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Abstract

The complexity of processes occurring in the brain is an intriguing issue not just for scientists and
medical doctors, but the humanity in general. The cortex ability to perceive and analyze an enormous
amount of information in an instance of time, the parallelism and computational efficiency are among
the questions that attract attention. Even a simple, everyday gesture, for example, reaching for a
cup of coffee, evokes a flow of signals in the brain. It goes from the primary visual region, that
locates the cup on the table, to the primary motor region that sends the precise coordinates to the
hand, and the instruction what to do next. The sequence of signal transmission and transformation
continues through several regions, sensory, associative and motor ones. In this study, we will focus
on the posterior parietal cortex, the region involved in the transformation of visual inputs into the
preliminary motor plans.

The years of experimental work revealed mechanisms for integration of multimodal signals, co-
ordinate transformations, information representation in multiple coordinate frames, and many other.
Still, a single encompassing theory about movement generation in the parietal cortex does not exist,
and is a matter of debate. This study contributes to the analysis of motor intention in the 7a pari-
etal region. The motor intention, a high-level cognitive signal, is defined as the preliminary plan for
making a movement. From the engineering point of view, encoding of motor parameters in the neural
activity is extensively studied within the framework of brain-computer interfaces. The motivation
behind these studies is the development of neural prosthesis for the paralyzed persons. The direct
cortical prosthesis can significantly improve the lives of paralyzed people, who have lost every other
contact with the outside world. Also, this framework opens the possibilities for monitoring the neural
processes during the execution of natural movements, and studying the mechanisms behind it.

In this work, a method for identification of motor intention from the standard recordings of neural
activity, the spike trains, is developed. The data of interest was collected in a series of behavioral
experiments involving reaching or saccadic eye movements. The presence and absence of motor in-
tention was monitored in various phases of motion execution, and for different types of movements.
All the recordings obtained simultaneously are combined in the same decoding session. Therefore,
the analysis is done using the activity of small population of cells (typically 8 to 12 cells). We aim
to study the motor intention in a general context which requires using activity of multiple cells. The
population size is determined by the experimental procedure. Throughout this study we assume that
the motor intention can be red from the spike rates, the assumption supported by the neurophysiolog-
ical studies. Therefore, all the simultaneously collected spike trains are converted into vectors of spike
rates. The results of this study show that motor intention can be decoded from the spike rates. A
machine-learning based algorithm is developed to analyze the presence or absence of motor intention
in the obtained spike rate vectors. This algorithm, based on standard support vector machines, can
distinguish between the segments of recordings that encode motor intention, from those that do not
encode it. The goal of the study was to examine the precision of motor intention identification, when
the activity of a randomly selected set of cells is analyzed using on such algorithm. Additionally,
several relevant parameters were tested. The algorithm precision during different phases of movement
execution is tested. Also, the influence of the population size and of the procedure for spike rates
computation is examined.

The obtained results demonstrated that the motor intention can be extracted from the neural
signals with the precision of around 70% for a randomly selected set of cells. For the best groups
of cells, this precision was 82%. The motor intention identification was particularly precise during
the intervals of preparation and realization of saccadic eye movements. This is in accordance with
the known functions of the 7a region, where the majority of cells respond to the eye movements.
The algorithm precision is determined by the considered population size. For the bigger population
the precision increases. Still, this conclusion holds only on average, since adding one or a couple of
randomly selected cells does not have to change the result. Randomly selected cells do not necessary
carry the information of interest. The influence of each of the cells, present in one set, is tested
in this context. The obtained results indicate redundant coding of motor intention in the parietal
cortex. Many cells carry the same information, and some of them can be removed from the set
without changing the algorithm precision. Still, removing all of them degrades the result. Finally, the
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influence of the window size, used to compute spike rates in some of the tests is studied. In general,
the precision improves when using bigger windows, the result that is consistent with the literature.
Introducing the window for computing spike rates enables automatic identification of motor intention,
the method suitable for the brain-computer interface applications.

Finally, the analysis of the experimental data is complemented with the study of an appropriately
designed model. Modeling the biological processes, in order to reveal additional functionality and
test some parameters not accessible through the data, is a widely accepted approach. Still, the
development of a model, sufficiently simple for implementation on the standard hardware, sufficiently
tractable in the simulations, yet informative enough to capture the main processes of interest, is
not straightforward. Our motivation for accepting this approach was to test several parameters that
imposed themselves as important in the data analysis step. Due to the nature of the problem itself,
the test on an approximative model was the only feasible tactic. The influence of the population
size and the window size was assessed in this study. This, additionally, demonstrated the algorithm
precision scaling as a function of the number of cells.

Keywords: area Ta, bio-inspired models, brain-computer interface, hand-eyes coordination, lig-
uid state machines, machine learning, motor intention, motor parameters, neural signals, population
coding, posterior parietal cortex, recurrent networks, spike trains, spike rates, support vector ma-
chines.
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Version abrégée

La complexité des processus se déroulant dans le cerveau est une intrigue pas seulement pour
les scientifiques et les docteurs, mais pour 'humanité en général. L’habilité du cortex a percevoir et
analyser une énorme quantité d’information en une fraction de temps, son efficacité et son architecture
paralléle sont questions d’intérét particulier. Méme un simple geste de tous les jours, par exemple
atteindre une tasse de café, génére un flux de signaux dans le cerveau, partant de la région visuelle
primaire qui localise la tasse de café sur la table jusqu’a la région moteur primaire qui envoie les coor-
données précises a la main et les instructions de la tache a exécuter. La séquence de transmissions et
de transformations des signaux se déroule & travers plusieurs régions sensorielles, associatives et finale-
ment a la région motrice. Dans cette étude, nous allons nous focaliser sur le cortex pariétal postérieur,
une région impliquée dans la transformation des informations visuelles vers les plans préliminaires du
mouvement.

Des années de travail expérimental ont révélé des mécanismes pour 'intégration des signaux mul-
timodaux, la transformation de coordonnées, la représentation des informations dans des coordonnées
multiples ainsi que beaucoup d’autres mécanismes. Néanmoins, une théorie unique comprenant la
génération du mouvement dans le cortex pariétal n’existe pas et est sujette a discussion. Cette étude
contribue & l'analyse des paramétres moteurs dans le cortex pariétal, particulierement dans la ré-
gion 7a. La notion d’intention de mouvement, un signal cognitif complexe, est définie comme la
planification préliminaire d’un mouvement. D’un point de vue d’ingénieur, le codage des paramétres
moteurs de l'activité neuronale est intensément étudié dans le cadre de l'interface cerveau-machine.
La motivation derriére ces études est le développement de prothéses neurologiques pour les personnes
paralysées. La prothése corticale directe peut fortement améliorer la vie des personnes paralysées qui
ont perdu tout autre contact avec le monde extérieur. Ce cadre de recherche ouvre aussi la possibil-
ité d’enregistrer les processus neuronaux durant ’exécution de mouvements naturels et d’étudier les
mécanismes sous-jacents.

Dans ce travail, une méthode pour I'identification de I'intention motrice & partir d’enregistrements
standards d’activité neuronale (trains d’impulsions) est développée. Les données ont été collectées a
partir d’'une série d’expériences comportementalistes impliquant des mouvements oculaires et des mou-
vements pour atteindre un objet. La présence et ’absence d’intentions motrices ont été mesurées dans
diverses phases de I’exécution du mouvement et pour différents types de mouvements. Ainsi 'analyse
est faite en utilisant lactivité d’une petite population de cellules (typiquement de 8 a 12). Nous
souhaitons étudier I'intention motrice dans un contexte global qui nécessite 'utilisation de l'activité
de plusieurs cellules. La taille de la population est déterminée par la procédure expérimentale. A
travers cette étude, nous supposons que l'intention motrice peut étre lue & partir de la fréquence des
impulsions, une hypothése soutenue par les études neurophysiologiques. C’est pourquoi tous les trains
d’impulsions collectés simultanément sont convertis en un vecteur de fréquence d’impulsions. Les
résultats de cette étude montrent que l'intention motrice peut étre décodée a partir de la fréquence
des impulsions. Un algorithme basé sur ’apprentissage automatique est développé pour analyser la
présence ou ’absence d’intention motrice dans le vecteur de fréquence d’impulsions. Cet algorithme
peut différencier les périodes d’enregistrements qui encodent une intension motrice et ceux qui n’en
encodent pas. Le but de I’étude est d’examiner la précision de I'identification d’une intention motrice
quand l'activité d’un groupe aléatoire de cellules est analysée avec cet algorithme. De plus, la pré-
cision de l'algorithme est testée durant différentes phases du mouvement. Finalement la taille de la
population et la procédure de calcul des impulsions sont examinées.

Les résultats obtenus démontrent que l'intention motrice peut étre extraite des signaux neu-
ronaux avec une précision d’environ 70% pour un groupe de cellules sélectionnées aléatoirement. Pour
les meilleurs groupes de cellules, la précision atteint 82%. L’identification d’intentions motrices est
particuliérement précise pendant les phases de préparation et la réalisation de mouvements oculaires.
Cela est cohérent avec la fonction connue de la région 7a, ou la majorité des cellules répondent aux
mouvements oculaires. La précision est déterminée par la taille de la population considérée : la pré-
cision augmente avec une plus grande population. Néanmoins cette conclusion n’est valable qu’en
général : ajouter une ou plusieurs cellules sélectionnées aléatoirement ne change pas nécessairement
le résultat, car ces cellules peuvent ne pas apporter d’informations supplémentaires. L’influence de



chaque cellule présente dans un groupe est testée dans ce contexte. Les résultats obtenus montrent
que le codage de l'intention motrice dans le cortex pariétal est redondant. Plusieurs cellules portent
la méme information et certaines d’entre elles peuvent étre retirée du groupe sans que la précision de
I’algorithme change. Néanmoins toutes les retirer dégrade le résultat. Finalement, l'influence de la
taille de la fenétre utilisée pour le calcul des impulsions est étudiée. En général, la précision augmente
lorsque l'on utilise des fenétres plus larges, résultat cohérent avec la littérature.

Finalement, ’analyse des données expérimentales est complétée par une étude d’un modéle ap-
proprié. Modéliser des processus biologiques, afin de trouver des fonctions additionnelles et tester
des paramétres non-accessibles a travers les données, est une approche largement acceptée. Néan-
moins, le développement d’un modéle, suffisamment simple pour étre implémenté sur les machines
actuelles, mais suffisamment complexe pour capturer les processus d’intéréts, n’est pas évident. Notre
motivation pour valider cette approche a été de tester plusieurs paramétres qui s’imposent comme
importants dans les étapes d’analyse de données. D aux limitations des expériences, ainsi qu’a la
nature du probléme, les tests sur le modéle, méme approximatif, étaient la seule tactique possible.
L’influence de la taille de la population et le taille de la fenétre a été caractérisée dans cette étude.
Cela démontre que la précision de I'algorithme est fonction du nombre de cellules.

Mots-clés: apprentissage automatique, intention motrice, codage de population, coordination
main-oeil, cortex pariétal postérieur, fréquence d’impulsions, interfaces cerveau-machine, machines
a état liquide, modéles bio-inspirés, paramétres moteurs, région 7a, réseaux récurrents, signal neu-
rologique, train d’impulsions.
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Chapter 1

Introduction

The motivation behind this work is a larger study examining functions of the posterior parietal
cortex, particularly the mechanisms for hand-eyes coordination. In a series of recording ses-
sions a database, the starting point for this study, was collected. Two macaque monkeys were
trained to perform a series of behavioral tasks, some of them involving a reaching movement,
other a saccadic eye movement, or the coordinated movement of both, or no movement at all.
A complex set of tasks was designed to capture the influence of as much as possible different
signals occurring in the parietal cortex during a typical reaching movement. The activity of
a large population of cells was recorded in the parietal area 7a. The detailed description of
the behavioral experiments, the collected data set, and the conclusions obtained from that
data are presented in [9, 10]. This study gave an important contribution to understanding the
processes in the parietal cortex related to initialization of a movement, processing of sensory
inputs, and relating them to the motor outputs.

In our study we focused on identification of one particular information, the motor intention.
This high-level cognitive signal is also defined as a preliminary plan for a movement. The
considered region is suitable for accessing such type of signals, since it represents a multimodal
association area, where the sensory inputs evoke motor commands sent further to the motor
regions. Previous studies of motor intention [4] demonstrated the existence of this signal and
its influence on the cell activity modulation. A set of appropriate tasks was developed in order
to reveal the information of interest. Here, we aim to identify the same signal under a more
general condition. The goal of the proposed data analysis approach was to extract the motor
intention along the neural recordings, whenever preset. The description of the methods and
the obtained conclusions are presented in details in this study. The achievable precision of such
a task is estimated, and the influence of several relevant parameters is assessed. Particularly
important are the number of cells involved in the motor intention decoding task, and the
integration time used to evaluate average cell activity. Also, the precision of signal estimation
under various experimental conditions was assessed. The ultimate goal of this analysis is to
develop a method that can detect the motor intention in time, for any type of movement,
under any experimental conditions.

A study of motor parameters in the cortex is inevitably related to the field of brain-
computer interface. The aim of this field, in general, is to provide an automatic system that
can read neural signals and translate them into a set of commands, either for a cursor, or robot
arm, or any other similar device [16, 83, 77|. Building a system directly controlled by human
mind is not just a challenging problem. A reliable and long-term stable BCI can provide
additional quality in the life of severely paralyzed persons, that cannot easily communicate
with the outside world. Many efforts are directed toward development of non-invasive BCI,
that can be used, for example, during the rehabilitation of patients that partially lost their
motor abilities. Alternatively, they can find their application also in the augmentation of the



normal body functions. The typical BCI studies assess the reliability of the recording methods,
develop the algorithms for automatic generation of motor control signals, and test the influence
of various artificial extensions that can be controlled by such signals. Another aspect of these
studies is theoretical, they provide a framework for studying motor signals directly obtained
during a movement execution. The algorithms used here represent a new approach to data
analysis, compared to the standard statistical methods. The motor intention, the focus of our
study, can be seen as an additional control signal for such devices, that indicates a precise
timing for the planned movements.

In addition to the data study, we tested the influence of relevant parameters an the approx-
imative models. Combining the model studies with the data analysis can provide additional
perspective on the considered problem. The presented model is far from a biological reality,
and mimic just some selected features of the system of interest. Some reports demonstrated
that event simple, appropriately chosen models can be used to reproduce behaviors observed
in the biological systems and to analyze the mechanisms behind them [75, 102]. Our study on
the model, supported the conclusion observed from the data analysis, that cannot be assessed
otherwise due to the experimentally and methodologically imposed limitations.

We implemented a spiking recurrent neural network with input and output protocol that
imitates some of the tasks used in the experiments from [9]. The motivation behind a partic-
ular networks choice is related to the tested parameters. We wanted to evaluate the change of
the algorithm precision as a function of the number of the available cells, therefore we needed
to develop a network as big as possible with respect to the computational facilities. Also, we
tested the question of integration time, which required the use of a spiking network exhibiting
a certain memory.

This text is organized as follows. In the first chapter the biological background is pre-
sented, the anatomical organization of the parietal cortex, as well as the functionality of its
distinct regions is reviewed. Some of its known functional properties are also listed, for exam-
ple, the gain field effect, the coordinate transform, and the population coding of directions.
Also, the chapter presents some key studies showing the existence of motor intention. In the
continuation of the chapter, the experimental set up is described in details, the measurement
apparatus as well as the set of performed tasks. This is followed by an overview of the results
obtained form the same database, and presented in [9, 10]. Finally, the motivation behind
this study is elaborated at the end of the chapter.

The second chapter places the problem of interest in the engineering context. In the first
section, the question of motor intention identification is formulated as a binary classification
problem. It is followed by the overview of the BCI methods, results and challenges is given
at the beginning of the chapter. In the second half of the chapter the detailed description of
the implemented data analysis method is presented.

The third chapter is, probably, the key one in this text. There, the detailed description
of the obtained results is given, together with the elaboration of their meaning and reasons
behind them. As already stated, the particular attention is directed toward the three relevant
parameters. The detailed analysis of the experimental epochs and their relation to motor
intention in the view of the obtained results is presented. Then, the influence of the the
population size and integration time used for calculating spike rates is assessed.

In the fourth chapter, the approximative model, based on a spiking recurrent network
exposed to the input-output protocol similar to some of the experiments is presented. Some
of the relevant parameters discussed in the Chapter 3 are revisited here, in the new context.

The manuscript is ending with the overview of the obtained conclusion and the potential
future developments.



Chapter 2

Neurophysiological background and
motivation: The functional role of the
posterior parietal cortex.

A brief overview of the neurophysiological background is presented in this chapter. The
first section lists some well known facts about the neocortex architecture and information
processing mechanisms, and introduces the necessary terminology. The continuation of the
chapter gives a literature overview of the posterior parietal cortex studies, and the main
conclusions obtained from these studies. Finally, the experimental setup and the related data
analysis, the motivation for the work presented in this manuscript, are described at the and
of the chapter.

2.1 The mammalian neocortex

The rough anatomic division of the primate neocortex defines the six, anatomically and func-
tionally distinct, regions. Frontal, temporal, occipital and parietal lobes are visible on the
lateral surface of the neocortex, while cingulate cortex occupies the medial surface surround-
ing the corpus callosum, the set of fibers connecting the correlated regions in the opposite
hemispheres. Finally, the insular cortex occupies the region that separates the temporal,
from the parietal and frontal cortex, and is effectively hidden by the overgrowth of these
three lobes. Figure 2.1 shows the lateral image of the left hemisphere of the human brain,
together with the borders between the four cortical regions visible from this perspective. An
important feature of the primate cortex is its specific shape, composed of alternating elevated
convex and depressed concave regions, called gyri and sulci, respectively. Three particularly
pronounced sulci are used to define the borders between the cortex regions - the lateral sulcus
(the sylvian fissure) separates the temporal from the parietal and frontal regions, the central
sulcus separates the frontal from the parietal lobe, and the parieto-occipital sulcus separates
the parietal from the occipital lobe [44].

The parcellation shown on the Figure 2.1 refers to the widely accepted anatomy-based
definition of the cortex areas, proposed by K. Brodmann in 1909. In order to give an informal
description of these concepts, it is necessary to introduce some basic notions related to the
cortex architecture, i.e. layers and columns. The thickness of the cortex is 2-4mm for most of
the species, and it can be divided into six layers according to the typical cell types present.
In general, the same structure is observed in most of the cortex regions, but the variations
in thickness of certain layers, and in intensity of fibers vary a lot in certain regions, which
enables their identification.
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Figure 2.1: Left panel: lateral view of the left hemisphere of the human brain; the four
lobes, together with the cerebellum and brainstem are shown. The visible Brodmann areas
are numerated and color coded . Right panel: an example of cortical column, six layers and
subdivisions of the fourth layer are shown. Adapted from T. P. Trappenberg: Fundamentals
of Computational Neuroscience, Oxford University Press (2002). [94]

Figure 2.1 shows the horizontal cross section of the cortex divided into six layers, and
the four subdivisions of the fourth layer. According to [44|, the first one consists mainly of
fibers spreading across regions, practically without cell bodies. The second and the fourth
layers contain the smaller granular cells, that contribute to the local connections mainly. The
third and the fifth layer consists of pyramidal cells, the most common type in the neocortex
representing 75% to 90% of all the cells. The sixth layer is more inhomogeneous and con-
tains various cell types, atypical for the other layers. It blends into the white matter, the
region filled with the axon bundles forming the cortico-cortical connections. Within small
areas of 300 to 600 pum in diameter, cells exhibit pronounced vertical connections across the
layers compared to the lateral connections within the same layer, forming the columns, the
elementary processing units in the cortex [44, 61].

The original Brodmann’s parcellation into 47 distinct regions is based on the observed
variations in the structure of cortical columns, the present cell types and the thickness of
certain layers. The progress in studies of cortex anatomy, as well as gaining knowledge on
functional roles of certain regions, introduced additional regions in this scheme.

Alternative cortex study is based on identification of functional regions, for example, ac-
cording to their role in sensory information processing and generation of motor commands.
This process is hierarchical, the information received through periphery sensory cells is trans-
mitted to the primary sensory regions, then further to the unimodal association areas that
integrate information related to one single type of sensations, e.g. vision, auditory sensations
etc. The next step in information processing happens in the multimodal associative areas
which integrate sensations of different modalities, in order to extract more complex informa-
tion and generate output signals - proper reactions to the received inputs. These signals are
further conveyed to the primary motor association areas responsible for initial planning of mo-
tor commands. Finally the premotor and primary motor cortex directly control movements,
following the received inputs.

This study is focused on posterior parietal cortex and the overview of its anatomic and
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functional properties is given in the following section.

2.2 The posterior parietal cortex

The parietal cortex (PC), shown on the Figure 2.1, is anatomically defined by the positions
of the three pronounced sulci; the lateral sulcus separates it from the temporal lobe, the
central sulcus from the frontal lobe, and the parieto-occipital sulcus from the occipital lobe.
Brodmann areas 1,2, and 3, placed on the postcentral gyrus, are the most anterior part of
the parietal cortex, and represent the primary somatosensory region. The posterior parietal
cortex (PPC) in humans extends to the supramarginal and angular gyrus, the regions classified
as Brodmann area 40 and 39, respectively. The latter occupies the junction of the parietal,
temporal and occipital lobes. These two areas are involved in language processing, spatial
orientation and semantic representation. They are described only in the context of studies in
humans, since no evidence of the equivalent regions is found in monkeys [62].

The regions of interest for this study are the Brodmann areas 5 and 7, the surface inside
the intraparietal sulcus (IPS), and the related regions on the medial wall of the hemisphere.
In humans, both regions 5 and 7 belong to the superior parietal lobe (SPL), while the inferior
parietal lobe (IPL) refers to the Brodmann areas 39 and 40. The anatomical organization of
the monkey cortex is somewhat different and SPL contains the area 5, while the area 7 belongs
to the IPL. Since most of the presented conclusions come from the studies on monkeys, the
terms PPC, SPL and IPL will be mostly used in the context of the monkey cortex. Their
anatomy and functional roles will be described in more details in what follows.

2.2.1 The role of the posterior parietal cortex - studies on patients with
parietal lesions

Valuable knowledge on the PPC functions has been collected through clinical examination
of patients with parietal lesions. Equivalent studies are carried on monkeys after chirurgical
removal of certain regions in PPC, in order to monitor the consequences. Most of the literature
on functional roles and processes in PPC lists some typical deficits in behavior observed in
patients; for example [62] gives one detailed overview, while [7] aims to relate the deficits with
the functional roles of the missing regions in the PPC, and draws conclusions in accordance
with some recent discoveries of computational mechanisms in the PPC.

The examined human subjects suffered from lesions of different size and position within
the PPC, while the visual and motor regions remained intact. Typically, the patients had
no significant visual, somatosensory or motor disorders, but they demonstrated deficits in
reaching and grasping due to the inability to connect sensory and motor functions. These
observations emphasized the role of PPC as a multimodal associative area, integrating sensory
inputs of different modalities, and initiating motor commands, later developed in the premotor
and motor areas. Some common disorders reported in the literature are optic ataxia, together
with different forms of apraxias and neglects.

The term optic ataxia is first introduced by Balint (1909), and is characterized by incapac-
ity to properly complete visually guided reaching and grasping tasks. A specific property of
this behavioral disorder is the hemispheric asymmetry. Right-handed patients with unilateral
lesions on the right hemisphere, exhibited the ’visual field effect’, the deficit in reaching for
both hands in the contralateral visual space. In the case of left-damaged patients, the "hand
effect” was observed, the deficit in reaching appeared for the right hand only, for targets in
both visual fields. Additional symptoms in patients suffering from optic ataxia are the prob-
lems in avoiding obstacles and correcting the hand trajectory during reaching. In tasks where



the target position was changed during reaching, patients were not able to correct the hand
direction on time and move along a smooth trajectory. Instead, the task was executed as a
succession of two steps - moving toward the first target, then moving from the first to the
the second one. Although discussions which parietal regions are related to the emergence of
optic ataxia still exist, the common believe is that this disorder appears as a consequence of
lesions around the intraparietal sulcus and parieto-occipital junction, mainly corresponding
to the superior parietal lobe. The reference [7] presents a detailed discussion of this matter
and gives some additional arguments in favor of the relation between lesions on SPL and the
optic ataxia.

