation stages are as follows:

• 2008: The beam intensity will be <1% of Inom and a reduced number of
collimators, with respect to the nominal phase 1 system, will insure the suit-
able cleaning and machine protection. The momentum cleaning insertion is
complete while in the betatron cleaning insertion only six (out of the eleven
foreseen) secondary collimators are installed. Optimization studies allowed to
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identify the best collimator locations for the start up of the machine. The
TCTVB and TCLIA in IR2 and IR8 are missing, as well as the TCLs in IR1
and IR5.

• 2009: During the first shut down the delayed collimators will be installed in
order to complete the nominal phase 1 system.

• 2011/12: Momentum and betatron cleaning insertions will be complemented
with the phase 2 secondary collimators and other improvements.
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Chapter 5

Simulation Setup of Cleaning
Efficiency Studies

In order to study the performance of the LHC collimation system for different optics
and collimator settings a collimation version of the Single Particle Tracking code
“SixTrack” has been developed [45]. This tool together with a detailed aperture
model [18] of the full machine allows assessing the efficiency of the collimation sys-
tem and mapping the regions of the ring which are exposed to proton losses. The
“SixTrack” output provides input for energy deposition studies of secondary particle
showers, generated by the interaction of the proton beams with the collimator jaws.
In this section, the simulation setup for obtaining detailed loss maps is presented.

5.1 LHC optics files for SixTrack

The first step for running simulations with “SixTrack” [65] consists in the definition
of the machine optics. This is done through the program “MAD-X” [20] specifying
the following parameters:

• Magnetic strength and sequence of the machine elements (including collima-
tors) for the tracked beam (Beam1 or Beam2).

• Beam energy.

• Type of tracked particles.

• Crossing and separation schemes at the interaction points.

Moreover, specific matching routines are used to set the horizontal (Qx) and vertical
(Qy) tunes and the chromaticities (ξx and ξy) to the design values listed in Table 2.3.

The collimation “SixTrack” code requires the use of the thin lens approximation.
In this formalism each element is represented by a marker located at the centre of the

61
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drift space replacing the element itself. A conversion module included in the “MAD-
X” program creates a so called “fc.2” output file, containing the geometry and the
magnetic strength of the LHC elements for the analyzed optics. This file, renamed as
“fort.2” [65], is the model of the lattice used by “SixTrack” for the element-by-element
tracking.

5.2 “SixTrack” for collimation studies

The version of the “SixTrack” code modified for collimation studies [45, 66, 67] allows
to track each particle of an initial distribution along the machine for many hundred
turns. It performs an element-by-element, fully chromatic and coupled tracking, it
can handle magnet non-linearities up to the 20th order and it can apply linear and
non-linear error models. Moreover, dedicated subroutines are implemented to take
into account the interaction of the halo particles with the collimator jaws (“K2”
code [68]). A six-dimensional coordinate vector is defined for every particle at each
element of the lattice. This code and its interface with a detailed aperture model [18]
are the main tools used for the efficiency studies of the LHC collimation system that
are presented in this report.

5.2.1 Scattering routine

The “K2” scattering routine [68] is implemented in the tracking code used for col-
limation studies, in order to simulate the interaction of each incident particle with
the collimator jaw materials (see section 3.4 for a description of interactions). This
routine is based on the Monte Carlo method. Interaction processes (MCS, ioniza-
tion, elastic or inelastic point like interactions etc.) are randomly applied to the
particle depending on the initial coordinates and a weighting of the different point-
like interactions (according to the relative cross-sections) is applied. In this way the
program calculates the distance between two consecutive interactions and evaluates
if and where the particle leaves the jaw. Inelastic interactions cause the creation
of secondary particles, which are not taken into account in the tracking studies for
accelerator physics. Instead, the original proton is considered as “absorbed” by the
collimators, saving its coordinate for transfer to the FLUKA code. Particles experi-
encing elastic interactions, including MCS and SD, exit from the jaw with modified
6D coordinates. Details on scattering routines and definition of cross-sections can
be found in [33, 67].

5.2.2 Input files for tracking

Apart from the “fort.2” file (defining the lattice of the machine without magnetic
field errors), two further input files are needed to run the collimation version of
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“SixTrack”. These files contain all the details about the collimator geometry (col-
limator “database”) and the tracking parameters (“fort.3” [65, 66]). The “database”
file includes for each collimator the following information:

• Collimator name.

• Half gap in σ units.

• Jaw material. The scattering routine of “SixTrack” allows to treat graphite,
copper, tungsten, aluminum, beryllium and lead.

• Jaw active length [m].

• Azimuthal angle [rad] of collimator jaws.

• Transverse collimator gap offset [m].

• Design horizontal and vertical β-function [m] at the collimator location.

In the “fort.3” file it is possible to define the number of particles to be tracked,
their initial distribution and the number of turns. Typically, each simulation uses
about 5·106 halo particles which are followed over 200 turns. The different options
for the initial distribution are:

1. Flat distribution in the selected plane between Ax ± δAx (horizontal) or Ay ±
δAy (vertical). Ax,y is the normalized amplitude of the particles, which are gen-
erated in a range of ±δAx,y around this value (see Fig. 5.1 left). The amplitude
in the other plane is zero.

2. Same as in 1, plus a Gaussian distribution cut at 3σ in the other plane (see
Fig. 5.1 right).

3. Same as in 2, plus a longitudinal component defined through an rms bunch
length (nominally 11.24 cm at 450 GeV, 7.55 cm at 7 TeV [1]) and rms energy
spread (nominally 3.06·10−4 ΔE/E at 450 GeV, 1.13·10−4 ΔE/E at 7 TeV [1]).
See Fig. 5.2.

4. An arbitrary six-dimensional external distribution.

5. A radial transverse distribution of radius Ar. This correspond to a flat distri-
bution both in horizontal and vertical plane between Ax ± δAx and Ay ± δAy

where: Ax = Ay = Ar√
2
.

The values for Ax,y,r, δAx,y,r (in σ units) and the distribution type are indicated in the
“fort.3” file and define the size of the beam halo in the selected plane. The halo has to
be defined precisely in order to generate impacts of the halo particles at the betatron
primary collimators. Its amplitude must be larger than the collimator setting (5.7σ
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Figure 5.1: Particle distribution in the x − x′ and y − y′ phase space (top) and in
the x − y space (bottom) for a horizontal halo of type 1 (left) and type 2 (right) .
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Figure 5.2: Gaussian distribution of the halo particles, cut at 2σ, in the longitudinal
plane (type 3).

at 450 GeV and 6σ at 7 TeV, see section 5.4). Moreover the impact parameter b (see
3.5.1) can be controlled by defining the amplitude A and the spread δA around
it. Studies on diffusion processes of the LHC beam [15] showed an expected impact
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Figure 5.3: Particle distribution in the x − x′, y − y′ phase space (left) and in the
x − y space (right) for a radial halo of type 5.

parameter smaller than 1μm at the primary collimators [46]. This was used as target
value for all studies reported in this PhD work.

The “fort.3” input file allows to define the aperture of the collimators by families,
as classified in the file itself, or by reading the half gap of each collimator from the
“database”. Also, a logical flag allows choosing either to use the β-function values
calculated for the specified optics at the location of the collimators or to read the
design values listed in the “database” file. These two last options are needed to
simulate special settings for single collimators and error scenarios.

Specialized subroutines are implemented in “SixTrack” to treat collimator im-
perfections. A systematic deformation can be applied to the collimator jaws. The
bending is approximated by a polynomial function of 5th order maximum whose co-
efficients are specified in the “fort.3” file. The original flat jaw is sliced in a number
of equal parts (indicated in “fort.3”) and the ends of each slice are projected on the
polynomial curve. The slices represent the deformed jaw as depicted in Fig. 5.4.
The code allows to apply a different deformation to left and right jaws (different
polynomial coefficients).
Finally, the “fort.3” permits to specify symmetric or antisymmetric jaw tilts and
offsets, plus random tilts, offsets and gap errors for the jaws of whatever family of
two sided collimators.

5.2.3 Simulation output files

Every particle interacting with a collimator is tracked until it experiences an inelas-
tic scattering with a jaw. It is then considered absorbed for “SixTrack”. All the
trajectories of halo particles are saved in the “tracks2.dat” file that contains the co-
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Figure 5.4: Example of a jaw with non-zero flatness. The 5th order polynomial has
been defined by fitting real flatness measurements (TCSG prototype after the 2004
robustness test [69]).

ordinates of each particle in the six-dimensional phase space (x, x′, y, y′, s, ΔE/E).
Particle coordinates are saved at the location of each element for all the tracked
turns. Similarly, the transverse coordinates of the inelastic interactions along the
jaw lengths are stored in the “FLUKA.dat” file, as input for energy deposition stud-
ies. This file overestimates the number of absorptions, since “SixTrack” does not
perform any aperture check and carries on tracking particles which in reality would
be lost in the mechanical aperture of the machine. The same overestimate is found
in the “coll_summary.dat” file that summarizes for each collimator the number of
impacts and absorptions and the impact parameter b averaged over the total number
of impacting particles. The overestimates are corrected later on.

A further estimate of b can be deduced by the “FirstImpacts.dat” file that lists
the incoming and outgoing transverse and longitudinal coordinates of particles, in-
teracting for the first time with a collimator as a function of the turn number. This
file allows to estimate the effect of non linear magnets (mainly sextupoles) on b al-
ready at the first turn and then to verify if the amplitude of the initial distribution
(generated at the IP1) on the primary collimator matches with the expected value
(see 5.4). Finally the “collgaps.dat” file includes all the information related to the
collimator geometry and main optics parameters at the collimators, while the “effi-
ciency.dat” file contains the global cleaning efficiency data as defined in eq. 4.5 for
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each simulated plane.

5.3 Maps of particle losses
In order to identify the particles which are lost in the mechanical aperture of the
LHC ring and to localize these losses, a detailed aperture model of the full machine,
not including collimators and protection elements, is available [18]. The “Beam-
LossPattern” program [66] compares trajectories derived from the “tracks2.dat” file,
through element-by-element interpolation with the aperture model. It permits to
identify loss locations with an arbitrary resolution Δs. In Fig. 5.5 an example of a
particle trajectory in the LHC aperture model is shown. Two equivalent files, dif-

Figure 5.5: Example of a trajectory of a particle lost in an LHC interaction re-
gion [18].

fering only in the resolution used for the interpolation, are generated as output: the
“LP_PartLost.dat” (1 m resolution) and the “LPI_PartLost.dat” (10 cm resolution)
files. These files store the 6D phase space coordinates of every particle that hits an
aperture limit as well as information to which halo they belong to. An auxiliary
program (“CleanInelastic”) uses this output to clean up the “FLUKA.dat” file from
the fake absorptions due to particles formerly lost in the machine aperture. The re-
sulting new “impacts_real.dat” file is the main input for energy deposition (FLUKA)
and background studies. FLUKA calculates the showers of particles generated by
the inelastic interaction of the primary protons with the different collimator jaw
materials. For this PhD no FLUKA studies were performed by myself, though lots
of input files were provided to various experts.

The simulation tools allow to draw detailed loss maps for different optics and
collimator settings. One example is shown in Fig. 5.6. This graph refers to the old
injection optics (see Table 2.4) for a Beam1 horizontal halo (distribution number 1
in 5.2.2) and the full phase 1 collimation system at nominal settings. Here, the local
cleaning inefficiency η̃c is defined as:
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η̃c =
NΔs

lost

Δs · Nabs

. (5.1)

This is analyzed along the length of the machine with a Δs=10 cm resolution. NΔs
lost

is the number of particles lost within Δs while Nabs is the number of particles
absorbed by the full collimation system. The blue bars in Fig. 5.6 represent proton
losses on the superconducting magnets, while the red bars indicate losses on the
room-temperature magnets.

The gray peaks show the particles which are absorbed by the collimators. In this
case, Δs in the definition of η̃c is substituted by the jaw active length. This is the
reason why η̃c for the 0.6 m primary collimators can be bigger than 1. Furthermore,
the expected quench limit for the specified peak beam loss is indicated in order to
provide a visual reference for the target value in collimation inefficiency. Losses in
superconducting magnets (blue lines) must be below the quench limit for preventing
that the superconducting magnets quench during a peak beam loss.

~

Beam 1 

450 GeV 

s [km] 

Figure 5.6: Example of loss map with a 10 cm resolution for the horizontal halo
of beam1 (distribution type 1) at injection energy and for the nominal phase 1
collimator settings.
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5.4 Impact parameter and efficiency

The collimation studies presented in this report focus on simulations of betatron
halos, because the tightest requirements apply here. The halos are generated at
IP1 by defining a particle distribution with such an amplitude as to interact with
the primary collimators installed in the betatron cleaning insertion of IR7. The
amplitude of this distribution is calculated on the basis of the the TCP half-gaps
and the target impact parameter. The primary collimators have an half opening of

Table 5.1: Starting beam size and spread for on momentum particle distribution
that gives a 1μm impact parameter at the horizontal primary collimator in IR7 (for
optics V6.500).

Ax,y ± δAx,y at 450GeV Ax,y ± δAx,y at 7TeV
Beam1 5.630±0.0015 5.958±0.0015
Beam2 5.666±0.0015 5.975±0.0015

5.7σ at injection and 6σ at top energy. In order to have a 1μm impact parameter,
the initial distribution should be generated around 5.701σ at injection and 6.004σ
at top energy. In reality, some smear induced by non-linear magnets must be taken

μ

 

 

Figure 5.7: Impact parameter b as a function of the number of turns for the b=1μm
at first turn case, injection energy and Beam 1 horizontal halo. Only the particles
interacting for the first time with the collimator are considered.
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into account. Size and spread of the distributions that give, at the first turn, the
desired impact parameter at the TCPs are listed in Table 5.1 for the two beams at
injection and collision energy. An average increase, from IP1 to IR7, of the order of
50μm at 450 GeV and of 10μm at 7 TeV is found.

This smearing is amplified by multi turn effects with an increase of b by up to
a factor of 100. In Fig. 5.7 the variation of b as function of the number of turns
is presented for the injection energy case (Beam 1 horizontal halo). The impact
parameter is evaluated averaging over all the particles impacting for the first time
with the collimator at the selected turn. The plot shows that b is modulated by the
phase advance between consecutive turns and that it reaches its maximum after 22
turns. The value of b averaged over 200 turns is 7μm.

Dedicated studies were performed to estimate the influence of the impact param-
eter on the global and local cleaning inefficiency. For this purpose a scan over b was
done for the two beams at injection and collision energy. Results are presented here
for Beam1 at 450 GeV. Using the 17 m βz* optics, several values of b from 0.1μm up
to 250μm were considered and the relative inefficiency curves are shown in Fig. 5.8.

 

 

Figure 5.8: Inefficiency curves for impact parameters at first turn varying from
0.1μm up to 250μm. The statistical error is within the marker width.

Globally, the inefficiency of the LHC collimation system does not change for b
spanning from 0.1μm up to 10μm while it starts decreasing for b=55μm (becoming
better). For higher impact parameters there is an average gain of a factor of two.
This is due to the fact that the impact parameter averaged over the full number of
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turns varies slightly (from 6.7μm up to 8.8μm) for b up to 10μm and starts then
increasing significantly for higher b (up to 275μm for an initial b of 250μm). For
b>55μm the probability of having particles absorbed at the primary collimators is
higher, as well as the chance for the out-going particles to interact with one of the
downstream collimators. Looking at the local cleaning inefficiency and in particular
at the highest peak corresponding to losses on a superconducting magnet (η̃max

cold ),
equivalent results are found (see Fig. 5.9).

It is concluded, that performance estimates can be artificially better when impact
parameters become too high. Sextupoles for chromaticity corrections were used for
all studies performed during this work. The impact parameter was checked to be
small enough, that error in cleaning efficiency are below about 10%.

~
 

Figure 5.9: Local cleaning inefficiency corresponding to the highest peak of losses
on a superconducting magnet for b at first turn varying from 0.1μm upto 250μm.
Error bars indicate the statistical error.



72 5. Simulation Setup of Cleaning Efficiency Studies



Chapter 6

Simulations for LHC Collimation
Commissioning

This chapter contains the main results of a large number of simulations performed
for several optics schemes and possible settings of collimators during the LHC beam
commissioning. The degradation of the cleaning efficiency as a function of machine
and collimator imperfections is evaluated for the first time with multiple errors.

6.1 Efficiency of the LHC collimation system after
ideal beam based setup

The performance of the LHC collimation system is evaluated by deriving detailed
loss maps through the use of “SixTrack” and a realistic machine aperture model
as described in section 5.3. The horizontal, vertical and skew (radial distribution)
halos are simulated separately. Ideally, for each optics and collimator settings, all
the halos should be analyzed, for both beams, in order to identify the one imposing
the tightest limitation in beam intensity for safe machine operation. This has been
done for the ideal machine and nominal collimator layout of the full phase 1 system
(see section 4.3).

6.1.1 Perfect machine at injection energy

In Table 6.1 the values of local cleaning inefficiency η̃cold
max are listed for all the men-

tioned halos at injection energy. The error on η̃cold
max is purely statistical and is given

by:

ση̃max
cold

=
σNΔs

lost

Δs · Nabs

(6.1)

where

73
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σNΔs
lost

=
√

NΔs
lost. (6.2)

Throughout this work a longitudinal aperture binning of Δs= 10 cm was used.

Table 6.1: η̃cold
max for the nominal machine, horizontal, vertical and skew halo, Beam 1

and Beam2, injection optics (17 m βz*). The error on η̃cold
max is purely statistical.

6.4·106 particles were tracked over 200 turns. The number of absorbed protons is
listed for each case.

Beam 1 Beam 2
η̃cold

max [10−5m−1] tot. abs. η̃cold
max [10−5m−1] tot. abs.

horizontal 19.2± 1.8 6,033,061 5.6± 1.0 6,062,911
vertical 3.5± 0.7 6,344,013 10.1± 1.3 6,351,093
skew 0.6± 0.3 6,388,541 0.5± 0.3 6,179,590

Fig. 6.1 shows the loss map for the Beam1 horizontal halo at 450 GeV, that is
the worst injection case. Losses on superconducting magnets appear downstream of

~
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Figure 6.1: Loss map for the horizontal halo of Beam1 at injection energy and for
the nominal phase 1 collimator settings.

the injection protection collimators in IR2, of the cleaning insertions in IR3 and IR7



6.1. Efficiency of the LHC collimation system after ideal beam based setup 75

and of the protection collimators located in IR6. The highest peak is downstream
of IP8 where the βx function has a maximum (asymmetric optics see Fig. 6.2); η̃cold

max

is anyhow well below the quench limit (η̃q=7.8·10−4 m−1).
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Figure 6.2: βx and βy functions around IP8. The location of η̃cold
max the Beam1

horizontal halo at injection energy is shown. The optics around IP8 is asymmetric
and the β-function reaches its maximum downstream of the interaction point.

Even if not shown here, considering the same beam, similar loss patterns are
found for the other halos, with the exception that for the vertical one the dominant
cold peak is in IR2. Beam2 and Beam 1 loss maps present systematic differences due
to the asymmetry of the machine [14]. Beam 2 is injected in IR8 and the collimators
for protection against injection failures are hence located in this insertion. η̃cold

max is
found just downstream of these elements for the vertical and skew halo, while it is
in IR6 for the horizontal one.

6.1.2 Perfect machine at collision energy

At collision energy the Beam1 vertical halo is the most critical one (see Table 6.2
and Fig. 6.3).

The absolute number of particles lost on the machine aperture is smaller than
at injection, and the losses are mainly all concentrated in the region just down-
stream of the betatron cleaning insertion. However, these losses exceed the quench
limit (η̃q=1.7·10−5 m−1) introducing an important limitation on the maximum al-
lowed beam intensity Imax to 37% of its nominal value (see section 4.1.4) [14]. Again
only the loss map referring to the worst performance is shown but the remaining
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Table 6.2: η̃cold
max for the nominal machine, horizontal, vertical and skew halo, Beam 1

and Beam 2, nominal collision optics (see Table 2.4 “lowb.coll_all” case). 5.76·106

particles were tracked over 200 turns for the horizontal and vertical halos and over
400 turns for the skew halo. The number of absorbed protons is listed for each case.

Beam 1 Beam 2
η̃cold

max [10−5m−1] tot. abs. η̃cold
max [10−5m−1] tot. abs.

coll.hor. 3.2± 0.7 5,685,752 2.6± 0.7 5,747,982
coll.vert. 4.6± 0.9 5,621,437 2.6± 0.7 5,716,251
coll.skew 1.7± 1.0 1,739,076 3.4± 1.5 1,455,572

Beam 1 

~

s [km] 

Figure 6.3: Loss map for the Beam1 vertical halo at collision energy and optics
“lowb.coll_all” (see Table 2.4).