Another typical disorder that appears in patients with parietal lesions is neglect, the
inability to perceive sensations from the contralateral field and the incapability to action in
the contralateral field. The patients lack the awareness within the personal and extrapersonal
space contralateral to the lesion, sometimes they refuse to take food placed in the neglected
space, sometimes refuse clothing and toilet of the contralateral part of the body. Patients, also,
fail to represent the contralateral side of the space on drawings and avoid stimuli approaching
from that side. The contralateral limb may be held in an unusual position, and if a paralysis
of that limb exists, the patient will deny it. The neglect is related to the lesions on the inferior
parietal lobe, and the pronounced contralateral nature of the disorder is well explained with
a phenomenon observed for populations of IPL cells, the strong directional tunning toward
the contralateral space, as reported in [7].

Apraxias are a class of deficits characterized by the inability to plan movements, from
the incapability of following verbal commands, to the difficulties in performing sequences of
movements. Some specific disorders from this class listed in the literature are ideomotor
apraxia - the inability to execute a motor command and ideational apraxia - the inability to
create a plan for a specific movement.

All these examples lead to the conclusion that PPC has an indispensable role in planning
motor commands, for both eyes and hand, as a response to various sensory inputs. The
detailed study of the properties of each of the regions identified within PPC is carried through
electrophysiological recordings in monkeys performing reaching and delayed reaching tasks.

2.2.2 Regions of the posterior parietal cortex

The detailed anatomic division of the PPC and the functional roles of the identified regions
are presented in this section. First, the commonly used nomenclature for PPC regions is
described through an example of anatomical study. Alternative notations can also be found
in the literature, but the detailed list of terminology is not relevant for this study. Instead, we
will rely on the presented one and, when necessary, the additional terms will be introduced
with the reference to the adopted nomenclature. This approach is sufficient for describing the
main ideas related to the PPC, together with the motivation for this work.

Some relevant properties for each of the PPC regions are also described in this section:
the cortical inputs and outputs, the signals that modulate cell activities, and the functional
roles in the process of translating sensory inputs into motor outputs. The aim of this section
is to illustrate a map of functional properties within the PPC, generally. The details about
relevant computational properties and information coding mechanisms will be presented in
the next section.

Architecture of the PPC

At the beginning, it is illustrative to present results of cortex regions identification based on
the cytoarchitectonic differences. An extensive in-vitro analysis of monkey cortex slices has
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been carried out by several researcher, however the overview of such studies is out of the
scope of this work. Instead, the results from one recent example [52] will be presented in this
section. We intend to visualize the cortex regions of interest, rather than to explain their
architectonic specificities.

The study presented in [52| combines several architectonic tracers in order to precisely
identify cortex regions and their subdivisions for macaque monkeys. Cytoarchitecture is one
of the considered parameters here, but the study dominantly relies on the organization of
fiber bundles in the layer 4 (or on the border between layers 3 and 5), the properties like
density of myelination, or the appearance of pronounced radial or tangential components.
Figure 2.2 summarizes the identified regions in the surrounding of the intraparietal sulcus,
and on its banks and fundus (i.e. the bottom surface). The panel on the left shows the
unfolded, 2D representation (’'flat map’) of the intraparietal sulcus (IPS) and nearby regions.
The four surrounding sulci are also marked: parieto-occipital sulcus (POS), lunate sulcus
(LuS), central sulcus (CeS), and cingulate sulcus (CgS) on the medial wall of the hemisphere.
The figure shows 17 identified regions on the banks of the intraparietal sulcus and near the
parieto-occipital junction. The four panels on the right correspond to the coronal sections
marked by red lines on the left panel; they illustrate the vertical organization, from the most
posterior part of IPS (section 1) to the most anterior one (section 4).

Before describing the topology of the considered region, it is necessary to introduce some
common notation for directions. 'Medial’ and ’lateral’ refer to proximity to the medial plane,
the separation plane between the two hemispheres; usually, when comparing two positions,
medial one is the one closer to the medial plane, while lateral denotes the opposite one. Other
standard notations from anatomy are also adopted here; dorsal, ventral, caudal and rostral,
stand for ’direction toward the spine’, 'toward the stomach’, 'toward the tail’, and ’toward
the nose’. When describing a position inside the sulcus, dorsal and ventral mean 'toward the
tip of the sulcus’ and 'toward the fundus’.

Five regions are identified around the parieto-occipital junction. Two visual areas, V3 and
V3A are separated due to the difference in density of myelination and the strong tangential
fiber component present only in V3A. These two regions belong to the extrastriate cortex,
a part of the visual cortex placed close to the primary visual cortex (also called the striate
cortex), that corresponds to the Brodman areas 18 and 19. Additionally, the parieto-occipital
(PO), posterior intraparietal (PIP) and lateral occipital parietal (LOP) regions are shown.
The panel one on the Figure 2.2 shows the section through the most posterior part of IPS,
nearby the junction with POS. The PO region occupies the medial bank of the sulcus, while
PIP, V3 and V3A correspond to the medial, central and lateral part of the fundus, respectively.
The lateral bank belongs to the LOP region.

Sections two and three examine the posterior and middle part of the IPS, and they are
illustrated on the corresponding panels on the right. The second section passes through the
region 7a, the subdivision of the Brodmann area 7, on the nearby gyrus lateral to IPS, and
medial intraparietal region (MIP) on the medial bank of the sulcus. The medial dorsal parietal
area (MDP) lays on the medial surface of the hemisphere, and its position on this figure is
somewhat misleading. The third section pases through the central part of the IPS, showing
the regions buried inside the sulcus, together with the Brodmann regions 5 and 7 on the
surrounding gyrus. The dorsal part of the Brodmann area 5 (5D) is placed medially to the tip
of the IPS, while area 7 lays laterally to the IPS. The regions inside the sulcus are depicted on
the panel 3, the ventral part of the area 5 occupies the medial bank, the ventral intraparietal
region (VIP), placed deeply inside the sulcus is divided into medial and lateral part, as well as
the lateral intraparietal region (LIP) on the opposite bank of the sulcus. Finally, the fourth
panel shows the organization of the most anterior part of the IPS, corresponding to the region
7b on the gyrus, the newly introduced region 7t on the tip of the sulcus, part of the region 5
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on the opposite bank, and continuing to the anterior part of the PC, the Brodmann area 2 of
the somatosensory cortex.

Figure 2.2: Parcellation of the intraparietal and the surrounding regions based on the architec-
tonic traces. Left: The 2D representation of the considered cortex region, with the 'unfolded’
intraparietal sulcus. The notation for the surrounding sulci: POS - parieto-occipital sulcus,
CgS - cingulate sulcus, CeS - central sulcus, LuS - lunate sulcus. The identified regions are
denoted as: PO - parietal-occipital area, PIP - posterior intraparietal area, V3, V3A - visual
area 3 and 3A, LOP - lateral occipital parietal, MDP - medial dorsal parietal, 5V, 5D - Brod-
mann area b, ventral and dorsal part, 7a, 7b, 7t - the identified regions within Brodmann area
7, MIP - medial intraparietal, VIPl, VIPm - ventral intraparietal area, lateral and medial
part, LIPv, LIPd - lateral intraparietal area, ventral and dorsal part, AIP - anterior intra-
parietal area. The red lines mark the unfolded coronal sections of the tissue. Panels on the
right show the original shape of these sections, together with the regions identified inside the
sulcus. Figure is adapted from: J. W. Lewis and D. C. Van Essen, Mapping of Architectonic
Subdivisions in the Macaque Monkey, With Emphasis on Parieto-Occipital Cortex, in The
Journal of Comparative Neurology, vol. 428:79-111, 2000.

Figure 2.3 gives an alternative view of the PPC regions and their positions on the neocor-
tex. The panel one shows the lateral view of the left hemisphere, together with the parietal
regions 5 and 7 placed around the intra parietal sulcus (IPS). The subdivision of the area
7 into 7a and 7b is also marked. Additionally the primary motor region (M1) and the two
parts of the dorsal aspect of the premotor region, the rostral (PMdr) and the caudal (PMdc)
part, are illustrated. The second panel of the figure focuses on the regions buried inside the
IPS, MIP and LIP on the medial and lateral bank of the sulcus, respectively, VIP occupying
the medial and lateral parts of the fundus, and AIP in the anterior aspect of the IPS region.
Finally, the third panel shows the medial wall of the hemisphere, together with the regions
visible from this aspect - MDP, PO and 7m. The CiS denotes the cingulate sulcus position,
while POS marks the parietooccipital sulcus. The presented illustration gives a more realis-
tic, three-dimensional perspective of the parietal cortex organization. Still, the 'flat map’ is
more convenient for an illustration that aims to represent the maximum available information
about the regions and their relative positions.



Figure 2.3: Illustration of the regions within PPC. Panel 1: the lateral view of the left
hemisphere, the shaded area marks IPS, regions 5d, 7a and 7b of PPC are shown around
the IPS, motor area M1 and the premotor regions PMdr (dorsal premotor rostral) and PMdc
(dorsal premotor caudal) are also shown. Panel 2 presents the four regions buried inside the
IPS: MIP, LIP, VIP and AIP areas. Panel 3 illustrates the medial view of the left hemisphere
and the three regions placed on the medial wall: MDP, PO and 7m; the positions of the
cingulate sulcus (CiS) and the parieto-occipital sulcus (POS) are also marked. The figure is
adapted from R. Caminiti, S. Ferraina, P. B. Johnson: The Sources of Visual Information to
the Primate Frontal Lobe: A Novel Role for the Superior Parietal Lobule, Cerebral Cortex,
1996.

Functional roles of the PPC regions

An overview of the main properties for each of the identified regions is given in this section.
Most of the presented results are obtained by recording activity in the brain of monkeys,
trained to follow visual (or auditory) commands. In a typical setup, a monkey is placed in front
of a screen. Instructions controlling an experiment are presented on the screen. A chamber for
recording electric activity is fixed to the animal’s head during the whole experiment. Tips of
one or several electrodes are inserted into the tissue, to record extracellular potentials. Finally,
the spike trains are extracted from these signals and used to further analyze the typical cell
behavior.

The passive response to a stimulus is recorded by simply applying the stimulus and mon-
itoring the response. For analyzing the motor properties, the animal is trained to execute a
movement following the instructions on the screen. The movement can be a saccade, i.e. a
rapid eye movement, a hand movement, grasping for an object etc. Also, the movement can
be restricted to 1D, 2D, or executed in 3D. Although, naturally, the reaction to the sensory
input comes first, and an eyes movement precedes a hand movement, it is difficult to identify
what influences each cell, when monitoring the reaching task. Therefore, many variations of
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the same task have been presented in the literature. Introducing a delay between the sensory
input and the movement separates the sensory and motor related signals. Multiple targets
and movements are executed sometimes, in order to access the questions related to the mem-
ory and movement planning. Also, the animals were, sometimes, instructed to execute the
eyes and hand movements in opposite directions, in order to disassociate the two types of
movements.

The medial intraparietal region (MIP) is usually related to planning of reaching
movements. Traditionally, it is considered the part of the area 5, and therefore, the part of
the superior parietal lobe. Anatomical studies show that MIP receives inputs from regions
within extrastriate or directly connected to extrastriate cortex, which supply it with visual
information. The region mainly projects to the area near the border between the dorsal
premotor (PMd) and primary motor cortex, and also to the rostral part of the PMd (PMdr);
it also projects to the caudal part of the PMd (PMdc) [101, 15].

Visual, somatosensory or bimodal cells are reported in the MIP. The classification refers
to the type of coded stimulus, where bimodal cells respond to both, the visual and the
somatosensory inputs. Some of the visual cells respond only to the signals within the reaching
distance (‘near’ signals). Also, it is noticed that the visual fields expand if the region that can
be reached expands (for example when a monkey is holding a rake), thus being well adapted
to the stimuli placed within a reaching distance. This region is believed to take part in
spatial representation for control of arm movements, and providing signals for visually guided
reaching for the motor-related regions [22].

The lateral intraparietal region (LIP) is a part of the inferior parietal lobe (IPL)
in the monkey cortex. It receives inputs from the extrastriate cortex and is connected to
the other visually related PPC regions. The LIP outputs are directed toward the centers
responsible for executing saccadic movements (superior colliculius, frontal eye fields, pons)
[87].

This region is often related to planning of eye movements toward both, the visual and au-
ditory stimuli. On contrary, it is not very active during the planning of hand movements. The
increased activity is observed in the presence of a salient visual stimuli, i.e. the input relevant
for executing a movement, which probably represents the attention to the salient stimuli.
The LIP cells code the entire visual field in the coordinate system centered in the retina.
The auditory signals, together with the visual signals, are also coded in these coordinates,
although they are naturally related to the head position. The computational mechanisms of
LIP, such as the coordinate system used in LIP for representing stimuli, the remapping of
the coordinates after a saccade, the coordinate transform, have been of interest in several
experimental studies 21, 22].

The ventral intraparietal region (VIP) receives inputs from several visually and
motion related areas, together with inputs from somatosensory regions, and projects to the
area F4 of the premotor cortex, responsible for head and mouth movements. This region
integrates visual and somatosensory information and initiates corresponding motor activities.
VIP cells are often responsive to visual and tactile stimuli, with very similar receptive regions
for both types of inputs. For example, cells that have receptive fields near the fovea also have
tactile receptive field near the mouth, i.e. the most sensitive visual region is related to the
most sensitive tactile region. One unusual class of VIP cells react only to stimuli within 5cm
from the face. Some of the VIP cells are sensitive to vestibular signals (the signals indicating
the position of the body in the space, the sense of equilibrium). The VIP activity can be
interpreted as planning of actions in the perioral space (close to the mouth), thus helping in
reaching with the mouth. Alternatively, this region may be responsible for supplying different
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representations of space (head-related signals, vestibular signals etc.) to the premotor cortex,
which enables calculating coordinates for a movement [22]. The VIP is also reported to play a
role in self-motion through the environment, and estimating directions for self-motions [103].

The anterior intraparietal region (AIP) is believed to contribute to the hand shaping
and grasping of 3D objects [74, 64, 22|. The populations of visually and motor responsive
cells were found in this regions indicating that it contributes to control of visually guided
movements. Unlike some other regions in the PPC, like MIP or area 5, the AIP is not
involved in the representation of cue positions in the space, or visual guiding of a movement.
Instead, the visually responsive cells in this region react to shape, orientation in space, and
other 3D features of an object. This holds for both, the visual and the memorized objects.
A study based on the delayed reaching task revealed the activity related to planning of the
specific type of hand movements [64], indicating the role of the AIP in the control of hand
shaping and grasping.

A part of the superior parietal lobe (SPL), the Brodmann area 5 (also denoted as area
PE in some studies) , is a motor-related region, playing role in the planning and coordination
of hand reaching movements. It represents the source of most of the inputs to the motor
and premotor regions of the frontal lobe, supplying the information necessary for initiation of
the reaching movements. Still, until nineties, no evidence of the connections to visual areas
was identified, i.e. the sources of visual signals in the area 5 were unknown (the ’'parietal
paradox’). The studies of the regions PO and 7m [15] revealed the indirect connections to the
extrastriate cortex.

The first report of the cells in area 5 active during hand movements is presented in [62]. The
cells were classified with respect to sensitivity to various sensory and motor signals. A large
population of the examined cells reacted to passive rotation of the limbs, but they showed a
prominent discharge only during the active hand movements toward the target. Also, a certain
population of cells was unresponsive to any kind of passive stimuli, and started to discharge
only during active hand movements. Later studies focused on analysis of mechanisms behind
planning of hand movements, the spatial representation of hand and target positions, the
appearance of intention and attention before a movement, etc. [12, 21].

The Brodmann area 7 is a part of the inferior parietal lobe (IPL) in the monkey
cortex, and is usually anatomically divided into the regions 7a and 7b. The first of them
is of particular interest for the presented work, and some of its properties are examined in
the following sections. The area 7a receives multiple visual inputs, mainly from the areas
V2, PO, the superior temporal sulcus and the dorsal prelunate gyrus. Area 7b receives
somatosensory signals, and projects to the several prefrontal and frontal areas, including the
PMv and supplementary motor cortex (SMA). The properties of the region 7a, presented in
[9] and [10], will be reviewed in details in this chapter.

The area 7m of the medial parietal cortex is considered to be the early stage in the control
of a visually guided reaching. It receives inputs from the visual areas of the occipitoparietal
cortex, and projects to the dorsal premotor cortex [29, 15]. This region is also identified as
a bridge between the superior and inferior parietal regions, which explains the 'paradox’ of
the parietal lobe. In other words, it connects the area 7, receiving inputs from the visual
regions but having no direct connections to the motor regions in the frontal cortex, with the
area 5, the motor-related area directly connected to the frontal motor regions, but receiving
no direct inputs from the visual cortex [15]. The various types of cells with combinatorial
properties were identified in 7m. Many of them are influenced by the eye-position signals,
but the influence of the hand position, and hand movement signals was also observed. This
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supports the hypothesis that 7m contributes the the planning of motor commands for hand
movements, or visual monitoring of hand trajectories [29].

The medial dorsal parietal region (MDP) is also a part of the cortical network for
the control of visually guided movements. This region, together with the area 7m, receives
the visual inputs from the parts of the extrastriate cortex, or the regions directly connected
to it. The outputs are projected to the dorsal premotor cortex of the frontal lobe. These
anatomic observations indicate the role of this area [101].

The parieto occipital region (PO) , sometimes also denoted as V6A, is placed on the
medial side, ventrally to the MDP and 7m. It receives direct inputs from several pre-striate
regions. Therefore it is strongly influenced by visual signals, and is considered as one of the
visual areas in the PPC. The PO projects to the PMd directly, and indirectly through 7m
and MIP. A characteristic of the cells in this region is that they have large visual receptive
fields, related to coding of peripheral, rather than foveal signals. They are also orientation
and direction selective, and probably contribute to the ambient vision and target detection.
The activity of most of the cells is modulated by the eye position, although a minority of
them are independent of the gaze angle [101]

In the studies of Andersen and others [4, 21| the parietal reach region (PRR) is
analyzed in the context of the hand reaching movements. This area corresponds to the
regions MIP, 7a and the dorsal aspect of PO. Its computational mechanisms for coding of
visual and auditory targets, for transformation of coordinate systems and for planning of
hand movements are discussed in details in [21].

2.2.3 Electrophysiological studies

The studies on patients with parietal lesions indicate the role of the PPC as an interface
between sensory processing and motor and premotor regions. The PPC receives sensory inputs
of different modalities, visual and auditory signals, somatosensory inputs and information
about the positions of limbs, hands and eyes, and plays a crucial role in early stage of planning
motor activities, generating commands for movements of hands, limbs and eyes on a more
abstract level [62]. The mechanisms behind these activities have been the object of interest
for many studies [62, 32, 4, 22, 101], but throughout this work, we will concentrate on the
identification of intention, the early motor plan, in the PPC. Some other relevant issues, the
directional tunning in cells, the problem of coordinate transform and signal representation,
the specific functions of certain parietal regions, and the discussion about the computational
framework operating in the cortex, will be briefly reviewed in this section.

Preferred direction and population coding

Relation between a single cell discharge and the spatial position of the visual stimuli is ob-
served in several neocortex regions, as well as in some other structures within the human
brain. Motor cortex [33, 34|, premotor cortex [99, 32|, parietal regions 5, 7 [43, 32, 9| are
some of the neocortex regions where the direction-sensitive cells were reported.

Typically, in the experiments with visual stimuli presented in 2D, a cell activity corre-
sponds to a bell-shaped curve, the function of the target position described as an angular
distance from the referent direction. The activity is maximal for the target position cor-
responding to the preferred direction, and decreases as it moves away from the preferred
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direction. This dependency can be described by a cosine function, as in [34]:

r(@) = A+ K -cos(0 — C) (2.1)

where r(6) is the frequency of cell discharge, and a function of the angular position of
the visual cue, 0, in the 2D coordinate system. The parameters A, K, C can be determined
by fitting this expression to the data. The parameter C' represents the preferred direction,
in the same coordinate system used for expressing 6. A slightly more complicated model is
presented in [9], and given by the expression:

(2.2)

0) = A+ K -cos(z-S) if|z-S|<m
"WTY A-K elsewhere

where x = arccos(cos(f — C')). The additional parameter S controls the width of the
tunning curve, for S = 1 the expression reduces to (2.1), S < 1 corresponds to a broader
tunning function, while S > 1 results in a sharper one.

The majority of cells possess broad tunning curves, which indicates that a single cell
activity cannot reliably represent a visual cue position. The mechanism of coding directions
in the brain rely on populations of cells. Indeed, a weighted activity over a population gives
a good estimation of the target direction. A randomly selected set of cells with preferred
directions spanning the 2D space can be used for a very accurate decoding of target positions.
This has been demonstrated for the motor cortex [34, 32|, given the expression:

Neeus
6= Ci-(r:i(6) —b) (2.3)

i=1
where Nges is the number of cells in the population, and C; and r;(f) represent the
preferred direction and frequency of spiking of the ¢-th cell, respectively. The parameter b; is
a constant, a parameter of the model. Finally, 6 indicates the visual cue direction, and 0 the

estimated direction from the population activity.

This result provides a basis for the brain-machine interface applications, using the activity
recorded in the motor cortex [20, 83, 92, 65, 11], in the dorsal premotor cortex [77], in the
parietal cortex [72, 84], or in more than one site chosen on the frontal and parietal lobe [16, 17].

Spatial information representation and coordinate transformations

The role of the PPC as the interface between sensory and motor related areas, receiving
sensory inputs of different modalities and generating motor outputs, implies that some sort of
mechanism for coordinate transform has to exist in this region. Cells from some of the PPC
regions respond to visual, auditory, somatosensory signals, and can be modulated by the eyes
position, neck proprioceptive signal, i.e. the position of the head with respect to the body, or
vestibular signal, i.e. the position of the head with respect to the world coordinates [5]. For
example, many cells in the area 7 respond to visual stimuli, both static and moving; cells in
the area 5 are less responsive to this type of signals but often react to passive rotation of joints
or active reaching by hand [62|. Areas 7b and VIP are more related to the somatosensory
signals [5, 22|, while the LIP activity depends on both, the visual and the auditory signals
[5, 21]. Regions like MIP and MDP are strongly influenced by hand movements. Just this
short list of of various signals present in the PPC implies the need to use several reference
frames - visual signals are often related to the retinotopic coordinate system, and influenced
by the eyes position in that coordinate system. Auditory signals are related to the head-
centered coordinates, while planning of the hand movements has to include signals coded
in the hand- and body- centered coordinates. The experimental studies carried in this field
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revealed roles of different PPC regions, still there is no consensus about the mechanism for
coordinate transformations on the entire path from sensory inputs to motor outputs.

At the beginning, the two concepts necessary for describing the coordinate transforms
mechanisms in the PPC, namely the notions of reference frames and gain field modulation,
are introduced.

The reference frame denotes a set of axes used to represent the location of an object, in
terms of distances from these axes. The identified reference frames in the PPC are the retino-
topic, head-centered, limb-centered, body-centered and world centered ones. The retinotopic
coordinate system is centered in the point of visual fixation, i.e. an object position is rep-
resented with respect to the retina position. Naturally, with each saccade, the coordinate
system is shifted and the mechanism for updating coordinates after each saccade exists in the
brain. Coding the object position with respect to the head position is also observed in the
parietal cortex, for the fixed head the coordinate system does not change, but after a head
movement the coordinates has to be updated to compensate for the shift. The coordinate
system related to the hand position is necessary for the planning of hand reaching movements.
Here, all the objects are coded with respect to the initial hand fixation point. The same way,
in the body-centered coordinate frame the object position is described relative to some fixed
point on the body. Finally, the world-centered coordinate system refers to the surrounding
space.

The gain field modulation is the key mechanism in the parietal cortex that enables co-
ordinate transform from one reference frame to another. This is a multiplicative effect that
modulates a cell discharge according to certain relevant signals, e.g. eyes position, hand posi-
tion etc. The gain field is observed in many experimental studies |21, 4], and the mechanisms
behind it are also studied through computational models [75].

The Figure 2.4 illustrates coding in different reference frames and the effect of gain field
modulation. The cell response field, i.e. the frequency of the cell activity as a function of the
visual cue direction, is represent as a bell-shaped curve that has its maximum in the preferred
direction of the considered cell. The target position is expressed as the angular distance
from a certain reference direction (zero degrees on the figure). The x-axis corresponds to
the head-centered coordinate system, used to represent the target position (in degrees), while
the y axis represents the firing frequency (in Hz). The panel a illustrates the eyes-centered
coordinate frame. The red, blue and green lines correspond to the visual response field when
the eyes fixate points at -10, 0, and 10 degrees. Since the reference frame is eyes-centered the
entire response field is translated together with the fixation point. On the next panel, b ;| the
limb-centered reference frame is illustrated, and the three lines correspond to the receptive
field for different hand positions. Here, the point of hand fixation represents the center of the
coordinate system, therefore, when the hand moves, the entire receptive field is translated
to preserve the hand-centered coordinates. The panel ¢ shows the head-centered reference
frame, and the three receptive fields correspond to the three different head fixation points.
Since the x axis shows, exactly, the head-centered system, for every head move, the entire
panel ¢ 'moves’, and the receptive field preserves always the same coordinates. Finally, the
panel d illustrates the intermediate coordinate frame, with the three lines again corresponding
to the three eyes fixation points. Here, the response field is translated for each eye movement,
but with a smaller shift than the eyes. Therefore, this reference frame reflects the influence of
some other signals, together with the eyes position. The last panel presents the case of eye-
centered coordinate frame with the eye-position gain. The same translation of the response
field in accordance with the eyes translation, as on the panel a , exists here. The difference is
that, not only the position of its center, but its amplitude as well depends on the eyes position.
In this example for a smaller angular position of the eyes the activity is less intensive.

The last panel of this figure demonstrates the mechanism of coordinates transform from the
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Figure 2.4: The illustration for reference frames and gain modulated signals. The figure re-
produced from Y. E. Cohen and R. A. Andersen: A Common Reference Frame for Movement
Plans in the Posterior Parietal Cortex, in Nature Reviews Neuroscience , 2002, vol. 3, pp.
553-562 (see [21]). A cell response field is represented by a bell-shaped curve which maxi-
mum corresponds to the preferred direction for that cell. The x axis represents the target
coordinates in the head-centered reference frame expressed as the angular distance from some
referent direction (in degrees). The y axis shows the firing rate of a cell activity (in Hz). The
panels a, b, ¢, d explain the eye, limb, head and intermediate reference frame, respectively.
The last panel e illustrates the effects of gain modulation.

eyes-centered to the head-centered system. The initial coordinates refer to the eyes position,
while the amplitude of the cell discharge depends on the position of the eyes in the head-
centered reference frame. This provides sufficient information for the read-out cells population
to recalculate a new set of coordinates, related to the head position. In general, the gain field
is the mechanism to represent the information about more than one reference frame in the
same population of cells. The cells that receive these inputs are, then, able to recalculate the
coordinates in the new coordinate system. The translation of coordinate frames and the gain
field modulation are also studied on the computation models, presented in [75, 102].
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The proposed models of the hand-eyes coordination in the PPC

Although the questions of reference frames and gain field have been studied intensively, there
is still no consensus about the unified mechanism that translates the visual and auditory
signals from their original coordinates to the hand-centered system necessary for hand navi-
gation. The literature [4] refers to the three methods proposed by different research groups.
The first of them proposes the sequential transformation of coordinate frames on the path
from visual inputs to the motor output signals [30, 60]. The visual inputs, coded in the
retinotopic reference frame and modulated by the eyes position with respect to the head, are
first transformed into the head-centered system. This one is, then, further transformed into
the body-centered coordinates using the proprioceptive signal, i.e. the position of the head
with respect to the body. Finally, knowing the hand position in the body-centered system,
the target coordinates can be translated to the hand-centered reference frame. The evident
problem with this method is its computational inefficiency, since it requires many stages and
separate computations.

The method described in [12, 4], proposes a direct transformation from the eyes-centered
to the hand-centered coordinates. It assumes that the parietal cortex receives the information
about the target and the hand positions in the same, retinotopic, coordinate system. Then,
the direct subtraction of the hand coordinates from the target coordinates translates the target
in the hand-centered reference frame. The experimental support for this hypothesis is found
in the recordings from area 5, where the eye-centered and hand-centered reference frames were
observed simultaneously. Also, the eye-centered coordinates in the PRR are modulated by
hand position represented in the eye-centered reference frame.

The combinatorial method, discussed in [8] and [7] assumes no modular organization in
the PPC computations. The retinal target location, eyes, hand, and head positions are all
combined together and the limb centered coordinates are read at the output. The problem of
this method may be the 'curse of dimensionality’, i.e. if the same set of cells have to represent
various stimuli at the same time, the number of possible combinations of signals increases
exponentially as a function of the number of stimuli to be represented. On the other hand,
the new experimental evidences, given in |9, 7|, show that the majority of cells in the SPL
have a global tunning field (GTF). In several different reach-related tasks, and during various
epochs of these tasks (some of them related to the eyes movement, other related to the hand
movement), the preferred directions were calculated for the recorded cells. For the majority
of cells the different preferred directions are clustered within a small region in the space,
the phenomenon named the global tunning field. This indicates that the preferred direction
of a cell does not vary much with the change of eyes or hand position, which indicates the
allocentric reference frame rather than the eyes-centered one. The allocentric system is not
related to either eyes or hand but to some referent point independent on both of them. This
indicates that the combinatorial method may explain the experimental evidence better than
the previously proposed ones.

Intention coding

In the neurophysiological literature, the (motor) intention is defined as an early plan for
movement that specifies the goal and the type of the movement but does not, necessarily,
contain the explicit commands for the motor neurons, necessary for executing that movement.
It is a high level and abstract representation of a movement [4].

The presence of intention is more evident in the delayed reaching, than in the classical
reaching tasks. During the delay period, after the processing of the visual information is
completed, and before the movement starts, the persistent activation of the cells is observed.
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It is shown, in various experiments, that this activity does not reflect neither the sensory
memory nor attention, but the intention for a movement.

The experiments with two targets, instead of only one, indicate that it does not correspond
to the sensory memory [4]. Here, the monkey is instructed to memorize two targets, and reach
for them sequentially. The persistent activity is present only for the next target to reach,
although both of them have to be memorized at that time. Therefore, the activity of the
delay period does not reflect the sensory memory.

Distinguishing between the intention and the spatial attention in the experiments is a
more difficult task. In order to assess this question, the experiments that require two types
of movements have been introduced. The target position is presented to the monkey at the
beginning of the experiment, and during the delay period it is memorized, and the movement
is planned. After the delay, the animal is instructed to perform the movement. The only
difference between the two modes of the task is the required movement, in one case it is a
saccadic eye movement, and in the other the hand movement. The hypothesis is that in both
cases the spatial attention and the sensory memory have to be the same, the only difference
is the type of movement, and consequently the related planning or intention. The results
obtained by recording the cell activity in LIP and PRR indicate that the delay period activity
indeed reflects the intention. Typically, the cells recorded in the LIP were much more active
during the saccades, while the PRR cells responded more to the hand movements, for the
same target position. As described before, the LIP cells are believed to take part in the
planning of saccades, while the PRR region is related to the hand movements. The outcome
of the experiment supports the hypothesis of the presence of intention in the parietal cortex

[4]-

2.3 Behavioral Experiments

In this section, the framework and motivation for our study are presented in detail. An
extensive set of behavioral experiments is designed to collect a database analyzed throughout
this work. The measurement apparatus, the details regarding the recording site and the
organization of the collected database are described at the beginning of the section. The
results of the first analysis conduced on this database, i.e. the study preceding our work, are
also presented here. A more detailed discussion of these results can be found in the literature
[9, 10]. This work, together with the additional observations regarding population coding of
intention, computational properties of the parietal cortex and brain-machine interfaces was
the motivation for our study; the arguments that will be presented at the end of this section.

2.3.1 Measurement apparatus

The extracellular recordings of the electrical activity in the cortex were collected using a
multielectrode recording system, consisting of seven microwires, described in details in [26,
6]. The second reference describes the complete scheme for automatic control of electrode
positions, collecting and storing the recorded signals, on-line identification of cells and spike
trains; this illustration is reproduced on Figure 2.5.

The lower right corner of the figure illustrates the recording system, and the animal posi-
tion. During a session, the monkey is fixed to the chair in order to minimize movements, and
to provide the support for the positioning system for electrodes (Eckhorn microdrive) con-
nected to the recording chamber. The chamber holds the electrodes, and protects the tissue
between the recording sessions. The particular system, used here, contains seven electrodes
arranged linearly, i.e. seven recording channels. The collected waveforms are amplified, fil-
tered and stored on the medium in the center of the scheme, for the off-line analysis. The

17



SLAVE WORKSTATION: UP TO 4 USED SIMULTANEOUSLY

STEREO
HEADPHONES MASTER PC FOR CONTROL OF

OSCILLOSCOPE: ! OSCILLOSCOPE: ELECTRODE MOVEMENT

SPIKE MONITORING L ) SPIKE MONITORING AND STIMULATION PARAMETERS
AUDIO | i . AUDIO i
CONTROLER i : e CONTROLER [

A

TP A cED 1401
LAB. INTERFACE

Qt‘ttbn
C.!..’ l

14.CH. DIGITAL TAPE 2
RECOR e WAVEFORMS
| SPIKES
| e
| g LFP
i ©o 1 EMG
| o leE
7 CH. STIMULATIOF
A4 TASK
SPIKE L |
DISCRIMINATION  [*€ -
: : I f-“—z -
TTL SPIKE IR
TRIGERS B R
TO STIMULATOR
—— & FORCOLLISION T
TEST ECKHORN
MICRODRIVE
CED 1401 CHAMBER
‘r LAB. INTERFACE PYRAMIDAL
Tesnssn gl - ELECTRODES
seeene {1 | ‘
: =
Jl g
AMPLIF\ER
. g.
-__ | Lh

T |
Hit SR |
ON-LINE ANALYSIS

ﬂ

MANIPULANDUM

Figure 2.5: The schematic representation of the measurement apparatus. The lab monkey
with the implanted chamber and electrodes, and the system for collecting recordings and
stimulation of brain regions (if needed) are shown in the lower right corner. The apparatus
for controlling and monitoring experiments is shown in the red box. Particularly important
is fine tunning the electrodes position. The part of the system for on-line cell identification
is marked with the green box. The data can be analyzed off-line, after being stored on the
medium in the middle of the scheme. The blue box on the bottom shows the system for
presenting task instructions to the monkey.

The figure is adapted from S. N. Backer, N. Philbin, R. Spinks, E. M. Pinches, D. M. Wolpert,
D. G. MacManus, Q. Pauluis, and R. N. Lemon: Multiple single unit recording in the cortex
of monkeys using independently movable microelectrodes, Journal of Neuroscience Methods ,
1999, vol. 94, pp. 5-17.

local field potentials can be measured, as well as the raw extracellular electrical activity, the
latter is sent to the system for identification of spike waveforms and spike times.

The green box on the left encircles the part of the system for the on-line spikes discrimina-
tion. A simple and fast double amplitude-time window algorithm is implemented in real time.
This approach requires manual selection of one or several windows in the time-amplitude
space, which are used to analyze the shape of spike waveforms. All the spike waves passing
through all these windows are assigned for the same cell. Clearly, such a set of windows
have to be determined for each of the channels, making it difficult to monitor many channels
simultaneously. The described system permits identification of up to two cells from one chan-

18



nel. On-line algorithms are typically less reliable than the off-line ones, but they are useful
for control of the electrode positions, maximizing the chance for successful recordings. The
parameters for the identified cells (i.e. window sizes in 2D) are sent to the controller and to
the system for stimulation.

The stimulation system is marked with a small green box on the scheme. It enables
injecting the electrical pulses into a certain place in the brain and monitoring the responses
on the recording site.

The controls for the entire system are shown in the red box. On the right is the central
unit, including a PC controlling the electrode movements and parameters for stimulator. It
is connected to the motor control unit for fine tunning of the electrode positions in 3D, and
to the oscilloscope and audio controller for monitoring the recorded signals. Since one person
can hardly maintain the entire process, up to four identical “slave” systems are added (on the
left).

Finally, the blue box on the bottom shows the system for tasks control, the screen for
presenting instructions and the manipulandum for reaching the target. The muscle activity,
electromyography (EMG), can also be recorded and stored.

The implanted electrodes are glass-coated tungsten-platinum fibers with 1-2 M2 impedance
at 1kHz, the seven microwires are arranged in one row. The set of recorded signals contains
the spike trains from up to fourteen cells and the recordings of hand and eye positions during
the tasks. The hand position is monitored with a 21 inches touch-sensitive screen, also used
to display instruction signals, while the eye position tracking required implanting an eye-coil.
The head of the monkey was fixed to the chair holding the eyes 17cm far from the screen
during all the experiments.

2.3.2 The position of the electrodes

In a series of behavioral experiments the neural activity of the 7a region of the inferior parietal
lobe (IPL) was monitored in the left hemispheres of two monkeys. The figures 2.2 and 2.3
illustrate the position of the 7a region on the “unfolded” map of the IPL, and on the standard
representation of the cortex, respectively. The precise position of the recording site, together
with the positions of penetrations across all the sessions, is shown on 2.6.

5.0 mm

STS
Monkey 1 ] { Monkey 2/

Figure 2.6: The precise position of the recording site. The three surrounding sulci are shown -
the intraparietal sulcus (IPS), the superior temporal sulcus (STS) and the lunate sulcus (LS).
The red dots on the figure show the exact positions of the electrode penetrations.

Adapted from: A. Battaglia-Mayer, M. Mascaro, and R. Caminiti: Temporal Evolution and
Strength of Neural Activity in Parietal Cortex during Eye and Hand Movements, Cerebral
Cortex, June 2007, vol. 17, pp. 1350-1363.

The three sulci defining the region are marked on the figure, the intraparietal sulcus (IPS)
that separates the superior and inferior parietal regions, the superior temporal sulcus (STS)
between the temporal and parietal lobe, and the lunate sulcus (LS) between the parietal and
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occipital lobes. The positions of electrode penetrations are marked with red dots. In total, 559
neurons were recorded from both monkeys. The penetrations were confined to the exposed
part of the IPL, perpendicular to the cortex surface, with average depth of 2mm.

2.3.3 The experiments

The set of behavioral tasks was designed in order to investigate the eye-hand coordination in
the parietal cortex. Two rhesus monkeys were seated in front of a touch-sensitive screen, and
trained to follow the instruction signals presented on the screen. The experiments and the
methodological approach are described in details in [9] and [10].

Figure 2.7: The eight target posi-
tions, as defined by the experimental
protocol. One of them is illuminated
during an experiment to signalize the
goal for a reaching movement.

At the beginning of a typical task trial, a red light is turned on in the center of a touch-
sensitive screen. The animal is required to fixate and touch this target for a variable period,
indicated as CT (Control Time). At the end of the CT, the red light goes off, and the monkey
is required to follow a given, task specific, instruction. A visual target signal appears in one
of eight peripheral positions. The positions allowed by the experimental protocol are placed
on a circle centered in the center of the screen, at 45° intervals from each other. The Figure
2.7 illustrates these positions, as they would appear on the screen. Typically, each task is
executed for variable target positions, and several repetitions. One complete block of data
consists of four trial replications, for each of the 8 target positions, in each of the first six
behavioral tasks, plus three repetitions for sixteen target positions in the last task shown in
2.8.

This figure shows the schematic representation of the tasks, with the list of epochs corre-
sponding to each of them. The tasks are denoted as Reach (R), Reach-Fixation (RF), Memory
Reach (MR), Memory Reach-Fixation (MRF), Memory Eye (ME), No-Go (NGO) and Visual
Fixation (VFIX) and will be described in details in what follows.

Reach task: As soon as the target appears, the monkey reacts naturally, first moving
the eyes toward the target, then the hand follows in a coordinated way. The first row on the
Figure 2.8 depicts this task. Each box corresponds to one epoch, a time-interval related to
execution of one activity necessary for completing the required movement. During the first
epoch, CT, as described before, the animal fixates the center of the screen with both, the
eyes and the hand waiting for the further instructions. Immediately after the central light
goes off, the target is illuminated and the preparation for the movement starts. The RTeh
(Reaction Time for eyes and hand) reflects this preparation. Next, the movement of the
eyes, with the hand still fixating the center, is executed during the MTe (Movement Time for
eyes). Although the hand is still immobile here, the preparation for its movement is carried
on. Therefore, signals related to the eye movement and the preparation for hand movement
are present in this epoch. The additional preparation period for the hand is marked as RTh
(Reaction Time for hand), and the movement happens during the MTh (Movement Time for
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Figure 2.8: The schematic illustration of the tasks protocol. Each row corresponds to one
task, and each box represents one experimental epoch. The instruction signals, eyes and hand
positions are shown for each of the epochs. During the shaded epochs, the cells activity, at
least for some of them, reflects motor intention.

hand). Finally, during the THTeh (Target Holding Time for eyes and hand), the animal is
required to fixate the target for a certain time. Small letters in the names of the epochs are
used to highlight the relation to the eye or hand activity.

Reach-Fixation task: The protocol for this task requires a fixed position of the eyes at
the center of the screen, from the beginning till the end of the trial. After its presentation,
the monkey locates the target position by the peripheral vision, and moves the hand only
toward it. Therefore, a coordination between the eyes movement and the hand movement is
not required by this task, but rather a decoupling of eye and hand motor behavior. The task,
as shown on the Figure 2.8 consists of CT, RTh (reaction time for the hand), MTh (movement
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time for the hand) and THTh epochs.

Memory tasks: The three Memory tasks were designed to monitor the cell activity
during a reaching movement in absence of a visual target, i.e. for the target position saved in
the working memory. Each of the three tasks start with the presentation of an instruction-
signal (IS) in one of the eight positions. After 300 milliseconds, this signal goes off, and the
monkey must remain immobile for a variable memory-delay time, until the go-signal appears
on the screen. This period, denoted as ’Memory’ on the Figure 2.8, corresponds to the time
necessary for completing target memorization processes in the brain. The persistent activity
observed during this epoch is often related to the first step in movement planning and the
emergence of motor intention [4]. After the go-signal, the monkey is required to move eyes
or hand toward the memorized target. Memory reach (MR) and Memory Reach-Fixation
(MRF) correspond to R and RF tasks, respectively, with the target position saved in the
working memory instead of being present on the screen for the entire task duration. Memory
eye (ME) task is somewhat similar to MRF, since it also decouples hand and eye related
activities. Here, the eyes move to the target while the hand remains immobile in the center.
The selection of the specific memory task is dictated by the color of the instruction-signal;
blue for the MR task, green for MRF and yellow for ME. At the end, the monkey is required
to stay at the final position during the THT period.

No-Go: In this task, the eyes and the hand are immobile during the entire trial. The
neural activity is recorded in a behavioral condition where the instruction signal does not call
for any future movement, but requires both eye and hand to remain on the center position
throughout the entire experiment. The target signal is presented during the IS interval, and
its purple color indicates the NGO task. The last epoch, THTeh, starts with the second
instruction signaling the end of the memory time. In the three Memory tasks this serves as
the go signal, but here it is an indication to remain immobile. Therefore, movement planning
or motor intention should not be present in the recorded activity, while spatial attention and
visual cue memory are expected, as in the other tasks.

Visual-fixation: This task is somewhat different from the previous ones since it serves
for monitoring cells activity as a response to the visual cue presentation. Therefore no hand
movement and, consequently, no hand-eye coordination is anticipated in this task. A visual
stimulus is briefly flashed on the periphery of the visual field, and then moved at constant
speed inward toward the fovea and outward from the fovea to the periphery while the monkey
fixates the center of the screen. It can appear in one of sixteen positions (at 22,5° angular
intervals), instead of eight as in the other experiments. The first epoch, CT, is the period
of waiting for the target signal to appear on the screen, as usual. The epochs ’Stat’, IN
and OUT correspond to the static presentation of the visual cue, the movement from the
periphery to the center, and the return from the center to the initial position, respectively.
In the framework of this study, this task is relevant since it should not involve planning of a
movement and the emergence of motor intention.

Motor intention in the experimental epochs: In the Section 2.2.3 we introduced
the motor intention in the context of neurophysiological studies, and presented the experi-
mental evidences that it influences the neural activity in the parietal cortex. Starting from
that definition, and knowing the key processes related to each of the described experimental
epochs, we can identify those among them where the neural activity is likely to reflect motor
intention. The boxes that represent epochs on the Figure 2.8 are colored in gray with respect
to our expectation of absence and presence of motor intention. During the epochs involved in
planning or executing a movement the activity of some cells might encode this information.

22



They are colored on the figure and will be relevant for the analysis presented in the next
chapters. The epochs where the presence of motor intention is not expected are hatched, and
those where it cannot be reliably identified in the cells activity remain white. As shown, the
R, RF and Memory tasks probably encode the motor intention during some epochs, while
NGO and VFIX should not contain it at all. In the first epoch, CT, it is difficult to iden-
tify specific signals in the brain. No go signals that can trigger motor intention precede this
epoch, and a hidden planning of a movement cannot be reliably identified. The IS epoch is
dominated by strong cell responses to presentation of a visual cue, the activity that can mask
all other processes present in this time step. It remains white for being inconclusive. Finally,
in the THT epochs the task is completed, and the recorded activity should not reflect any
motor intention. Additionally, the end of each epoch is removed to compensate for a potential
planning of a next movement. Still, a possibility for covert plans in this epoch cannot be ruled
out completely.

FIRST DATABASE (CRU') FIRST DATABASE (UMA')
[ 1
R R
RF RF
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MR REn MR R
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Figure 2.9: The average epoch length: left panel corresponds to the database for the monkey
"Cru’, right for the monkey "Uma’. All the epochs for the seven tasks are listed on the y axis.
The x axis shows time in ms. A red bar shows the average duration of an epoch, calculated for
different recording sessions and experimental conditions (target, trial). A dark red box marks
the range of values that the corresponding epoch takes in all the examples in the database.

The average length for the epochs is marked on the Figure 2.9. Each horizontal red bar
corresponds to the mean epoch duration, calculated across all the sessions and experimental
conditions. Each dark red box shows the range of values that the corresponding epoch takes
in various sessions. The x axis represents time, while the y axis lists the epochs. The control
time at the beginning of each experiment is an interval of variable duration of 1-1.5s. Reaction
and movement times last less than 1s. The instruction signal is presented for 300ms at the
end of CT in the Memory and No-Go tasks. In the VFIX task the static target is presented
for 1-1.5s, then it is moved first inward, then outward during the epochs marked as IN and
OUT. The Memory delay period lasts for 1-3s. At the end of the experiment the animal is
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required to fixate the target for a variable interval of 1-1.5s (the THT epoch).

2.4 Database description

Two databases of recordings, each collected from the left hemisphere of one monkey, are
available as outcome of the described experiments. The schematic representation of one of
them (from the monkey 'Cru’) is given in Figure 2.10. The presented example consists of
forty five ’files’, while the second database (for the monkey 'Uma’) contains fifty seven of
them. The term ’file’ denotes all the recordings collected from the same site, i.e. for a fixed
electrodes position and the corresponding set of cells. All the cells are monitored under all
experimental conditions, defined by the protocol. In other words, one ’file’ contains recordings
for all seven tasks and all allowed target positions for those tasks; R, RF, Memory tasks and
NGO are repeated for eight target positions, and VFIX for sixteen on them. Four replications
of trials for each combination (Task, Target) are completed for the first six tasks, while VFIX
is repeated three times per target position. The three middle columns on the Figure 2.10
illustrate the tasks, target positions and trials for each file, while the last panel shows all the
data collected in one trial, for one target position and task, and we will refer to it as to one
data set.

Each data set within a file contains at most fourteen recorded spike trains, since from
each electrode recording, neural activity from up to two different cells is collected. The cor-
responding epoch marks, i.e. markers denoting the beginning and the end of each behavioral
epoch within a trial are also saved. Some markers were determined by recording eyes and
hand position in each trial. The recordings of eyes and hand position are also collected, the
hand position using a touch-sensitive screen and the eyes position from the implanted coils.
The continuous 2D trajectories are discretized with 10ms time step.

An extract of the recordings from the database is given on the Figure 2.11. The example
shows the activity of the first cell from the file obtained in the ninth recording session on
the monkey 'Cru’. A spike train is depicted as a sequence of short black bars, marking spike
occurrences. The shorter red bars at the top of each spike train show the beginning and
the end of epochs for the considered task. A panel shows all the recordings obtained for
one task. Target position is marked on the y axis, next to the corresponding spike trains
obtained in four repetitions (three for the VFIX task). All spike trains are aligned to the
control time (marked as CT of the figure), and the x axis shows the time elapsed since its
beginning. The experimental protocol anticipates several epochs before the CT, but they are
important only to control the experiments and the presence of relevant signals is less evident
in the corresponding part of the recordings. Therefore, the beginning of each recording set is
removed, and only the epochs listed on the Figure 2.8 are examined in this study.

The data shown on the Figure 2.11 was analyzed in-depth in the studies presented in
[9, 10], and the obtained results will be briefly repeated in the next section.