Beam1 halos have similar behaviors. For Beam 2 the losses gather downstream
of IR7 (counterclockwise) with some particles lost in sector 6-7. Losses in super-
conducting magnets are dominated (about 94%) by particles experiencing single
diffractive scattering in the primary collimators (see top Fig. 6.4). These particles
are interacting only with the TCPs and lose part of their energy during this inter-
action. When such off-momentum particles exit from the zero dispersion region of
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IR7, they deviate from the nominal betatron orbit and they have a high probability
of being immediately lost in the dispersion suppressor region (see bottom Fig. 6.4).

Starting from the loss maps at 7 TeV, several FLUKA simulations were performed
to evaluate the energy deposition on the most critical cold regions downstream of
the cleaning insertions. The worst case of thermal load was found for the horizontal
beam halo and corresponds to 3.7 mW·cm−3 on the MQ11 quadrupole of IR7 [70].
This estimate is valid both for Beam 1 and Beam 2. A comparable energy deposition
of 3.1 mW·cm−3 was also found on the MQY.4L6.B2 magnet (IR6) for Beam2 [71].
The main source of radiation in IR6 are the electromagnetic showers originating
from the TCSG installed downstream of the TCDQAs in the dump region. The
local cleaning inefficiency at the TCSG.4R6.B2 collimator, that corresponds to the
defined energy deposition on the downstream elements, is η̃IR6

TCSG=1.53·10−4 m−1.
FLUKA simulations predict an energy deposition on the superconducting mag-

nets which is a factor of 1.4 lower than the quench limit. Tracking simulations, on
the other hand, predict losses above the quench limit by up to a factor of 2.7. A con-
servative assumption that particles deposit their full energy over 10 cm is made for
these studies (see section 6.1.1). This is done in order to leave some margin for im-
perfections and uncertainties on the considered quench threshold (see section 6.2.5).
Using a 1m Δs in eq. 5.1 would reduce the local cleaning inefficiency on average by
a factor of 5 and make it consistent with the FLUKA results.

The number of skew halo particles absorbed by the collimation system, for the
two beams at collision energy, is very low. Tracking the same number of particles
(5.76·106), it was found that mostly all of them are absorbed after 200 turns in the
horizontal and vertical cases, while 70% of the skew halo particles keep circulating
in the machine without interacting with any collimator even after 400 turns. Fig. 6.5
shows the number of absorptions at the collimators (top) and of losses on the machine
aperture (bottom) for Beam2 halos over the first 120 turns.

The studies performed and presented in this work, concern mainly horizontal
and/or vertical halo. The choice to study both of them for the two beams or to con-
centrate only on particular cases depends on the different demands of the analyzed
scenarios. The complete exam, presented here, for the nominal optics and collimator
settings provides a useful tool to estimate, for each scenario, the cleaning efficiency
of the collimation system.
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Figure 6.4: Same case as in Fig. 6.3 but just for losses of particles which experienced
single diffractive (SD) scattering at the primary collimators (top). Zoom over the
region of the dispersion suppressor downstream of IR7 (bottom). Horizontal and
vertical dispersion are shown.
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Figure 6.5: Number of particles absorbed at the collimators (top) and lost in the
machine aperture (bottom) for horizontal (red), vertical (blue) and skew (black)
halos over the first 120 turns.



80 6. Simulations for LHC Collimation Commissioning

6.1.3 Beam loss maps during collimator beam based align-
ment

The beam based alignment procedure (see section 7.2.3) requires that each collimator
jaw touches directly the beam halo, acting temporarily as a primary collimator. The
multi-stage cleaning hierarchy is violated. The alignment procedure must therefore
be carried out at low beam intensity. Several scenarios have been analyzed for
Beam1, in order to quantify the maximum usable number of particles. In the first
scheme the last IR7 secondary collimator (TCSG.6R7.B1) was set to act as a primary
collimator (see Table 6.3). All the other collimators were kept at their nominal

Table 6.3: η̃cold
max is listed for the different configurations used to simulate the beam

based alignment of the TCSGs, TCLAs and TCTs. The loss factor in cleaning
efficiency with respect to the nominal settings is shown. For all these cases the rest
of the system stays at the nominal settings (see sections 4.3.2 and 4.3.3).

Injection Collimator@5.7σ η̃cold
max [10−2m−1] Loss factor

TCP@6σ TCSG.6R7.B1 1.63± 0.02 84.9
TCLA.A7R7.B1 2.20± 0.02 114.6

Collision Collimator@6σ η̃cold
max [10−4m−1] Loss factor

TCP@6.3σ TCSG.6R7.B1 1.51± 0.41 4.8
TCLA.A7R7.B1 2.76± 0.22 8.7
TCTH.4R2.B1 2.59± 0.22 8.2
TCTV.4R2.B1 6.40± 0.34 13.8
TCTH.4R5.B1 7.24± 0.45 22.8
TCTV.4R5.B1 1.41± 0.16 3.1

settings except the primary collimator (TCP.C6L7.B1) which was retracted by 0.3σ.
The horizontal halo was tracked and the results at injection energy are shown in
Fig. 6.6. The comparison with the loss map for the nominal settings (Fig. 6.1) reveals
both the presence of new loss locations and the increase in the number of particles
lost in the usual positions. In particular η̃cold

max is still in IR8 but is 84.9 times higher
and Imax is reduced to 5% of Inom. Moreover the number of particles absorbed at
the TCLAs increase in average by a factor of 50. The results for the same settings
but at collision energy are illustrated in Fig. 6.7. In this case the load on the warm
magnets in IR7 is slightly reduced, few new cold loss locations appear and η̃cold

max is
enlarged by a factor of 4.8. In addition the number of particles absorbed at the
TCTs increases by a factor of 9.7 in IR1, 25.2 in IR2 and 20.1 in IR8 while IR5 stays
mostly unchanged.

Even tighter conditions are found if the alignment of the last IR7 absorber
(TCLA.A7R7.B1, horizontal) is simulated. Imax =3.5% of Inom is found for the
injection energy case using a setting of collimators completely analogous to the pre-
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Figure 6.6: Loss map for the 17 m βz* injection optics and the Beam 1 horizontal
halo. The TCP.C6L7.B1 collimator is set at 6σ while the last secondary collimator
(TCSG.6R7.B1) has an half gap of 5.7σ. The rest of the collimation system is set
at the nominal openings.

vious one, but this time with the TCLA set as a primary. A strong increase in the
absorbed particles is recorded, at 7 TeV, at the tertiary collimators in IR8 (about 3
orders of magnitude more than the nominal settings) and at the TCSG in IR6 (2
orders of magnitude) imposing a reduction of Imax to <2% of Inom.

Finally, the TCTs must be aligned for the low-beta collision optics. Horizontal
and vertical halos were simulated when setting the TCTH and TCTV half gaps at
6σ in IR2 and IR5 in order to analyze two different crossing schemes (vertical and
horizontal) and βz* values (10 m and 0.55 m). Table 6.3 contains the η̃cold

max for all the
cited cases and Imax =2% of Inom can be calculated for the alignment of tertiary
collimators. The high peaks (up to 7·10−1 m−1) appearing at the considered TCTs,
impose to use a further reduced intensity for the setup of the full system in order
to avoid damage. For reference, the loss maps for various collimator types during
setup are shown in AppendixB.

Ideally the beam based alignment of the full system should be performed with 1-5
nominal bunches (1.15×1011 p per bunch) at regular intervals given by the machine
stability.
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Figure 6.7: Loss map for the low-beta optics and the Beam1 horizontal halo.
The TCP.C6L7.B1 collimator is set at 6.3σ while the last secondary collimator
(TCSG.6R7.B1) has an half gap of 6σ. The rest of the collimation system is set at
the nominal openings.

6.1.4 Tolerance budget for collimation

The tolerance budget Tb in setting primary and secondary collimators for an opti-
mized cleaning efficiency is defined as [72]:

Tb = n2 − n1 − 0.4σ (6.3)

where n2 and n1 are respectively the half gap of the TCSGs and of the TCPs. Ac-
cording to this formula, at injection energy a setup accuracy of 400μm still allows
300μm closed orbit transient change with 10% dynamic beta-beat (0.3σ). At colli-
sion only 150μm, out of the 250μm corresponding to the nominal 1σ retraction, are
left as a margin for beam instabilities. It is then evident that only a stringent control
and reproducibility of the beam conditions can ensure safe and efficient operation
of the LHC. The tolerance budget is evaluated in more detail in chapter 8.

6.1.5 Performance reach of minimal collimation systems

Efficiency studies for various implementations of the LHC collimation system have
been performed, taking into account the evolution in optics and beam intensity
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according to the LHC commissioning schedule [64]. At low intensity the number
of collimators needed, their openings and setup tolerances are less demanding than
during nominal operation. For this reason different minimal and relaxed settings
were studied in order to define the optimal procedure for the setup of the system.

6.1.5.1 Collimator commissioning scenarios at 450 GeV

Several studies with reduced complements of collimators, at their nominal openings,
were carried out at injection energy. Fig. 6.8 shows the performance improvement
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Figure 6.8: η̃cold
max for different collimator layouts at injection energy (Beam 1 hori-

zontal halo). Collimators are set to the nominal openings, protection elements in
injection and dumping regions are included.

when shifting from a single stage to a multistage cleaning system. When the TCLAs
are added to the TCPs the local cleaning inefficiency is lowered by a factor of 7.8.
If the two-stage system is formed by primary and secondary collimators the perfor-
mance is improved by a factor of 20 and the operation of the 450 GeV machine with
nominal intensity is possible. A further gain of a factor 3.5 is obtained by imple-
menting this configuration with the TCLAs (nominal phase 1 system). For the 2008
start up only six out of the eleven foreseen secondary collimators are installed in the
betatron cleaning insertion of IR7 (see Table 6.4). Such a reduced system implies a
decrease in the local cleaning efficiency with respect to the nominal phase 1 layout
by 30%. All these results are valid both during injection (TDI and TCLI at 6.8σ)
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Table 6.4: List of collimators installed in the LHC ring for the 2008 run. Collimators
used to perform simulations for the 450 GeV collision optics are indicated in the last
column.

Beam1 Beam2 450GeV
complement

TCP.6L3.B1 TCP.6R3.B2 X
TCSG.5L3.B1 TCSG.5R3.B2 X
TCSG.4R3.B1 TCSG.4L3.B2 X

TCSG.A5R3.B1 TCSG.A5L3.B2 X
TCSG.B5R3.B1 TCSG.B5L3.B2 X
TCLA.A5R3.B1 TCLA.A5L3.B2
TCLA.B5R3.B1 TCLA.B5L3.B2
TCLA.6R3.B1 TCLA.6L3.B2
TCLA.7R3.B1 TCLA.7L3.B2
TCSG.4R6.B1 TCSG.4L6.B2 X

TCDQA.A4R6.B1 TCDQA.A4L6.B2 X
TCDQA.B4R6.B1 TCDQA.B4L6.B2 X

TCP.B6L7.B1 TCP.B6R7.B2 X
TCP.C6L7.B1 TCP.C6R7.B2 X
TCP.D6L7.B1 TCP.D6R7.B2 X

TCSG.A6L7.B1 TCSG.A6R7.B2 X
TCSG.A5L7.B1 TCSG.A5R7.B2 X
TCSG.B4L7.B1 TCSG.B4R7.B2
TCSG.A4L7.B1 TCSG.A4R7.B2 X
TCSG.A4R7.B1 TCSG.A4L7.B2 X
TCSG.6R7.B1 TCSG.6L7.B2 X

TCLA.A6R7.B1 TCLA.A6L7.B2
TCLA.B6R7.B1 TCLA.B6L7.B2
TCLA.C6R7.B1 TCLA.C6L7.B2
TCLA.D6R7.B1 TCLA.D6L7.B2
TCLA.A7R7.B1 TCLA.A7L7.B2
TCTH.4L1.B1 TCTH.4R1.B2
TCTVA.4L1.B1 TCTVA.4R1.B2
TCTH.4L2.B1 TCTH.4R2.B2
TCTH.4L5.B1 TCTH.4R5.B2
TCTVA.4L5.B1 TCTVA.4R5.B2
TCTH.4L8.B1 TCTH.4R8.B2 X
TDI.4L2.B1 TDI.4R8.B2 X

TCLIB.6R2.B1 TCLIB.6L8.B2
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and during the flat bottom (injection protection collimators retracted), preceding
the energy ramp. These scenarios include the presence of the protection elements in
the dump region of IR6.

A commissioning run with collisions at 450 GeV was initially planned for 2007
(see section 2.4.2). According to the production and installation schedule, only 18
collimators per beam (see Table 6.4) would have been installed at that time in the
LHC ring. Dedicated simulations were performed to establish the maximum intensity
reach of the machine with such a reduced system for the horizontal and vertical halo
of the two beams. The resulting η̃cold

max for the “Collision at 450 GeV” optics (see
Table 2.5) are listed in Table 6.5: no intensity limitation was found considering that
only 43 bunches (4×1010 protons per bunch) were foreseen for this run. The updated
settings for 2008 beam commissioning include the installation of all TCLAs, TCTH
and TCTV in IR1 and IR5 and the TCTH and TCLIB in IR2 and IR8 (see Table 6.4).
This system will be able to ensure safe operation of the ideal machine at 450GeV
with nominal intensity, also in case of collisions.

Table 6.5: η̃cold
max for the “Collision at 450 GeV” optics with a reduced system of 18

collimators per beam which are set at the nominal injection settings.

Halo η̃cold
max [10−4m−1]

B1 horizontal 9.69± 0.40
B2 horizontal 9.41± 0.40
B1 vertical 2.32± 0.20
B2 vertical 1.38± 0.15

6.1.5.2 Collimator commissioning scenarios at high energy (7 TeV)

Before reaching the nominal luminosity, intermediate steps with higher βz* values
and lower beam intensities are foreseen. This section shows results of several possible
collimation scenarios for the early collision optics [73] (see section 2.4.2). The full
phase 1 layout was used for the cleaning insertions, whereas the TCTVBs in IR2 and
IR8 and the TCLPs downstream of IP1 and IP5 were not included because they are
not installed. Simulations for Beam1 and Beam2 horizontal halos were carried out
for this optics and the collimation settings listed in Table 6.6.

The cleaning insertions are reduced to a one stage system in scenario 1, a two-
stage system with the absorbers acting as secondaries in scenario 2, and a canonical
three-stage system in scenario 3. This last scenario presents more relaxed tolerances
than the nominal one, placing the TCSGs at 9.5σ instead of 7σ and the TCLAs at
11σ instead of 10σ. The TCTs in the experimental regions are put at 17σ.

Similarly to the 450GeV case, all the analyzed scenarios exhibit an increase in the
number of protons lost in the IR7 dispersion suppressor magnets, when compared to
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Table 6.6: Collimator half gaps, in σ units, for different commissioning scenarios
and the early collision optics. The TCTs installed at the experimental regions are
placed at 17σ.

Half gaps [σ]
IR3 IR7 IR6

scenario TCP TCSG TCLA TCP TCSG TCLA TCSG TCDQA
1 15 out out 10 out out 13.5 14
2 15 out 20 6 out 10 8 8.5
3 15 18 20 6 9.5 11 10 10.5

 

 

Quench limit
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Figure 6.9: η̃cold
max for the nominal full phase 1 collimation system at 7 TeV and for the

scenarios listed in Table 6.6. The maximum loss peak in superconducting magnets
was found for the two beams in the dispersion suppressor downstream of the betatron
cleaning insertion.

the nominal settings. The local cleaning inefficiency is increased by up to a factor
of 46.8 for Beam1 (scenario 1: Imax =1.3% of Inom) and a factor of 42.1 for Beam 2
(scenario 1: Imax =2% of Inom), see Fig. 6.9 for a summary.

The operation with secondary collimators completely retracted or set at larger
openings requires to relax the half-gaps of the protection elements in the extraction
region in order not to overload them. In scenario 1 and scenario 2, the IR6 collimators
act as secondary collimators and absorb many more particles than in the case when
they are in the shadow of the IR7 TCSGs. This effect is particularly evident for
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Beam2 since the dump region comes directly after the betatron cleaning insertion:
η̃IR6

TCSG increases up to a factor of 143.9 (Beam2 scenario 1, see Fig. 6.10).

 

 

Quench limit

~

Figure 6.10: η̃IR6
TCSG for the nominal full phase 1 collimation system at 7 TeV and for

the commissioning scenarios listed in Table 6.6.

According to what was stated in section 6.1, the nominal collimator setup pro-
duces a thermal load of 3.1 mW·cm−3 (for η̃IR6

TCSG =1.53·10−4 m−1) on the supercon-
ducting magnets of the dump region. A linear scaling of the energy deposition with
the beam load on the TCSG in IR6, allows to calculate η̃IR6

TCSG =2.50·10−4 m−1 as
the value that induces the quench of the downstream magnets (corresponding to
5 mW·cm−3). The limitation in terms of beam intensity for the scenarios presented
here comes then from the number of absorptions of Beam 2 halo particles at the IR6
collimators (scenario 1: Imax =1% of Inom). In order to reduce the load on these ele-
ments different options were analyzed for scenario 2, by relaxing the opening of IR6
collimators (see Table 6.7). In Fig. 6.11 the maximum beam intensity for the ideal
machine (Beam 2 horizontal halo) is plotted as a function of the described collimator
settings in IR7 and IR6. When the TCSGs are completely retracted (scenarios 2, 2.2
and 2.3) the maximum intensity reach is approximately 3% of Inom. Imax increases
to 33% of Inom as soon as the TCSGs are closed. Losses in the IR7 dispersion sup-
pressor become the limiting factor when the IR6 collimators are in the shadow of
the TCSGs (scenario 3.3 and nominal).

The machine operation with 156 bunches (≈5% of Inom), as foreseen for the
early collision optics, allows to keep the secondary collimators at relaxed settings,
provided that the protection elements do not get excessive losses.
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Table 6.7: Collimator half gaps, in σ units, for different options of scenario 2. The
half gaps of the momentum cleaning insertion collimators do not change.

Half gaps [σ]
IR7 IR6

scenario TCP TCSG TCLA TCSG TCDQA
2.2 6 out 10 9 9.5
2.3 6 out 11 9.5 10
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Figure 6.11: Imax at 7 TeV as a function of IR6 and IR7 collimator settings. The
red circles refer to scenarios where the beam intensity is limited by losses in the IR7
dispersion suppressor.

The 2008 commissioning run foresees collisions at 5 TeV, results for this case are
presented in section 6.1.6.

6.1.5.3 Trade off between efficiency and collimator-induced impedance

Setting the LHC collimators to larger gaps allows an easier machine operation and
makes the system less sensitive to setup errors and beam instabilities. Moreover,
increased half-gaps would reduce the collimator-induced impedance and improve
limitation in maximum allowed beam intensity from impedance driven instabilities.
At top energy, these instabilities can partially be damped by using Landau octupoles
which create a tune spread, determining a stability area as shown in Fig. 6.12 [60].
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Red and blue lines in the plot represent the stability limit for maximum Landau
octupole current with negative and positive anharmonicity. The horizontal and
vertical axes give the real and imaginary parts of the coherent tune shift.
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Figure 6.12: Stability limits at top energy as a function of the collimator openings:
nominal collimator gap (black squares), no collimators (red circle), and intermediate
situations where the collimator gap is increased by 20%, 50%, a factor of 2, 3 and
10 [60].

The points in Fig. 6.12 show the variation of machine impedance (that is pro-
portional to the complex tune shift) as a function of the collimator openings. The
nominal collimator settings for the collision optics bring the working point out of
the stability region and Imax is limited to about 40% of Inom. An increase in the
collimator gaps by about 50% would be necessary to stabilize the nominal intensity
beam (black star). For example: TCPs set at 9σ, TCSGs at 10.5σ and TCLAs at
15σ in IR7. It is seen that larger collimator gaps are beneficial for the machine
impedance. On the other hand, larger gaps worsen the cleaning efficiency of the
LHC collimation system, as shown in Fig. 6.13. The local cleaning inefficiency η̃cold

max

is shown for different optics and collimator settings at 7 TeV (Beam 1 vertical halo):

• Scenario A: nominal collision optics and collimator settings (smallest gaps).

• Scenario B: nominal collision optics, all the collimator openings are relaxed by
3σ with respect to scenario A (LHC upgrade studies [74] compatible with 50%
gap increase).
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• Scenario C: 7 TeV unsqueezed optics, all the collimator openings are relaxed
by 5σ with respect to scenario B.

• Scenario D: 7 TeV unsqueezed optics and constant collimator settings in mm
(energy ramp commissioning studies, see section 6.1.6.1 and the 7 TeV case of
Table 6.8).

~
 

Figure 6.13: η̃cold
max at IR7 as a function of different settings and optics at 7 TeV. As

indication of collimation gaps, the setting of the primary betatron collimators is
given on the horizontal axis.

Losses in the dispersion suppressor downstream of IR7 are dominated by the single
diffractive scattering events at the primary collimators (see section 6.1.2). At high
energy these off-momentum particles are lost where the dispersion increases. The
closer the collimators are to the machine cold aperture and the bigger the retraction
is between the TCPs and the TCSGs, the higher are these losses. ScenarioB could
be used to alleviate impedance induced intensity limitations but with the price of a
30% worsening in cleaning efficiency. The maximum allowed intensity Imax would
be reduced to 25% of Inom, for the perfect machine and nothing would be gained
from impedance reduction.

6.1.6 Performance of collimation during the energy ramp

The change in collimator settings from the 450 GeV “flat-bottom” to the 7 TeV “flat-
top” part of the LHC cycle (Fig. 6.14) must be defined for the commissioning of the
acceleration ramp.
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Figure 6.14: Current in the main dipoles MB and magnetic field B versus time.
Beam is injected after each dump and accelerated up to 7 TeV (B=8.3 T). Squeeze
of the optics and physics follow after reaching the top energy plateau [75].

For this purpose the cleaning performance of the complete phase 1 system was
studied for several setups at different energies [76] (Beam 1 only). A beam life time τ
of 0.1 hours was assumed to calculate the equivalent quench limit η̃q as a function of
the energy (see Table 4.2 and eq. 4.10). A temporarily reduced life time is expected
during parts of the ramp. The results presented in the following do not include
losses of particles that are not captured by the RF bucket at the start of the ramp.

6.1.6.1 Constant collimator settings during ramp

The optics and the available aperture of the machine do not change during the
acceleration and before the βz squeeze at the IPs. Moreover, the accelerated beam
is adiabatically damped and collimation gaps increase in terms of σ. One possible
scenario is to close the collimators only after the end of the ramp before the change
in the IR optics. Table 6.8 lists the half gaps of the collimator families at different
energies in σ units. The normalized openings change as an effect of the decrease in
beam size with energy, while the physical apertures (in mm) stay constant. Tb (see
eq. 6.3) increases with energy and at 7 TeV is equal to 3.6σ (0.9 mm). On the other
hand, the cleaning efficiency gets worse: losses downstream of the betatron cleaning
insertion are two orders of magnitude higher at top energy than at 450 GeV both
for vertical (η̃cold

max =4.25·10−4 m−1) and horizontal (η̃cold
max =4.05·10−4 m−1) betatron
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Table 6.8: Collimator settings as a function of the beam energy: the collimators are
kept at the same opening in mm as at 450 GeV. Normalized openings change as an
effect of the decrease in betatronic beam size with energy. The average betatronic
σ at the primary collimator is shown.

Constant collimator settings (in mm)
Energy σ Half gap [σ]
[TeV] TCPs IR3 IR6 IR7

[μm] TCP TCSG TCLA TCSG TCDQA TCP TCSG TCLA
0.45 969 8 9.3 10 7 8 5.7 6.7 10
1 644 12 14 15 10.6 12 8.6 10.1 15
2 460 16 19 20 14 16 11.4 13.4 20
3 372 20.8 24.2 26 18.2 20.8 14.8 17.4 26
4 322 24 28 30 21 24 17 20 30
5 288 26.4 30.7 33 23 26.4 18.8 22.1 33
6 263 29.2 34 36.5 25.6 29.2 20.8 24.5 36.5
7 244 31.6 36.7 39.4 27.6 31.6 22.5 26.5 39.4

halo (see Fig. 6.15 and Fig. 6.16). Imax is reduced to 2% of Inom. This limitation is
also driven by the reduced quench limit η̃q from 7.8·10−4 m−1 to 8.7·10−6 m−1 (see
section 4.1.1.2). This is an effect of increased magnet currents and higher stored
beam energy. Vertical halo particles, which are lost at the cold aperture of the
machine, mainly experience single diffractive scattering at the TCPs (see Fig 6.15
bottom), whereas this is not the case for losses at IR8 due to horizontal halo particles
(see red circled region in Fig 6.16 bottom).

Looking at the behavior of losses in the IR7 dispersion suppressor, we find com-
parable results for the two halos with a slightly worse efficiency at top energy for the
vertical plane (see Fig. 6.17 blue lines). η̃cold

max at IR7 increases with the acceleration:
at low energy the particles are strongly deflected and are mainly lost in the warm
magnets located in the betatron cleaning insertion. At higher energy more and more
of the off-momentum particles are lost in the dispersion suppressor as explained in
section 6.1.5.3.

The two planes differ in terms of the local cleaning inefficiency at IR8 (see
Fig. 6.17 red lines). The maximum allowed beam intensity for the horizontal halo up
to 4 TeV, is determined by the losses on the MCBCH.6R8.B1 magnet. These losses
are induced by the high value of βx at this location (see Fig 6.2) and they decrease
during acceleration. The vertical halo is instead dominated by losses in the disper-
sion suppressor of IR7 for energies >1.5 TeV. The actual phase 1 collimation system
cannot provide any cure for the losses due to single diffractive scattering events in
the dispersion suppressor region downstream of the betatron cleaning insertion.
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Figure 6.15: Loss map for the Beam1 vertical halo at top energy. The collimators
are kept at the same settings as during the flat-bottom. The graph on the bottom
shows only losses of particles which experienced single diffractive scattering (SD) at
the TCPs while the top shows all particles.
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Figure 6.16: Loss map for the Beam1 horizontal halo at top energy. The collimators
are kept at the same settings as during the flat-bottom. The plot on the bottom
shows only losses of particles which experienced single diffractive scattering (SD) at
the TCPs while the top graph includes all particles. The red circle highlights that
some cold peaks in IR8 are not due to SD.
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Figure 6.17: Comparison of η̃cold
max between IR7 (blue line) and IR8 (red line) for

vertical (top) and horizontal (bottom) halo at different energies.

On the other hand the TCTH is installed in IR8 and it could be eventually used to
intercept the particles which are lost in this region (7 degree phase advance from the
tertiary) when they limit the beam intensity. The studies of cleaning performance
during the energy ramp were concentrated on finding the collimator settings which
minimize η̃cold

max at IR7. The vertical halo was therefore preferred since it shows the
most important limitation at top energy.
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Finally, the constant collimator settings can be used only for the commissioning
of the acceleration ramp at low intensity (<1% of Inom). For higher beam intensity
the collimators must be closed before reaching the 7 TeV plateau.

6.1.6.2 Tolerance optimized settings during the ramp

In order to improve the cleaning efficiency while keeping relaxed tolerances, a dif-
ferent setup strategy was analyzed. This consists in moving the collimators already
at the beginning of the energy ramp (450 GeV), by setting the primary collimators
at 6σ. The retraction between the TCPs and all the other collimators is kept un-
changed (in mm) so that the tolerance budget is the same as in the constant setting
case (see Table 6.9 and Fig. 6.18). This setting allows gaining a factor of 4 in cleaning
efficiency at top energy. The intensity reach can be 8% of Inom for the ideal machine.

Table 6.9: Collimator settings as a function of beam energy: the TCPs are set at
6σ from the beginning of the ramp. The retraction in mm between the primary and
all the other collimators is kept unchanged as it is for the constant settings.

Tolerance optimized settings
Energy Half gap [σ]
[TeV] IR3 IR6 IR7

TCP TCSG TCLA TCSG TCDQA TCP TCSG TCLA
0.45 8.3 9.6 10.3 7.3 8.3 6 7 10.3
1 9.5 11.4 12.5 8 9.5 6 7.5 12.5
2 10.6 13.2 14.6 8.6 10.6 6 8 14.6
3 12 15.4 17.2 9.4 12 6 8.6 17.2
4 13 16.8 19 10 13 6 9 19
5 13.6 18 20.2 10.3 13.6 6 9.3 20.2
6 14.4 19.2 21.7 10.8 14.4 6 9.7 21.7
7 15.2 20.4 23.2 11.1 15.2 6 10 23.2

6.1.6.3 Settings scaled with √
γ during the ramp

In order to reach the best possible performance, the half-gaps of the betatron clean-
ing collimators must follow the acceleration damping and be scaled with √

γ (rela-
tivistic γ factor) (see Table 6.10). The same is true for the protection elements in
the dump region, while the momentum cleaning collimators can be closed following
the steps foreseen for the tolerance optimized settings.

Fig. 6.18 shows the half-gaps of primary (n1) and secondary (n2) betatron col-
limators for the described settings. The n1 position does not change when shifting
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Table 6.10: Optimal collimator settings as a function of the energy. The momentum
cleaning collimators follow the same setup of the tolerance optimized settings.

Settings scaled with √
γ

Energy Half gap [σ]
[TeV] IR3 IR6 IR7

TCP TCSG TCLA TCSG TCDQA TCP TCSG TCLA
0.45 8.3 9.6 10.3 7.5 8 6 7 10
1 9.5 11.4 12.5 7.5 8 6 7 10
2 10.6 13.2 14.6 7.5 8 6 7 10
3 12 15.4 17.2 7.5 8 6 7 10
4 13 16.8 19 7.5 8 6 7 10
5 13.6 18 20.2 7.5 8 6 7 10
6 14.4 19.2 21.7 7.5 8 6 7 10
7 15.2 20.4 23.2 7.5 8 6 7 10

 

 

Figure 6.18: The half gaps of the IR7 TCPs (n1) and TCSGs (n2) are shown as a
function of the beam energy for the proposed settings. Case 1 refers to the constant
and case 2 to the tolerance optimized settings. In case 3 the collimator gaps are
scaled with √

γ.

from the tolerance optimized settings to the scaled with √
γ settings, while n2 be-

comes smaller at higher energies. As a consequence, Tb decreases as well as shown
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Figure 6.19: η̃cold
max for the various collimator settings is plotted as a function of

the beam energy. The behavior of the tolerance budget (top) and of the equivalent
quench limit, calculated for several beam life time values τ (bottom, semi-logarithmic
scale), are also shown. Case 1 refers to the constant and case 2 to the tolerance
optimized settings. In case 3 the collimator gaps are scaled with √

γ.

in Fig. 6.19 (top). In the same figure η̃cold
max at IR7 is summarized as a function of the

energy. The graph at the bottom of Fig. 6.19 compares η̃cold
max and η̃q, calculated for

several beam lifetimes. This permits to estimate at what energy each setting can
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become critical. Scaling the collimator gaps with √
γ allows to accelerate the beam

up to 4 TeV without significant intensity reduction if τ=0.1 hours.

6.2 Impact of imperfections
The results presented in the previous sections refer to an ideal machine without
errors and perfect collimators. It is, however, well known that every accelerator is
affected by unavoidable imperfections.

In order to give an evaluation of the realistic cleaning performance of the col-
limation system and its maximum intensity reach, several scenarios with combined
imperfections were analyzed for the collision optics “lowb.coll_all” (see section 2.4.1)
and are shown in the following sections. This is the first time that LHC cleaning
efficiency and loss maps were simulated for multiple error scenarios. It is noted that
these studies were very CPU intensive and could only be done for selected cases.

6.2.1 Jaw flatness errors

The LHC collimators are produced with stringent requirements on the flatness of the
1 m long jaws (∼40μm). Any large deformation of the jaws would create a reduc-
tion of the material traversed by the halo particles (active length) and could worsen
the cleaning efficiency. However, the achievable flatness is technically limited and
Fig. 6.20 summarizes the deformation measurements performed on different collima-
tor families (TCP, TCSG, TCLA and TCT). A positive flatness means that jaws
are deformed towards the beam while a negative flatness corresponds to outwards
deformation.

The measurements show an average absolute flatness of 40.3±22.2μm. The num-
ber of inward deformed jaws is approximately double with respect to the outward
deformed ones.

Simulations were carried out for Beam 1 using both deformation types for pri-
mary, secondary, tertiary collimators and absorbers. The shape of the jaws in the
code is defined starting from a parabolic function:

F (s) = ±2 · 10−3

5

(
s2

l
− s

)
(6.4)

where the collimator jaw length l and the longitudinal coordinate s (along the jaw)
are expressed in m. The positive sign in front of eq. 6.4 gives a negative (outward)
deformation whereas the negative sign defines a positive (inward) deformation. Each
jaw is then described by a number n of segments that follow the parabola as shown
in Fig. 6.21. Four segments were used for the presented simulations. The following
non-flatness was applied to the jaws:

• Adef =100μm (in and outwards) for 1 m long jaws (TCSG, TCLA, TCT).
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Figure 6.20: Flatness measurements for the different collimators separated by fami-
lies (TCP, TCSG, TCLA, TCT).

• Adef =60μm (in and outwards) for 0.6 m long jaws (TCP).

As a worst case study, the same systematic deformation was used for all jaws.
The half gap is always defined considering the point of the jaw which is the

closest to the beam axis. The following results were found for the maximum local
cleaning inefficiency around the ring:

1. Systematic outward deformation: a factor of 1.08 increase of inefficiency.

2. Systematic inward deformation: a factor of 1.11 increase of inefficiency.

A transient deformation, induced by the heating of the jaws during beam expo-
sure, is expected to add to the initial deformation. The first secondary collimator
of the betatron cleaning insertion (TCSG.A6L7.B1 for Beam 1) is particularly sen-
sitive due to the high energy flux coming from the primary collimators. “Finite
element model” (FEM) calculations predict a 30μm outwards deformation during
nominal operation with a 1 hour beam life time and 100μm inwards bending for
0.2 hours beam life time [77]. The three betatron halos were tracked for Beam1 in
order to quantify the effect of this inward deformation of the first secondary collima-
tor on the cleaning efficiency of the system. No additional reduction of the cleaning
performance was found.
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Figure 6.21: The approximation used to simulate 1 m long jaws with outwards (top)
and inwards (bottom) deformation is shown. Here a case with 4 slices per jaw is
presented. The number of slices is a simulation parameter.

6.2.2 Collimator setup errors

The beam based alignment for the setup of the collimators is affected by unavoidable
errors in accuracy. In section 7.2.3 the beam based alignment method is described
and the experimental results from beam tests are analyzed. These results served
as input to the simulations. As described in section 5.2.2, the simulation input
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Figure 6.22: Illustration of various setup errors that were applied to the collimator
jaws in simulations.

file “fort.3” allows to specify setup errors for the collimator jaws (see also Fig. 6.22);
namely r.m.s and/or systematic jaw tilts (symmetric or antisymmetric), r.m.s and/or
systematic offsets of the collimator gap with respect to the ideal position (beam
centre) and r.m.s errors on the size of the collimator gap with respect to its ideal
value (n times the beam size).

For this work random errors were used with a Gaussian distribution cut at 3σ.
Based on the experimental data the following imperfections were simulated:

1. Jaw flatness errors as described in section 6.2.1 (inward).

2. R.m.s error on gap centre: 50μm.

3. R.m.s error on gap size: 0.1σ.

4. R.m.s. error on jaw angle to beam: 200μrad.

A factor of 2.1 loss in cleaning inefficiency was found with respect to the perfect
scenario.

6.2.3 Machine alignment errors

The “BeamLossPattern” program in the collimation simulation package allows taking
into account magnet and beam screen misalignments of the LHC elements (beam
screens are first aperture limitation). Starting from the standard aperture model
used to derive the loss maps, up to 20 seeds of misaligned apertures can be applied
to a set of halo trajectories produced by “SixTrack”. An r.m.s. offset in the horizontal
(σΔx) and vertical (σΔy) planes has been defined for different families of elements on



6.2. Impact of imperfections 103

Table 6.11: Horizontal and vertical r.m.s magnet misalignments at beam screen level
for different families of machine elements. The numbers are based on design values
and measurements performed on surface and in the LHC tunnel [78].

Design Measured
Element type Description σΔx σΔy σΔx σΔy

[mm] [mm] [mm] [mm]
MB main dipole 2.40 1.56 1.83 1.10
MQ arc quadrupole 2.00 1.20 1.36 0.76

MQX triplet quadrupole 1.00 1.00 1.53 1.53
MQWA warm quadrupole 2.00 1.20 0.67 0.41
MQWB warm quadrupole 2.00 1.20 0.67 0.41
MBW warm dipole 1.50 1.50 1.96 1.49
BPM beam position monitor 0.50 0.50 1.36 0.76

Beam 1 

7 TeV 

~

s [km] 

Figure 6.23: Loss map obtained for a horizontal halo of Beam1 with one seed of
jaw flatness errors, collimation setup errors and, most important, machine alignment
errors (design values). This case refers to the collision optics “lowb.coll_all”.

the basis of design values and measurements performed on surface and in the LHC
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tunnel [78]. The applied imperfections are listed in Table 6.11.
The specified misalignment errors are used to generate Gaussian errors cut at

1.5σ to the geometric centre of each magnet in the LHC. This is only done at the
level of the aperture model. Particle tracking is done with the ideal machine orbit
and fields. The reduced aperture has different bottlenecks (one-sided) which lead
to the appearance of loss peaks in unusual locations and an increase in the cleaning
inefficiency. An example of a loss map is shown in Fig. 6.23 taking into account
machine alignment errors (design), jaw flatness errors and collimation setup errors
(1 seed example). Losses in the IR7 dispersion suppressor are a factor of 14.6 higher
than for the ideal machine and the quench limit is exceeded in several points of arc
7-8 and 8-1.

 

 

~

mean 

ideal machine 

machine 

Figure 6.24: Cleaning inefficiency η̃cold
max for 20 different seeds of machine alignment

errors (design values). The local cleaning inefficiency is increased on average by a
factor of 9.5 with respect to the ideal machine. These results refer to a Beam 1
horizontal halo at top energy.

Fig. 6.24 summarizes the η̃cold
max values found for 20 different seeds of machine

alignment errors (design values): the local cleaning inefficiency varies up to a factor
of four for different seeds. The cleaning efficiency is degraded by about one order of
magnitude.

The calculated maximum cleaning inefficiency averaged over the simulated seeds
is:

1. ηcold
max =(3.0±0.2)·10−4 m−1 for machine alignment errors from design values.
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2. ηcold
max =(2.7±0.2)·10−4 m−1 for machine alignment errors from measurements.

Results are in agreement within the simulation error. Both values are indicated in
the summary plot shown in Fig. 6.26 (section 6.2.5, red point for design values, blue
point for measured values). Studies reported in the following refer to the case of
machine alignment errors due to design values.

6.2.4 Non ideal closed orbit

This section adds the effect of a non-ideal horizontal closed orbit for the study of
collimation system performance.

Previous in-depth studies on orbit perturbations [14] defined a conservative sce-
nario in compliance with the specified LHC orbit for the collision optics. On the
basis of these results two kickers at 90 deg phase advance in arc 3-4 (MCBH.15L4.B1
and MCBH.13L4.B1) were used to generate a static horizontal closed orbit oscilla-
tion with maximum amplitude of ±4 mm in the arcs. The orbit was corrected to the
specified ±3 mm maximum amplitude in the IRs (see Fig. 6.25).

s [km] 

x
 [

m
] 

Figure 6.25: Horizontal closed orbit x at collision for Beam1, as used for collima-
tion studies. The orbit perturbation is corrected to ±3 mm in all insertion regions
(highlighted) and adjusted to ±4 mm in the arcs, matching the LHC specification
optics.

Simulations were carried out by using the standard initial halo distributions and
the errors defined in the previous sections. The collimators were centered on the



106 6. Simulations for LHC Collimation Commissioning

non-ideal orbit and tracking was performed. This resulted in a further increase in
the local cleaning inefficiency by a factor of 1.16 (see Fig. 6.26).

6.2.5 Summary on imperfections

Fig. 6.26 shows the evolution of the collimation system performance when several
imperfections are applied. At this time scenario 5 is considered the most realistic,
which could limit the maximum intensity reach in collimation to <5% of Inom.

~
 

scenarios 

Figure 6.26: Local cleaning inefficiency for various error scenarios. The blue point
refers to machine alignment errors as defined by measurements.

This prediction is based on critical assumptions for the superconducting magnet
quench limit and a minimal beam life time of 0.2 h. Several imperfections are not
yet taken into account, namely effects from beta-beat, coupling and non-linearities
in the LHC. Also, no margin for threshold effects has been applied. For example, the
beam loss monitors will, by design, trigger a beam dump if losses reach 30% of the
quench limit, requiring in principle a factor of 3 margin in cleaning efficiency. On
the other side the 10 cm resolution used for claculating the loss maps implies that we
assume that each lost particle deposits its full energy within this bin length. If a 1 m
resolution was used, the losses would be more diluted with an average improvement
in local cleaning inefficiency by a factor of 5.

It is noted that the FLUKA predictions are a factor of 3.5 lower than the estimate
from the 10 cm bin size in the aperture (see section 6.1.2), for the same data set. This
is expected, as the shower will distribute the energy deposition in the longitudinal
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direction of beam particles. It is concluded that these are strong hints at possible
limitations of LHC intensity from cleaning of losses. The experience with first beams
will provide further insight.