2.5 Cell types and information coding in the 7a parietal region

An overview of functional properties of the 7a parietal region, analyzed in details in [9] and
[10], is presented in this section. The role of 7a cells in translating visual inputs into motor
commands, and in hand-eyes coordination in visually or memory guided reaching is studied
through the single cell and population activity modulation. Global tunning field (GTF)
observed in the activity of 7a cells provides an argument to the study of target and movement
direction coding and reference frames in the PPC.
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Figure 2.10: Organization of the database recorded from one of two monkeys. The first
column - the database divided into files, each of them containing all the recordings collected
from the same site. The recording for all seven experiments are contained in each file. R, RF,
MR, MRF, ME and NGO are repeated 4 times (m = 4) for each of 8 target positions (n = 8),
VFIX is repeated 3 times (m = 3) for each of 16 target positions (n = 16). The last column:
all the data collected during one recording session - markers for the beginning and the end
of each epoch, up to fourteen spike trains, hand and eye trajectory in 2D sampled with 10ms
time step.

The significant cell activity modulation is examined through standard statistical tests
(2-way ANOVA, Z-test, Rayleigh test for P<0.05), depending on the particular problem of
interest. For some tests, the index of modulation is calculated as the difference between the
firing rate in the considered epoch and the rate in the CT (for the same trial), divided with
the latter one. Also, for the study of temporal variation of the population activity, the spike
density function (SDF) is calculate for each cell, using a Gaussian kernel, and all SDFs are
averaged to obtain the population activity.

Neural signals: Visuospatial signals coding the target location (in the IS and Memory
epochs, for example), memory of the target position, planning and execution of eye, hand and
coordinated eye-hand movement (in Memory, RT and MT epochs), eye or hand positions in
space (THT epoch in all tasks) are some of the signals identified in the activity of 7a cells.
The activity observed in the Memory epoch, as well as the preparation for movement (except
for the preparation for hand movement toward the fixated target in the MR task) are among
the weakest signals observed. Modulation of the cell activity during the hand movement
toward the fixated target (MTh in the R and MR tasks) is the strongest one observed in these
experiments.

Visual signals: Majority of Ta cells respond to visual stimuli. This property is monitored
in the VFIX task, where no memory or motor related activity is required from the monkey.
First, the static target is presented in one of 16 positions, and the study of cell responses
showed that more than 70% of all the recorded cells respond to the static target. In the two
succeeding epochs, this target is moved from the periphery to the center, and back to the
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Figure 2.11: An example of spike train recordings. The data is collected during the ninth
recordings session on the monkey ’Cru’. Only one cell (the first channel) is shown on the
figure for all the anticipated experimental conditions, i.e. all repetitions for all tasks and
target positions. Each panel corresponds to one task. For each target position, marked on the
y axis, the four obtained spike trains are shown. The short red bars mark the beginning and
ending of experimental epochs. Data are aligned to the CT epoch, and marks on the figure
show CT, RT, MT and THT. The x axis shows the time elapsed since the beginning of the
CT. For the last task, VFIX, 48 spike trains are shown, 3 repetitions for each of 16 targets.
They are, also, aligned with respect to the beginning of the control time.

initial position. A majority of the cells (more than 60%) respond to stimulus motion, some
of them only to the IN motion, some to the OUT motion, and some to both of them. The
influence of visual signals is also studied in the IS epoch in Memory and No-Go task. The
response to the cue presentation in the three memory tasks is very similar, and always stronger
than the signals found in the NGO and VFIX tasks. In other words, the reaction to a visual
target is enhanced when a following movement is anticipated. The same cells are active in
epochs where visual target is not present, indicating that visual and eye/hand related signals
coexist in the cell activity.

Movement related signals: Planning and execution of movements is studied in the
three Memory tasks, in the absence of visual signals. A majority of 67% of cells is modulated
in all three tasks, and they are considered to be the ’combinatorial’ cells. Spike trains are
aligned to the Go-signal (i.e. the end of the Memory epoch), and the maximal activity is
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compared for the three tasks. Hand-dominant cells show a peak of activity that corresponds
to the preparation and execution of hand movement in the MRF task (eyes immobile, hand
moves to the extrafoveal target). Similarly, eye-dominant cells are very active during planning
and movement of eyes in the ME task, and much less during the corresponding epochs, related
to the hand movement, in the MRF task. Finally, the eye-hand cells are equally active in all
three tasks, and show a pronounced peak of activity during the RT and MT epochs in these
tasks. Eye and hand related signals coexist in the majority of 7a cells, but the intensity of
these signals varies for different cells.

Temporal arrangement of signals: Another interesting question, besides identification
of the signals that influence cell activity, is the variation of this activity as a function of time.
The study of temporal activation of cells shows that the majority of them (75%) fire after
the saccade in the ME task, while a smaller subset (25%) of cells reacts before or during the
eye movement. Also, the majority of cells is activated before the hand movement in MR and
MRF tasks (around 60% of cells), and the remaining cells are active during and after the
movement. Although this result suggests that the majority of 7a cells take part in movement
planning, following a visual instruction, the temporal integration of visual and motor signals
can be seen only by analyzing the population activity.

The first six tasks listed on the Figure 2.8 are considered in this study. In the Memory
tasks, two peaks of the activity are observed. First of them corresponds to the visual cue
presentation, indicating a strong cell response to visual signals. The second peak appears
around 450ms after the Go-signal, and is similar for all three Memory tasks in spite of obvious
differences between them (hand, eye and hand-eye related movements). The strongest signal
is observed for coordinated hand-eyes movement. The population activity in the No-Go task
results in only one peak related to the visual cue presentation, while the increase of activity
after the Go-signal is lacking. The same study for the R and RF tasks revealed the two peaks
of activity corresponding to those observed in the Memory tasks. Therefore, the presence of
visual cue and the planning and executing a motor activity initiates an increase of population
activity in the 7a cells. This supports the conclusion that 7a region plays an important role
in visually guided reaching movements, combining the input visual signals with the motor
signals related to both eye and hand movements.

Global tunning field (GTF) and directional modulation: Sensitivity to visual cue
direction is reported in several regions of the neocortex, as already mentioned in the Section
2.2.3. The same property is observed in the 7a region, and the preferred direction is examined
for various experimental conditions (tasks and epochs). The results show that 25% of the 7a
cells exhibit the global tunning field (GTF) property. In other words, the preferred direction
of a cell does not vary much when calculated for a large set of experimental epochs, instead,
it remains confined to a small part of the 2D space. Among the examined epochs are the
Memory epoch, RT and MT for all combinations of eyes and hand movements, as well as THT.
This implies coordinate representation under very different conditions - the memorized target
position (in Memory), coding of the eyes movement direction (in RTe, MTe), coding of the
hand movement direction (RTh, MTh), coding the fixed eyes and hand position (in THT).
As described in the Section 2.2.3, this involves transformation from eyes to hand-centered
coordinate frame, which is not evident from this data, due to the existance of GTF. Instead,
the observed GTF supports the hypothesis of the alocentric reference frame used for coding
directions in the PPC (introduced in [9, 7], i.e. the coordinate system not related to neither
eyes nor hand position, but to some other reference point. The question of computational
properties and coordinate transform in the PPC has been extensively studied and several
mechanisms are proposed in the literature [30, 60, 12, 4], [8, 7.
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The directional tunning is analyzed on the population level, also. The preferred direction
is calculated for all the recorded cells across different epochs. In the Memory epoch of the
MR, MRF and ME tasks, also in the No-Go task, the distribution of the preferred directions
is uniform in the entire 2D space. In the later stages of the reaching tasks, the preferred direc-
tions become localized and directed toward the contralateral part of the space. Additionally,
analyzing the subsets of directionally tunned cells in the succeeding epochs, we can notice
that only a small part of the cells remain directionally tuned in the succeeding pairs of the
epochs. All the listed arguments indicate that different populations of cells become recruited
in different experimental epochs.

2.6 Motivation

Basic notions related to the biological framework, necessary for further discussing this study;,
have been introduced in this chapter. It starts with the most general description of the mam-
malian neocortex and introduction of the related terminology, to continue with the posterior
parietal cortex, its anatomical organization and functional roles. Several mechanisms related
to the PPC are often discussed in the literature, directional tunning, coordinate transfor-
mations, intention, are also described. The particular set of experiments and the obtained
database that were the starting point for this study are presented in details. Finally, the
motivation behind this work will be elaborated, particularly the notion of motor intention.

The neurophysiological definition of motor intention, a high level cognitive plan for move-
ment, is presented in the Section 2.2.3. Starting from this notion we introduced a hypothesis
about its presence and absence in certain experimental epochs in the Section 2.3.3. We aim
to identify this information from the neural data recorded in the PPC under the described
experimental paradigm. The PPC recordings are a good starting point for the study of motor
intention, since this region represents a multimodal association area, the place where sensory
inputs of various modalities are integrated together to generate new high-level signals. In the
context of reaching movements toward visual or memorized locations, this region plays the
role of ’interface’ between sensory inputs and motor outputs. The information related to the
visual cue position, type of movement, directions of movement for eyes and hand, are received
from the related sensory regions, and the corresponding commands are transfered to the mo-
tor areas. Therefore, the PPC contains mechanisms for initialization and early planning of
movements. These are rather preliminary plans that specify information like target position
or type of movement, but do not provide details for execution of those movements, e.g specific
commands for muscle nerves. Instead, the PPC provides higher-level instructions, together
with the sensory acquired information, and the required command is further developed in the
motor and premotor cortex. This initial plan for a movement represents the motor intention,
as already defined in the Section 2.2.3.

Typically, the delayed reaching tasks were employed for identification of intention in the
cellular activity, as stated in the literature [4, 5]. The Figure 2.8 shows three variations of
this task, delayed reaching with eyes only, with hand only, or a coordinated reaching by eyes
and hand, i.e. the ME, MRF and MR tasks. The persistent activity observed in the memory
delay epoch (marked as 'Memory’ on the Figure 2.8) is identified as the motor intention.
The arguments behind this conclusion are already listed in the Section 2.2.3, as well as the
discussion of the differences between intention and other signals present in the same epoch,
e.g. attention or sensory memory.

In this work we propose an alternative method for assessing motor intention. Instead of
looking at the activity in the memory delay period only, we aim to test the presence of this
signal across all the experimental epochs. The assumption about the appearance of motor
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intention in certain epochs is already described, and will be tested through the analysis of the
recorded data. At this point, some additional arguments about the epoch-intention relation
should be presented.

It is difficult to relate the starting epoch, CT, to either presence or absence of motor
intention, since no other instruction but to wait is given at this point. The monkey is immobile
and fixates the center of the screen, but it is not sure whether it plans any future movements.
Similarly, the IS is left out due to the strong cell response to the presentation of visual cue, the
signal that dominates this epoch, and might "hide’ a potential movement plan. On contrary,
the literature presents the evidences of motor intention in the memory delay interval, the
argument that applies for the Memory epoch from the Figure 2.8. The reaction times, the
preparation and planning of eye and hand movements, are straightforwardly related to the
motor intention, but the argument applied for the movement times is not so evident. The MTe
epoch of the R and MR tasks is likely to reflect the planning of future hand movement, while
already executing the movement of the eyes. The motivation for including MTh epoch in the
same class somewhat extends the definition of motor intention. These intervals correspond to
the very end of the required movement, and might encode its realization rather than planning.
Still, the motor related signals in the PPC are abstract representation of movements, rather
than direct commands for their execution. The MTh and MTe epochs are likely to encode
such high-level signals, which we still refer to as motor intention. This argument is accepted in
most of this manuscript, but it will be discussed again in the context of data analysis results.

Additionally to the list of intention related epochs, it is important to select the opposite
examples, those where we cannot expect to find any motor planning, at least under ideal
conditions. In the first five tasks, R,RF, MR, MRF,ME, the last epoch in the protocol, THT,
satisfies this condition. At this point the movement is already completed and the monkey
waits for the permission to release the target. The corresponding neural activity can be related
to coding of eyes or hand position in space, but should not anticipate any movement plan.
The beginning 300 and the last 200 milliseconds of this epoch are removed in the analysis to
account for the eventual influence of the previous movement and expectation of the next one
after the end of the experiment. The NGO and VFIX tasks provide additional examples, since
in both of them the eyes and hand are explicitly instructed to remain immobile for the whole
duration of the experiment. The Memory and THTeh epochs from tho NGO are included in
the analysis, similarly to the equivalent epochs from the memory tasks. From the VFIX, the
three last epochs (Stat, IN, OUT) are taken into account, while CT is removed for the same
reason as in the other tasks.

Evidently, a large set of relatively different epochs is included in both considered classes,
the set of examples that encode motor intention, and the set of examples not related to
motor intention. This approach should ensure that the only feature common to all the data
in the same set is the evidence of motor intention in the cell activity. Also, it should be
the only signal that makes the difference between all the examples from one and all the
examples from the other set. In most of the epochs the neural activity is influenced by a
whole set of coexisting signals, and it is difficult to distinguish between them when a single
epoch is studied independently of the others. Instead, comparing the activity recorded in
several relevant epochs, the similarities and differences between them are highlighted. For
example, we can exclude the possibility to classify attention this way, since the attention
should be present in the NGO and VFIX as much as in the other five tasks. Also, the data
corresponding to all eight target positions are included in both classes, and coding of target
positions in the neural activity should not bias the result.

Throughout this work, multiple cell recordings obtained in the same experimental session
are analyzed simultaneously. The studies presented in the literature show that the intention
can be observed in the single cell activity as well, but only for the appropriately designed
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experimental conditions. Since, we aim to extract this information whenever it is present,
it is desirable to rely on the recordings from a population of cells. For example, directional
tuning of the parietal cells offers one argument for this choice. In the classical studies, the
motor intention is observed in the activity of the cells whose preferred direction corresponds
to the presented target direction. If we want to test for the motor intention in the entire set of
allowed directions (theoretically, for every possible direction), we should be sure that at least
some of the considered cells exhibit the maximum of activity for every presented direction. In
other words, the population should be sufficiently large, so that the tuning properties of its
cells allow good representation of the entire space. The considered data is only suboptimal in
that sense, since we analyze relatively small groups of cells simultaneously. The reasons for
this choice will be described in the next chapter. Also, the population size influence to the
analysis precision will be further studied. Additionally, an artificial model presented in a last
chapter aims to study the same question under more controllable conditions.

The main goal of this work is identification and analysis of motor intention, how precisely
we can distinguish it from the data, and how consistent is the result across the epochs. Since we
focus on decoding of motor related information, it is important to mention the similarities to
studies carried in the context of brain-computer interfaces (BCI). The main problem assessed
in these works is to extract motor related parameters from the cellular activity, that can
be used as inputs for a computer or a mechanical device. Such studies aim to provide a
sophisticated prosthesis for quadriplegic patients, and help them to improve the quality of
life. A typical BCI assesses intact neuronal activity that can encode motor parameters, and
uses it to control a computer cursor or a mechanical arm. Although studies on monkeys
provided some benchmarks, there is still many technological problems that have to be solved
in the future.

The focus on motor parameters in the BCI studies can be related to the work presented
here, but the information of interest is somewhat different. Most of the studies reported in the
literature aim to decode either the final goal position [77], or the entire hand trajectory [83],
but some additional information, for example a proper timing for the go signal (see [84]), are
also assessed. The approach in this study is somewhat different, since we do not aim to extract
a particular set of signals from a properly chosen time interval in an experiment, but rather to
analyze the properties of the neural activity during an entire natural reaching movement. The
results presented in the following chapters can be of use in constructing a BCI since they can
indicate how to use a set of neural recordings, which period of activity is the best for reading
motor parameters, how many cells is necessary for obtaining a sufficient precision, how long
a window should be used to analyze the recordings on-line, etc. The posterior parietal cortex
is usually not the targeted recording site for the BCIs. Motor and premotor cortex decode
motor parameters more directly, and require only quite simple, even linear [83|, methods to
estimate the information of interest. The parietal cortex is just a first step in generating a
reaching movement, and the motor parameters are less accessible here. Still, the directional
tunning is evident in the PPC cells, as well as many other motor parameters, and can be used
to build BCIs [84]. The literature offers some additional arguments in favor of this approach
[4]. Degradation of functional properties due to the paralysis is less apparent in the parietal
than in the motor cortex. This is especially evident in the parietal regions closely related
to the visual sensory cortex, due to the dependency on visual inputs that are not influenced
by paralysis. The high-level cognitive signals present in the PPC are sufficiently informative
for a BCI, the less explicit representation of these signals can be compensated by a more
sophisticated algorithm, still sufficiently fast to work in the real time. Finally, some recent
studies [16] propose recording from several different cortex regions, rather than from only one,
in order to improve system robustness. Recordings collected in the PPC provide one source
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of information for such BCIs. The overview of the research results related to this field, and
the comparison with the work presented here will be discussed in more details in the following
chapter.
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Chapter 3

Machine learning based approach to
motor intention identification from the
experimental data.

This chapter presents the machine-learning approach to study the question described in the
previous chapter. The problem statement and the relation to the brain-machine interface
studies are described at the beginning, followed by the detailed description of the algorithm.
The obtained results are presented in the next chapter.

3.1 Problem statement

In the previous chapter we introduced the notion of motor intention. The neurophysiologic
literature refers to it as a preliminary movement plan, the first step in realization of a move-
ment, and presents experimental evidences of neural activity related to intention [86, 87, 4].
Although the definition is very intuitive proving the presence of such a signal in the recordings
is not a trivial task. Examples of sophisticated experiments designed to rule out all other sig-
nals but the intention are described in the Section 2.2.3. The activity is analyzed during the
memory delay interval and the result demonstrates the presence of intention in the recordings.
In this study, we aim to identify the motor intention during the entire recordings, and under
various experimental conditions. In the Sections 2.3.3 and 2.6 the main hypotheses behind
this study were described, particularly the relation between the experimental epochs and the
motor intention.

In this section we will formulate this question as a classification problem. We are looking
for a classifier able to discriminate between the segments of spike trains encoding the motor
intention, from those that do not encode it. Clearly, this represents a binary classification
problem, since each segment belongs to either the motor intention class or to the no motor
intention class. As usual in this context, the considered database is preprocessed to obtain
a set of feature vectors, suitable for describing the property of interest. Here, these feature
vectors are the vectors of spike rates. One rate is computed for each cell from the considered
set, where the set contains only the simultaneously recorded cells. The dimension of a feature
vector corresponds to the number of cells in the set. A spike rate is the average activity of
a cell, averaged over one or several appropriately chosen epochs. A label indicating one of
the two classes, the motor intention or the no intention, is assigned to each of the feature
vectors. It is determined according to the corresponding epoch(s), used to calculated that
vector. From the classification point of view this problem is relatively simple, since it requires
only a standard binary classifier, and any of the traditional methods can be employed to solve
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the problem. The main difficulty is in the proper treatment of the experimental epochs. In
many of them several different processes are coexisting and it is difficult to identify those
which dominantly modulate neural activity. It is likely that some other signals (movement
direction, eye and hand position etc) have much more influence than the one we are looking
for.

It is important to point out two major assumptions behind this work. First, that motor
intention can be 'read’ from the average cell activity, i.e. from the spike rates. This assumption
is supported by the experimental evidences presented in the literature 4], observed under well
controlled conditions. For a more general situation, it is difficult to estimate the complexity
of the problem, how difficult is it to extract intention from the set of various signals that
play a role in performing a movement. We, also, assume that a sufficiently large population
offers enough information to decode the motor intention in a general situation. The role of
population coding is examined in the literature in the context of coding spatial positions and
movement directions. As already explained in the section 2.2.3, and the literature listed there,
the directionally sensitive cells are common in the parietal and motor cortex. The activity
of those cells is described with a bell shaped curve, relatively broad, with the maximum
corresponding to the preferred direction. Because a cell reacts to a broad interval of directions
around the preferred one, a population of cells is required for a precise coding of spatial
positions. Although the influence of the directional tunning of cells on the motor intention is
less evident, it is important to take it into account. A single cell, or a small set of cells with
relatively close preferred directions, is not very active for the movements far from its preferred
direction(s). That cell will likely exhibit small activity modulation for all the epochs, motor
intention and no intention related ones. The absence of activity in this case does not indicate
the absence of motor intention in the PPC, generally. In the literature, motor intention is
demonstrated only for the preferred directions of the considered cells [4]. If we want to consider
this information in a general context, i.e. for every possible target position and movement
direction, the population of cells is needed. Here, we included the recordings obtained for all
of the eight allowed targets, and it is important that for each target at least some of the cells
have their preferred directions close to it.

Additionally, the recording procedure does not allow cell selection a priori, so a set of
randomly chosen cells is monitored in each experimental session. Some of the collected cells
are not involved in planning and execution of movements, which effectively decreases the
set size. The study presented in [9] shows a relatively small percentage of cells, 20 — 35%,
modulated in two consecutive epochs, which indicates that different cell populations might be
involved in different steps of a movement planning. The study [10] discusses the evidences of
eyes or hand preference in the cell discharge. Therefore, low activity can indicate that the cell
is not involved in control of the considered effector, that it does not contribute to a certain
epoch, etc. In any case, we cannot easily relate these observations to the presence of motor
intention. Also, even if the intention disappears in certain cells for a considered epoch, we
are rather interested to determine whether it exist in general in the neural activity recorded
in that epoch, which brings us back to the population coding.

Throughout this work, we analyze together only the data obtained in the same recording
session. The employed measurement system contains seven electrodes, and spike trains for at
most two cells can be extracted from the same recording. Therefore, the number of the cells
in the set cannot be bigger than 14, and usually is between 5 and 10. The implications of the
set size on the obtained results will be further discussed in the following chapter.

Finally, we should present arguments for using the selected method of data analysis. Some
recent studies of neural activity recorded in the motor and premotor cortex, presented in the
brain-machine interface context, show that a linear regression can be successfully employed to
reconstruct movement direction or final goal from the neural recordings (see [83, 16, 50]). The
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attempt to solve the problem presented here using a linear classifier was unsuccessful. Several
arguments may explain this result. First, the parietal cortex encodes the motor parameters
less directly than the motor and premotor cortex, since it is more distant from the regions that
directly control the muscles. Also, the motor intention is a high-level cognitive process that
is not easily identified in the recordings, which might require a nonlinear method to obtain it.
Finally, due to the relatively small population size analyzed in this study, it is recommendable
to employ a non-linear method. We will use a standard support vector machine classifier in
this work, since it is proved to be a powerful tool for solving classification problems in general.
Some additional arguments for using this particular method are presented later in this chapter.
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Figure 3.1: The examples of spike rate vectors calculated from the data, each vector is cal-
culated for all the cells and one epoch. The four panels correspond to the four files, which
names are indicated above the panels. The involved cell indexes are marked on the y axis,
and the x correspond to the experimental epochs. The numbers above each panel indicate
which vector correspond to which epoch, and the legend gives the full names of the epochs.
The tasks are also marked below the panels. The spike rates are color coded, with the dark
blue corresponding to small values, and dark red to the high ones. The dashed white line
separating each panel is a border between the two classes.

In order to give an insight into the complexity of the analyzed problem, we show several
examples of spike rate matrices in figure 3.1. Due to the normalization procedure different
panels are not comparable, and from this figure we can obtain only the relative activity of
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cells from the same set with respect to each other. Each row on a panel corresponds to one
cell, and spike rates of the cell are represented by thin vertical colored lines (minimum is blue,
maximum is red). Each number (from 1 to 27) on the horizontal dimension refers to a given
epoch of different tasks illustrated at the bottom of each panel. The thick dashed white line
separates the two classes. It is clearly visible that the number of motor intention examples
always exceeds the number of no intention ones, which is taken into account when creating
the classifiers. The names of the files are given at the top of each figure.

The presented figures illustrate the motivation for using nonlinear classifiers in solving the
given task. In some examples we can notice the different activity related to the two classes, at
least for some cells, like for the cell 9 in the file ’Cru 33’. On contrary, in some other examples
it is quite difficult to find a simple relation between the presence/absence of motor intention
and the mean spike rate, like for the file ’Cru 29’. The same examples can be used to drive
some preliminary conclusions about a single cell influence on the classification performance.
Looking at the average firing of the cells 5 and 9 in ’Cru 33’ we can clearly distinguish between
No-Go and Visual Fixation examples on one side, and all the other examples on another side.
These two tasks represent more than a half of all the examples in the second class. Therefore,
we can expect that each of the two cells significantly influences the classification performance.
This does not hold for the other presented examples where a single cell is never sufficient for
distinguishing between the two classes. We can conclude that the information of interest is
encoded in a complex way, and that more than one cell of a population has to be taken into
account.