6.3 Impact of off-momentum beta-beat

Analytical studies were carried out to assess the consequences of off-momentum beta-
beat on the effective collimator settings. The collimator jaws are ideally always
centered around the closed orbit and intercept all particles which, at their phase
location, have an oscillation amplitude Az greater than the half gap zcut (z refers to
transfer coordinates x and y). Az is determined by the sum of two contributions:

1. the betatron oscillation amplitude: n ·
√

εzβz(δ)

2. the dispersion function: Dz(δ) · δ

where δ = Δp/p. The half gaps (in mm) of the nominal collimator settings are

 

 

 

 

Figure 6.27: Variation of βx and Δx as a function of particle momentum offset δ at
the location of the horizontal primary collimator TCP.6L3.B1 (momentum cleaning
insertion).

calculated considering a central on-momentum particle. If δ �=0 for a given particle
the effective betatron amplitude cut nβzcut(icoll) at each collimator icoll changes as a
function of δ, βz and Dz.
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The cut in phase space produced by the nominal collimator settings can then be
defined for each collimator as:

zcut(icoll) = nβzcut(icoll, δ) ·
√

εzβz(icoll, δ) + Dz(icoll, δ) · δ (6.5)

from which, considering both collimator jaws and sufficient time for phase space
mixing, it is possible to derive explicitly nβzcut(icoll,δ) as:

nβzcut(icoll, δ) =
±zcut(icoll) − Dz(icoll, δ) · δ√

εzβz(icoll, δ)
. (6.6)

Ideally the β-function is independent of beam energy, meaning that the off-
momentum beta-beat is zero. However, in reality there is always some dependance
of βz on δ, which is minimized during the accelerator design. An example is shown
for the location of the IR3 horizontal primary collimator TCP.6L3.B1 in Fig. 6.27.
The effect of the off-momentum beta-beat on nβzcut for this collimator is shown in
Fig. 6.28 (red lines, 7 TeV settings). The blue lines show the phase space cut pro-
duced by the two jaws if the dispersion and the β-function are independent of δ.
Overlapping the δ-dependent phase cuts for all horizontal collimators and taking

Positive jaw (+xcut) 

Negative jaw (-xcut) 

D
x( )=D

x0, 
x( )=

x0 

Figure 6.28: Phase space cut nβxcut as a function of particle momentum offset δ for
the IR3 horizontal primary collimator (red lines). The blue lines show nβxcut in case
of Dx and βx being independent of δ, which is not the case for this location in the
LHC.

into account the energy spread of the nominal LHC RF bucket (see section 3.1.2),
the allowed phase space region for the circulating beam can be defined, as shown in
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RF bucket 

Available 

phase space 

Figure 6.29: Phase space cut from all horizontal collimators in LHC, including both
IR3 and IR7. The highlighted region indicates the space which can be populated by
the beam halo. Note, that there is no mechanism to populate the phase space above
the RF bucket while it can be populated below (synchrotron radiation).

Fig. 6.29. Due to the off-momentum beta-beat the IR7 primary collimators, though
set at 6σ (δ =0), cut the betatron halo down at 3σ for δ =-0.13%. Primary collima-
tor in IR3 intercepts all particles with δ ≤ −0.16%. The dashed lines represents the
reflections of the calculated curves with respect to the nβzcut =0 axis. They define,
for a fixed δ, the maximum possible betatron oscillation amplitude as imposed by
phase space mixing. This is valid if the amplitude increase per turn is � σ (stable
beam) and if synchrotron oscillations are much slower than betatron oscillations.
This is fully valid in the LHC (see Table 6.12 [13]).

Table 6.12: Synchrotron and betatron oscillation frequencies for LHC at injection
and top energy.

Synchrotron Hor. betatron Ver. betatron
frequency [Hz] frequency [kHz] frequency [kHz]

450GeV 61.8 722.2 666.4
7TeV 21.4 722.6 666.5
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Two different optics are possible in the LHC with the off-momentum beta-beat
corrected either in the first (IP1→IP5) or in the second (IP5→IP1) half of the
ring. The results presented refer to the second option. However, both optics were
studied in this PhD thesis and the second option was shown to be the most favorable
from the point of view of the collimation. It gives minimal reduction in terms of
setting tolerances and was adopted as LHC standard optics. In both cases, for
δ ≤ −0.2%, the collimators keep their roles (i.e. TCPs act as a primary, TCSGs as
a secondary collimators etc.). Still, the retraction of TCSGs with respect to TCPs
in IR7 is reduced up to 30% if beta-beat takes place between IP1→IP5, whereas a
70% reduction is found for the other optics. The tolerance budget Tb at top energy
is then reduced, in the best case to 0.7σ. For example this would allow for orbit
transients of 52.5μm (30% of Tb). Off-momentum beta-beat will make operation
more delicate.



Chapter 7

Test Results on Collimation
Commissioning

Two prototypes of LHC horizontal secondary collimator were tested in 2006 during
several SPS machine days (MDs). One collimator was installed in the long straight
section at point 5 (LSS5) of the SPS ring and tested with circulating beam, while
the other was installed in the TT40 transfer line for robustness tests with extracted
beam. These experiments were devised, on the base of earlier 2004 experiments, to
check the functionality of the final hardware and control systems and to develop the
beam based collimator setting procedures. Results of these studies are presented in
the following.

7.1 Collimator coordinate system

The operational naming conventions for the horizontal collimator jaws, as used in
this chapter, are introduced in Fig. 7.1. For each jaw an upstream and a downstream
corner are defined and are named respectively:

• LU: left jaw, upstream end

• LD: left jaw, downstream end

• RU: right jaw, upstream end

• RD: right jaw, downstream end.

The left jaw is on the positive side of the x axis while the right one is on the negative
side. A positive tilt angle θx for the left jaw corresponds to having the LU corner
closer to the beam axis. For the right jaw θx is positive if RU is further away from
the beam axis (see Fig. 7.1).

111
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Figure 7.1: Operational naming conventions for the collimator jaws, the x position
and the tilt angle θx. The top view is shown.

7.2 Tests with stored proton beam
The main objectives of the two 24 hours MDs were as follows 1:

1. Check and calibration of the final collimator control system and of the com-
munication architecture between the hardware and the control room.

2. Commissioning of the beam based alignment procedure and beam profile mea-
surements, combined with beam loss and tail repopulation studies.

3. Impedance measurements for investigation of the “inductive bypass effect” [79].

The impedance measurements are out of the scope of this PhD work and will
not be discussed here; more detailed information can be found in [60].

7.2.1 LHC collimator prototype in the SPS

An LHC prototype collimator was installed in the SPS ring in 2004 [18, 80]. This
prototype was the base for series production of LHC collimators and has the same

1MD1 started on 31/10/2006 at 8:00 a.m. and finished on 01/11/2006 at 8:00 a.m.
MD2 started on 07/11/2006 at 8:00 a.m. and finished on 08/11/2006 at 8:00 a.m.
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features as the final hardware. A precise system of motors and position sensors is
implemented for the accurate setting of the collimator jaws:

1. Four stepping motors are used to move the corners of the two jaws.

2. Four resolvers are connected to the stepping motors and monitor the number
of steps performed.

3. Six position sensors (four potentiometers and two linear variable differential
transformers LVDT) are used to measure respectively the actual jaw positions
and the upstream and downstream gaps.

4. Ten switches (one full-in and one full-out at each corner plus two anti-collision
switches) are installed to trigger motor stops and to protect the collimator
mechanical system.

It is noted that the 2004 prototype collimator did not have the final radiation-
hard motors and sensors. However, its functionality is not affected by this for these
tests. The described instrumentation is shown in Fig. 7.2 together with the temper-
ature sensors of the collimator (4 “PT100” sensors are installed).

Temperature sensors 

Resolver 

Gap opening (LVDT) 
Resolver 

+ switches for IN, OUT, ANTI-COLLISION 
Potentiometer 

Reference Reference 

Sliding table 

Vacuum 

tank 

Motor Motor 

Figure 7.2: Schematic view of the movement control and instrumentation for the
LHC prototype collimator used during the SPS tests.

The concept of the LHC collimator requires calibrating jaw positions precisely.
During construction, inside gap and position of the jaws are accurately measured
versus the outside gap. This calibration allows for precise monitoring and knowledge
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of jaw positions with the position sensors outside of the vacuum (see Fig. 7.2). A
minimal mechanical play is required. Metrology measurements in 2004 showed that
the system has mechanical plays of the order of 30-40μm which is a deterministic
effect and can be taken into account for jaw movements. Jaws positions are moni-
tored with about ± 20μm accuracy, i.e. better than the collimator alignment in the
tunnel.

The tested architecture of the collimator low-level control system and the commu-
nication between the different control levels worked as specified [81]. The graphical
user interface for the steering of the LHC collimator jaws from the control room was
successfully tested (see Fig. 7.3). Through this interface it is possible to input the

Figure 7.3: Main view of the graphical user interface for the steering of the LHC
collimator jaws from the control room. The jaw position is displayed on the lower
right display. Readings of Beam Loss Monitors during jaw movements are shown in
the top right graph.

required movement and to either move the full jaws with a given angle (maximum
allowed angle is 2 mrad) or to set each corner position independently. The status
of the switches and the position readout from the sensors are displayed. Through
selection flags it is possible to visualize the real time corner position measured by
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the different sensors and the signals of the 4 BLM channels located downstream of
the prototype (see section 7.2.3). Even if not displayed on this interface, further
216 SPS BLMs were located along the full ring and beam loss data were recorded
with a frequency of 50 Hz. Beam profile and beam current measurements were also
performed during the two MDs.

7.2.2 Beam conditions

Out of the 24 hours foreseen, approximately 10-11 hours per each MD were dedi-
cated to collimation studies while the remaining time was used for beam setup and
machine operation. The beam conditions and the optics parameters at the location
of the collimator are summarized in Table 7.1. During MD1 low intensity tests were
performed mainly with a single circulating bunch (last 8 hours), while MD2 was
devoted to high intensity measurements: 288 bunches for the first 2 hours and 72
bunches for the last 9 hours.

Table 7.1: SPS beam condition and design optics parameters at the location of the
horizontal collimator during the tests.

Beam parameter Low intensity High intensity
Bunch Population 1.1·1011 protons
Number of bunches 1-4 72-288

Energy 270 GeV
εn,x = εn,y 1.5μm 3.5μm

βx 24.9 m
βy 87.9 m
αx −0.7
αy 2.1
Dx −0.2 m
Dy 0 m
Qx 26.1
Qy 26.2
Qs 0.0045
σx′ 15μrad 22μrad
σx 0.4 mm 0.6 mm

7.2.3 Collimator beam based alignment: centering jaws

The alignment and centering of a collimator with respect to the beam relies on beam
loss measurements correlated with jaw movements. For this purpose two sets of beam
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loss monitors were located at 8.9 m and at 12.3 m downstream of the collimator (see
Fig. 7.4). They were used to measure the showers of particles produced by beam
halo impact on the collimator jaws.

Collimator 
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BLM 3 BLM 1 

1 2 

Vacuum chamber 
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Top view 

Beam 1  

8.9 m 12.3 m 

15  15  
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Figure 7.4: Setup of the Beam Loss Monitors installed downstream of the collimator.
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Figure 7.5: Beam based alignment technique: one jaw (right in this case) is moved
in steps towards the beam until it touches it, defining a beam edge. The second jaw
is then moved in as well until BLM signals indicate that it is touching the beam.
Smaller consecutive steps allow a finer centering of the two jaws with respect to the
beam.

The beam based alignment procedure works as follows:

1. One jaw is moved in steps towards the beam until significant losses are recorded
by the BLMs.

2. Though the jaw is scraping only one side of the beam, after many turns an
edge is produced on both sides of the beam due to betatron oscillations (see
Fig. 7.5).

3. The second jaw is then moved in as well until BLM signals indicate that it
has touched the beam halo. At this point the two jaws are centered with an
accuracy equivalent to the size of the last step.
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4. The fine alignment is obtained by consecutive movements of the two jaws as
just described but with smaller steps.

The geometric centre of the collimator gap should then correspond to the beam
centre within the defined accuracy.

Several collimator alignments were performed during the two MDs. One example
is shown in Fig. 7.6 for MD1. The results for the two MDs are summarized in
Table 7.2. The following observations are made:

• During MD1 an average beam based alignment accuracy of 30μm was obtained
with a stability of ± 25μm over more than 5 hours.

• For MD2 an average accuracy of 60μm was used for a stability of ± 75μm
over 5 hours.

Table 7.2: Summary of beam based alignment results for 2006. Position of the left
and the right jaws are given after the end of the BLM-based centering procedure on
the beam. From this the gap centre position is calculated (equal to beam centre).
The accuracy in positioning of the collimator jaws is given by the size of the last step
applied to the right and left jaws. The quadratic sum of these two values defines
the accuracy in the beam centre determination.

MD1: October 31st - November 1st

Time [hh:mm] Left jaw Right jaw Gap center
Start End position [mm] position [mm] position [mm]
00:38 00:58 1.810± 0.010 −1.420± 0.010 0.195± 0.014
01:18 01:29 1.760± 0.010 −1.370± 0.010 0.195± 0.014
01:52 02:21 2.270± 0.010 −1.820± 0.010 0.225± 0.014
03:18 03:46 1.195± 0.050 −0.795± 0.050 0.200± 0.071
06:16 06:35 1.120± 0.020 −0.775± 0.020 0.175± 0.028

MD2: November 7th - November 8th

Time [hh:mm] Left jaw Right jaw Gap center
Start End position [mm] position [mm] position [mm]
23:54 00:13 5.600± 0.050 −5.125± 0.050 0.238± 0.071
00:53 01:15 3.735± 0.020 −3.450± 0.020 0.143± 0.028
05:00 05:33 1.490± 0.050 −1.310± 0.050 0.090± 0.071

It is noted that the evaluated beam centre was not corrected for real shifts of beam
position. Measurements with beam position monitors were not available for the test
periods. The reproducibility of the collimator centering is therefore better than the
observed stability.
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Figure 7.6: Example of beam based alignment during MD1 (November 1st 2006).
The alignment is based on the readings of the 4 BLM channels just downstream of
the collimator (bottom) when the two jaws are moved (top). The jaw angle was
kept at zero for these measurements.

The manual beam based alignment of each collimator took on average around 20
minutes. From the collimator tests in the SPS the following conclusions are taken
for setup of the LHC ring collimators:

• Setup time per collimator: 20 min



7.2. Tests with stored proton beam 119

• Achievable alignment accuracy: 30μm

• Setup time per LHC beam: 15 hours for 44 collimators (see section 4.3).

These results are used for performance simulations and commissioning plans in this
PhD. The alignment procedure for many collimators in the LHC will be as fol-
lows [72]:

1. Set one collimator by using the described method in order to define a reference
normalized position nedgeσ.

2. One edge of this collimator is then kept fixed to that position.

3. All the other collimator jaws in the considered plane are moved in, one by one,
until touching the beam edge.

4. In this way all the collimators are calibrated to the same normalized beam
position nedgeσ for the reference beam orbit and local beta functions.

5. Afterwards, each collimator can be set by simple rescaling to its nominal po-
sition defined by the hierarchical order described in section 4.3.2.

This must be done for every plane: horizontal, vertical and skew.
An automatic setup procedure could reduce the evaluated time and will be pre-

pared for the LHC in 2009. An initial manual setup will be still required, at least
during the first phases of the machine commissioning.

7.2.4 Collimator beam based alignment: adjusting the jaw
angle

Aligning the collimator ideally also involves adjusting the angles of the two jaws
with respect to the beam envelope. The procedure for the angular scan is equivalent
to the beam based alignment described above, except that it is based on consecutive
movements of the two corners of each jaw. In Fig. 7.7 the concept of the angular
alignment is depicted. It consists of the following steps:

1. The tilts of the retracted jaws are set to zero and a preliminary beam based
alignment is performed, keeping the angle unchanged.

2. One single corner is then moved towards the beam until a peak of losses is
registered by the BLMs, indicating that the corner is touching the beam. This
introduces an angle on the jaw while producing an edge in the beam.

3. The second jaw corner is then moved in small steps, reducing progressively the
tilt. No new loss should be registered by the BLM until the point where the
second jaw end starts touching the beam.
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4. At this stage the jaw should be parallel to the beam within an angle equal to
the last step size divided by the jaw length l.

s 
x 

Left jaw 

Right jaw 

Figure 7.7: Angular adjustment procedure: one jaw corner is moved into the beam
until it scrapes it. The second corner is moved as well but in smaller steps until new
signals are recorded by the BLM. The jaw then should be aligned with an accuracy
depending on the last step size and the collimator active length.

This did not work as expected in the performed tests. In Fig. 7.8 the stages of
an angular scan as performed during MD1 are plotted. As a first approximation
after the initial beam based alignment, the collimator jaws are considered parallel
to the beam. Moving the upstream corner (LU: solid line) of the left jaw towards
the beam with a 0.5 mm step resulted in a big spike of the BLM readout (Fig. 7.8,
1), consistent with an expected angle of 500μrad (l= 1m) of the jaw. Based on this
expectation, the following 50μm movements of the down-stream corner (LD: dashed
line) should not have provoked new losses. However small BLM signals appeared
already at the first step (Fig. 7.8, 2).

This seemed to invalidate the starting hypothesis and to suggest that the jaw
had an initial tilt. In order to verify this new assumption the LD corner was moved
deeper into the beam by 0.5 mm (Fig. 7.8, 3). However, unexpected losses appeared
with subsequent 50μm movements of the LU corner (Fig. 7.8, 4) so that the second
hypothesis was rejected. Two hypothesis were discussed:

1. This apparent inconsistent behavior could be ascribed to overall jaw vibrations
induced by the motors when shifting one edge. Several metrology measure-
ments showed nevertheless that this vibration is damped in one second while
the corresponding BLM signals had longer decay times (see section 7.2.7).

2. Another explanation could be the change of the electromagnetic coupling field
when varying the position of the resistive wall (the CFC collimator jaw) with
respect to the proton beam. Quantitative estimates of such a possible effect
and of its duration are beyond the scope of this thesis.

At the end, the angular scan had unclear conclusions and each beam based
alignment was performed using as reference the zero angle (relying on collimator
metrology during production). Then the precision of angular jaw alignment depends
in practice on the accuracy of the collimator alignment in the tunnel.
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Figure 7.8: Illustration of jaw angle (left). Observed beam loss signals (right figure,
left scale) and jaw position (right figure, right scale) during various adjustments.
The same color code for the BLM readouts as in Fig. 7.6 applies.
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This alignment is carried out by taking as reference two points on the collimator
tank located at a distance d=640 mm (see Fig. 7.9). Each point is aligned with
a maximum error of δx=200μm to the beam line. The maximum tilt θmax of a
collimator in the tunnel is then given by:

θmax =

√
2 · δx2

d
(7.1)

which is equal to 442μrad. It is noted that the internal collimator jaw alignment
(jaw to tank to alignment points) is better than 50μrad, much smaller than the
above error.

Figure 7.9: Sketch of a horizontal secondary collimator installed in the LHC tunnel.
Two reference points located on the tank at a distance of 640 mm are used for the
alignment of the collimator with respect the upstream and downstream elements of
the machine.

7.2.5 Full beam scraping

An alternative method to find the beam centre position and to estimate the beam
size at a collimator location is the full beam scraping. Moving one jaw into the beam
distribution leads to scattering and absorption of the intercepted particles. Due to
phase space mixing the jaw always limits on both sides of the beam distribution.
The beam current circulating in the accelerator is reduced (Fig. 7.10).

The distribution of the beam particles in the normalized horizontal phase space
N(x, x′) can be described by a Gaussian of the form:
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Figure 7.10: Beam scraping: one jaw is moved into the beam. The beam particle
population in the normalized transverse phase space N(x, x′) (top) and the current
intensity I (bottom) are shown as function of the position x of the jaw. The centre
of the beam corresponds to the jaw position where the beam current goes to zero.

N(x, x′) =
1

2π
exp

(−x2 − x′2

2σ2

)
(7.2)

It can be shown that the drop of the beam current I(x) as a function of the jaw
position can be expressed as [82, 83]:

I(x) = I0

[
1 − exp(

−(x − x0)
2

2σ2
x

)

]
. (7.3)

Here, I0 is the beam current at the beginning of the scraping, x0 is the beam
centre (the point where I(x) goes to zero) and σx is the beam size at the collimator.

In order to determine x0 and to estimate the reproducibility of this method, a
number of full beam scrapings were carried out. For each machine cycle the beam
current was monitored (via Beam Current Transformers BCT) with a data acqui-
sition time step of 10 ms. This acquisition was fully independent of the collimator
control system and the synchronization between the two data sets was an important
issue. The jaw position was recorded typically every 0.5 s. Several variations in the
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Figure 7.11: The beam current measured by the BCT and the jaw movements
are shown as a function of time for two independent tests. The jaw that scraped
the beam was either moved in one go from the initial to the ending position (top:
01:29:20 data in Table 7.3) or in steps (bottom: 02:21:52 data in Table 7.3).

acquisition time step of the jaw position (from 0.1 s up to 1 s) were observed. This
feature is still under investigation.

Once the temporal correlation between the BCT data and the jaw movement
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data was defined (see Fig. 7.11), it was possible to express the beam current as a
function of the jaw position (see Fig. 7.12), with a time deviation smaller than 10 ms
(corresponding to 20μm for the applied jaw speed of 2 mm/s). In total 11 full beam

 

 

Figure 7.12: The beam current measured by the BCT is plotted as a function of the
jaw position for the full beam scraping started at 02:21:52 of MD1. The fit given by
equation 7.3 is also displayed (red line).

scrapings were performed. Several data sets were affected by problems of machine
stability and data quality. These were not considered. The results for valid data sets
are summarized in Table 7.3. The errors on the beam centre position quoted in the
table are given by the sum of the fitting error plus 20μm due to the synchronization
error discussed above. From MD1 data the beam centre could be determined at an
average position x̄0 =314μm with a stability of ±55μm over 1 hour. For MD2 a
large spread in the fitted beam centers was observed, corresponding to a stability of
±235μm over about 1.5 hours. The average centre position was x̄0 =31μm.

For the data at 02:21:52 and 02:33:37 the full beam scraping was performed by
moving the jaw in steps into the beam. This was done to allow a longer acquisition
time of the beam current for a defined position of the jaw. The 02:33:37 scraping
started in between two consecutive SPS machine cycles, when a dead-time exists
and the beam current is not recorded for 10 s. This implied a loss of some data. In
this case x0 was evaluated by defining the best fit for the available data, whereas
the beam size could not be calculated.

Several beam profile measurements by wire scanner were performed during the
two MDs. Results of measurements preceding a beam scraping allowed to compare
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Table 7.3: Summary of the results for beam centering with full beam scraping.

MD1: October 31st - November 1st

Time [hh:mm:ss] Scraping Beam centre σx

Start End jaw position [mm] [mm]
01:29:20 01:29:37 right +0.245±0.043 0.565±0.033
02:21:52 02:22:10 left +0.345±0.064 0.619±0.031
02:33:37 02:33:54 left +0.354±0.084 n.a.

MD2: November 7th - November 8th

Time [hh:mm:ss] Scraping Beam centre σx

Start End jaw position [mm] [mm]
05:44:54 05:45:21 right +0.096±0.033 0.560±0.047
06:20:52 06:21:19 left −0.189±0.060 0.984±0.112
06:46:02 06:46:30 right +0.282±0.033 0.908±0.024
07:24:53 07:25:20 left −0.065±0.050 0.725±0.026

the calculated σx with the measured beam size (see Table 7.4). In two cases the
results differ within the estimated error. On the other hand, a discrepancy by a
factor of 1.8 is observed for the last measurement. No jaw movement that could
justify this difference was performed between the profile scan and the scraping.

Table 7.4: Comparison between horizontal beam profile measurements by wire scan-
ner and σx values calculated from beam scraping data (see Table 7.3).

Beam profile measurements Full beam scraping
Time σx Initial time σx

[hh:mm] [mm] [hh:mm:ss] [mm]
MD1 01:19 0.582 01:29:20 0.565±0.033
MD2 05:42 0.591 05:44:54 0.560±0.047

06:43 1.634 06:46:02 0.908±0.024

7.2.6 Comparison between beam based alignment and beam
scraping results

The beam based alignment and the full beam scraping provide two completely in-
dependent ways for the determination of the beam centre position. The comparison
of the results obtained with these two methods allows to have further information
about the accuracy in centering the jaw positions with respect to the beam. In
Table 7.5 the values of x0 are summarized for measurements close in time. As data
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close in time are selected, small changes in the beam conditions are expected (orbit,
beam size etc.). In two cases the beam based alignment was immediately followed
by a full scraping. Data differ on average by 58.7μm, showing a good agreement
between the two measurement methods. The maximum difference is 120μm.

Table 7.5: Comparison between beam centre positions determined through beam
based alignment and beam scraping procedures for data sets close in time.

Beam based alignment Full beam scraping
final time Beam center Initial time Beam center
[hh:mm] [mm] [hh:mm] [mm]

MD1 01:29 0.195± 0.014 01:29:20 0.245± 0.043
02:21 0.225± 0.014 02:21:52 0.345± 0.066

MD2 05:33 0.090± 0.071 05:44:54 0.096± 0.033

7.2.7 Beam loss response with stored beam

Moving the collimator jaw into the beam halo generates a shower of particles which
is detected by the downstream BLMs and which is seen as a peak in the beam loss
signal.

In the case of infinite aperture we would expect the following intensity loss ΔIjaw

for a movement of the collimator jaw by Δx from an initial position x0 (x0 > Δx):

ΔIjaw(x0, Δx) =
∫ x0−Δx

x0

I(x)dx. (7.4)

This intensity loss occurs over a time Tloss given by the time of jaw movement Tjaw

and the time Tp required for all particles of affected amplitude to reach the jaw:

Tloss = max(Tjaw, Tp). (7.5)

For the results shown, Tjaw is between 10 ms and 1 s. The time Tp depends on the
machine tunes and the coupling between the different planes [84].

In addition to the loss ΔIjaw from jaw movement there is a loss contribution ΔIτ

from intensity lifetime τ . The total loss ΔItot over a given time is then:

ΔItot(x) = ΔIjaw(x0, Δx) + ΔIτ . (7.6)

with x = x0 − Δx. The jaw may only intercept a fraction F (x) of the intensity
lifetime related loss ΔIτ , the rest being lost in the machine aperture. The jaw will
then intercept a total intensity:

ΔI(x) = ΔIjaw(x0, Δx) + F (x)ΔIτ . (7.7)



128 7. Test Results on Collimation Commissioning

While the second term of eq. 7.7 constantly contributes to ΔI(x) the first term acts
just over Tloss. The beam loss monitors record ΔI(x)/Δt. The measured beam loss
response is shown in Fig. 7.13. Another example is shown in Fig. 7.14.
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Figure 7.13: Measured beam loss response to a jaw movement from 50σx down to
2.3σx (averaged over the 4 BLM readings, MD1 data). A part of the beam halo
is scraped, leading to a loss peak with a double exponential tail. A new high loss
plateau is approached, indicating that the jaw became an overall aperture bottleneck,
intercepting protons lost due to intensity lifetime.

The loss response shows systematic long decays of the loss signals. This decay
can be approximated by a double exponential function of the form:

I(t) = a · eb·t + c · ed·t (7.8)

For the two shown examples we find the decay times in Table 7.6. An average
time over all analyzed loss tails is also listed.

Specific tests proved that these tails were indeed beam-induced and not instru-
mental effects. The physics process related to this observation is still under investi-
gation. Long decay times can affect the time required for beam based alignment of
collimators in the LHC: waiting periods must be added before reliable BLM response
can be obtained. This is already the case in the TEVATRON.

The beam loss signals in Fig. 7.13 and Fig. 7.14 indicate different loss rates
ΔI(x)/Δt at the collimator jaw for different settings of jaw position. It is assumed
that this is related to a different fraction of intensity losses being intercepted at the
jaw (the rest goes into the aperture around the ring). Alternatively it has been
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Figure 7.14: Measured beam loss response to a jaw movement from 5.8σx to 5.4σx

(averaged over the 4 BLM readings, MD2 data). A part of the beam halo is scraped,
leading to a loss peak with a double exponential tail.

Table 7.6: Decay times for the two tail measurements shown in Fig. 7.13 and Fig. 7.14
and average values for all analyzed data sets. Average values include the standard
deviation obtained from the data.

Loss reduction Decay time [s]
factor Fig. 7.13 Fig. 7.14 average

10 1.2 2.4 2.0±0.9
100 11.7 15.2 10.6±3.9

suspected that the presence of the jaw can deplete the beam distribution close to
the jaw surface, leading to higher loss rates close to the centre of the distribution.
The beam lifetime would be a function of the jaw position. There exists, however,
no conclusive theory for this. Also, the mechanism for generating losses that extend
up to 20 s after completion of the jaw movement is not explained.

Other interesting observations were resulting from changes in beam tunes. Dur-
ing the tests the vertical tune Qy was kept at 26.21 whereas the horizontal tune Qx

(nominally equal to 26.125) was changed in steps until the third integer resonance
was reached (causing loss of the full beam). Red arrows in Fig. 7.15 indicate the
changes of the rational part of Qx. It is shown that the tune shifts ΔQx induced
losses even without any jaw movement.
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It is interesting to notice that the change of the horizontal tune caused a variation
in the betatron orbit Δxβ=xβ,i+1 − xβ,i of up to 400μm (0.73σβ). The expected
change is given by the relation:

Δxβ =
√

εx

[√
βxi+1

cos(2πQxi+1
) −

√
βxi

cos(2πQxi
)
]
. (7.9)

Measured orbit changes are listed in Table 7.7.

Table 7.7: Summary of BLM signals for different settings x0−Δx of collimators and
various tune changes ΔQx. Δxβ is the observed orbit change from tune changes. It
is also indicated how many spurious “echo” signals were observed, if any.

MD2: November 7th - November 8th

Time BLM x0 Δx ΔQx Δxβ [σx] Echos
[hh:mm:ss] [a.u.] [σx] [σx] Qx,i+1 − Qx,i xβ,i+1 − xβ,i #

03:09:28 3.01 · 107 9.8 0.00 +0.055 +0.25 0
03:10:03 6.83 · 106 9.8 0.36 0.000 0.00 1
03:14:45 1.94 · 108 8.7 0.00 +0.020 +0.12 2
03:16:23 4.28 · 107 8.7 0.36 0.000 0.00 3
03:21:02 1.09 · 108 7.6 0.00 +0.100 +0.36 0
03:27:45 9.40 · 106 6.5 0.00 −0.175 −0.73 0
03:34:02 1.58 · 108 5.4 0.00 +0.115 +0.54 2
03:36:55 2.81 · 108 5.1 0.00 +0.093̄ resonance 0

A change of horizontal orbit is equivalent to a change of the jaw position. It
is therefore expected that tune changes induce beam losses through the change of
orbit. The observed loss signals (see Fig. 7.15) are compatible with this explanation,
plus some extra losses due to slightly reduced beam stability during the tune change.

The tune variation at 03:27:45 induced a negative orbit change, equivalent to a
retraction of the jaw. Indeed, a sharp reduction in losses at the jaw is observed in
Fig. 7.15. Also essentially no loss tail is observed, as one would expect.

During the measurements so called “echo” signals were recorded a few seconds
after the initial spikes. These signals were generated by either jaw steps Δx or tune
shifts ΔQx (see Fig. 7.8). All “echo” events from tune shifts or jaw movements are
listed in Table 7.7. Table 7.8 contains information about the amplitude of the “echo”
signals and their delay with respect to the first loss signal Δt. The observation could
not be explained. Also “echoes” only appeared sporadically and might be related to
machine stability problems.
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Figure 7.16: Zoom of the BLM signal versus time after a change in the horizontal
tune at 3:14:45. An unexplained second loss peak appeared, also seen during other
measurements.

Table 7.8: The BLM signal amplitude and the delay Δt with respect to the first
peak are listed for the spurious “echo” signals appearing during MD2 (see Fig. 7.15).

MD2: November 7th - November 8th

Time BLM amplitude Δt
[hh:mm:ss] [a.u.] [sec]

03:10:03 2.11 · 106 24
03:14:45 1.06 · 107 12

2.27 · 107 17
03:16:23 5.50 · 106 7

1.04 · 106 35
8.28 · 105 42

03:34:02 9.52 · 107 8
5.36 · 107 26

7.3 Robustness tests

Robustness is one of the main features required for the phase 1 collimation system.
A carbon-based collimator should be able to survive without damage not only dur-
ing nominal operation but also in case of expected failures [44]. For this reason a
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prototype of a secondary LHC collimator (TCSG) was installed in the TT40 beam
extraction line and was exposed to robustness tests.

During first tests in 2004 a beam of 3.2·1013 protons at 450 GeV was shot repeat-
edly against a secondary collimator jaw. The collimator survived well but showed
about 300μm permanent deformation of the jaw copper support (see section 4.3.1
for a jaw cross section). The copper was then replaced by alumina strengthened
dispersion copper (GLIDCOP) with higher yield strength in order to keep the de-
formation of the jaw within the flatness requirements of 40μm. A new collimator
prototype was tested in 20062. The priorities were:

1. Repetition of the 2004 high intensity robustness tests for the validation of the
final jaw design with GLIDCOP supports.

2. Measurement of beam induced jaw vibrations and estimation of the maximum
temporary transverse displacement during and after beam impact.

3. Investigation on usage of accelerometers and microphones for direct beam im-
pact detection.

The beam parameters for the TT40 tests are summarized in Table 7.9. It is noted
that a different bunch configuration was used but overall parameters were identical
in 2004 and in 2006.

Table 7.9: Beam condition during high intensity TT40 tests.

Beam parameter 2004 2006
Bunch Population 1.1·1011 protons
Number of bunches 4×72 6×48

Bunch spacing 25 nsec
Bunch length 1 nsec

Beam size (r.m.s) at collimator 1×1 mm2

Energy 450 GeV

7.3.1 Experimental apparatus in 2006

A special collimator prototype was mounted in the TT40 extraction line for 2006:
only the right jaw was installed. The collimator tank was equipped with four win-
dows in order to perform vibration measurements using a Laser Doppler Vibrometer
(LDV). Fig. 7.17 shows the prototype and the four points used for LDV measure-
ments: three of them coincided with the implemented windows (1,3 and 4) while

209/11/2006 from 8:00 until 00:00
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one fell on the jaw support table (2). Piezoelectric accelerometers, placed close to
point 2, and one microphone were used for direct beam impact detection [85, 86].
Temperature sensors were installed upstream and downstream of the collimator jaw
to check the influence of the beam intensity on the temperature rise.

30 cm 
30 cm 

30 cm 

Figure 7.17: The tank of the prototype collimator was equipped with four windows
for the measurements with the Laser Doppler Vibrometer. The 4 points used for the
vibration measurements are shown: three points coincided with the windows while
one fell on the jaw support table close to the accelerometers.

Figure 7.18: Scheme of the TT40 installation for robustness tests of a LHC proto-
type collimator. Three beam loss monitors (BLMs) are installed upstream of the
collimator and one BLM is located between the prototype and the TED.



7.3. Robustness tests 135

Four BLMs were used for measuring the showers of particles produced by the
beam impacting on the collimator. One BLM was placed between the prototype and
the downstream absorber (TED) while the remaining three were installed upstream
of the collimator in order not to be saturated by showers of backscattered particles
coming from the TED (see Fig. 7.18).

The collimator was remotely controlled through the LHC collimator control soft-
ware. The jaw position was read through the same sensors as installed in the final
LHC collimators: radiation hard LVDTs and resolvers with at least three times
better accuracy than those mounted in the SPS prototype.

7.3.2 Beam based alignment with pulsed beam

A preliminary alignment of the collimator jaw with respect to the beam was required
for the TT40 tests. The main reason for determining the beam centre was the need
of controlling the impact parameter: a scan from 0 mm to 5 mm with steps of 1mm
(see Fig. 7.19) was foreseen for robustness tests.

0 mm 

1 mm 

2 mm 

3 mm 

4 mm 

5 mm 

-1 mm 
-2 mm 

Pulsed beam 

Collimator jaw 

Figure 7.19: Scheme of impacts on the collimator jaw in TT40. The pulsed beam
was shot against the collimator jaw with an impact parameter ranging from 0 mm
to 5 mm with steps of 1 mm.

Since a pulsed, single-pass beam was used in TT40, the beam based alignment
method differed from the one described in section 7.2.3. The collimator jaw was set
at different positions and one batch was extracted form the SPS and shot towards
the collimator. If the jaw was out from the beam trajectory the batch hit the TED
and no losses were recorded by the BLMs, whereas BLM signals appeared as soon
as the jaw intercepted the beam. The amplitude of the BLM readouts increased
when setting the jaw deeper into the beam core and the maximum intensity was
recorded when the full batch fell inside the jaw. In Fig. 7.20 the data for the first
beam based alignment are shown. They can be fitted by a Gaussian. The beam
centre corresponds to the half height of the Gaussian fit, about 3 mm in this case.
The trajectory of the extracted beam was then moved in order to place the beam
centre on the central position of the right jaw. A new beam based alignment was
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Figure 7.20: Measured beam loss versus jaw position for beam based alignment of
the collimator jaw in TT40. The center of the beam corresponds to about the half
height point of the Gaussian.

 

 

Figure 7.21: Measured beam loss versus jaw position for beam based alignment of
the collimator jaw in TT40. The orbit was moved in order to have coincidence
between the beam center and the centre of the jaw position.
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performed. The results are shown in Fig. 7.21 and a good agreement with the
expected new beam position is seen. The achievable accuracy was given by the
1 mm beam size.

Once the alignment was achieved, several extractions were performed with dif-
ferent intensities, impact parameters and LDV measurement points. They are sum-
marized in Table 7.10. Some batches were shot directly against the TED to test the
capability of the accelerometers and of the microphones to discriminate these im-
pacts from direct hits on the collimator. The full intensity events ranged as foreseen
from 5 mm to 0 mm and also down to negative impact parameters to re-check the
beam centre position (see Fig. 7.19). The total number of extractions and the inte-
grated intensity was limited by the maximum dose allowed by radiation protection:
2·1015 protons for the full test run. It is noted that LDV results are reported in
another PhD thesis [87].

7.3.3 Permanent jaw deformation

The examination of the collimator tested in 2004 showed that both jaws were
bent outwards with respect to the beam. The maximum absolute deformation was
250μm. The investigation of all the collimator components revealed that the CFC
bar survived without surface damage nor deformation while the Cu contact plate,
located just behind (see section 4.3.1), showed a deformation of about 300μm. Finite

y

z 
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b
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Figure 7.22: Cu plate model of the collimator prototype used during 2004 tests. FEM
simulations reproduced the bend outwards with respect to the beam and showed a
good agreement on the order of 50μm with the measurements [69, 77].

element model (FEM) calculations allowed to reproduce the effects of the impacting
beam on the Cu jaw support. A 350μm deformation was predicted, in good agree-
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Table 7.10: Extraction numbers, intensities, impact parameters and LDV measure-
ment points used during the robustness tests.

extraction Intensity Impact Measurement
number [1010 protons] parameter point with LDV time

[mm] 1 2 3 4
1 480 TED 19:35
2 480 5 X 19:41
3 960 TED 19:53
4 960 5 X 19:58
5 1920 5 X 20:05
6 2880 TED 20:20
7 2880 5 X 20:24
8 2880 4 X 20:39
9 2880 3 X 20:54
10 2880 2 X 21:09
11 2880 1 X 21:14
12 2880 0 X 21:19
13 2880 −1 X 21:24
14 2880 −2 X 21:27
15 2880 −3 X 21:30
16 2880 TED 21:37
17 480 4 X 21:54
18 480 4 X 21:58
19 480 4 X 22:02
20 480 4 X 22:05
21 480 4 X 22:10
22 480 4 X 22:12
23 480 4 X 22:16
24 480 4 X 22:20
25 480 4 X 22:30
26 480 4 X 22:34
27 480 4 X 22:36
28 480 4 X 22:38
29 480 4 X 22:56
30 480 4 X 22:57
31 480 4 X 23:00
32 480 4 X 23:02
33 480 4 X 23:06
34 480 4 X 23:12
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ment with the measurements. In Fig. 7.22 the simulation results for the deformed
Cu plate are presented [69, 77].

The simulations also predicted that a GLIDCOP support exposed to identical
beam conditions would have implied a much smaller permanent deformation (16μm).
The collimator design was changed accordingly. The new collimator jaw was tested
in 2006. In Fig. 7.23 the deformation of the jaws measured after the TT40 tests
is compared with the straightness before beam exposure. For the old design the
non-flatness was increased by 160μm. For the new design no change was observed
within the measurements accuracy of 20μm.
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Figure 7.23: Comparison between the deformation of the jaws measured after the
2004 and 2006 robustness tests. The initially measured non-flatness before the beam
exposure is also indicated [69, 77].

7.3.4 Jaw temperature

The temperatures of the collimator jaw (upstream and downstream) and of the
cooling water (see section 4.3.1) were continuously monitored during the TT40 tests.
The data corresponding to measurements with different beam intensity and impact
parameters are shown in Fig. 7.24. The different beam impacts are indicated by
numbers as defined in Table 7.10 (“extraction number”). The water temperature
stayed more or less constant at 22-22.5 ◦C until full beam intensity was reached, then
it increased linearly up to 33 ◦C (∼3·10−3 ◦Cs−1). Afterwards it started decreasing
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again for negative impact parameters. Similarly, the up-stream temperature of the
collimator jaw increased smoothly from 24 ◦C to 37 ◦C and small temperature jumps
appeared in coincidence with the beam impacts.

The downstream temperature sensor showed a high sensitivity to the beam hit-
ting the collimator. Large spikes were observed. This is compatible with the fact
that the peak temperature is expected to occur at the end of the collimator jaw. Sim-
ulations predicted an instantaneous peak temperature of about 350 ◦C for hits with
the maximum intensity (2880·1010 protons) [77]. The measured peak temperature
of the downstream sensor is about 60 ◦C. This sensor was installed at the interface
between the GLIDCOP plate and the CFC bar. An instantaneous peak temperature
of about 100 ◦C was calculated at this location [77] validating the hypothesis of a
real heating of the overall jaw material.