Figure 3.1 also enables some preliminary analysis of differences/similarities between the
different epochs and tasks. The examples calculated using the same epoch are often similar,
although some fluctuations are present. Much bigger differences are detectable between the
examples coming from different epochs within the same task, still we can make some general
observations. No-Go and Visual Fixation examples are often similar ("Cru 33’, ’Cru 29’),
but in some cases the examples from the two tasks can be visibly different among themselves
("Uma 7’). No intention examples computed from THT epochs in Reach, Reach-Fixation
and Memory tasks often look alike their motor intention counterparts. The motor intention
examples can look very differently for different epochs, for example Memory Reach-Fixation
(MRF) and Memory Reach (MR) for 'Uma 7’. Actually MRF examples are much more similar
to those coming from Visual Fixation, for this file.

The classification errors obtained for these examples will be given later, together with the
other results obtained from the data analysis methods presented in this chapter.

3.2 Overview of brain-computer interface studies

As described in the previous section, the problem analyzed throughout this work is related
to identification of motor parameters from cortical recordings, and study of algorithms that
can achieve such a goal. Similar questions are extensively studied within the framework of
brain-computer interface (BCI), and the most important conclusions are listed in this section.
Some main directions and problems will be described at the beginning, and latter, we will
focus on the BCI paradigm most closely related to this work, i.e. the methods that rely on
invasive neural recordings, particularly spike trains recordings.

In general, BCI stands for the systems that record cortex activity, apply a suitable algo-
rithm for its analysis, and generate control signals for manipulation of actuators, like computer
cursor, robot arm, or even the subject’s own arm. A successful system is able to ‘read” motor
commands directly from the brain and performs selected movements not involving the rest
of the body. Various types of movement parameters can be extracted from the recordings
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and used for control. Most often, these methods aim to reconstruct hand position in reaching
tasks, either the entire trajectory of a movement toward one of the possible targets [83], or
to identify the target position among the finite set of possible positions [77]. Also, movement
velocity is considered in some works [16], as well as motor intention [79].
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Figure 3.2: The schematic representation a BCI. The brain activity is measured and used as
an input into the BCI. Sensors and amplifiers constitute the recording system. The algorithm
translating recordings into control signals is divided into three parts - preprocessing to remove
artifacts, extracting of relevant features from the recordings, and translating those features
into the control signals (shown at the output). Additionally, in the closed-loop setting, a
feedback from the user is available (shown with the dashed line).

Figure adapted from: S.G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, and G.E.
Birch. A Comprehensive Survey of Brain Interface Technology Designs. Annals of Biomedical
Engineering. Vol. 35, No. 2. (February 2007).

The part of the BCI systems, used for acquisition and analysis of recordings is illustrated
on the figure 3.2. A set of sensors and amplifiers are employed for collecting certain types of
neuronal signals, the input to the system. Generally, the applied algorithm can have three
steps, the preprocessing for removing artifacts (if needed), the feature extracting from the
recordings, and the method to translate these features into a control signal. Systems working
in the closed-loop setting, profit from subjects’ feedback when generating the control signals
(dashed line on the figure). These control outputs can be used for operating a cursor, or a
robot arm, for example, while feedback can be visual information about cursor/robot arm
distance from the desired target.

This framework is suitable for studying functional properties of the cortical network in-
volved in control of motor actions. The same problem has been considered by experimentalists
for many years, and many questions are still open. The standard approach for assessing these
questions is described in the previous section. After collecting spike trains from single neu-
rons, the modulation of their instantaneous rates is considered in order to observe increasing
activity correlated to a certain behavior of interest. The experiments were carefully designed
to emphasize relevant signals. Several important conclusion, obtained through these studies,
are used as a starting point for most BCIs. The directional tuning in cells of motor, premotor,
parietal and some other regions, and the population coding algorithm [33, 34| are a starting
point for all BCIs based on spike train recordings. Although it is known which regions take
part in translating stimulus inputs into motor responses, the mechanisms of information trans-
fer between these regions are still not entirely explained [41, 7]. The BCIs based on recordings
in motor, premotor and parietal cortex has been described in the literature [39, 83, 91, 65, 84],
and recently, recording from multiple sites involved in generation of motor signals is proposed
[16]. This way, multiple cortical regions can be monitored simultaneously (at least a small
sample of cells in each of the regions) during the planning and execution of a reaching or
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grasping task. Additionally, the role of learning in adaptation to new experimental paradigm,
the closed-loop tests, where the subject receives feedback signals about the motion through
visual system, and other related mechanisms can be studied.

Several practical applications of BCIs are also proposed. One of them is BCI for cortical
prosthesis for motor impaired patients, paralyzed due to head or spinal cord injury, including
paraplegic, quadriplegic, or completely paralyzed patients, that cannot breath or make eye
movements. The results, presented so far, clearly show that a variety of neural signals can
serve as a basis for BClIs, but several technological issues have to be resolved before these
systems become suitable as prosthesis. Some important problems, identified so far, will be
discussed later in this section. Another possible use is for enhancing motor abilities in healthy
humans through non-invasive BCIs, based on electroencephalography (EEG) recordings. This
is the most intensively studied technology. We will describe only the basic facts related to
the EEG based BCls, together with some other types of recordings that can be employed in
this context.

In the this section, several important aspects of this technology are discussed. The BCI
based on electroencephalography (EEG), electrocorticography (ECoG) and some other meth-
ods for monitoring neural activity are described in the Section 3.2.1. The rest of the overview
is dedicated to the invasive BCI, the approach comparable to the work presented in this
study. Some basic properties of the recording methods, typical cell populations, their optimal
number and characteristics are discussed in the Section 3.2.2. Several algorithms proposed
for analysis of the spike train recordings are given in the section 3.2.3, along with the most
important results and conclusions.

3.2.1 Noninvasive BCI and other alternatives to spike trains

The performance and the applied feature extraction algorithms are dependent on the type of
recorded signals, the inputs to BCI. According to the type of sensors and signals all of the
methods can be divided into invasive and non-invasive ones. We will focus on the BCI using
similar data as the one considered throughout this work, i.e. the spike train recordings, and
the other proposed solutions will be only mentioned for completeness.

The most common approach is to use the electroencephalographic (EEG) recordings as
system inputs; according to the literature (see [58]), 83% of all the developed solutions belong
to this class. The brain electrical activity is collected at the top of the scull of a subject,
which provides very low spatial resolution, since each electrode records the average activity
of a large populations of neighboring cells. Unlike the microwire implants, described in the
previous chapter, it cannot infer the activity of a single cell. The units placed deeper in the
cortex contribute less than those near the scull. On the other hand, placement of electrodes
does not carry any risk, and they can cover the entire scull for simultaneous monitoring the
entire cortex activity. Additionally to small spatial resolution, the neural activity is low pass
filtered while passing through the scull. The entire frequency band of EEG signals consists
of the following subbands, § band for slow waves with up to 3Hz frequency, 6 (4-7THz), o (8-
12Hz), B (12-30Hz) present for active, alerted subjects, and v (26-100Hz) related to certain
cognitive and motor functions. A type of waves that belongs to the a band and appears in
the somatosensory cortex, the p waves, is also relevant in this context.

The phenomenon called event-related desynchronization (ERD) is proved to be a good
basis for BCI applications [3]. During an actual or imagined movement, both, 3 and p signals
become weaker, and the variation of the EEG amplitude in these frequency bands can be used
to control a computer cursor. Typically humans subjects needed between 10 and 24 minutes
to learn to adjust the vertical position of a cursor that is moving in the horizontal direction
at a constant rate. After additional training they become able to use § and p rhythms of
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both hemispheres to control the cursor in 2D. This enables performing simple operations, like
selecting an object on the screen. Another reported BCI is using P300 component of the
event related potential (ERP) to select a cell in a 6x6 matrix [27]. The ERP is a signal that
appears as a response to the stimulus of interest, and reflects the activity of many related
processes in the brain. A type of ERP that can be observed in EEG recordings is P300, the
response to an unpredictable stimulus (the oddball paradigm). For example, when a large
majority of items that a subject tracks on the screen belongs to one category and the rest to
another category, the P300 appears as a response to the occurrences of those rare items. The
name indicates that the ERP typically appears 300ms after the stimulus. In the experiments
described in [27], a subject is watching at the 6x6 matrix of letters and 1-word phrases on
the computer screen, and focuses on one cell in the matrix. Rows and columns of the matrix
are flashed randomly, and flashes of those that contain the chosen cell become relevant events
that invoke P300. Detection of these signals enables selecting the right cell.

Another EEG phenomenon used for BCI systems are slow cortical potentials, visual or
audio evoked potentials, and steady-state visual evoked potentials [58]. The EEG, as a non-
invasive technique, is more available (and less costly) in the study phase, and also more
acceptable for the patients and future applications. This particularly holds for the temporary
use (in rehabilitation, for example), or for augmentation of normal body functions. Unfortu-
nately, the sole nature of EEG recordings imposes limited utility of this type of signals. As
already mentioned, the method provides a low spatial resolution of brain activity, the high
pass components are removed as the signal passes through the tissue, and various artifacts
influence it, like electromyographic, electrooculographic and mechanical artifacts. The EEG
signals are proved to be useful in designing systems for computer-aided communication, or
limited motor control. Still, the current solutions might not be sufficient for a real-time control
of more complex prosthesis with several degrees of freedom [50].

One recent example of EEG based BCI is presented in [59], where the 6 human subjects
were trained to perform a combination of reach and selection tasks. First, they were required
to move a cursor from the center of the screen to one of the 4 peripheral targets. Then, the
target should have been selected in order to complete the task. The obtained precision was
59 — 88% of correct reaching, and 71 — 91% of correct selection. The training procedure was
executed in three steps, the control of vertical position only, the control of horizontal position
only, and the entire 2D movement.

In terms of the spatial resolution and the size of the monitored region, electrocorticography
(ECoG) offers a compromise between the microwires and the EEG recordings. A grid of
electrodes is placed intracranially at the surface of the cortex, where each electrode records
extracellular potentials of a small population of cells proximal to the electrode. A population
related to an electrode is smaller than in the case of EEG, and the signals are not subject
to distortion due to the passage through tissues and bones. Also, the higher frequencies are
present in the signal. Therefore, ECoG can better capture local behavior from a certain region,
although it still measures population activity and cannot assess single cells. The drawback
is that it cannot sample signals from the entire cortex, as EEG, and still requires surgical
implantation of sensors, although less invasive than in the case of microwires. The method is
less appropriate for study on human subjects than EEG, and it was tested only on the epileptic
patients during the period of preparation for the surgery. Feature extracting algorithms for
ECoG based BCI are similar as those used for EEG, but here, signals are stronger and less
prone to the influence of artifacts, and human subjects can learn to control them much faster
[3].

Some examples of ECoG controlled BCI are presented in [51] and [28]. In the first of these
studies, four epileptic patients are implanted with sensors in the left frontal-parietal-temporal
region and parts of the sensorimotor cortex, which resulted in 32 recorded signals. The 1D

39



and 2D (four targets) control of a cursor is demonstrated using these signals. In the second
report, four human subjects were trained to control the vertical position of a computer cursor
and reach for one of the targets placed along a vertical line. The number of targets was
2,3,4,6 and 8. The 2 target tests gave the precision of around 70%. The only reported test
with 8 targets was obtained for the generally most successful subject, and resulted in 84.6%
precision.

Another recording methods that can capture neural activity have also been tested in the
BCI studies, for example, functional magnetic resonance imaging (fMRI), functional near
infrared imaging (fNIR), and magnetoencephalography (MEG), [3]. The first two methods
measure the blood flow and oxygen consumption reflecting the increasing activity of neural
cells in certain brain region. Similarly to EEG, they are not invasive and are able to record the
entire brain activity simultaneously, but the oxygen flow is typically slower than the neural
signals transmission and these methods introduce an additional delay in BCI functioning. The
MEG measures magnetic field resulting from the electrical activity in the brain. Both MEG
and fMRI require highly controlled environments.

3.2.2 Recording spike trains for the BCI applications

Most of the methods from this class use the recording systems similar to the one described
in the section 2.3.1. The implanted microwires, are 20 to 50 micrometers in diameter, made
of stainless steel, glass, or tungsten, and insulated with teflon or polyimide. The distance
between neighboring electrodes is between 100 and 300 micrometers [81]. The recording
system is equipped with a micromanipulator for fine tuning of electrode positions, in order
to obtain clear and strong signals from single cells. The insertion and position tuning is very
slow (100 microns per minute, for example), in order to minimize tissue damage. As described
in the section 2.3.1, an on-line spike sorting algorithm for identification of single cells is a part
of the system, and can be used as a feedback for tuning the electrode position. The optimal
depth of implants is less than 2 millimeters below the surface of the cortex.

The number of implanted electrodes varies in different studies. The data set analyzed
throughout this work is collected using a T-electrode system. Arrays containing somewhat
bigger number of microwires, 16 to 64 of them, are also used in some studies [100, 16, 68, 17].
The electrodes can be placed in a one-dimensional array, as for the system described in the
section 2.3.1, or in a matrix, for example 64 electrodes arranged in 4 arrays of 16 electrodes
[81]. The microwires are attached to a small connector that is fixed to the head bones typically
using dental acrylic. The sufficient number of cells for a robust BCI operating in real-time
is still an open question, and studies of large populations are of great interest. Properties of
a high-density array of 384 channels, that can record up to 1536 units, are examined in [68].
Three arrays, each consisting of 128 microwires are connected and their acquisition systems
are synchronized in order to simultaneously record large populations. Several such systems
are implanted together in different cortex regions.

Alternative recording device are microprobes built on a silicon substrate. Two such systems
are developed at University of Michigan and University of Utah, and described in [81]. The
electrodes are cut into the surface of a silicon plate and shaped into needles with similar tip as
for microwires. Unlike them, these arrays are not fixed to the scull but have certain flexibility
and can 'float’ of the surface of the cortex. Such systems allow cortex activity recording using
a large density of electrodes per surface unit, but, it is not possible to tune the position of
each electrode separately. The Utah array consists of 10x10 electrodes, where 96 out of 100
are available for recording. The total surface of the platform is 4x4 millimeters, with the
distance between electrodes around 400 micrometers. Its properties are extensively examined
in [89].
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Invasive recordings inevitably lead to the tissue damage. Placement of the electrodes
causes the risk of inflammatory reactions, as well as the vascular damage which leads to
microhemorrages. Infections caused by problems with the acrylic cap, used to fixate the con-
nector and protect the electrodes and the tissue, are reported in [89]. The damage of neurons
activates glial reaction in order to absorb affected cells and repair the scar in the tissue. The
infiltration of these cells causes the change in the concentration of calcium and potassium
in the electrode environment, decreasing the neural activity that can be recorded. Eventu-
ally, a thick sheet of insulation is formed around the electrodes disabling further recordings.
These problems affect the quality of recorded signals in a relatively short period after the
implantation. The influence of the electrode tip shape and the material they are made of
is examined, the shape of the tip determines the tissue damage caused during implantation,
while certain types of materials can attract cells to stay in the proximity of the electrode
[81]. Some researchers [47] propose the use of Neurotrophic Electrodes that encourage the cell
growth inside the hollow electrode tip. This way, the tissue is held attached to the electrode,
which improves recording quality and stability.

Stability of recordings in a longer period is also a relevant issue. With the time, some of
the cells around electrodes die and the signals they can collect become much weaker. This
problem needs to be resolved for any reliable BCI application. While most of the studies use
data collected several weeks after the surgery, recording over longer intervals is also tested. In
[81], the successful recording during one year period is reported. In [68] the results obtained 30
days after the surgery and 18 months after it are compared. Thirty days after the surgery 54%
of all the implanted electrodes record a waveform that enables identification of at least one
cell. Eighteen months after the surgery that percentage was 35, but the statistical properties
of the recorded signals did not change. Microprobes allowed successful recording over the
period of 569 days, and during that time characteristics of the collected signals (the shape of
the waveforms, signal to noise ration, peak to pear potential etc.) did not vary significantly
[89]. The same authors suggest that this type of electrodes may provide greater reliability
during long time recordings than the microwires. Characteristics of the optimal recording
system have to be further tested.

The signals accessible using the devices described here are spike trains and local field
potentials, and spike trains can belong to single units (i.e. isolated cells), or multiunits
(several cells recorded together, without spike sorting procedure). The collected population
size is limited with the number of available electrodes and the number of recording sites on the
tip of electrode. In the database described in the previous chapter, the 7-electrodes system
recorded between 2 and 14 cells, most often 8 to 11 of them. The study [68] shows recording
of 56 cells from the 96 electrodes in one monkey, and 247 cells from 384 electrodes in the best
session with the second monkey. Also, it compares the efficiency of recording in several brain
regions, primary motor cortex (M1), premotor dorsal cortex (PMd), and somatosensory region
S1. The best efficiency was obtained in the motor cortex, but other regions also provided
reliable signals for cell identification. In [89] the average of 120 waveforms was obtained from
a 96 electrode microprobe, but the single units were not separated from multiunits.

Since this chapter presents a review of issues related to BCI technology, all of the reported
tests were carried in one of the cortex regions involved in movement planning or realization,
the primary motor cortex, premotor cortex, supplementary motor area, the parietal cortex,
even some somatosensory regions.

3.2.3 Algorithms, functions, and precision

This section gives an overview of most important methods applied for extraction of motor pa-
rameters from the recorded neural signals, and the obtained precision when these parameters
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are used for controlling an actuator. The following report summarizes the major contribution
of several groups working on BCI development, and the text is organized accordingly. The
results particularly interesting for the comparison with our work are described in a separate
section, in order to point out some major similarities and differences.

The group of Andrew B. Schwartz extensively studied the algorithms for estimation of
3D movement trajectories. Population vector coding and principal components analysis were
some of the methods applied to study motor parameters in various tasks. The first of them
is introduced in [34, 32| as a mechanism of movement direction coding in the motor cortex.
Assuming a sufficiently large population where the preferred directions of the involved cells
uniformly span the entire space, a linear combination of their instantaneous firing rates gives
a good estimation of an intended movement direction. A more detailed description of the
model is given in the section 2.2.3. Successful implementations of the population vector
coding algorithm in the 3D reaching tasks are reported in [93, 92, 82, 98|. In these studies
the subject (rhesus monkey) is required to reach for one of eight targets on the vertices of a
cube in the virtual environment. Relatively small populations of 30 to 40 cells are used most
of the time, and the performance of only 18 cells is reported in [91]. So small population size
is used to emphasize the importance of visual feedback in controlling hand movements. The
correct target position prediction increased from (27 + 9)% when the visual feedback is not
available, to (49 4+ 17)% when it does exist. Note that with 8 target positions, completely
random prediction would lead to around 12% accuracy.

Alternatively, the algorithm based on principal component analysis is tested in the same
environment [39]. The instantaneous firing rates of 30 cells are used to calculate movement
representations in the principal components space. The new data segments are matched to
these representations and the corresponding velocities were assigned and used to calculated
movement trajectories. The obtained precision in estimating a final hand position is 68.5%
in average, and in the best case 87.5%.

Reconstruction of a more complex trajectory using the population vector coding is shown
in [80]. A monkey is required to perform a constrained hand movement, i.e. draws a line
presented on the screen. The successful estimation of a spiral trajectory from the population
of 349 cells was demonstrated. The cells were recorded sequentially from the arm region in
the motor cortex. Similarly in [82] the representation of drawn trajectory in a 3D virtual
environment is studied. The neural activity is recorded from the motor and premotor ventral
regions (PMv), and the task involved an optical illusion in order to disassociate actual and
visualized movement representation. The activity of the motor cortex describes well actual
hand movements, while the PMv one corresponds to the planned/viewed trajectory. Both of
the regions are involved in movement planning, but only the PMv receives a feedback about
the completed action.

The information transfer rate during a task execution was studied in [92]. A method
to control efficiency-error rate trade off is proposed, based on the fact that the majority of
information is transmitted in the initial phase of a movement. If a certain error rate is allowed,
a small initial interval of neural activity may be sufficient for operating a BCI.

In addition to the cursor control tasks, several studies tested the control of a robot arm
[93, 92, 98]. The monkeys were involved in either standard center-out reaching tasks in 3D, or
in self-feeding tasks where the food position was randomly placed in the working space. The
obtained precision in a 30-40 minutes session in the self-feeding trials, reported in [93] was
around 70% for a robot arm of six degrees of freedom. A recent study [98] examines control
of a robot arm with a gripping device attached to it. In a series of trials, the monkey was
required to complete an entire movement, reach for the food, grab it, and deliver it to the
mouth. The two tested monkeys obtained success rates of 61% and 78% respectively.
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In the studies carried by the group of M. A. L. Nicolelis, linear regression models have
been successfully applied for estimating movement trajectories, together with some other
motor parameters, like velocity and gripping force. Large populations recorded in several
brain regions are proposed in order to ensure reliability and long-time stability of BCI.

A study on rats [20] demonstrates the successful estimation of movement timing using
principal components analysis in combination with artificial neural networks. The study
revealed the importance of using spatial (number of cells) and temporal (time evolution of
the activity) information when decoding motor parameters. The proposed method is further
tested and compared with simpler linear regression models in [100]. No significant difference
in the performance of these models was observed. Linear methods are further examined in
[16], where various motor parameters, hand position and velocity in 3D, gripping force, and
electromyographic activity (EMG), are estimated. The hand position was predicted with 85%
precision, hand velocity with 80%, gripping force 90%, and EMG 61%. The spike rates were
calculated using a window of 100 milliseconds, and 10 latest such values were combined in a
linear regression.

The optimal size of a recorded population is extensively discussed in these reports. Since
the standard recording systems do not allow a priori testing of cell properties, it is important
to collect large populations, preferably from several cortex regions, in order to obtain stable
and reliable systems. In [100] the activity from primary motor cortex (M1), premotor dorsal
cortex (PMd), and posterior parietal cortex (PPC) was recorded from both hemispheres. The
total number of implanted microwires was 128. A similar recording technique is proposed
in [16] and [17], where data was recorded from M1, PMd, the MIP region of PPC, and
supplementary motor area (SMA). Also in some monkeys the primary somatosensory cortex
(S1) was monitored. Description of the technique for implanting multiple microwires in various
cortex regions is discussed in details in [68]. The tests showed that all of the recorded regions
influence the results, but not equally for each parameter estimation. For example, SMA
predicted hand position and velocity well, but the gripping force much worse. The PPC
population predicted gripping force and hand velocity well, but it was not so reliable in
predicting the hand position.

The optimal population size was assessed using the neuron dropping technique, which tests
how the population size influences the algorithm precision. The test was carried separately for
each cortex region. In [100] the total number of cells, sufficient for 90% precision, is estimated
to 400 to 1200 cells, depending on the considered region. In general, the contralateral PMd
required the smallest populations, while ipsilateral M1 and PMd needed the biggest ones.
Using particularly large populations increases the computational complexity of calculations.
The authors, also, speculate that it might bring a risk of overfitting, since every new input
adds a group of new parameters to the algorithm. The methods for prior cells selection is
reported in [76]. In general, large populations are good in absence of prior cell selection, but
selection of an optimal subset before classification improves characteristics of the method.
Still, every such method can be applied only after the recording is done.

Adaptation of the neural activity to the performed task is reported in [16]. Cell tuning
is modified and the estimation precision increases. Usually, all the model parameters were
re-trained at the beginning of each daily session. In order to ensure good generalization of
the developed system, it is important to test it using somewhat modified tasks, as proposed
in [100].

The recent activities of this group are directed toward real-time operation of robots using
the activity recorded from the monkey cortex, while performing tasks similar to those required
from the robot [45].

The most interesting results, in the context of our work, are reported by the group of R.
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A. Andersen. They studied the BCI development based on the activity of parietal cortex.
The neural activity is recorded mainly from the parietal reach region (PRR) that consists of
the MIP area and a part of the area 5. Its activity reflects the planning of hand movements.
Several arguments for the PPC based neural prosthesis are listed in [84] and [65]. This region
receives direct inputs from the sensory regions, including the visual ones, and it is more distant
from the motor ones. In paralyzed patients, the brain regions providing a direct control of
limb movements may suffer from damage, the process that affects motor and premotor cortex
much more than the PPC. The PRR takes part in a movement planning, and its stable,
persistent representation remains coded in the neural activity, no matter is it executed or not.
It can be advantageous in developing prostheses for the paralyzed patients, since they should
operate on the activity related to the imagined movements.