°

 

 

Figure 7.24: Measured temperature of collimator jaw (upstream red line, down-
stream green line) and cooling water (blue line) for beam hitting with different
intensity and impact parameter. Numbers refer to extraction numbers as defined in
Table 7.10.

The amplitude ΔT of the temperature spikes on downstream sensor varied as
a function of the impact parameter and of the number of extracted batches. In
Fig. 7.25 a quadratic increase of ΔT with the beam impact parameter is shown. A
linear dependance between ΔT and the beam intensity (for a 5 mm impact param-
eter) is shown in Fig. 7.26. Further analysis showed that the cooling time of the
downstream sensor seems not to depend on the impact parameter: for extraction 7,
8 and 9 an half time (thalf ) of 200 s was calculated with good reproducibility.
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It is noted that the downstream temperature sensors provide an excellent tool
to detect beam shock impact. The signals can furthermore be used to estimate the
amount of beam that hit the collimator jaw.
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Figure 7.25: Temperature measured by the downstream temperature sensor as a
function of the impact parameter. The data are fitted by a quadratic curve.
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Figure 7.26: Temperature measured by the downstream temperature sensor as a
function of the number of impacting batches (5 mm impact parameter). The data
are linearly fitted.
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Chapter 8

Optimized Strategy for LHC
Collimation Commissioning

Intensity and luminosity reach of the LHC depend on the efficiency of the collimation
system in providing beam cleaning and passive protection to the machine. This
requires a specific setup of the full system for each operational scenario and the
simultaneous control of more than 340 degrees of freedom with tight tolerances. In
this chapter, expected intensity reach and collimator setting tolerances for different
stages of the beam commissioning are derived, based on the studies presented in the
pervious chapters. An optimized commissioning strategy for the LHC collimation
system is described.

8.1 Goals of the commissioning strategy

The LHC collimation system is the most elaborate system of this kind built to date.
The system has been described and analyzed in the previous chapters. Its many
challenges have been presented:

• The high intensity LHC beams, circulating in sensitive superconducting mag-
nets, require a highly efficient cleaning system. The needed collimation effi-
ciency is orders of magnitudes beyond demands in previous accelerators.

• The required efficiency can only be reached by a four stage cleaning system
(primary collimators → secondary collimators → active absorbers → tertiary
collimators). A strict setting hierarchy must be respected (see section 4.3.2.1).

• The limited aperture and the small size of the LHC beams at 7 TeV (≈250μm
at collimators) implies collimation gaps as small as 2-3 mm. Consequently,
setup and beam tolerances are more demanding than in previous colliders.
Collimation tolerances in the LHC are around 20-100μm [88].

143
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• The full phase 1 collimation system includes 88 movable collimators (both
beams). Every collimator jaw has 2 degrees of freedom. In total more than
340 stepping motors must be precisely calibrated and adjusted with respect to
the beam around the 27 km long ring.

It would be unrealistic to assume that the LHC collimation system can provide
its final performance from the first operation day. There will be an unavoidable
learning period which will be used to optimize the system and its performance. This
period should be as short as possible. It is therefore important to define an optimized
commissioning strategy which is matched to the beam commissioning plan of the
LHC and has the following overall goals:

• Maintain at all times the required passive machine protection.

• Minimize the number of collimators required for each step in beam commis-
sioning, such reducing the work and beam time required for collimation.

• Maximize the performance for each commissioning step by defining the most
efficient set of collimators to be used.

• Maximize the tolerance budget available for collimator setup errors or machine
imperfections for each step of commissioning.

Such an optimized commissioning plan has been worked out based on the simula-
tion and experimental results presented in the previous chapters. Various collimation
scenarios have already been introduced for the simulation studies in chapter 6. The
considered sets of collimators are partly related to using minimal systems of collima-
tors and partly to the staged installation of collimators in the LHC. In the following
the required sets of collimators and their settings are defined for various steps in
beam commissioning. In addition, the tolerances for machine and collimator setup,
which must be respected, are specified.

8.2 Performance assumptions
It has been shown in section 6.2 that the collimation cleaning efficiency and induced
losses in superconducting magnets depend strongly on various imperfections. It was
shown for selected simulation cases that local losses can be up to a factor of 11.3
higher when realistic imperfections are assumed. It has also been seen that FLUKA
calculations predict energy deposition about a factor of 1.4 below the quench limit
(see section 6.1.2) for the ideal machine and collimator setup. This amounts to a
factor of 3.5 difference between performance estimates from proton tracking and full
shower studies (more correct).

A commissioning plan should be conservative enough to ensure that it can be
followed reasonably well with the real machine. The following assumptions are



8.3. One-stage collimation for pilot beam 145

therefore included in the described commissioning plan and the presented estimates
of performance reach:

1. The performance reach with the realistic system is a factor of 11.3 lower than
predicted by ideal simulations (as shown in section 6.2 for a few cases). Due
to CPU time limitations only a restricted number of cases could be simulated
with full imperfections. The other cases were scaled from the ideal performance
predictions.

2. The factor of 3.5 lower predictions from FLUKA were not used to rescale the
proton tracking results. Instead, this factor is kept for taking into account
threshold effects. For example, the thresholds for beam-loss based aborts will
be set nominally a factor of 3 below the quench threshold [89]. Collimation
must then be even more efficient to avoid beam-loss triggered aborts. Other
protection thresholds will further reduce the allowable beam loss. A factor of
3.5 for these effects might therefore not be too conservative.

3. Unavoidable uncertainties in the scattering cross-sections (proton tracking
with collimators, FLUKA) and the accelerator models can be significant. Of-
ten at least a factor of 2 is quoted [67]. Here, no safety margin is included for
this.

Beyond these assumptions, all performance estimates relate to the specified
maximum beam loss rates and minimum intensity lifetimes of the LHC (see sec-
tion 4.1.3.1). Also, the published quench limits are assumed for the superconducting
magnets. Any surprise in beam stability or quench limits will change the perfor-
mance reach of collimation.

8.3 One-stage collimation for pilot beam
A pilot beam will be used for initial commissioning of the LHC [64, 90]. This pilot
beam consists of 1 bunch with 5×109 protons. Such a low intensity beam can be
handled with a minimal set of collimators that implements a one-stage cleaning
system and insures the required passive protection.

8.3.1 Required collimators

The following collimators and absorbers are used per beam:

• One primary collimator (TCP) in IR3, implementing a one-stage momentum
cleaning.

• Three primary collimators (TCP) in IR7, implementing a one-stage betatron
cleaning in horizontal, vertical and skew planes.
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• Three collimators/absorbers (two TCDQs, one TCSG) in IR6 for beam dump
protection.

• Two absorbers (one TCLI, one TDI) in IR2 or IR8 for injection protection.

• Six tertiary collimators (TCT) in IR1, IR2, IR5 and IR8 for triplet protection.

This setup consists of 15 collimators per beam. The required settings for the colli-
mators, except the TCTs (see section 8.3.4), are summarized in Table 8.1 for three
reference energies. The absorbers in IR2 and IR8 are set at 6.8σ during injection
and are then retracted before starting the energy ramp.

According to the estimates presented in section 7.2.3 the manual beam based
setup of this system will take 5 hours (≈20 min per collimator) per beam.

Table 8.1: Collimator settings for machine commissioning with pilot beam. Ab-
sorbers in IR2 and IR8 are set at 6.8σ during injection and are retracted before the
energy ramp starts.

Half-gaps[σ]
450GeV 5TeV 7TeV

TCP-IR3 8.0 26.4 31.6
TCSG-IR6 7.0 23.0 27.6
TCDQ-IR6 8.0 26.4 31.6
TCP-IR7 5.7 18.8 22.5

8.3.2 Performance reach

The performance of this one-stage system is summarized in Fig. 8.1. The simulated
performance is shown as a function of beam energy for three different ramp scenarios
(see section 6.1.6), namely (1) constant gaps in mm, (2) gaps with constant tolerance
budget “tolerance optimized setting” and (3) gaps scaled down with √

γ (constant
gaps in terms of beam size). Lines referring to the beam intensities as foreseen
for commissioning (pilot bunch, 43 bunches of 4×1010 protons and 156 bunches of
9×1010 protons [64]) and nominal operation are also shown.

The one-stage system can support pilot beam up to 7 TeV beam energy with
constant gaps (in mm). This facilitates the first energy ramps, as collimator settings
do not need to be changed. The collimator settings listed in Table 8.1 refer to this
case.

8.3.3 Tolerances

The resulting tolerances for the various energies are summarized in Fig. 8.2. The
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Figure 8.1: Maximum beam intensity reach for a minimal one-stage cleaning system.
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Figure 8.2: Tolerance budget Tb as a function of beam energy for a one-stage system
in case of constant collimator setting (in mm) during the ramp. Allocation for
transient orbit errors, transient beta-beat at the primary collimators and collimator-
related errors are shown.

data assumes that collimators are not moved during the energy ramp. The total
tolerance budget T tot

b is defined as:
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T tot
b = n2 − n1; (8.1)

where n1 is the half-gap of the primary collimators and n2 is the half-gap of the
second closest element to the beam (for one-stage cleaning this is the TCSG in IR6).
T tot

b is attributed to these main contributions:

• Collimator setup and imperfections: T coll
b = 0.4 × T tot

b .

• Transient orbit at collimator: T orbit
b = 0.3 × T tot

b .

• Transient beta-beat at collimator: T β
b = 0.3 × T tot

b .

The maximum allowed transient beta-beat at the primary collimators is given by:
(

Δβ

β0

)
max

= 2
ΔAmax

n1

=
2 T β

b

n1 σ
. (8.2)

Here, ΔAmax is the maximum allowed variation of normalized amplitude at the
primary collimator due to transient beta-beat.

It is seen that tolerances are kept constant for the first energy ramps in the LHC.

8.3.4 Collimator settings in experimental insertions

This system is not compatible with a beta squeeze and a crossing angle in the
experimental insertions. Tertiary collimators (TCT) will be set for protection of
the triplet but should have no protection functionality: the triplet aperture should
be in the shadow of the arc aperture (assuming nominal tolerances). The constant
setting during the ramp is assumed and the half-gaps at the reference energies are
listed in Table 8.2. It is noted that the required protection settings in the vertical
and horizontal planes turn out to be identical.

Table 8.2: Tertiary collimator settings for operation with pilot beam. Crossing and
separation schemes are set to zero (OFF see section 5.1).

βz* TCTs half-gap[σ]
[m] 450GeV 5TeV 7TeV

IR1 11 9.6 34.6 38.2
IR2 10 11.4 39.4 44.6
IR5 11 9.6 34.6 38.2
IR8 10 11.4 39.4 44.6
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8.4 Minimal two-stage collimation for 43 bunches

The beam with 43 bunches of 4×1010 protons corresponds to about 0.5% of the
nominal beam intensity but is already an unsafe beam. It can easily quench super-
conducting magnets and can also induce damage on accelerator equipment. The
stored energy of the beam at 7 TeV can reach the present state-of-the-art at the
TEVATRON collider. In this case a two-stage collimation system is required.

8.4.1 Required collimators

The following collimators and absorbers are used per beam:

• One primary collimator (TCP) plus 4 absorbers (TCLA) in IR3, implementing
a two-stage momentum cleaning.

• Three primary collimators (TCP) plus 5 absorbers (TCLA) in IR7, implement-
ing a two-stage betatron cleaning.

• Three collimators/absorbers (two TCDQs, one TCSG) in IR6 for beam dump
protection.

• Two absorbers (one TCLI, one TDI) in IR2 or IR8 for injection protection.

• Six tertiary collimators (TCT) in IR1, IR2, IR5 and IR8 for triplet protection.

This system consists of 24 collimators and absorbers per beam, corresponding to
about 8 hours required for beam based alignment.

The collimator settings, except the TCTs (see section 8.4.4), are listed in Ta-
ble 8.3. For the injection protection the same numbers as in section 8.3.1 are valid.

Table 8.3: Collimator settings for machine commissioning with a beam of 43 bunches.
Absorbers in IR2 and IR8 are set at 6.8σ during injection and are retracted before
the energy ramp starts.

Half-gaps[σ]
450GeV 5TeV 7TeV

TCP-IR3 8.3 13.6 15.2
TCLA-IR3 10.3 20.2 23.2
TCSG-IR6 7.5 7.5 7.5
TCDQ-IR6 8.0 8.0 8.0
TCP-IR7 6.0 6.0 6.0

TCLA-IR7 10.0 10.0 10.0
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8.4.2 Performance Reach

The maximum intensity reach of this minimal two-stage system, for the different
ramp settings defined above, is presented in Fig. 8.3. The system has its best per-
formance if collimator gaps are reduced with √

γ. Values in Table 8.3 refer to this
case. Even then, the estimated performance reach is just below 7 TeV. In case that
7 TeV cannot be reached with this configuration, either intensity must be reduced or
a third collimation family (e.g. secondary collimators) must be set up. In practice it
would then be better to move to the next stage of settings described in section 8.5.
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Figure 8.3: Maximum beam intensity reach for a minimal two-stage cleaning system.

8.4.3 Tolerances

From the performance estimates it is seen that collimation gaps should be decreased
with √

γ during the energy ramp. Only then it can be imagined that 7 TeV could
be reached with 43 bunches and the described collimator complement. In this case
the gaps stay constant in terms of beam size (σ) during the ramp and the toler-
ance budget is reduced while increasing beam energy. The tolerances are shown in
Figure 8.4. At 7 TeV we obtain a budget of 113μm for transient orbit change and
15% transient beta-beat at the primary collimators. This assumption leaves 150μm
budget for collimator set up errors.
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Figure 8.4: Tolerance budget Tb as a function of beam energy for a two-stage cleaning
system when scaling the collimator settings with √

γ during the ramp.

8.4.4 Collimation Settings in Experimental Insertions

The basic two-stage cleaning system is compatible with a first squeeze of βz* in
the experimental insertions of IR1 and IR5 (βz* = 2 m). A run with collision at
5 TeV is planned at this intensity for the early stages of the beam commissioning as
intermediate step before reaching the ultimate energy. For 43 bunches no crossing
angle is required and foreseen. The correct setting of the tertiary collimators is
important for reduced βz* and has been studied in detail. The condition is that the
triplet collimators must be shadowed by the tertiary collimators in order to avoid
quenches and/or damage for the triplet quadrupoles.

Table 8.4: Tertiary collimator settings for collisions at 5 TeV. The crossing and
separation schemes are OFF (see section 5.1).

βz* TCTs half-gap
[m] [σ]

IR1 2 17.4
IR2 10 38.4
IR5 2 17.4
IR8 10 38.4
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8.5 Four-stage collimation with initial system for
higher intensities

This collimator system uses all collimators that have been installed for the 2008
run of the LHC. All the most important collimators were included into the 2008
installation. It is therefore possible to set up a four stage cleaning and protection
system, as it is required for intensities above 43 bunches.

8.5.1 Required collimators

The following collimators and absorbers were installed for the 2008 run:

• One primary (TCP) and four secondary (TCSG) collimators plus four ab-
sorbers (TCLA) in IR3, implementing a three-stage momentum cleaning.

• Three primary (TCP) and six secondary (TCSG) collimators plus five ab-
sorbers (TCLA) in IR7, implementing a three-stage betatron cleaning.

• Three collimators/absorbers (two TCDQs, one TCSG) in IR6 for beam dump
protection.

• Two absorbers (one TCLI, one TDI) in IR2 or IR8 for injection protection.

• Six tertiary collimators (TCT) in IR1, IR2, IR5 and IR8 for triplet protection
and a forth stage of cleaning.

In total, 34 collimators are considered and 11:20 hours are estimated for manual
alignment of the system per beam.

Initially it is foreseen to operate the machine at a maximum energy of 5 TeV. Col-
limator settings, except the TCTs (see section 8.5.4), for this case and for injection
energy are listed in Table 8.5.

8.5.2 Performance Reach

The performance reach improves with a four stage cleaning (see Fig. 8.5). In this
case, the tolerance optimized setting allows machine operation with more than 43
bunches up to 5 TeV. Moreover, by scaling the collimator half-gaps with √

γ, 156
bunches can be handled.

This system was optimized to guarantee the required machine protection during
all the phases planned for the commissioning run.
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Table 8.5: Collimator settings for the initial machine commissioning run with the
2008 system of collimators. Absorbers in IR2 and IR8 are set at 6.8σ during in-
jection and are retracted before the energy ramp starts. Two different scenarios for
collimator settings during the energy ramp are specified.

Half-gaps[σ]
450GeV 5TeV

Tolerance Scaled Tolerance Scaled
optimized with√

γ optimized with√
γ

TCP-IR3 8.3 8.3 13.6 13.6
TCSG-IR3 9.6 9.6 18.0 18.0
TCLA-IR3 10.3 10.3 20.2 20.2
TCSG-IR6 7.3 7.5 10.3 7.5
TCDQ-IR6 8.3 8.0 13.6 8.0
TCP-IR7 6.0 6.0 6.0 6.0
TCSG-IR7 7.0 7.0 9.3 7.0
TCLA-IR7 10.3 10.0 20.2 10.0

0.45 1 2 3 4 5 6 7

10
10

10
11

10
12

10
13

10
14

Energy [TeV]

I m
ax

 [
pr

ot
on

s]

 

 

Constant setting
Tolerance opt. setting

Scaled with    setting

Pilot bunch 

43 bunches 

156 bunches 

Nominal 

intensity 

Energy [TeV] 

Figure 8.5: Maximum beam intensity reach for the collimation system as installed
for the 2008 run. The initial maximum beam energy is 5 TeV.

8.5.3 Tolerances

Tolerances stay maximal during the full ramp if the tolerance optimized setting is
applied to the considered system (see Fig. 8.6). The allowance for transient beta-beat
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Figure 8.6: Tolerance budget Tb as a function of beam energy for the full phase 1
system and the 2008 collimation complement. Tolerance optimized setting is con-
sidered.
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Figure 8.7: Tolerance budget Tb as a function of the energy for the full phase 1
system and the 2008 collimation complement. The collimator settings are scaled
with √

γ during the energy ramp.
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at the primary collimators increases to 40%.
The setting scaled with √

γ anyway has the best performance and must be
adopted if the beam intensity is increased to 156 bunches. In this case, tolerances
are significantly reduced with the energy. For example, at 5 TeV the tolerance bud-
get is 120μm for collimator setup and 90μm for transient orbit with 10.3% transient
beta-beat at the primary collimators. In case that these tight tolerances cannot be
achieved, collimator gaps must be increase and the intensity should be reduced.

8.5.4 Collimation Settings in Experimental Insertions

This system is compatible with a βz* of 2 m in IR1 and IR5 and a βz* of 10 m in
IR2 and IR8. A crossing angle is necessary for a beam with more than 43 bunches.
The settings of tertiary collimators and the crossing angles are listed in Table 8.6.

Table 8.6: Tertiary collimator settings and crossing angles, for collisions at 5TeV
with more than 43 bunches and a four stage cleaning system as installed in 2008.

Crossing angle βz* TCTs half-gap
[μm] [m] [σ]

IR1 ± 92 2 17.3
IR2 ± 170 10 37.3
IR5 ± 92 2 14.8
IR8 ± 170 10 33.8

The described collimator system refers to the 2008 installation and the vertical
tertiary collimators in IR2 and IR8 are not yet installed. For maximum safety of
the accelerator, this excludes the possibility of a βz* squeeze to values smaller than
5 m in Alice and LHCb.

8.6 Four-stage collimation with the full phase 1 sys-
tem for higher intensities

The full phase 1 collimation system will be installed for the 2009 run of the LHC. The
full performance reach of the phase 1 system can be achieved in terms of cleaning
efficiency, crossing angle and βz*.

8.6.1 Required collimators

The full phase 1 system consists of:

• One primary (TCP) and four secondary (TCSG) collimators plus four ab-
sorbers (TCLA) in IR3, implementing a three-stage momentum cleaning.
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• Three primary (TCP) and eleven secondary (TCSG) collimators plus five ab-
sorbers (TCLA) in IR7, implementing a three-stage betatron cleaning.

• Three collimators/absorbers (two TCDQs, one TCSG) in IR6 for beam dump
protection.

• Three absorbers (two TCLI, one TDI) in IR2 or IR8 for injection protection.

• Eight tertiary collimators (TCT) in IR1, IR2, IR5 and IR8 for triplet protection
and a forth stage of cleaning.

• Two physics debris absorbers (TCLP) in IR1 and IR5.

An estimated time of 14:40 hours is needed for setting up the 44 collimators per
beam installed along the ring.

Table 8.7: Collimator settings for machine operation with the full phase 1 system at
higher intensities. Absorbers in IR2 and IR8 are set at 6.8σ during injection and
are retracted before the energy ramp starts.