The target position in a 2D reaching task is decoded using the maximum likelihood esti-
mation (MLE). Prior to the target decoding, the state is estimated. The state is used in the
same context as epochs in our study. In other words, every movement is divided into several
states/epochs, and some of them can be recognized from the corresponding neural activity.
This approach provides a method for the automatic release of start and stop commands for a
BCI, in other words, when the effector should execute a movement, and when it should wait.
In many other studies this question is not assessed and the activation/deactivation of a BCI
has to be done manually. In the MLE algorithm, the uniform prior probability is imposed by
the task itself, and the adopted posterior distribution is Poissonian. Its parameter is estimated
from the training data, for all the possible target positions and states. The spike rates are
calculated using a 250 milliseconds window. A finite state automaton is added to the system,
and uses the inputs from the classifier in order to provide a smooth transitions between the
states. Relatively small populations of well tuned cells are used in these studies, 8 in [65], or
23 and 41 in the two subjects in [84]. The classification precision demonstrated in the first
of these reports is 64.4% and 63.6% when 4 and 6 targets are available, respectively. In the
second one, the precision of nearly 90% is obtained using 40 neurons and 8 targets. These
results might indicate that the additional state estimation procedure stabilizes the prediction
of hand movement, so even small populations are sufficient for obtaining high precision.

The question of state estimation will be further discussed in a separate section, and the
comparison with motor intention decoding, presented in this work, will be emphasized.

The idea of estimating states together with target positions is further elaborated in the
studies of the K. V. Shenoy’s group. In [2], a finite state automaton is implemented to enable
smooth transition between the three states, the initial time, planning of a movement, and
the movement realization. This system defines the timing of motor commands sent to the
effector, as well as the interval used for target decoding.

The activity of M1 and PMd cortex is sampled using a 96-electrodes system, that recorded
between 100 and 200 units (single- and multi-units). The same maximum likelihood method
is applied for identification of states and targets. The optimal number of units used to operate
a BCI is tested using the same neuron dropping technique as in [100], and [16].

Additionally, the influence of the neural activity integration time is tested. In the previ-
ously listed studies, the time interval used to calculate spike rates, i.e. the integration time of
neural activity, is fixed in advance, according to the prior knowledge about the dynamics of
neural processes. In [92] the proposed optimal integration time for the signals from the M1
region is 30 milliseconds, since the information transfer rate starts to saturate 30 milliseconds
after the go signal. The linear models reported in [16], and [100] use the bins of 100 millisec-
onds to calculate spiking rates, and the 10 last bins are combined to predict the future target
position. Similarly, in [83], the most recent second of activity was divided into 50 milliseconds
bins for calculating a linear regression. The integration time of 250 and 500 milliseconds is
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employed in [84], while [65] examines intervals even as big as 900 milliseconds, in order to ob-
tain precise classification with only 8 cells. In [77], the influence of the integration time to the
algorithm accuracy, and to the optimal information transfer rate capacity (ITRC) is assessed.
For the first parameter, the relation is straightforward - the longer integration time provides
better accuracy. The second measure, ITRC, is a more reliable indicator, since it examines
the trade off between the precision and the time required for transmission of certain informa-
tion. For a small integration time, the error rate is high but many trials can be attempted
in a short time. As it increases, the error rate decreases, together with the number of trials
in the time unit. The values between 10 and 600 milliseconds are examined for the number
of units between 20 and 150. For a small number of units, the optimal integration time is
around 120 milliseconds, and it rapidly decreases for the increasing number of units. Alterna-
tive approach to calculation of a fixed optimal integration time is presented in [2|. Here, the
finite state automaton is employed for defining the optimal segment of neural activity to be
used for the estimation of movement directions. The variable length of the integration time
can compensate the nonstationarity of the recorded signals. Also, the trade off between the
error rate and the latency can be calculated on-line for each trial. The fixed window of 200
milliseconds provides 82% accuracy, and every strategy with the adaptable length performs
better in terms of the obtained accuracy, but the longer time to generate a motor command
is required.

The group of J. P. Donoghue examined estimation of continuous 2D trajectories from small
populations of units recorded from the M1. The number of recorded units varied from less than
10 to around 40. The successful applications of linear methods, like linear regression [83], or
Kalman filter [11], are reported. In [83], a linear model controlled by neural activity accounts
for more than 60% of variability in the actual continuous hand movement. A detailed study
of neural activity during smooth pursuing-tracking tasks was presented in [71]. This type
of movements requires constant change of movement parameters which results in the highly
nonstationary neural signals. The initial position was chosen randomly on the 2D screen, and
the required movement followed a pseudo-random trajectory. The dynamical tuning of cell
activity to account for changes in position and velocity was assessed, showing that most of the
cells encode both of the signals, but these two information items are differently weighted in
different cells. The whole population contains a large spectra of these weightings. Measuring
the information content in these cells showed that that both position and velocity are only
weakly encoded, but the successful decoding of a continuous hand trajectory using linear
models was demonstrated.

Recent reports from the same group focus on the tests on human subjects [38, 95]. Two
paralyzed patients were involved in these tests, and the activity of small populations of M1
units (3-57 of them) was collected. Since the patients were not able to move their hands,
the training sessions were somewhat modified with respect to the usual. The subjects were
required to 'imagine’ a hand movement following the cursor moving on the screen, and the
parameters of a linear model were updated in the succeeding blocks of trials. The quality of
BCI control was also assessed in the typical center-out tasks, and the 73 — 95% precision was
reported in [38]. The question of neural tuning to position and velocity, and its variations
during a continuous tracking task was assessed in [95].

Another study on a human subject is presented in [47]. A single neurotropic electrode
was implanted in the human cortex and the multiunit activity was recorded. These electrodes
encourage cell growth close to the electrode tip, which can provide recording of stable signals
over a longer time course. The subjects were trained to operate a computer cursor and select
icons, or letters from a virtual keyboard, which were used as an input to a speech synthetizer.
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In the tasks where the subject was instructed to spell a given word, the obtained spelling
rate was 3 letters per minute. Typically, in one session, some initial trials were wrong, but
the accuracy increased over time, to drop again close to the end of a session as a result of
tiredness. A similar BCI, also for human subjects, is developed in [46]. Here, the cursor
position was controlled using LFP signals, instead of spike trains.

In the study reported in [73] the hand EMG activity was predicted instead of its kine-
matics. These types of signals are stochastic and noisy, and more difficult to predict than the
movement parameters. Still, the accuracy of 75 — 80% is reported using linear models. The
activity of 66 units was recorded, but only 35-40 well modulated units were used. The monkey
was trained to reach for one of four buttons placed in a vertical plane. The EMG activity
was predicted using a linear filter and 500 milliseconds of neural activity, the interval selected
testing the values between 100 and 1000 milliseconds. Although the overall precision was
good, the models demonstrated two typical errors, they failed to predict extreme peaks in the
EMG activity, and they tended to predict activity in the intervals between the recordings due
to the random neural firing in M1. Some additional issues, like stability and generalization of
prediction, are also discussed in this report.

Finally, it is important to mention the study presented in [69], since it uses the same type
of neural decoding algorithm as the one adopted in our work, i.e. the support vector machine
classifier (SVM). The experiments are carried in rats, and the animal was trained to press
right or left paddle in order to illuminate a LED in the center of the panel. The visual and
auditory feedback was given every time the paddle was pressed, and the correctly completed
tasks were rewarded. The activity of 10 neurons from the motor cortical area was collected,
and their spike trains are divided into a fixed number of bins. The dimension of the obtained
spike rates vector, the input into the SVM, was equal to the number of cells multiplied with
the number of bins. The obtained accuracy in the closed-loop tests varied between 71.7% and
85.81%.

3.2.4 State estimation for the autonomous BCI

The reports on state estimation from the parietal cortex activity, presented in [84, 79| and
[65], and the premotor cortex activity, in [2], are additionally discussed in this section, and
compared to our motor intention identification task. As previously described, these studies
aim to decode the states of a typical reaching task, together with identification of the intended
target position. This approach automatically generates 'go’ and ’stop’ signals for the BCI,
and also improves the choice of optimal interval of activity for the target identification task.

Tasks: The experimental setup in these studies is very similar to the one described in the
Section 2.3.3. The monkey was trained to reach for a peripheral target in the 2D workspace. In
the initial epoch, the Baseline state, no activity is allowed until a new instruction signal arrives.
Approximately 500 milliseconds later, the target position is presented, and its disappearance
indicates the start of the Plan state. The last relevant interval, Reach, is the period between
presentation of the go signal on the screen, and the start of the hand movement. During the
entire trial, the monkey was required to fixate the center of the screen with its eyes. This
experiment corresponds to the Memory Reach Fixation (MRF) task, described in the Section
2.3.3. The Baseline is equivalent to the Control Time (CT), Plan state to the Memory delay
interval (Memory), and Reach to the Reaction Time for hand (RTh).

Duration of these epochs may vary significantly from the values in our study, given on
(see 2.9). In [84], the Baseline is around 500 milliseconds long, while CT lasts between 1000
and 1500 milliseconds. The target is always presented in a fixed interval of 300 milliseconds.
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The Plan state is around 800 milliseconds long, while our Memory interval lasts between
1.5 and 2 seconds. In [65], the epoch durations are similar to the ones in our tests (Plan
state is between 1.2 and 1.8 seconds long). The 'Reach Trial’ described there corresponds to
our MRF task. In the additional task, the Brain Control, a cursor controlled by the neural
activity reached for the target instead of hand. This kind of tasks, very important in the BCI
context, were not anticipated in our study, since its primary goal was analysis of the signals
in the parietal cortex and assessing the mechanisms of hand-eyes coordination, rather than
building an operating BCI. From that point of view, our study assesses the information coding
of motor parameters in the cortical signals, without aiming to develop an operating BCI. The
study in [79], included the delayed arm and delayed saccade task, i.e. the equivalent of our
MRF and ME tasks.

Finally, the available number of trials for each of the tasks, should be compared. In
[65], each daily session consisted of 250 to 1100 trials. The first segment, used to train the
algorithm, included 30 trials in each of the 8 directions. In [84], 8-16 trials per task per
direction was performed (see [86]). In our database each task for each target position is
repeated 4 times, except the VFIX task which has 3 repetitions. The smaller number of
repetitions is compensated by analyzing different task epochs separately, so that each trial
gives more than one vector of spike rates.

Recording sites: Three among the listed studies, [84, 79] and [65], record from the
posterior parietal cortex, precisely, from the region named parietal reach region and include
the MIP and a part of the area 5. As already described in the Section 2.3.2, our database
was collected from the electrodes implanted in the area 7 of the PPCs. Activity of the cells in
the PRR is dominantly modulated by hand movements and hand positions. On contrary, the
area 7 activity is believed to be dominantly modulated by saccadic movement, although the
study in [10] revealed the presence of hand dominant and combinatorial cells, together with
the eye dominant ones.

Number of units and the integration time: The number of monitored cells differs
throughout these studies, but, in general, relatively small populations are used in all of them.
The [65] examines movement decoding from a very small set of 8 cells, but requires 900
milliseconds of the neural activity in the memory delay epoch for the target prediction with
around 64% precision. In [84]| the populations of 23 and 41 neurons is examined, and the
time used to calculate spike rates is 500 milliseconds (and 250 milliseconds in some cases).
The precision obtained using the ’time transition’ rule, should be emphasized here, since it
can be compared to our results. The percent of correct identifications of Plan activity, using
the 40 cells almost reaches 100% precision, but it decreases with the number of cells. For
10 of them, the precision is around 85%, and for 20 around 90%. In [2]|, between 100 and
200 units (mainly multi-units) were recorded from the M1 and PMd cortex. The algorithms
proposed here require a certain fixed number of Plan state classifications from the data, before
releasing a 'go’ signal. Precision of the Plan state estimation is not given directly, but through
the latency estimation, i.e. the time needed to obtain the required number of correct Plan
classifications and generates the ’go’ signal. If this number is set to 23, the average latency
is 350 milliseconds. Finally, the study in [79] examines the movement intention identification
from the spike trains and local field potentials simultaneously. The precision of 90% can be
obtained using 20 channels of LFP activity, but the spike trains from 50 units are required
for the same result. Here, it should be noted that the signals combined in the same decoding
session were not, necessarily, recorded simultaneously.

Our database, described in the Section 2.4, is also recorded during many sessions, but
only spike trains obtained simultaneously were analyzed together. This limits the number of
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available cells to 2-14.

Decoding algorithms: The data analysis method differs between our study and the
literature. All of the listed papers use the maximal likelihood estimation, with the uniform
prior probability, and the Poissonian posterior. The parameters of the posterior distribution
are calculated from the data. One model was required for each target and state, and the new
data was compared with each of these models. Our approach applies the standard support
vector machines (SVM) based classifier. This algorithm does not depend on the number of
states or targets, and can be generalized easier, for example, if the target can appear in any
random position in the working space. The analyzed data is assumed to be stationary in
both, our work and the studies presented in the literature. For developing the MLE, all spike
trains are assumed to have Poissonian distribution. Our approach does not require hypothesis
related to the data distribution, but estimates instantaneous firing rates using finite length
intervals, even moderate size intervals. We assume that an instantaneous spike rate does
not vary significantly within one interval. Therefore, the stationarity is assumed although
not explicitly verified, but it is acceptable when using sufficiently short intervals. All of the
parameters are calculated with respect to the experimental epochs, and we assume that the
neural activity does not vary much within one epoch. If the variability was expected at the
beginning or at the end of an epoch, the corresponding part of the recordings was removed
before calculating the rates. The stationarity between different trials of the same experiment
is also assumed without verifying it.

Additionally to the arguments already listed, the main difference between our study and
the references is in the sole definition of motor intention. Instead of classifying the experimen-
tal epochs using their distinct neural activity, we aim to find the similarities between certain
selected epochs. In other words, to identify a signal interpreted as motor intention in all of
the epochs where it should exist. In order to be sure that the classified information really
represents motor intention, variations of the reaching task and several epoch in each of them
are included. According to the listed literature, the experimental epochs are sufficiently dif-
ferent among themselves, and can be reliably distinguished using a standard machine learning
method as MLE. This idea can be anticipated from the Figure 3.1, where some of the epochs
are visibly different from the others. Still, identification of the information of interest, present
in all of them, and having in mind the demonstrated variability among them, is not an easy
task.

In the context of the BCI design, recognizing single states is clearly sufficient for building
a fully automatic system. The motor intention signal can represent an alternative to the
state estimation. Although we use the entire length of recordings to train the classifier, it is
not necessary in the test phase. There is no obstacles to test only the intervals before the
actual movement, when generating go signals and estimating target positions. Theoretically,
the motor intention can be more useful for estimating the control signals of a continuously
moving BCI. This type of analysis can be used to identify the beginning and ending of a motor
activity, even for the movement epochs differently defined. Also, it does not impose limitations
related to target positions in the workspace. Unfortunately, motor intention extraction from
the data collected during continuous movements cannot be tested within the framework of
this project.

The report in [79] proposes using the LFP activity instead of spike trains for movement
intention identification. The presented results indicate that spike trains are more suitable for
target decoding, but the behavioral states appear to be better represented in the LFP activity.
The comparison between different signals representing neural activity was, also, not possible
in our study, since the only available database contains exclusively the single-unit activity.
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3.3 Data Analysis Methods

In the introductory section of this chapter we elaborated the motivation behind this study,
along with observations from the mere visual inspection of the data. Its goal was to develop
some intuition about the problem of interest, and indicate the specific issues and difficulties
that could emerge while investigating this problem. An illustration of a typical set of spike
rate vectors, calculated from the data, is given in the Figure 3.1. In the classification context,
this is a set of feature vectors representing the data, used as inputs into the classifier. Here,
we will describe the methods for computing these feature vectors, the classification algorithm,
and the details of its tuning, necessary for solving this particular task. Two variations of the
analysis are tested, and the results will be described in the next chapter.

The section is organized as follows, first, the methods for preprocessing the database of
spike trains is described in the Section 3.3.1. A general description of the support vector ma-
chines, included for completeness, is given in the Section 3.4. Finally, details of the algorithm
implementation and tuning is given in the Section 3.4.2.

3.3.1 Two Approaches to Feature Extraction From Spike Trains

In the neurophysiologic literature [4], motor intention is identified by examining the mod-
ulation of neural firing at a time of movement planning. Motor intention is observed as a
persistent increase of neural activity in the memory delay epoch, i.e. in the period between
the presentation of the target to be reached and the beginning of the movement. The algo-
rithms for state identification, described in [84, 65, 2|, also analyze cell activity on the level
of spike rates.

We adopted the same hypothesis, namely, the presence of motor intention can be de-
scribed by spike rates, the mean frequency of spiking calculated within the selected interval
of time. Therefore, in the first algorithm step, a set of spike trains is converted into several
multi-dimensional vectors of rates, where each ’dimension’ corresponds to one monitored cell.
Only the data recorded in a single experimental session is combined in the same decoding
task, which limits the population size to up to 14 cells, as well as the maximal dimension of
rate vectors. Some reports [80, 78] adopted the alternative approach combining the activity
recorded during different sessions to obtain populations of several hundreds of cells. Evi-
dently, a real-time operating BCI cannot use data collected sequentially, but these studies are
useful for preliminary tests of the algorithms. In the studies where neural decoding was tested
on-line, up to 200 units were employed, although lot of effort is directed toward developing
systems that can record more than that. For example, a device that can (theoretically) record
more than 1500 cells simultaneously was examined in [68]. In this work we decided not to
combine data from different sessions. It is not entirely clear which processes influence the
activity of the monitored cells, and some of them might vary significantly on a day-to-day
basis. Motor intention, as a cognitive signal, is not straightforward to estimate and may be
additionally tainted by these effects. In favor of this assumption, several reports emphasize
the importance of tuning algorithm parameters at the beginning of every daily session, in
order to adapt to unpredictable changes in neural activity [16, 17]. We believed that the data
recorded simultaneously can show the signal of interest more clearly, in spite of being limited
by a small population size.

Additionally, combining different sessions will disable testing some parameters of interest,
for example the optimal window for calculating spike rates. The preformed tasks do not have
a fixed duration (except for the period of visual cue presentation), and the length of certain
epochs vary in different sessions. Therefore, using the fixed window size disables tracking
the epochs that correspond to the intervals of neural activity delimited by the window. An
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estimation of the algorithm performance for bigger populations is assessed through an artificial
model, described in one of the following chapters.
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Figure 3.3: The schematic representation of the data analysis procedures. Top - an example
of an experiment is presented. The collected spike trains and shown below, together with
the two methods for calculating spike rates. The obtained rate vectors are assigned to the
two classes, in accordance to the epochs. Some of the vectors from the right panel cannot
be labeled since the presence/absence of motor intention is not clear in the corresponding
epochs. Bottom - a classifier selecting between the motor intention and the no intention is
trained and tested using this data.

A schematic representation of the steps in data analysis is given on the Figure 3.3. Both
methods are illustrated for the Reach Fixation task, but the same procedure is repeated for
each of the tasks from the Figure 2.8. A collection of N spike trains recorded during this
task is also shown, where N can be between 2 and 14. Spike rates are calculated out of this
data using windows whose size and position are defined by the two methods from the figure.
They will we described in details in what follows. For each window position, a vector of spike
rates is calculated by evaluating the average spiking frequency withing the window for each
of the N cells in the set. As usual in the machine learning problems, labels are assigned to
the obtained feature vectors. They are divided into the motor intention and the no motor
intention class, according to the position of the window with respect to the experimental
epochs. Presence or absence of motor intention in certain epochs is already discussed in the
Section 2.3.3, and illustrated on the Figure 3.3. As before, the shaded epochs should exhibit
motor intention, the hatched ones its absence, and the white ones are ambiguous and we can
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not determine which class they belong to. The same ’code’ is used for marking the classes of
rate vectors. If the window covers only the segment of spike trains recorded during the motor
intention epochs, the resulting vector is assigned to 'motor intention’ class. The same holds
for the opposite class. The calculated feature vector is labeled as 'no motor intention’ if the
corresponding window overlaps only the no intention epochs. In case when a window mixes
two epochs of the opposite types, or uses part of the ambiguous ones, the resulting feature
vector cannot be labeled. All the labeled vectors are divided into the training and the test
set, and used to develop an SVM classifier and examine its performance. The vectors that
cannot be assigned to any of the classes are used only in the test phase. Once trained, the
system is able to recognize which rate vectors encode motor intention and which not. It is
assessing a question how reliably the motor intention can be estimated from the data, and
which parameters influence the performance in solving such a task.

Epochs classification

In the first method (left panel on the Figure 3.3), we aim to classify the experimental epochs
according to their relation to motor intention. Knowing the key processes related to each of
the epochs, we can straightforwardly assign presence or absence of motor intention to some
of them, as shown on the Figure 2.8. Naturally, the behavior of the monkeys is not so well
determined, especially in certain experimental phases; therefore some ambiguity about the
classifier output is always present. The motive behind this approach was to test the aptitude
of a sophisticated algorithm to identify this information in each epoch. We assume that
the average activity of a small set of cells is sufficiently informative for such a task. This
analysis allows us to test the initial assumptions regarding the considered problem, and also
to examine the limitations imposed by the experimental design, to select the appropriate
analysis algorithm and its optimal parameters.

Spike rate vectors: Before calculating spike rates, the notation for epoch marks and
spike trains have to be introduced. The number of epochs depends on the task, and even for
the same task their duration changes in different trials. There are 6 epochs for the R, MRF
and ME tasks, 4 for the RF, NGO and VFIX, and 8 for MR task. The number of trials,
repetitions of the same task for the same target, is 4 for all the tasks except VFIX where
it is 3. The available databases are illustrated on the Figure 2.10. The rightmost block on
the figure shows a set of recordings, obtained for the same task, target and trial. Denote the
epoch marks from one such set as {ep;}i=1,. N., Where the number of epochs N, depends
on the considered task and, as already stated, N, € {4,6,8}, and the spike rates for the N
recorded cells as {ST}; =1, .n. The spike rate for the epoch i and the cell ¢ is calculated
using the following expression

#{j | epi < ST} < epi+1}
€Pi+1 — €P; '

SRS = (3.1)

The total number of spikes within the considered epoch is divided with the epoch length

to obtain the average activity in that epoch. All the rates calculated for the same epoch i are
represented by the rate vector

RV, = [SR! SR? ... SRN]T.
We will denote the total collection of such vectors as
RV(ts, tr,tg) = {RVi}ti=1,..n,
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emphasizing that it is obtained for one trial (¢r) of one task (¢s), for the selected target
position (tg). Then, the whole database represented as the set of rate vectors is given with

DRV - {RV(tS, t/r" tg)}ts:l.ﬁ7 tr=1..4, tg=1..8 U {RV(tS, t/r" tg)}ts:7, tr=3, tg=1..16-

Assigning labels to these vectors is straightforward, the label corresponds to the epoch
classification given on the Figure 2.8.

Training and test set: Taking into account all trials for all the experiments we obtain
544 data examples for the motor intention class, and 368 examples for the no motor intention
one. It is important to point out the significant difference in the number of examples in the
two classes, which results in an unbalanced classification problem. Straightforward implemen-
tation of the algorithm often resulted in a very biased classifier, that tended to make much
more errors on the smaller class than on the bigger one.

Standard procedures for avoiding this problem, appeared to be not enough successful for
our data set. Solution is found in systematical removing some motor intention examples in
a four step procedure. In the i-th step, all the motor intention examples corresponding to
the i-th trial are removed, and the classification is performed using the remaining data. This
reduces the number of motor intention examples to 388, which is comparable to 368 of the
opposite class. The procedure is repeated four times, once for each experimental trial.

The set of 756 rate vectors is used in the training and testing phase. A randomly chosen
subset of the training data is used for validation. The training and validation data are utilized
for selecting the optimal parameters of the classifier, while the test set serves to evaluate its
performance on a 'new’ data set, not used during training.

Normalization: All the rate vectors are normalized before the classification. For each
cell, the spike rates are normalized to zero mean and unit standard deviation, which removes
any persistent activity existing in all the experiments, and emphasizes the difference in rate
modulation evoked in different epochs. Also, it is a recommendable step in the preprocessing
for improving the classifier performance. As mentioned in [63], in order to ensure a fair
classifier testing, the training and test sets are not normalized together. The joint training
and validation data are normalized first, and the obtained parameters, the mean and the
variance, are used to normalize the test data.

Classification: Varying the learning algorithms and their parameters on one side, and
testing the role of some of the epochs on the other side, we selected the optimal setup for
further studies. Then, the outcome was employed to test the precision for identifying the
motor intention from epochs. The entire procedure is divided into four steps, as already
described. In each step, motor intention related spike rates from one trial are removed, and
the rest is used for training and testing. The 10-fold cross-validation is employed in each
of the four steps. In other words, the data set is divided into ten subsets. Each of them is
used as a test set once, while the remaining 90% of the data served for the training phase.
Therefore, ten classification error estimations are obtained in each algorithm step, which gives
40 of them for all of the steps.

Results: The forty classification error estimations are used to calculate the mean error
and confidence intervals according to the formulas proposed in [56] and [57]. The mean,
denote it as pu, is calculated as the ratio between the total number of errors obtained in 4x10
cross-validations, and the total number of rate vectors, Ngy in the test set, i.e. 4 times
10% of the total number of rate vectors in the database. Three equations for evaluating 95%
confidence intervals are proposed in these papers, developed under assumption of binomial or
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its approximate Gaussian distribution of errors. The equations from [57] are repeated here.
The textbook limits (from [56] and [57]) evaluated using the Gaussian distribution assumption
are

LY L Ct DN (3.2)

pt | o
2- Nry Nrv

where z = @1 (1 — %) for the (1— «) confidence interval. An alternative expression using
the normal approximation developed in that report gives

k1 p(l — p)
+zoy| ——= .
<M + 2NRV> z Nov + ko (3.3)

2
where k1 = {202 and Iy = (W) - [1 —4p(1 - p) (2 + N;V)] and 2 is defined
as before. Finally, a more precise formula based on the assumption of binary distribution of

errors is given as,

—_ 3.4
Ngry + 3 Ngry + 2.5 ( )

<H+(1—2/L)'7Z\/ﬁ)iz- i —p)
In our case, all three expressions gave very similar confidence intervals and mean values,
showing that the textbook formula can be safely used here.
In addition to evaluating the mean classification error, the influence of each experimental
epochs is assessed. The error-per-epoch is evaluated for each of the files, and presented
alongside the mean errors for the entire files. This way it is possible to compare the epochs

with respect to their contribution to the total error.

Single cell influence

The importance of selecting the optimal subset from the set of randomly picked recorded
cells is already emphasized in several reports. Researchers propose using only cells exhibiting
high directional tuning for movement direction estimation [65, 71]. Also, studies investigating
the minimal population size sufficient for operating a BCI are presented in [77, 2|. There,
the neuron-dropping procedure described in [100] is applied on the entire set of recorded
cells, without any preliminary selection based on directional tuning or some other desirable
property.

Working with small populations in this study, enables testing the contribution of each
cell in the set. This approach should reveal the characteristics of a typical randomly chosen
sample of cells, in terms of motor intention coding.

Selected cells: Single or multiple cells are removed from the set before performing the
described classification procedure. The result is compared to the one obtained for the complete
set, using a statistical hypothesis testing. First, only one cell is removed at time and the
remaining data set is analyzed the same way as before.

In the second series of tests, several cells are removed at a time. Instead of choosing
a subset to be removed randomly, or trying all possible combinations, we used a simple
procedure for selecting the most informative cells, described in [63|. A measure of ’similarity’
between the data corresponding to the opposite classes, the bi-serial correlation, is evaluated
for each of the cells. It gives an indication of the separation between two groups of spike
rates, those calculated from the motor intention epoch, and those calculated for the no motor
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intention ones. Denote the number of rate vectors in one file as before, Ngy, where N}%
among them encode motor intention, and Ng’{}i encode its absence. Also, the spike rates
evaluated for the cell ¢ in the epoch ¢ are marked as before SR{. Those obtained from the
motor intention related epochs are given as SR®™ = {SR¢ | i: motor intention epoch}, and
the no motor intention set is represented as SR®™™ = {SR¢ | i: no motor intention epoch}.

Then, the bi-serial correlation for the cell ¢ is evaluated as:

o — Ny - Ngv' mean(SRS™) — mean(SR™™) .
e Nry std(SRe™E U SRemmi) :

This method is usually applied in problems where data vectors depend on many features,
and, therefore, have big dimensionality not suitable for machine learning analysis (for example
BCI interfaces based on EEG signals recorded using a big multi-electrode system). Here, we
use it as a simple criteria for selecting potentially most important cells in the context of
interest. Only those cells where Cf, exceeds certain threshold remain in the set. By changing
the threshold value, we can control the number of removed ’least important’ cells.

Finally, in some files, the obtained results left some ambiguity about the influence of
certain cells. Classification using only a group of manually selected cells is performed for
those cases.

Statistical testing: Each test involving cell removal results in the 40 estimations of the
classification error. These samples are clearly not independent, and we have to use some of the
statistical methods for comparing dependent samples. Wilcoxon matched-pairs signed-ranks
test, and paired t-test for dependent samples are used, according to the procedure given in
[85]. The significance level considered for both statistical methods is a = 0.05.

In order to ensure a fair comparison between the results obtained for the same file after
removing different cells, data sampling into learning, test and validation set cannot be entirely
random. Instead, the random assigning of rate vectors to the training, validation and test sets
according to the 10-fold cross-validation scheme is done only once. The same 10 arrangements
are kept throughout the complete analysis of the same file, i.e. for testing on the entire set
of cells, and for the classifications done after removing any required group of cells. This way,
the error estimations in the test phase are always obtained from the same spike rate vectors,
and the results are comparable.

Sliding window classification

The second approach disassociates the study from the notion of experiment epochs, and
focuses on motor intention detection in time, along the spike trains. This can be seen as a
more complex problem, since some spike rate vectors may be affected by processes belonging
to multiple epochs. We still rely on the knowledge of epochs when composing the algorithm;
but once it is completed it allows testing for the presence/absence of motor intention regardless
of the epoch dynamics.

Spike rates: The entire spike trains, from the beginning to the end of a trial, rather than
just a set of selected epochs, were considered. The number of data examples, as well as the
temporal resolution, are defined by introducing a time window. The window is moving along
the spike train in discrete time steps, with a predefined time shift. For each distinct window
position, spike rates are calculated in the standard way, as the number of spikes within the
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window divided by the window size. Denote the window size as W and the time shift in each
step as S, then, the rate for the cells ¢, calculated in the t** step, is

#{j|t-S<STy<t-S+W}
W .
and the vector of spike rates obtained from the set of N cells is RV, = [SR} SR? ... SR}].

SRS = (3.6)

Window: We tested several choices for the window length, from 100ms to lsec. These
values correspond to the duration of experimental epochs illustrated on the Figure 2.9. The
smallest among them (RT and MT) are several hundreds of milliseconds long, while the longest
ones (Memory, for example) last for a couple of seconds. The window shift was fixed to half
the window length.

CELL n: 8 1
WINDOW X

POSITIONS:

SPIKE RATE L. r v y v
VECTORS: L1 [2] [s] [a] [5]

Figure 3.4: The window positions used for calculating spike rates in the second data analysis
method. The fixed size window is shifted for a fixed interval of time between the two succeeding
steps. The first five steps in the procedure are shown. In each step, a spike rate is calculated
as an average neural activity within the window. The rates are indicated with enumerated
boxes at the bottom of the figure.

The exact window shifting in successive steps in shown on the Figure 3.4. Rectangles
mark window positions that are spanning one spike train (actually, a set of simultaneously
recorded spike trains that have the same duration). The altering color of the windows is used
only to make their positions more visible. Each window position gives one spike rates vector
used for classification. For illustration, those obtained in the first five steps are marked with
the boxes on the bottom of the figure enumerated from 1 to 5. The window positions are also
indicated on the Figure 3.3, but without the overlapping shown, in order to keep it simpler
and indicate only the major steps in the algorithm.

Classes of spike rate vectors: The calculated spike rate vectors are divided into three
groups - motor intention, no motor intention, and those examples that cannot be reliably
assigned to any of the two classes, as shown on the Figure 3.3. As already mentioned, the
labels for spike rate vectors are determined according to the experimental epochs. If the
window contains only segments of motor intention epochs the resulting rate vector is assumed
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to encode motor intention. Similarly, if it contains only data from the no intention epochs
the rate vector is assigned to the corresponding group. The adopted window shifting strategy
ignores the a priori knowledge about epoch duration, and the spike rate vectors calculated in
some steps cannot be assigned to any of the classes. For some window positions, spike rates are
calculated using segments from motor intention and no motor intention epochs, at the same
time. Also, for the vectors calculated using the beginning of the spike trains, where we cannot
be sure about the processes present in the monkey brain, the correct labeling is ambiguous.
Those data are not used for training and for evaluating the average performance, since all the
examples employed for that purpose have to be reliably labeled. Once the classifier is trained,
we can examine new data without knowing the epoch marks and the window position with
respect to them.

Classification: The same classifier is applied as before; namely, the SVM with 10-fold
cross-validation. The problem caused by the difference in size of the classes is present here as
well, and the mismatch depends on the window size and the length of recordings, that varies
for each file. Additionally, for a small window size, the resulting data set is relatively big with
many redundant examples, which slows down the training phase, but does not change the
performance of the resulting classifier.

Therefore, for small windows it is recommendable to remove some of the redundant ex-
amples and decrease the training data size. Also, if one of the classes becomes much bigger
than the other, some of its examples have to be removed. The solution for these problems is
found in the literature [70]. This approach employs an iterative procedure for removing the
'non-informative’ examples far from the border between the opposite classes. In other words,
it tends to remove the examples that do not influence the classifier properties and the way how
it divides data into two classes. First the distance from the nearest ’enemies’ is calculated for
each spike rate vector in the set, i.e. the distance from its closest rate vector belonging to the
opposite class. The pairs of rate vectors are sorted according to this information, and the pair
with the biggest distance has the biggest chance to be removed. Then, the k nearest neighbors
are found for each rate vector. If all of them belong to the same class as the examined vector,
that vector is considered to be redundant and removed from the set. Therefore, only the
spike rate vectors around the border between the classes remain. Changing the number of
considered nearest neighbors, the size of the remaining set of rate vectors is adapted. Using
a smaller k, the chances for removing the considered vector increase. This parameter can be
chosen differently for the two classes, such that the bigger of them receives smaller parameter.

In the context of our work, this method helps in reducing the overall number of compu-
tations in the training phase, by reducing the training data set. It is also used to make the
classification problem balanced, by removing more examples from the bigger class. This is an
important point for removing the eventual bias in classification.

Testing phase: The testing phase in this method is twofold. First, only the labeled data
are selected, and divided into the training, validation and test set, as before. The same 10-
fold cross-validation procedure is applied, and the set of 10 error estimations is obtained. The
average precision and the confidence intervals are calculated as before, using the expressions
3.2, 3.3, 3.4.

Then, the neural activity from one trial and for one target position is selected in advance,
and used as a test set. The remaining data is divided into the training and validation sets.
The employed classifier is similar as before, but instead of the classification, the estimation of
probability of finding motor intention is calculated, as described in [18]. The SVM software
package, described in [18], includes the algorithm that calculates the probability to belong
to a certain class, rather than providing a deterministic answer to the classification problem.
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It is expected to obtain a high probability of motor intention in the intervals corresponding
to the sequence of reaction and movement times and in the memory epochs, and much lower
probability for the rest of the recordings. Once the classifier is created, the new recordings
from the same recording site can be analyzed without knowing the epoch marks.

3.4 Binary Classification Using Support Vector Machines

So far in this report, the major steps in data analysis are presented. First, the definition
of the question of interest in the form of binary classification is described. The adopted
approach is first explained in general terms, and illustrated on the Figure 3.3 and the related
section. Then, its two variations are discussed in details. The first step in each of them is
the calculation of spike rate vectors, i.e. the feature vectors in the context of a classification
problem. The binary classification applied for the analysis of these new data sets is described
after, the approach how to identify data representing the two classes, how to divide it into
the training and test set, and how to overcome some practical problems that emerged during
these tests. Finally, the statistical evaluation of the obtained error estimations is described, the
calculation of the average performance, the confidence intervals, and the statistical hypothesis
testing for comparing the outcomes of the different tests. Finally, the remaining point to be
described is the construction of the classifier itself.

The classification method applied throughout this study is the standard support vector
machine (SVM) algorithm, as already mentioned. Some well known facts related to the SVM
will be repeated here, for completeness of the report. Most of these information can be found
in any textbook dedicated to the SVM, for example [90, 13, 25|. Following the outline used in
these books, the SVM will be first presented for the simplest problem, the binary classification
of the two linearly separable sets. Then, the modification needed for solving the non-separable
problem will be explained. Finally, the non-linear SVM, the tool used in this study, will
be explained. The SVM possesses promising properties that attracted a lot of attention
in the machine learning community in the past. The theoretical analysis of its capacity
(VC dimension) and generalization properties are elaborated in many reports. For example,
[13] presents some main conclusions obtained in the work of V. Vapnik and others. At the
same time, methods solving the technical problems following the SVM implementation were
developed [18], as well as the alternative SVM formulations that simplify the implementation
and avoid some of these problems [90]. Additionally, the regression problems are formulated
and studied using the modification of the SVM [90].

The following section will present only the basic SVM algorithm, as it is usually described
in the literature. The advanced versions of the same algorithm, and the theoretical studies
will not be elaborated here. In the context of this study the SVMs are used as a tool to solve
a demanding binary classification problem, and only what is needed for understating its basic
functioning will be presented.

The SVM implementation was not within the scope of this study, either. The downloadable
software package, described in [18], was used for training and testing the classifier. The
additional code needed, for calculating spike rates, for the cross-validation, and for the analysis
and representation of the results is implemented in Matlab. All the analysis steps described
in the previous sections of this chapter are implemented this way, and the SVM procedures
are embedded in the Matlab functions, using its mex interface, also provided in by the same
software package. Some relevant implementation details will be described at the end of this
section.
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3.4.1 Support Vector Machines Algorithm

Most of the SVM textbooks, introduce the method starting from the simplest case, the bi-
nary classification of the two linearly separable sets. We will also adopt that approach, first
introduce the basic model and latter add the modifications needed to obtain the algorithm
applicable for solving practical problems.

Linearly separable problems: Denote the considered data set as {x;,y;}; where x;
represents the feature vector, and y; € {—1,1} is its label in a binary classification task.
Suppose the data is linearly separable, i.e. it is possible to construct a hyperplane such that
all the data with y; = —1 lay on one side of the hyperplane, and all the data with y; = 1 on
the opposite side. If that hyperplane is given by the equation w’ x4+ b = 0, where x is a point
in the space and w is the vector normal to the hyperplane, then, the last statement can be
described as

wix;i+b>1 if y;=1, and wix;+b<-1 if y; =—1.

The £1 on the right side is obtained by normalization of the three equations. Written in
a more compact form it gives: y; - (WTXZ' + b) > 1.

If there is one hyperplane satisfying this condition, then, there is an infinite number of such
hyperplanes. Introducing an additional condition, we can limit the choice of the hyperplane
and insist on some desirable properties of the model. One such condition is the maximization
of the margin, i.e. maximization of the sum of distances between the hyperplane and the
closest data on both sides (from both classes). It can be shown that this value equals ||v2v—H7 SO
its maximization is equivalent to the minimization of the norm of the vector w, or equivalently,
the square of its norm. Finally, the formulation of the problem is given as

2
I
2
W

st Y- (WTXi + b) —1>0, Vi.

The Lagrangian is calculated as

2
,cP:@_Zai.(yi.(waﬁb) ).
7

The considered problem is clearly convex, since the Lagrangian represents a quadratic
function on w, and a linear function on b and «;. The convex problems have only global op-
tima, therefore, any solution obtained from the previous expressions is guaranteed to represent
the classifier with the maximal possible margin.

Finding the partial derivatives of the Lagrangian with respect to w and b, gives a set of

equations, known as Karush-Kuhn-Tucker conditions.

oLp

8—W:0:W_zi:ai'yi'xi =0 (3.7)
W_O—zi:az Yi = 0 (38)

a; (i (Wix;+b) —1) = 0, Vi (3.9)

yi (Wixi+b)—1 > 0,Vi (3.10)

o > 0, Vi (3.11)
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Inserting the first two equations in the Laplacian gives the dual problem,

1 T
max Lp = Zai —3 Z QG Yy X X
? 2%}
Qg

s. t. Zaiyi =0, a >0, Vi.

This dual formulation and the KKT are often easier to solve than the original problem,

and it is a common practice to use them instead of the original problem when training the
SVM classifiers.

Linear SVM and non-separable problems: Clearly, the ideally separable problems
are rare in practice. Therefore, this basic formulation of SVM cannot be directly used for most
of the real-life applications. A solution is found in allowing a certain error on both sides of the
hyperplane, which is formulated as y; - (WTXZ' + b) > 1-¢&;, with & > 0 for Vi. The parameter
& accounts for the error, and represents the additional free parameters to be found through
the optimization. The problem becomes the trade off between the margin maximization and
the error minimization, formulated as

s.t. Ui (WTXZ‘ + b) >1-&, Vi

where C' represents the trade off between the margin size and the error, If C' is very small
the classifier will have a margin as big as possible and make more errors on the training set.
When it is large, the error minimization is dominant while the obtained margin can be small.
The Laplacian for this problem is

£p— I Dl (W) - 146) - 6

and the dual problem is given as

1
max Lp = Zai —3 Z GO YYXT X
i 0]
@
s.t. Zaiyi = O, 0 < (67} < C, Vi.

i

Nonlinear SVM: The last step in describing the SVM is the extension of previous results
to the nonlinear problem, i.e. for the situation when the data in the opposite classes cannot
be separated by a mere hyperplane. The basic hypothesis behind this step is that, although
the data are not linearly separable in the original space, translating them into a sufficiently
high-dimensional space results in a linearly separable problem. The previous description of
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the hyperplane classifier can be extended as y; (w? ®(x;) 4+ b) > 1 —&;, where ®(-) represents
the function translating the original to the high-dimensional space.
The optimization problem formulated for this case is

. w 2
min % +C ZZ: &
w, bv&z
sty (wTé(x,;) +b) —14& >0, Vi

The KKT conditions are given as

W—Zaiyiq)(xi) =0 (3.12)

Y iy = 0 (3.13)

c—oj—v; = 0, Vi (3.14)

a; (g (Who(a) +b) —1+&) = 0, Vi (3.15)

yi (Wwho(x;) +b) —1+& >0, 05 > 0, Vi (3.16)
vi& = 0, Vi (3.17)

vi >0, & > 0, Vi (3.18)

The dual problem, which Laplacian is given as Lp =), ai—% zi’j a,;ajy,;yj-é(x,;)T(I)(xj),
becomes more difficult to solve since the scalar product of the two vectors in the expression
have to be computed in the high-dimensional space. Estimation of the dimensionality of the
optimal space, and explicit computation of the maps is not straightforward.

The theory offers an alternative solution, where the scalar product does not have to be
directly evaluated, and the "kernel trick’ is used instead. Before describing this procedure, the
Mercer’s condition have to be introduced.

Mercer’s condition: A symmetric, continuous function K (u,v) satisfies Mercer’s con-
dition, if for any square integrable function g(u) it holds

/K(u, v)g(u)g(v)dudv > 0.

For every such function there exist a Hilbert space H and a map ¢ : R"™ — H such that
K (u,v) represents a scalar product of two such maps, i.e. K(u,v) = ¢(u)’¢(v).

Therefore, if we could find a function K(x;,x;) that satisfies the Mercer’s condition, we
could replace K (x;,x;) = ®(x;)T®(x;) in the upper formula. This change is known as the
’kernel trick’, and the function K(-,-) is called the kernel in the SVM literature. In practice
it is not easy to find such functions, candidates for the kernel. The linear and the Gaussian
function (also known as the radial basis function) are known to satisfy the Mercer’s condition.
The polynomial kernel satisfy the condition only for the positive values of the parameters.

Calculating the dual, as before, and taking into account the kernel trick we obtain the
final quadratic programing problem solved to obtain the SVM.
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max Lp = E ai— 5 g ;oY K (%4, %)
i inj

ay
s.t. Zaiyi == O, 0 < (673 < C, Vi.

7

This formulation enables calculating the set of parameters {a;}; that corresponds to the
global maximum of the dual function. For the new feature vector x, the class label is obtained
as

y(z) = sgn (Z oy K (x,%;) + b) . (3.19)

We could notice that the only feature vectors x; from the training set which contribute to
the (3.19) correspond to the values o; # 0. The equations (3.14)-(3.18) permit the following
two possibilities. When «; = 0 we have v; = C > 0, & = 0. The corresponding feature
vectors do not contribute to the equation (3.19), and do not cause error in classification, i.e.
they are far from the margin. Otherwise, o; > 0 and y; (wTw(xi) + b) =1-—¢&. These
vectors, that contribute to the equation (3.19), are either on the margin or close to it, and
classified with some error. These feature vectors that, practically, define the border between
the two classes, are called the support vectors. The last equation for the support vectors can
be used to calculate the parameter b that is not directly obtained through the optimization
procedure.

Together with the theoretical derivation of the SVM classifier, two additional issues have
to be taken into account. Solving the given quadratic programing problem is not a trivial task,
and several techniques to combat that problem are proposed. In [18] an iterative procedure
is implemented instead of solving the original quadratic programing problem directly. In
each iteration, the two parameters «a; are selected, and the corresponding quadratic equation
is solved for them. The old values for these parameters are replaced with the new ones,
and the procedure is continued until the convergence. Another procedure for simplifying the
optimization problem is proposed in [90], where the quadratic programing is replaced with
the linear programing.

The implementation of the SVM training was not of interest in this study, and we have used
the functions from the publicly available toolbox described in [18]. The only question related
to the SVM design that was considered here was the optimal choice of the 'free’ parameters.
As already stated, the parameter C' in the given expressions is not selected automatically,
but is considered as a fixed value during the optimization. Other parameters that have to be
selected before the optimization are those describing the kernel function. We used the most
common type of kernels, the radial basis kernel, in this study. This function is given with the
expression

T .
Xi X5

K (x,%x;) = exp( ). (3.20)

that depends on only one parameter, o, the kernel width. The tests carried in order to
examine the optimal choice of the two parameters, C' and o, are described in what follows.
3.4.2 Implementation details

The SVM algorithm was presented in the previous section, but only the most important
information is described, without the implementation details. All of the methods used here
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are the standard textbook models and the standard publicly available software, and in the
context of this work there is no need to further elaborate them. Still, some details, specific for
the solution of this problem, should be described. We will pay more attention to the selection
of the two free parameters of the SVM, and give some additional arguments for using this
particular type of classifiers with the described cross-validation technique.

Parameters selection through validation: Various strategies for selecting the param-
eters C' and o are listed in the literature. The simplest and most common one is to test all
the values on a 2D grid. The 'nodes’ on the grid should span a large range of values, so they
are chosen on a logarithmic scale. For selecting the optimal parameters a part of the training
set, typically 20%, is employed for validation. The remaining training data is used to solve
the original optimization problem for the fixed values of C' and o, and the performance of the
obtained classifier is evaluated on the validation data. The pair of values that minimizes the
error on the validation set is selected, and used latter in the test phase.

Various advanced strategies for parameters selection are also presented in the literature.
For example, [88] describes a method for iterative refinement of the grid-search strategy, while
maintaining a reasonable training time. First, the values on a coarse 2D grid are tested, and
in each step a new set of points is chosen in the neighborhood of the most successful point
from the previous step. A procedure for the automatic selection of all the SVM parameters,
solving the two optimization problems in each step, is proposed in [19]. The «; parameters
are computed as before, assuming some fixed values for C' and o. Once the classifier is
obtained, a function describing the validation error estimate is minimized to calculated the
new values of C' and o. The gradient descent algorithm is employed in this step. The method
is iterated until the minimal error estimation is obtained. Finally, in [31] a third approach,
based on an evolutionary algorithm, is presented. The free parameters are represented as
an m-dimensional vector, and a goodness of fit (i.e. an error measure) is defined. In each
step, an offspring of n > m parameters is generated by calculating the center of mass of the
old m parameters (intermediate recombination) and adding a random value to each offspring
(mutation). The random values are derived from the zero-mean Gaussian distribution. The
goodness of fit is tested for each parameter and the best m among them are stored for the
next step. The iterative procedure is stopped when it reaches some termination criteria.

For choosing the two free parameters, the kernel width and the regularization coefficient,
we tested the following three approaches: the standard grid search, the simulated annealing,
and the random selection of parameters from an empirically determined distribution. In the
grid search, all the pairs from (C,0) € {272, ..., 220} x {2710 . 25} are tested and the one
that gives the minimal validation error is selected.

The simulated annealing is implemented using the publicly available Matlab software,
developed according to [49, 48] and given in [97].

In the last method, the parameters were chosen from a Gaussian distribution, selected
empirically. First, the grid search for the parameters

(C,o) ={2730, 2725 | 230} x {2720 o=15 920}
is completed and the optimal parameter subspace was selected. For most of the tests,
the rotated 2D Gaussian distribution approximated well the optimal subspace, and it was
employed for selecting the values to test. The employed distribution is given as
[logy C, logy o] ~ Gauss (1, %)

where for the first method, the epochs classification, the mean value and the covariance
matrix are given as
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For the second test, the sliding window classification, these parameters are chosen as
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The distribution was chosen as to include the optimal subspaces for all the analyzed data
sets. As usual, instead of looking for the optimal parameters directly, we used a log-log scale.
The 100 randomly chosen pairs (C, o) are tested in the validation phase, and the best among
them is selected for the test phase.