Half-gaps[σ]
450GeV 5TeV 7TeV

TCP-IR3 8.3 13.6 15.2
TCSG-IR3 9.6 18.0 20.2
TCLA-IR3 10.3 20.2 23.2
TCSG-IR6 7.5 7.5 7.5
TCDQ-IR6 8.0 8.0 8.0
TCP-IR7 6.0 6.0 6.0
TCSG-IR7 7.0 7.0 7.0
TCLA-IR7 10.0 10.0 10.0

At this stage the collimator openings must follow the adiabatic damping of beam
size during the acceleration. Collimator settings are scaled with √

γ (see Table 8.7).

8.6.2 Performance Reach

The full phase 1 collimation system provides optimal performance which, however,
is expected to be limited to below nominal intensity, as shown in Fig. 8.8. A factor
of three improvement in cleaning efficiency would be required to arrive to 7TeV
top energy with 156 bunches. This relies on many assumptions, as outlined before.
As experience is gained with the LHC it is expected that a better beam stability
(longer lifetime τ) and reduced machine imperfections can be achieved. In this
case the 7 TeV energy can be reached with a higher intensity. Finally, additional
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Figure 8.8: Maximum beam intensity reach for the full phase 1 system.

collimators from the phase 2 collimation project will further increase the intensity
reach.

8.6.3 Tolerances

The best performance implies a strong reduction of the tolerances as a function of the
energy. Tolerances vary with the beam energy as in the previous case (see Fig. 8.7).
Optimal collimator operation becomes therefore more demanding when increasing
the beam energy. The tolerance budget for collimator setup T coll

b is reduced to
around 100μm at 7 TeV. Typically only 75μm are left for transient orbit change
and 10.3% transient beta-beat at the primary collimators.

8.6.4 Collimation Settings in Experimental Insertions

Half-gaps of the tertiary collimators at the four experimental insertions are given in
Table 8.8. These settings refer to early (βz*=2 m in IP1, IP5 and IP8) and nominal
collision (βz*= 0.55 m in IP1 and IP5) optics. Any further squeeze of βz* in IP2
and/or IP8 requires to close the TCTs accordingly, in order to insure protection of
the triplet magnets.

In all these cases, a crossing angle is needed and in Table 8.8 nominal values for
optics version V6.503 are shown.
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Table 8.8: Tertiary collimator settings for the optics foreseen for collisions at 7 TeV.

Crossing angle βz* TCTs half-gap
[μm] [m] [σ]

IR1 ± 92 2 20.3
IR2 ± 240 10 36.5
IR5 ± 92 2 17.4
IR8 ± 140 2 18.6
IR1 ± 143 0.55 8.3
IR2 ± 124 10 45
IR5 ± 143 0.55 8.3
IR8 ± 170 10 30

8.7 Synthesis of Beam Commissioning Plan
This section summarizes the main features of the collimation commissioning plan
presented before. In Fig. 8.9 the number of collimators per beam necessary for
insuring adequate cleaning and passive machine protection is shown for the analyzed
stages of beam commissioning. The corresponding cleaning inefficiency is shown in
Fig. 8.10 for:
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Figure 8.9: Number of needed collimators per beam as a function of the performance
reaches foreseen by the machine commissioning plan.
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• Constant settings for the one-stage cleaning system and collimator gaps scaled
with √

γ (optimal performance) for the remaining scenarios (solid line).

• Tolerance optimized setting for multi-stage collimator complements (dashed
line).

The efficiency gain factor with respect to the one-stage cleaning system is shown for
the case of best performance.
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Figure 8.10: Maximum local cleaning inefficiency η̃cold
max at 7 TeV (blue lines) for the

analyzed collimator complements. The solid blue line refers to a constant setting for
the one-stage system and performance optimized collimator gaps for the remaining
scenarios. The dashed blue line refers to tolerance optimized settings for multi-
stage complements. The efficiency gain factor (red line) is shown for performance
optimized collimator settings with respect to one-stage cleaning system.

Operation with the pilot beam is incompatible with any squeezed optics and
crossing angle. Tertiary collimators are then in principle not needed because the
triplet quadrupoles are shielded by the arc cold aperture. On the other hand, TCTs
become essential when the beam intensity is increased and/or the triplet aperture
becomes a machine bottleneck due to βz* squeeze.

The estimated time for the manual beam based setup of each complement de-
pends on the number of collimators to be used and is shown in Fig. 8.11. Experimen-
tal tests showed that, on average, 20 minutes have to be taken into account for the
alignment of each collimator (see section 7.2.3). A minimum time of 5 hours is then
estimated for aligning the minimum one-stage system (pilot beam). A minimum of
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about 15 hours is necessary per beam for setting up the full phase 1 system. An
automized calibration procedure will be implemented to reduce setup time.

In the LHC, a new beam based alignment of the full system will have to be
performed after any substantial change in the beam parameters. If the machine
is stable, collimators will be put to reference positions from the last beam based
alignment. High reproducibility of the accelerator and beam parameters are funda-
mental for avoiding frequent collimator setup and for obtaining high efficiency of the
accelerator for physics.
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Figure 8.11: Estimate of beam time required for manual beam based alignment of
the analyzed collimator complements per beam.

Tolerance budget requirements for optimized performance reach become more de-
manding when increasing the intensity and the number of collimators (see Fig. 8.12,
8.13 and 8.14). The minimum tolerance budget T coll

b for collimator-related imperfec-
tions is 100μm. The corresponding allowance for the machine are 10.3% transient
beta-beat and 75μm transient orbit change at the primary collimators.

Initially less stringent tolerances might be preferred. The tolerance optimized
setting allows operation of the full phase 1 system with maximal tolerances. T coll

b

of 390μm, transient orbit change of 300μm and 40% transient beta-beat at the
primary collimators are then allowed at top energy (see Fig. 8.14). In this case the
performance reach is reduced by about a factor of 2 (see Fig. 8.10).

If difficulties are encountered in achieving the required tolerances for optimized
performance, the collimators can be set to larger openings. This could imply a
reduction in the maximum allowed beam intensity.
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Figure 8.12: The available tolerance budget for collimator setup at top energy is
shown for performance and tolerance optimized settings of multi-stage cleaning.
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Figure 8.13: The available tolerance budget for transient orbit change at top energy
is shown for performance and tolerance optimized settings of multi-stage cleaning.

8.8 Collimation master table
The expected steps in beam commissioning of the LHC and the collimation system
were described above. However, it can be envisaged that the beam commissioning
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Figure 8.14: The available tolerance budget for transient beta-beat at the primary
collimators at top energy is shown for performance and tolerance optimized settings
of multi-stage cleaning.

might deviate from the foreseen procedure for various possible reasons. In this case,
the appropriate collimator settings must be redefined in a short time.

The collimation system is an elaborate scheme with various families and strict
hierarchical settings for adequate cleaning and passive machine protection. Any
proposed setup must be carefully checked for full consistency with the setting rules.

In order to allow for fast reaction time without compromising safety aspects, a
master table for collimation has been defined as a part of this PhD work. It contains
a large variety of collimator settings, according to the results of all the collimation
studies performed for the LHC. The consistency and safety of the proposed settings
are carefully checked for this table.

The collimation master table is too complicated and too involved to be placed
into this report. The cases described above were estimated from this table. The
master table will be used as the reference for collimation setup and will be updated
from the accelerator physics side as the knowledge and experience of LHC collimation
will expand. A released version will be made available for accelerator operation after
initial beam commissioning.



Chapter 9

Conclusions

The high intensity beams of the Large Hadron Collider advance the state-of-the-art
in stored beam energy by two-three orders of magnitude. For nominal parameters
up to 360 MJ of stored energy will circulate at 11 kHz through the LHC super-
conducting magnets with quench limits of around 5 mJ s−1 cm−3. A sophisticated
four-stage collimation system in the LHC will intercept and absorb unavoidable
fractional beam losses of up to 0.1% of stored energy per second (corresponding to
500 kW). For this purpose 88 collimators are installed in a first phase around the
27 km long ring, mainly concentrated in the two cleaning insertions. LHC collimators
have excellent robustness and survive beam shock impact of up to 2 MJ, as shown
in this thesis. It is described how temperature sensors can be used for detection of
beam impact, providing a measure of the intensity that hit the collimator.

The LHC collimation system shall provide a cleaning efficiency (absorption of
losses) of better than 99.99% for the 7 TeV LHC beams. This PhD thesis has ex-
tended earlier studies on the achievable cleaning efficiency, taking into account for
the first time realistic static imperfections. The extended simulations include, in
particular, manufacturing errors on flatness of collimators, collimator setup errors,
design orbit errors and magnet alignment and manufacturing errors. The imperfec-
tions for magnet manufacturing and alignment were studied both for design limits
and measured values. A model of collimator jaw flatness was based on measurements
during the production and assembly of collimators.

The achievable collimator setup accuracy was assessed with beam for an LHC
prototype collimator installed in the SPS accelerator. In the collimation gap an
accuracy of 50μm for its centering on the beam and 0.1σ for its width was achieved.
Tests with SPS beam on angular alignment of the jaws with respect to the beam
envelope were not successful. Therefore the angular setup error is given by the
200μrad alignment accuracy of the collimator. Various interesting observations in
beam loss signals (beam loss tails and echoes) were found during the setup tests of
the LHC collimator when it touched particles in the SPS beam halo. They can have
an impact on collimator setup, if similar features appear in the LHC.

The simulations show that the combined static imperfections, described above,
have a strong effect on the achievable cleaning efficiency, reducing it by a factor of 11
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if compared to the ideal performance. The intensity reach of the phase 1 collimation
system is then predicted to be below 5% of nominal intensity. Higher beam inten-
sities would require lower than specified peak losses (better beam stability), better
collimator setup, reduced machine imperfections or a collimation upgrade (phase 2).
Collimator-induced impedance can introduce another independent intensity limit
from collimation. It is shown that an important trade-off between impedance and
cleaning efficiency exists. The LHC impedance is reduced when opening collimator
gaps, while the predicted efficiency is degraded significantly.

The foreseen steps in beam commissioning of the LHC are analyzed, taking into
account the achievable collimation efficiency. A large variety of cases is considered,
covering the expected evolution in beam intensity (from pilot to nominal beam), in
βz*, in maximum beam energy (from 450 GeV over 5 TeV to 7 TeV) and in bunch
pattern. Appropriate collimator complements and the required collimation gaps are
defined for each step. The defined collimation gaps cover the full energy range from
injection through the energy ramp to top energy. Various possibilities for collimator
settings during the energy ramp are analyzed.

An optimized strategy for the commissioning of the collimation system is de-
fined on the basis of the simulations. The proposed scenario guarantees the required
beam cleaning and machine protection. At the same time the number of required
collimators is minimized and the available tolerances for collimator setup, tran-
sient beta-beat and transient orbit changes are maximized (“tolerance budget”). An
analysis of consequences from off-momentum beta-beat for LHC collimation was
performed in this PhD and guided the choice for the standard LHC optics. Still, the
collimation-related tolerance budget can be decreased by 30% due to off-momentum
beta-beat.

The proposed collimation commissioning starts with 30 collimators and a toler-
ance budget that is relaxed by a factor of 4 for a given beam energy. The cleaning
efficiency is then improved in steps until a factor of 300 is gained with 88 collima-
tors and achievement of tightest tolerances. The plan is summarized in a collimation
master table which summarizes a large number of consistent collimator settings. It
will be updated and completed during collimator commissioning and will then be
made available for machine operation.

Based on the experience from LHC collimator tests in the SPS it is predicted
that the collimation setup time varies from initially 5 hours to finally about 15 hours
for each calibration and each beam. It is shown that less than 0.1% of nominal
intensity (1-5 nominal bunches) can be used at maximum for collimator beam based
alignment in the LHC. It is therefore excluded to calibrate collimator positions for
each fill, as it is done in the Tevatron. Reproducibility of the LHC accelerator is
therefore crucial in order to maximize the validity of a given collimator setup.

A firm foundation for the setup of the LHC collimation system has been estab-
lished and will support the endeavor to bring the biggest machine that mankind
built into operation.



Appendix A

Phase 1 collimator database

A.1 Beam1
Table A.1: List of phase 1 collimators. Name, length, azimuthal angle, material and
nominal simulated settings at injection and collision energy are indicated.

Name Length Angle Material Half-gap[σz]
[m] [deg] injection collision

TCL.5R1.B1 1.0 0.0 Cu out 10.0

TCTH.4L2.B1 1.0 0.0 Cu-W out 8.3
TDI.4L2 4.0 90.0 C-C 6.8 out

TCTVB.4L2 1.0 90.0 Cu-W out 8.3
TCLIA.4R2 1.0 90.0 CFC 6.8 out

TCLIB.6R2.B1 1.0 90.0 CFC 6.8 out

TCP.6L3.B1 0.6 0.0 CFC 8.0 15.0
TCSG.5L3.B1 1.0 0.0 CFC 9.3 18.0
TCSG.4R3.B1 1.0 0.0 CFC 9.3 18.0

TCSG.A5R3.B1 1.0 170.7 CFC 9.3 18.0
TCSG.B5R3.B1 1.0 10.8 CFC 9.3 18.0
TCLA.A5R3.B1 1.0 90.0 Cu-W 10.0 20.0
TCLA.B5R3.B1 1.0 0.0 Cu-W 10.0 20.0
TCLA.6R3.B1 1.0 0.0 Cu-W 10.0 20.0
TCLA.7R3.B1 1.0 0.0 Cu-W 10.0 20.0
TCTH.4L5.B1 1.0 0.0 Cu-W out 8.3
TCTVA.4L5.B1 1.0 90.0 Cu-W out 8.3

TCL.5R5.B1 1.0 0.0 Cu out 10.0
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continued from previous page
Name Length Angle Material Half-gap[σz]

[m] [deg] injection collision

TCDQA.A4R6.B1 3.0 0.0 CFC 8.0 8.0
TCDQA.B4R6.B1 3.0 0.0 CFC 8.0 8.0

TCSG.4R6.B1 1.0 0.0 CFC 7 7.5

TCP.D6L7.B1 0.6 90.0 CFC 5.7 6
TCP.C6L7.B1 0.6 0.0 CFC 5.7 6
TCP.B6L7.B1 0.6 127.5 CFC 5.7 6

TCSG.A6L7.B1 1.0 141.1 CFC 6.7 7
TCSG.B5L7.B1 1.0 143.5 CFC 6.7 7
TCSG.A5L7.B1 1.0 40.7 CFC 6.7 7
TCSG.D4L7.B1 1.0 90.0 CFC 6.7 7
TCSG.B4L7.B1 1.0 0.0 CFC 6.7 7
TCSG.A4L7.B1 1.0 134.6 CFC 6.7 7
TCSG.A4R7.B1 1.0 46.3 CFC 6.7 7
TCSG.B5R7.B1 1.0 141.5 CFC 6.7 7
TCSG.D5R7.B1 1.0 51.4 CFC 6.7 7
TCSG.E5R7.B1 1.0 130.5 CFC 6.7 7
TCSG.6R7.B1 1.0 0.5 CFC 6.7 7

TCLA.A6R7.B1 1.0 90.0 Cu-W 10 10
TCLA.B6R7.B1 1.0 0.0 Cu-W 10 10
TCLA.C6R7.B1 1.0 90.0 Cu-W 10 10
TCLA.D6R7.B1 1.0 0.0 Cu-W 10 10
TCLA.A7R7.B1 1.0 0.0 Cu-W 10 10

TCTH.4L8.B1 1.0 0.0 Cu-W out 8.3
TCTVB.4L8 1.0 90.0 Cu-W out 8.3

TCTH.4L1.B1 1.0 0.0 Cu-W out 8.3
TCTVA.4L1.B1 1.0 90.0 Cu-W out 8.3
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A.2 Beam2
Table A.2: List of phase 1 collimators. Name, length, azimuthal angle, material and
nominal simulated settings at injection and collision energy are indicated.

Name Length Angle Material Half-gap[σz]
[m] [deg] injection collision

TCTH.4R8.B2 1.0 0.0 Cu-W out 8.3
TDI.4R8 4.0 90.0 C-C 6.8 out

TCTVB.4R8 1.0 90.0 Cu-W out 8.3
TCLIA.4L8 1.0 90.0 CFC 6.8 out

TCLIB.6L8.B2 1.0 90.0 CFC 6.8 out

TCP.D6R7.B2 0.6 90.0 CFC 5.7 6
TCP.C6R7.B2 0.6 0.0 CFC 5.7 6
TCP.B6R7.B2 0.6 127.5 CFC 5.7 6

TCSG.A6R7.B2 1.0 141.1 CFC 6.7 7
TCSG.B5R7.B2 1.0 143.5 CFC 6.7 7
TCSG.A5R7.B2 1.0 40.7 CFC 6.7 7
TCSG.D4R7.B2 1.0 90.0 CFC 6.7 7
TCSG.B4R7.B2 1.0 0.0 CFC 6.7 7
TCSG.A4R7.B2 1.0 134.6 CFC 6.7 7
TCSG.A4L7.B2 1.0 46.3 CFC 6.7 7
TCSG.B5L7.B2 1.0 141.5 CFC 6.7 7
TCSG.D5L7.B2 1.0 51.4 CFC 6.7 7
TCSG.E5L7.B2 1.0 130.5 CFC 6.7 7
TCSG.6L7.B2 1.0 0.5 CFC 6.7 7

TCLA.A6L7.B2 1.0 90.0 Cu-W 10 10
TCLA.B6L7.B2 1.0 0.0 Cu-W 10 10
TCLA.C6L7.B2 1.0 90.0 Cu-W 10 10
TCLA.D6L7.B2 1.0 0.0 Cu-W 10 10
TCLA.A7L7.B2 1.0 0.0 Cu-W 10 10

TCDQA.A4L6.B2 3.0 0.0 CFC 8.0 8.0
TCDQA.B4L6.B2 3.0 0.0 CFC 8.0 8.0

TCSG.4L6.B2 1.0 0.0 CFC 7 7.5
TCTH.4R5.B2 1.0 0.0 Cu-W out 8.3
TCTVA.4R5.B2 1.0 90.0 Cu-W out 8.3

TCL.5L5.B2 1.0 0.0 Cu out 10.0
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continued from previous page
Name Length Angle Material Half-gap[σz]

[m] [deg] injection collision

TCP.6R3.B2 0.6 0.0 CFC 8.0 15.0
TCSG.5R3.B2 1.0 0.0 CFC 9.3 18.0
TCSG.4L3.B2 1.0 0.0 CFC 9.3 18.0

TCSG.A5L3.B2 1.0 170.7 CFC 9.3 18.0
TCSG.B5L3.B2 1.0 10.8 CFC 9.3 18.0
TCLA.A5L3.B2 1.0 90.0 Cu-W 10.0 20.0
TCLA.B5L3.B2 1.0 0.0 Cu-W 10.0 20.0
TCLA.6L3.B2 1.0 0.0 Cu-W 10.0 20.0
TCLA.7L3.B2 1.0 0.0 Cu-W 10.0 20.0

TCTH.4R2.B2 1.0 0.0 Cu-W out 8.3
TCTVB.4R2 1.0 90.0 Cu-W out 8.3

TCTH.4R1.B2 1.0 0.0 Cu-W out 8.3
TCTVA.4R1.B2 1.0 90.0 Cu-W out 8.3

TCL.5L1.B2 1.0 0.0 Cu out 10.0



Appendix B

Beam loss maps during collimator
beam based alignment

Loss maps for various collimator types during beam based setup as presented in
section 6.1.3.
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Figure B.1: Loss map for the 17m βz* injection optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6 σ while the last secondary collimator (TCSG.6R7.B1)
has an half gap of 5.7 σ. The rest of the collimation system is set at the nominal openings.
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Figure B.2: Loss map for the 17m βz* injection optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6 σ while the last absorber collimator (TCLA.A7R7.B1)
has an half gap of 5.7 σ. The rest of the collimation system is set at the nominal openings.
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Figure B.3: Loss map for the low-beta optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6.3 σ while the last secondary collimator (TCSG.6R7.B1)
has an half gap of 6 σ. The rest of the collimation system is set at the nominal openings.
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Figure B.4: Loss map for the low-beta optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6.3 σ while the last secondary absorber (TCLA.A7R7.B1)
has an half gap of 6 σ. The rest of the collimation system is set at the nominal openings.
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Figure B.5: Loss map for the low-beta optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6.3 σ while the horizontal tertiary collimator in IR2
(TCTH.4R2.B1) has an half gap of 6 σ. The rest of the collimation system is set at the
nominal openings.
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~

Beam 1 

Figure B.6: Loss map for the low-beta optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6.3 σ while the vertical tertiary collimator in IR2
(TCTVB.4R2.B1) has an half gap of 6 σ. The rest of the collimation system is set at
the nominal openings.
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Figure B.7: Loss map for the low-beta optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6.3 σ while the horizontal tertiary collimator in IR5
(TCTH.4R5.B1) has an half gap of 6 σ. The rest of the collimation system is set at the
nominal openings.
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Figure B.8: Loss map for the low-beta optics and the Beam1 horizontal halo. The
TCP.C6L7.B1 collimator is set at 6.3 σ while the vertical tertiary collimator in IR5
(TCTVA.4R5.B1) has an half gap of 6 σ. The rest of the collimation system is set at
the nominal openings.



174 B. Beam loss maps during collimator beam based alignment



Bibliography

[1] “LHC Design Report, Volume I: The LHC Main Ring”, CERN Editorial Board,
CERN-2004-003, 2004.

[2] J. Rossbach, P. Schmüser, “Basic course on accelerator optics”, CAS -CERN
Accelerator School: 5th general accelerator Physics course, CERN 94-01 vol. 1,
1994.

[3] K. Potter, “Luminosity measurements and calculations”, CAS -CERN Accelera-
tor School: 5th general accelerator Physics course, CERN 94-01 vol. 1, 1994.

[4] http://atlas.ch, ATLAS collaboration.

[5] http://cms-project-cmsinfo.web.cern.ch/cms-project-cmsinfo/index.html, CMS
collaboration.

[6] http://lhcb-public.web.cern.ch/lhcb-public, LHCb collaboration.

[7] http://totem.web.cern.ch/Totem, TOTEM collaboration.

[8] http://press.web.cern.ch/Public/en/LHC/LHCf-en.html, LHCf collaboration.

[9] http://aliceinfo.cern.ch/Public/Welcome.html, ALICE collaboration.

[10] J.B. Jeanneret, D. Leroy, L. Oberli and T. Trenckler, “Quench levels and tran-
sient beam losses in the LHC magnets”, LHC Project Report 44, 1996.

[11] R. Assmann et al., “Requirements for the LHC collimation system”, proceedings
of the European Particle Accelerator Conference EPAC02, Paris, France, 2002.

[12] D.A. Edwards, M.J. Syphers, “An introduction to the Physics of high energy
accelerators”, Wiley-Interscience Publication, 1993.

[13] E. Shaposhnikova, “Time scales for the motion of uncaptured particles with RF
off and RF on in LHC”, LHC Project Note 281, 2002.

[14] G. Robert-Demolaize, “Design and performance optimization of the LHC colli-
mation system”, LHC Project Report 981, 2006.

175



176 Bibliography

[15] R. Assmann, F. Schmidt and F. Zimmermann, “Equilibrium beam distribution
and halo in the LHC”, proceedings of the European Particle Accelerator Confer-
ence EPAC02, Paris, France, 2002.

[16] J.P. Koutchouk, “The LHC dynamic aperture”,LHC Project Report 296, 1999.

[17] J.B. Jeanneret, R. Ostojic, “Geometrical acceptance in LHC version 5.0”, LHC
Project Note 111, 1997.

[18] S. Redaelli, R. Assmann and G. Robert-Deomlaize, “LHC aperture and commis-
sioning of the collimation system”, proceedings of the LHC Project Workshop
“Chamonix XIV”, 2005.

[19] A. Wrulich, “Single-beam lifetime”, CAS -CERN Accelerator School: 5th general
accelerator Physics course, CERN 94-01 vol. 1, 1994.

[20] http://mad.home.cern.ch/mad, AB/ABP accelerator Physics group.

[21] K.L.F. Bane, “A simplified model of intrabeam scattering”, proceedings of the
European Particle Accelerator Conference EPAC02, Paris, France, 2002.

[22] F. Zimmermann, M.P. Zorzano, “Touschek scattering in HERA and LHC”, LHC
Project Note 244, 2000.

[23] M. Lamont, Estimates of annual proton doses in the LHC, LHC Project Note
375, 2005.

[24] R.P. Walker, “Synchrotron radiation”, CAS -CERN Accelerator School: 5th gen-
eral accelerator Physics course, CERN 94-01 vol. 1, 1994.

[25] E. Keil, “Synchrotron radiation dominated hadron colliders”, proceedings of the
17th Particle Accelerator Conference PAC97, Vancouver, Canada, 1997.

[26] R.P. Walker, “Radiation damping”, CAS -CERN Accelerator School: 5th general
accelerator Physics course, CERN 94-01 vol. 1, 1994.

[27] R. Schmidt et al., “LHC machine protection”, LHC Project Report 1053, 2007.

[28] R. Steinhagen, “LHC beam stability and feedback control - orbit and energy”,
CERN Thesis, RWTH Aachen Univ., 2007.

[29] B. Goddard et al., “Protection of the LHC against unsynchronised beam aborts”,
LHC Project Report 916, 2006.

[30] V. Kain, “Machine protection and beam quality during the LHC injection pro-
cess”, CERN-THESIS-2005-047, 2005.



Bibliography 177

[31] E.B. Holzer et al., “Design of the beam loss monitoring system for the LHC ring”,
proceedings of the European Particle Accelerator Conference PAC04, Lucerne,
Switzerland, 2004.

[32] H. Bichsel, D.E. Groom and S.R. Klein, “Passage of particles through matter”,
The Review of Particle Physics web page, Reviews Tables and Plots.

[33] N. Catalan-Lasheras, “Transverse and longitudinal beam collimation in a high-
energy proton collider (LHC)”, CERN-THSIS-2000-019.

[34] H.A. Bethe, “Moliere’s theory of multiple scattering”, Physical Review 89,
pp.1256-1266, 1953.

[35] R.M. Barnett et al., “Cross-section formulae for specific processes”, Physical
Review D, vol. 54, Issue 1, pp.179-198, 1996.

[36] K. Goulianos, “Diffractive interactions of hadrons at high energies”, Physics
Reports vol. 101, pp.171-219, 1983.

[37] R.M. Barnett et al., “Atomic and nuclear properties of materials”, Physical
Review D, vol. 54, Issue 1, pp.72-73, 1996.

[38] G. Bellettini et al., “Proton-nuclei cross-section at 20GeV”, Nuclear Physics
vol. 79, pp. 609-624, 1966.

[39] T. Trenkler and J.B. Jeanneret, “The principles of two stage betatron and mo-
mentum collimation in circular accelerators”, LHC note 312, 1995.

[40] J.B. Jeanneret, “Optics of a two-stage collimation system”,Physical Review Spe-
cial Topics: Accelerators and Beams, 1998.

[41] R. Assmann et al., “Designing and building a collimation system for the high
intensity LHC beam”, LHC Project Report 640.

[42] R. Assmann et al., “The final LHC collimation system”, LHC Project Report
919, 2006.

[43] http://ab-div-bdi-bl-blm.web.cern.ch/ab-div-bdi-bl-blm/Quench levels

[44] R. Assmann et al., “Preliminary beam-based specifications for the LHC collima-
tors”, LHC Project Note 277.

[45] G. Robert-Demolaize et al., “A new version of SixTrack with collimation and
aperture interface”, proceedings of the 21st Particle Accelerator Conference
PAC05, Knoxville, TN, USA, 2005.

[46] R. Assmann, “Collimators and cleaning: could that limit the LHC perfor-
mance?”, proceedings of the Chamonix XII Workshop, 2003.



178 Bibliography

[47] R. Assmann, B. Goddard, E. Vossenberg and E. Weisse, “The consequences of
abnormal beam dump actions on the LHC collimation system” , LHC Project
Note 293, 2002.

[48] D. Bocian, B. Dehning and A. Siemko, “Modeling of Quench Limit for Steady
State Heat Deposits in LHC Magnets”, IEEE Transactions on Applied Supercon-
ductivity, Volume 18, Issue 2, pp. 112 - 115, June 2008,.

[49] F. Zimmermann et al., “Tune shift induced by nonlinear resistive wall wake field
of flat collimator”, proceedings of the European Particle Accelerator Conference
EPAC06, Edinburgh, UK, 2006.

[50] G. Kotzian, W. Höfle, E. Vogel, “LHC transverse feedback damping efficiency”,
LHC Project Report 1156, 2008.

[51] E. Metral, “Overview of Impedance and Single-Beam Instability Mechanisms”,
proceedings of the 21st Particle Accelerator Conference PAC05, Knoxville, TN,
USA, 2005.

[52] R. Assmann et al., “An improved collimation system for the LHC”, LHC Project
Report 773, 2004.

[53] J. Smith, “LARP phase 2 collimator progress and plans”, talk presented at the
7th Phase 2 Specification and Implementation meeting, CERN, June 13th, 2008.

[54] A. Bertarelli et al., “The mechanical design for the LHC collimators”, LHC
Project Report 786, 2004.

[55] T. Weiler et al., “LHC collimation system hardware commissioning”, proceed-
ings of the 22nd Particle Accelerator Conference PAC07, Albuquerque, NM, USA,
2007.

[56] O. Aberle et al., “Collimator integration and installation example of one object
to be installed in the LHC”, proceedings of the European Particle Accelerator
Conference EPAC08, Genoa, Italy, 2008.

[57] M.K. Craddock et al.,“Optics solutions for the collimation insertion of LHC”,
LHC Project Report 305, 1999.

[58] S. Redaelli, “Cleaning efficiency and beam losses with 0.6m long TCPs at IR7”,
talk presented at the 59th Collimation Working Group, CERN, June 13th, 2005.

[59] T. Weiler, private communication.

[60] E. Metral et al., “Transverse impedance of LHC collimators”, LHC Project
Report 1015, 2007.



Bibliography 179

[61] T. Weiler et al., “Beam cleaning and beam loss control”, proceedings of Advanced
Beam Dynamic Workshop on High-Intensity, High-Brightness Hadron Beams,
Nashville, TN, US, 2008.

[62] V. Shiltsev et al., “LHC particle collimation by hollow electron beams”, pro-
ceedings of the European Particle Accelerator Conference EPAC08, Genoa, Italy,
2008.

[63] W. Scandale, “Crystal collimation as an option for the LHC”, Proceedings of
International Conference on Charged and Neutral Particles Channeling Phenom-
ena, Frascati, Italy, 2006.

[64] R.Bailey, “Summary Of Overall Commissioning Strategy For Protons”, proceed-
ings of the Chamonix XV Workshop, 2006, Divonne, France.

[65] F. Schmidt, “SixTrack, user reference manual”, CERN SL/94-56, 1994.

[66] Collimation Project web page: http://lhc-collimation-project.web.cern.ch/lhc-
collimation-project/code-tracking.htm.

[67] R. Assmann et al., “Tools for predicting cleaning efficiency in the LHC”, pro-
ceedings of the 20th Particle Accelerator Conference PAC03, Portland, OR, USA,
2003.

[68] T. Trenkler, J.B. Jeanneret, “K2, a software package evaluating collimation
systems in circular colliders (manual)”, CERN SL/94105 (AP), 1994.

[69] A. Bertarelli et al., “Permanent deformation of the LHC collimator jaws induced
by shock beam Impact : an analytical and numerical interpretation”, proceedings
of the European Particle Accelerator Conference EPAC06, Edinburgh, UK, 2006.

[70] M. Santana-Leitner et al., “Optimization of the active absorber scheme for the
protection of the Dispersion Suppressor”, LHC-Project-note, to be published.

[71] B. Goddard et al., “Results of the studies on energy deposition in IR6 supercon-
ducting magnets from continuous beam loss on the TCDQ system”, LHC-Project-
Report-1052, 2007.

[72] R. Assmann, “Beam commissioning of the collimation system”, proceedings of
the Chamonix XV Workshop, 2006, Divonne, France.

[73] C. Bracco et al., “Collimation efficiency during commissioning”, LHC-Project-
Report-920, proceedings of the European Particle Accelerator Conference
EPAC06, Edinburgh, UK, 2006.

[74] J.P. Koutchouk, L. Rossi and E. Todesco, “A solution for phase 1 upgrade of the
LHC low-beta quadrupoles based on Nb-Ti”, LHC-Project-Report-1000.



180 Bibliography

[75] O. Brüning et al., “The nominal operational cycle of the LHC beam (version
1)”, LHC-Project-Note-313.

[76] C. Bracco et al., “Scenarios for beam commissioning of the LHC collimation
system”, proceedings of the 22nd Particle Accelerator Conference PAC07, Albu-
querque, NM, USA, 2007.

[77] A. Dallocchio,“Study of thermo-mechanical effects induced in solids by high en-
ergy particle beams: analytical and numerical methods” CERN-THESIS, to be
published.

[78] J.B. Jeanneret, “Geometrical tolerances for the qualification of LHC magnets”,
LHC-Project-Report-1007, 2006.

[79] A. Koschik et al., “Transverse resistive wall impedance and wake function with
“Inductive Bypass”” , proceedings of the European Particle Accelerator Confer-
ence PAC04, Lucerne, Switzerland, 2004.

[80] R. Assmann et al., “LHC collimation : design and results from prototyping
and beam tests”, proceedings of the 21st Particle Accelerator Conference PAC05,
Knoxville, TN, USA, 2005.

[81] S. Redaelli et al., “The LHC collimator controls architecture-design and beam
tests”, proceedings of the 22nd Particle Accelerator Conference PAC07, Albu-
querque, NM, USA, 2007.

[82] A. Jansson et al., “Collimator scans to measure Tevatron emittance”, Tevatron
Beam Study Report, January 21st, 2003.

[83] H. Burkhardt and R. Schmidt, “Intensity and luminosity after beam scraping”,
CERN Internal Note, CERN-AB-2004-032-ABP, 2004.

[84] M. Seidel, “The proton collimation system of HERA”, PhD thesis, Universität
Hamburg, 1994.

[85] S. Redaelli et al., “Detecting impacts of proton beams on the LHC collimators
with vibration and sound measurements”, proceedings of the 21st Particle Accel-
erator Conference PAC05, Knoxville, TN, USA, 2005.

[86] S. Redaelli, “Accelerometer and microphone measurements of the LHC collima-
tor”, talk presented at the Workshop on Materials for Collimators and Beam
Absorbers, CERN, Geneva, 2007.

[87] H. Richter, R. Wilfinger et al., “LHC collimator jaw vibration measurements
during TT40 high intensity collimator test 2006”, CERN technical note, to be
published.



Bibliography 181

[88] R. Assmann and J.B. Jeanneret, “Efficiency for the imperfect collimation sys-
tem”, LHC-Project-Report-598, 2002.

[89] E.B. Holzer et al., “Generation of 1.5 million beam loss threshold values”, pro-
ceedings of the European Particle Accelerator Conference EPAC08, Genoa, Italy,
2008.

[90] M. Lamont et al., “A staged approach to LHC commissioning”, LHC Project
Report 949, 2006.



182 Bibliography



Curriculum Vitae

Chiara Bracco

PERSONAL DATA

name Chiara Bracco

DOB July 31st 1977, Biella- Italy

e-mail chiara.bracco@cern.ch

EDUCATION AND QUALIFICATION

June 2005 I started the PhD at the École Polytechnique Fédérale
de Lausanne (EPFL).

thesis’ title “Commissioning scenarios and tests for the LHC colli-
mation system”

July 2004 Italian “Laurea” in Physics at “Universitá degli studi di
Milano”

subject Applied Physics

score 110/110 cum laude

thesis’ title “Setup of a cryogenic apparatus for measurements at
controlled temperature and application to characteriza-
tion of electric transport properties of superconducting
tapes in MgB2/Ni”

July 1996 Scientific secondary school “Liceo A. Avogadro”, Biella.

score 56/60



RESEARCH EXPERIENCES

From June 2007 I am working at CERN as a PhD student in the accel-
erator beam group (AB/ABP) supervised by Dr. Ralph
Assmann (leader of the LHC collimation project).

February 2003 During the master thesis period I’ve been working at the
July 2004 INFN LASA laboratories (Segrate, Milano) supervised

by Dr. Giovanni Volpini and Prof. Giovanni Bellomo.

PUBLICATIONS

As main author:
C. Bracco, “Messa a punto di un apparato criogenico per misure a temperatura
controllata e applicazione alla caratterizzazione delle proprietá di trasporto elet-
trico di nastri superconduttori di MgB2/Ni”, Master Thesis, Milan, Italy, July
2007.

C. Bracco et al., “LHC collimation efficiency during commissioning”, LHC-
Project-Report-920, proceedings of the European Particle Accelerator Confer-
ence EPAC06, Edinburgh, UK, 2006.

C. Bracco et al., “Scenarios for beam commissioning of the LHC collimation
system”, proceedings of 22nd Particle Accelerator Conference PAC07, Albu-
querque, NM, USA, 2007.

As coauthor:
R. Assmann et al., “The final collimation system for the LHC”, LHC-Project-
Report-919, proceedings of the European Particle Accelerator Conference
EPAC06, Edinburgh, UK, 2006.

G. Robert-Demolaize et al., “Critical beam losses during commissioning and
initial operation of the LHC”, proceedings of the Chamonix XV Workshop,
2006, Divonne, France.

G. Robert-Demolaize et al., “Critical halo loss locations in the LHC”, LHC-
Project-Report-940, proceedings of the European Particle Accelerator Confer-
ence EPAC06, Edinburgh, UK, 2006.



R. Bruce et al., “Ion and proton loss patterns at the SPS and LHC”, proceed-
ings of the CARE-HHH-APD Workshop on Finalizing the Roadmap for the
Upgrade of the CERN and GSI Accelerator Complex, CERN, Geneva, 2007.

B. Goddard et al., “Results of the studies on energy deposition in IR6 su-
perconducting magnets from continuous beam losses on the TCDQ system”,
LHC-Project-Report-1052, 2007.

E. Metral et al., “Transverse impedance of LHC collimators”, proceedings of the
22nd Particle Accelerator Conference PAC07, Albuquerque, NM, USA, 2007.

G. Robert-Demolaize et al., “Performance reach of the LHC”, proceedings of
the 22nd Particle Accelerator Conference PAC07, Albuquerque, NM, USA,
2007.

T. Weiler et al., “Beam loss response measurements with an LHC prototype
collimator in the SPS”, proceedings of the 22nd Particle Accelerator Conference
PAC07, Albuquerque, NM, USA, 2007.

R. Bruce et al., “Measurements of heavy ions beam losses from collimation,
LHC-Project-Report-1109, proceedings of the European Particle Accelerator
Conference EPAC08, Genoa, Italy, 2008.

L. Lari et al., “Evaluation of beam losses and energy deposition for a possible
phase II design for LHC collimation”, LHC-Project-Report-1115, proceedings
of the European Particle Accelerator Conference EPAC08, Genoa, Italy, 2008.

L. Lari et al., “Preliminary exploratory study of different phase II collimators”,
LHC-Project-Report-1114, proceedings of the European Particle Accelerator
Conference EPAC08, Genoa, Italy, 2008.

T. Weiler et al., “Beam cleaning and beam loss control”, proceedings of Ad-
vanced Beam Dynamic Workshop on High-Intensity, High-Brightness Hadron
Beams, Nashville, TN, US, 2008.

M. Santana-Leitner et al., “Optimization of the active absorber scheme for the
protection of the Dispersion Suppressor”, LHC-Project-note, to be published.





Acknowledgments

I am leaving the status of student at last! This is the best time to thank all
the people who have been sustaining (and also standing) me during this long time,
almost my full life, and especially during this PhD.

First of all I would like to thank my supervisors: Ralph Assmann and Leonid
Rivkin for guiding me along this demanding but rewarding period. Special thanks
also to Aurelio Bay and Albin Wrulich who welcomed and took care of me during
my first year at the EPFL.

Thanks to Lucio Rossi who encouraged me to apply for a PhD at CERN giving
me, in this way, the opportunity to discover this crazily interesting world. Many
thanks to Steve Peggs for agreeing to be a member of my PhD jury and to Giulia
Bellodi who accepted to read my thesis trying to improve my english. Thanks to
Jean Bernard Jeanneret for teaching me all the secrets about collimation theory and
to Elias Metral who made “impedance” much less mysterious to my hears.

A huge “thank you!!” to the collimation team: Valentina Previtali, Stefano
Redaelli, Guillaume Robert-Demolaize and Thomas Weiler who made tracking pleas-
ant and also funny. Thanks to all CERN people with whom I have been working and
in particular to the members of the AB/ABP group that hosted me during the last
years. This work would not have been possible without your help and collaboration.

Many thanks also to the colleagues from other laboratories: SLAC, FNAL, BNL
and Kurchatov institute for helping us in further improving the LHC collimators.

This is then especially the time to thank all my family (in italian): “grazie per
aver ancora una volta condiviso con me momenti difficili e soddisfazioni.......almeno
stavolta non avete dovuto anche pagare!”.

Special thanks obviously to Marco and my cat Tommaso (he can obviously read
english) who were also physically close to me and took the best and the worst part
of my emotional exuberance.

Thanks to my old and new friends: Ingrid, Lucia, Marco, Laura, etc. etc........you
are too many to fit in here but all of you fit in my heart! Please stop crying guys!!!
Last but not least, thanks to my biggest and youngest fan Stefano: don’t forget your
italian-french-swiss aunt now that you go back to Italy!

Thanks again sincerely to all of you but now, please, let me stop writing!!!!

Chiara





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