In general, none of the three methods exhibited superior performance, and for the pre-
sented study, we adopted the last approach. Simulated annealing is, theoretically, the best
candidate, but here it did not improve the results; on the other hand, the algorithm training
time was considerably increased. The first and the third methods were very similar in both
precision and efficiency; we chose the third one because it clearly avoids testing some very
unsuccessful candidates.

Cross-validation: As already described in the previous sections, the 10-fold cross-
validation is adopted for estimating the classifier performance. Some other methods for
inferring the statistics of the method performance were also tested. The tests with N-fold
cross-validation with N > 10 are also employed but neither the mean nor the confidence
intervals differed significantly from those obtained using the adopted method. At the end,
the least computationally demanding method was used. Also, the bootstrapping for the es-
timation of error statistics is tested according to the receipt given in [25]. This method gave
tighter confidence intervals but also exhibited a systematic bias when estimating the mean
error.

Other tests: The first method tested for solving the presented problem was the linear
classifier. This method was not able to solve the problem, and did not perform better than
the pure chance. We repeated the same analysis with a classifier of multi-layer perceptron
type, which resulted in a similar performance as the one obtained using the support vector
machine. The latter was selected for the final version due to easier tractability of the values
of its parameters, and generally good properties of the SVM classifiers.
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Chapter 4

Experimental data study

In the previous chapters we presented the detailed description of the methods used for data
analysis. The neural activity is represented by the average firing rate, following the assumption
that the motor intention can be inferred from the modulation of spiking intensity. The two
approaches to the rate calculation were described in the previous section. The rates obtained
from a set of simultaneously recorded spike trains were used in the same decoding task. In
order to decode motor intention from the data we formulated a binary classification problem,
and employed a standard SVM classifier to solve it. Some basic notions explaining this type
of classifiers were presented, without intention to further elaborate the theory behind it. Only
the problem specific aspects of the SVM tuning are described. Therefore, the details about
the implementation of the training and test functions are not included, but the tuning of the
free parameters was considered.

In this chapter, we will present and discuss the results of the described analysis. First,
the average classification error for each of the files in the database is presented in the Section
4.1. In the Section 4.2 these results are further elaborated by analyzing the error distribution
across the experimental epochs. Another interesting issue, the contribution of single cells from
the recorded population is assessed in the Section 4.3. The third considered parameter is the
length of the window used to calculated the average neural activity in the tests described in
the Section 3.3.1. The obtained conclusions are shown in the Section 4.4. Finally, at the end
of the chapter, in the Section 4.5, an additional discussion of the obtained results is presented.

4.1 Epochs classification results

The first series of data analysis tests is carried using the method described in the Section
3.3.1. Using the definition of motor intention and knowing the key processes in each step
of the execution of a movement, we related some of the experimental epochs to the motor
intention. Similarly it was possible to identify the epochs where the motor intention does not
exist. This hypothesis is tested through data analysis. For each of the epochs, the spike rates
are calculated from the set of recorded spike trains, and these vectors of rates are used for
training and testing the SVM. This set up enables testing the main assumption behind this
work, precisely, is it possible to identify motor intention from the neural activity, and if so,
how reliable the procedure is. It, also, represents the first phase in studying motor intention
in a typical reaching movement. This framework was used to select the best data analysis
method, and all the later tests employed the same algorithm. The only difference being an
additional tuning of the free SVM parameters. As noted before, we attempted classification
with artificial neural networks. Tests with both, linear and nonlinear multilayer perceptron
networks, were performed. The linear classifier was unable to outperform the classification
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by chance. The nonlinear network produced similar results as the SVM classifier, and it was
less tractable than the SVM.

We, also, examined the influence of the CT epoch discarded from the final algorithm
version. The same classification is repeated for the CT epoch included among the no motor
intention examples. The obtained error was not significantly different than the presented
one, but it was not straightforward to explain the role of this epochs. In another test we
removed the last MT (MTe in the ME task, and MTh in R, RF, MR and MRF) from all the
experiments, since these epochs can be considered as the realization, rather than planning
of a movement. The average error rate was not significantly different than the one on the
Figure 4.1. The complete results of these tests are examined again in the next section, when
discussing the classification error per epoch.

As already stated, each file, i.e each set of recordings with fixed electrodes position, is
analyzed separately. One classifier is trained and tested each time and one set of 40 classi-
fication error estimations is obtained in the test phase. The percentage of misclassification
is evaluated according to the expressions (3.2)-(3.4). The confidence intervals are calculated
according to the same formula.

The summary of the results obtained using this method is presented on the Figure 4.1.
The two panels on the figure correspond to the two available databases, recorded from the two
lab monkeys. The classification error per file is presented alongside the number of recorded
cells, the x axis shows the number of cells, while the y axis gives the error rate. Each point
on the figure shows the mean error and the confidence interval obtained for one file. The
results are sorted according to the increasing errors, in order to show the general trend in the
classifiers performance. The tests on the second database outperform those on the first one;
the precision obtained for the majority of files falls between 25% and 30% of misclassification,
as opposed to 30% to 35% for the first database. The best and the worst results in the first
database are around 25% and 40%, while for the second database they are 18% and 32.5%.
Even in the worst case, the results of both databases outperform classification by chance, that
would yield around 50% error.

As already mentioned, the x axis shows the number of recorded cells for each file. Evi-
dently, it is difficult to observe any relation between the recorded set size and the obtained
error. The recording procedure randomly picks cells, with the strength of the observed activ-
ity as the only criteria for the electrode placement. The information encoded in the obtained
activity, and the cell involvement in the particular tasks cannot be assessed at that stage.
Therefore, it is expectable that some of the collected cells do not contribute to motor in-
tention coding, and their presence in the set does not significantly influence the algorithm
performance. Also, it is possible that some of the electrodes pick the cells of correlated
behavior, so that some of them encode redundant information, already represented in the
activity of other cells in the set. This issue will be analyzed in details in the Section 4.3

The performance illustration on the Figure 4.1, describes the average ability of the pro-
posed method to identify motor intention from the data. Also, it examines the limits in its
performance. Additionally, the results of the most illustrative files shown on the Figure 3.1
should be emphasized. The average errors obtained for them are 26.14% for ’Cru_ 33’, 30.94%
for "Cru_29’, 28.44% for 'Uma_ 7', and 22.89% for 'Uma_11’. Considering only these four
files, it is difficult to draw any general conclusion regarding the influence of the particular
epochs and cells on the algorithm performance. The file ’Cru_ 33’ exhibits a smaller clas-
sification error than 'Cru_ 29’ in spite of the smaller number of recorded cells, at the other
hand, the two files from the database 'Uma’ contain the same number of cells but exhibit a
difference in errors of around 5%. The file ’Cru_ 33’ might indicate that the presence of cells
whose activity can discriminate between the NGO and VIF on one side, and all the other
rate vectors on the other side improves the performance. Still, for both examples from 'Uma’
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Figure 4.1: Error per file for the epochs classification. Panel on the left - database 'Cru’;
panel on the right - database 'Uma’. The x axis shows the number of recorded cells in each
file. The y axis shows the average classification error for each file, and the corresponding 95%
confidence intervals. The results are sorted with respect to the mean error, in order to show
the minimal, maximal, and average performance of the method.

(and particularly in "Uma_7’) the relation between the NGO and VFIX is not visible, but
the obtained errors are similar to the one for ’Cru_33’.

The results presented in this section, the average classification precision per file, show that
the implemented method can achieve between 70% and 75% correctly classified examples in
an average file, and 82% in the best case. This is significantly better than the precision that
would be obtained when randomly assigning data to the classes (50%). Still, we cannot infer
the reasons for having such results from these tests. The recorded neural activity significantly
varies in different experimental epochs, which is very expectable according to the neurophys-
iologic literature, and also visible on the Figure 3.1. In fact, most of the neurophysiologic
studies of functional properties of the parietal cortex (as well as other regions) examine the
spike rate modulation obtained under various experimental paradigms, for example different
target positions, or tasks, or epochs within tasks. This modulation is sufficiently variable in
different epochs to enable drawing conclusions about the cortex region of interest. This also
holds for the previous work carried on this same database, presented in [9, 10]. Therefore,
it is necessary to further explore these differences and their influence on the classification
precision.

4.2 The error distribution over experimental epochs

The results presented in the previous section show the average performance of the applied
method and reveal how reliable is motor intention decoding from the data. Still, this repre-
sentation, averaged across all the experimental epochs, gives no information about the con-
tribution of each epoch. The diversity of the obtained neural activity suggests significantly
different influence of different epochs. Therefore, it is interesting to closer investigate the
classification error distribution across the experimental epochs, and the results are presented
on the two panels of the Figure 4.2.

The errors for each of the epochs in each folder are presented in a color coded matrix,
with the dark blue corresponding to zero-error, and dark red to the maximal misclassification
(more than 90% of the examples are placed in the wrong class). The precise relation between
the colors in the matrix and errors is shown with the color bars placed left most on both of
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Figure 4.2: Classification error for each of the experimental epochs. Upper panel - database
'Cru’; lower panel - database "Uma’. The matrix of errors for each epoch in each file is color
coded; dark blue - zero error, dark red - the maximal misclassification. The left most bar on
each panel shows the error rate corresponding to each of the colors. Tasks and epochs list
shown relative to the error rate matrix. Right most panels - the average error for each epoch,
average over all the files.

the panels. At the beginning of each row in the matrix the corresponding epoch and task are
denoted. The bar plots on the right show the average error per epoch, averaged over all the
files in the database, in order to emphasize the difference in classification for different epochs.

Several conclusions can be drawn from this figure. Clearly, NGO and VFIX examples
exhibit less errors than the other tasks. In the remaining five tasks, the THT epoch signifi-
cantly increases the total error. The Figure 3.1 indicates such a result, since spike rate vectors
calculated from THT epochs of both classes often share similar properties. Among the first
five tasks, RF and MRF, i.e. the tasks where the animal keeps the eyes fixed to the center
of the screen and reaches with the hand only, show worse result than R, MR and ME. This
might indicate that the intention for eye movements have more impact on the neural activity
in the considered region than the intention for hand movements. Additionally, in the R, MR
and ME, the best results are obtained during the MTe epoch, i.e. epoch related to the eye
movements and the preparation for hand movements, which might support this statement.
Still, the activity in this most successful epoch is modulated by the early planning of a hand
movement, together with the actual eye movement. It is not clear which of the two signals
have bigger impact on the classification precision. The region 7 is considered to be a visual
area in the neurophysiologic literature, i.e. its activity is dominantly related to the eye move-
ments. Still, the previous studies on this database, [9, 10|, show the existence of eye dominant
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cells, hand dominant cells, together with the combinatorial cells influenced by both effectors.
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Figure 4.3: Classification error per file for the database ’Cru’. The comparison between the
result presented in the previous chapter, the test with included CT and the test with the
excluded MT epochs. The x axis shows the file index, and the y axis classification errors.

As already mentioned, two additional tests with somewhat different arrangement of epochs
were carried out in order to obtain more insight into the considered problem. The same
classification procedure is repeated here, and the only difference is in the choice of considered
epochs. The results are summarized on the Figure 4.3 and Figure 4.4, with the same notation
used as in the Figure 4.1 and Figure 4.2, respectively.

In the first additional test the CT is included. This epoch was not considered in the
previous tests since it was not clear which processes may influence the recorded activity.
The only command given before this epoch is the instruction to fixate the center and wait.
Still, it is not excluded that the monkey already plans a movement anticipating the incoming
signal. In this test we assumed that CT does not encode motor intention. Adding this epoch,
the number of examples in the two classes becomes 544 and 560, which is sufficiently close.
Therefore, the procedure with removing data from one trial was not needed, and only the
standard 10-fold cross-validation was performed.

The second test aims to examine the influence of the last movement time in each of the
reaching tasks. The epoch MTh in the R, RF, MR and MRF was removed, together with the
MTe from the ME task. As already stated, these epochs might be related to the movement
execution instead of its planning, since all the movement preparations are already completed
here. Therefore, some of the examples assumed to encode motor intention are removed in this
test. The number of examples in the two classes is 384 and 368, which is, again, sufficiently
close to allow using the simple 10-fold cross validation without additional adaptations.

The Figure 4.3 compares the results from the test presented in the previous section, with
the two additional tests explained here. All the results are shown for one of the databases, since
similar conclusions hold for both of them. The blue curve is the result already presented on
the left panel of the Figure 4.1, and is repeated here as the reference. The red curve illustrates
the outcomes of the test with the included CT epoch, and the green one corresponds to the
test with the removed MT epochs. The x axis shows the index of the files in the database, and
the y axis the classification error, as before. On average, none of the three methods visibly
outperforms the others. Just for some files one of them can be seen as superior, but this is
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Figure 4.4: Additional tests with different epochs arrangement. The same notation as in the
previous figure. Upper panel - the CT epoch is included as the example of the absence of
motor intention. Lower panel - the last MT epoch is removed from the set in order to test
weather it contribute to motor intention or to the motor execution. Both additional tests show
the similar performance as the one presented in the Section 4.1. The difference in distribution
of errors across epochs can be observed.

not systematic.

On contrary, the Figure 4.4 reveals certain differences. The test where CT is included as
the no motor intention epoch (upper panel on this figure) is compared with the test where
CT is not included at all (Figure 4.2). It is evident that the NGO and VFIX results do not
change. On contrary, for the remaining five tasks, the errors on the RT, MT and Memory
epochs increase, while the classification error for THT becomes smaller, as a result of including
CT. The CT itself gives relatively small classification error compared to other epochs. One
possible explanation for this is that CT have similar properties as the THT epoch, at least for
the same task. Therefore, the number of spike rate vectors similar to THT becomes, effectively,
two times bigger in the training set. The obtained classifier is able to represent better the
THT and CT, and the error on the test set becomes smaller. Still, this has a negative impact
on the classification of the other epochs in the same tasks, due to the similarity of examples
from the opposite classes calculated from the same task.

The results obtained from the second test are more similar to those from the Figure 4.2.
All the remaining epoch on the lower panel of the Figure 4.4 perform the same as before,
and the only difference is in removing the MT epochs. The MTh in the tasks RF and MRF
significantly increases the total number of errors, but the MTe in ME is one of the epochs
with the smallest percentage of misclassification. Therefore, their influences compensate in the
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referent test, and the two compared results are not significantly different, as already stated.

4.3 Single cell influence in a small population

As already described in the Section 3.2.3, the optimal selection of cells used to operate a BCI
is an important issue. Some authors propose using only well tuned cells [65], while the others
aim to estimate the minimal number of randomly selected cells needed for reliable control of
a BCI [100]. In [76] the danger of overfitting and the computational burden of an algorithm
were taken into account when proposing the optimal method to select cells. Here, due to the
small number of recorded cells considered simultaneously we adopted a different approach to
investigate the cell influence. We used the ’leave one cell out’ strategy to test the influence
of each cell on the performance of the entire population. In each step, one cell from the set
is removed and the same classification as before is carried using the remaining data. It is
repeated for each of the cells. Some additional cell removing strategies were also tested. The
method that removes only the least selective cells based on the similarity of their spike rates
observed for the two classes is implemented, as described in the Section 3.3.1. These tests
were not always sufficient to explain the properties of each cell. Therefore, some additional
tests on manually selected cells were needed to resolve the remaining ambiguity.

Some illustrative examples of single cell influence to the classification precision are given
on the Figure 4.5. Two columns on the figure present the selected examples from the two
databases. Each panel shows the comparison between results obtained for one or several
removed cells (gray line) with the one obtained for the entire set of cells, the reference value
(red line). The results that are significantly different from the reference result (compared
using Wilcoxon and paired t test for « = 0.05, as described in the Section 3.3.1) are marked
on the figure. In total, for 67.4% of all the cells in the first database, and 75.1% in the second
one no change in the classification error is observed when the cell is removed from the set.
On contrary, 28.8% and 20.6% of cells significantly change the result. For the remaining cells,
3.8% in the first, and 4.3% in the second database, it was not possible to reliably determine
this information, since the two mentioned statistical tests gave different results.

The two figures in the upper row (files 'Cru_ 36’ and "Uma_ 11’), are the most usual out-
come from this analysis. Some of the cells in the set have a visible impact on the classification
accuracy, since removing them leads to a significantly worse result. Still, for the majority
of cells excluding them from the set does not lead to a statistically significant change of the
classification error. Removing more of them, on contrary, produces the visible error increase.
For the file 'Cru_ 36’, removing all the cells that do not impact the result when considered
one-by-one, increases the error showing that this subset of cells carries a relevant information
as well. In the second example, 'Uma_11’, removing the two ’least important cells’ does not
change the result, but repeating that for the three cells shows a significantly bigger error .

The two panels in the middle (files 'Cru_ 33’ and 'Uma_ 32’), show the sets that contain
some cells that influence the result, and the others that can be removed from the set without
consequences. Clearly when repeating the analysis with cells previously marked as important,
the result does not change with respect to the one obtained for the entire set. The example
'Cru_ 33’ is also illustrated on the Figure 3.1, which emphasizes the role of the cells 5 and
9, while the analysis shows that cell 12 have equal importance, although it is not obvious by
looking at the data.

Finally, the last two examples show cells that degrade the classification performance when
present in a set of recordings and their removal improves the classification error, a situation
that was rarely occurring. There is one such cell identified in the panel on the left. The
example on the right is somewhat more interesting. Single cell removing procedure shows
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two cells that have a significant impact on the result, and the remaining five to be less
important. When repeating classification with only the first two cells, the result is improved,
which indicates that the remaining five cells, considered together, carry an information that
degrade the result. This result might seem contradictory. Still, having in mind that multiple
information are encoded simultaneously in the cortex activity, it can be assumed that some of
the recorded cells become involved in the representation of a completely unrelated information
and do not contribute to motor intention coding.
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Figure 4.5: Tests of the influence of single cells. Each of the panels present the result for one
file; left panels - database ’Cru’, right - database ’Uma’. The indexes of the removed cells are
shown on the x axis, the classification error is presented on the y axis. Red line - the reference
classification error obtained using all the available cells in one file. Grey line - classification
errors obtained after removing one or multiple cells from the set, and repeating the standard
analysis for the remaining data. The values that are significantly different (Wilcoxon and
paired t test for a = 0.05) from the referent value are marked with boxes.

The last observation indicates that some cells can harm the performance, but they are
rarely encountered. Instead, most of the cells either contribute to the result, or, at least, do
not influence it. Since we are restrained to small populations, which minimizes the possibility
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for overfitting, it is recommendable to use all the available cells. A single cell cannot achieve
sufficient precision of classification, even for the optimal type of cells, selected according to
some criteria. The information of interest is encoded in a distributed way in the cortex, and
at least a small set of cells is needed for a certain reliability of classification. Increasing the
population size is likely to improve the algorithm performance. This assumption will be later
tested on an artificial model.

It is important to emphasize the dominant representation of cells that do not influence the
classification performance alone, but in a combination with other cells. This might indicate
that the same information is encoded in a redundant way in the activity of these cells, and
that removing one or several of them does not remove the relevant signal.

4.4 Sliding window classification results

The last parameter of interest that we tested within this study is the integration time used
for calculating spike rates. The algorithm for calculating rate vectors is modified with respect
to the one discussed so far. Previously, one single rate vector was evaluated for each epoch in
each task, and the integration time varied a lot for different epochs. Some of them, like RT
and MT, lasted even less than 100 milliseconds, and often between 100 and 200 milliseconds.
On the other hand, the epochs like Memory and THT were even a couple of seconds long,
as illustrated on the Figure 2.9. Therefore, it is not possible to assess the influence of the
integration time in this context. Instead, an alternative method for calculating spike rates is
introduced, a sliding window that segments the recordings for rates evaluation. The window
spans the entire length of recordings, moving for a fixed interval in each step, as described
on the Figure 3.4. This fixed shift is set to half of the window length. Varying the length we
could assess its influence on the classification performance. The drawback is that assigning
labels to the rate vectors becomes more difficult, since it requires tracking the window position
with respect to the epochs. For those windows which cover one or several epochs of the same
type, i.e. motor intention or no motor intention epochs, the label is chosen in accordance with
those epochs. On contrary, if the window crosses a boarder between the epoch belonging to
the opposite classes, it is no longer possible to relate it to one class. We attempted to examine
the probability of finding motor intention in such examples, instead of doing a simple binary
classification.

This method can be seen as the ultimate goal of one such analysis. It aims to identify
the presence of motor intention wherever it appears in a recording. The method is no longer
dependent on particular tasks and epochs. The epoch marks are needed in the training phase,
but for the new tested examples this information is not needed. No particular limitations of
the type of movements or the number of targets is imposed, the movement can be executed
to one from the discrete set of targets, or to any random position in the space. The only
important issue is to collect the training set that sufficiently well represents the selected
experimental setup.

The average performance for this method is illustrated on the Figure 4.6. Left and right
columns correspond to the two databases, as before. The upper two figures show classification
error evaluated for different windows size (300msec, 500msec, 700msec and 900msec). The
blue curve corresponds to the 300 milliseconds window, the green one to the 500 milliseconds,
gray to the 700 milliseconds, and red one to the biggest window tested of 900 milliseconds.
The x-axis gives the number of cells in each file, and the classification error is given on the
y-axis. The mean values and confidence intervals, based on the 10-fold cross-validation, are
calculated as before. The general tendency suggests that the classification error increases as

73



FIRST DATABASE ('CRU') SECOND DATABASE (‘'UMA')
05
e
2
o
e i
[ z
[ ¢}
5 54
E o
< o
o @
L 2
[}
3 3
p
s} 0.15
01 2
f ——W = 300 msec. W = 300 msec.
- —W= .
W = 500 msec. 0.05 —«—W = 500 msec.
0.05 —=—W =700 msec. g ——W =700 msec.
—=—W =900 msec. ——W = 900 msec.
0 0
8517887164775678189474958¢64 8811199968919 91187116 8781054777452
NUMBER OF CELLS NUMBER OF CELLS
FIRST DATABASE ('CRU') SECOND DATABASE (UMA')
05
0454 ... __: 0.45 ..
x .. . N -
04 L% te. o= X-... [ 0.4 g X e eoos % o
. = - * x e Ty L e -
g ' ¥ xTTell .- x - x . . T,
@ 035 ] x L x g 035
5 ‘\! 3 ! x M w [ ] » ® H % x
z 03 " x » ! ® * * g 03 s ”* % % x %
g T, L L O T - - !
< o025l bt * % i i S 025 H ] % 3 ¥
8 g ® ! % % * * :
® 02 ¥ x ¥ © 02 = ! x ¥ -
g x " g : ! . e Y | i H
0.15 H M 0.15 . ;
o x, x x = x *. x '
.~ x ¥ x % ..l H *
0.1 Y " 0.1 .
S * ¥ " o -’.s - X ! a ‘
0.05 TR . 0.05 Tk Moo .
TMeeeaa- b S Neono. nenene x ]
0 — 0
300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
WINDOW SIZE (in msec) WINDOW SIZE (in msec)

Figure 4.6: Summary of the results obtained from classification for the fixed window size.
Left column corresponds to the database ’Cru’, right to 'Uma’. Upper panels - dependency
of the error rate on the number of cells and the window size. The number of cells available
in each file is shown on the x axis, the y axis gives the percentage of misclassification in the
test set. The results obtained for the four different windows are shown - red, gray, green and
blue correspond to W = 900, 700, 500, 300 milliseconds, respectively. Lower panels give an
alternative representation of the same results. The confidence intervals are not shown here,
and each green cross corresponds to the average error for one file and one window size. The
results are arranged with respect to the window size in order to emphasize the major trends,
i.e. the error decrease with the increase of the window size. Additionally, the large variation
of the results obtained for the same window size is illustrated.

the window length decreases, which is in accordance with the results reported in the literature
[77].

The classification precision varies for different files even more than in the previous tests.
It goes from around 5% error for the best examples, to 40% error for the worst ones. This is
even more pronounced on the lower two panels, where only the mean values of classification
errors are reported for each file at different window sizes. FEach green cross on the figure gives
the mean classification error for one file for one selected window size. The results for a fixed
window size are shown in one column without indicating any additional information about
the corresponding files. Such visualization is used only to show the variation in results and
the mean error, how it decreases as the window increases. This is illustrated with the middle

74



gray line, the average calculated over all the errors for single files.

For a small ad hoc chosen set of cells, the results show good discrimination between
presence and absence of motor intention, but if the chosen set is not so ’'informative’ the
algorithm performance rapidly decreases. In general, the longer is the window used in the
analysis, the better is the obtained result. Here, it is particularly critical since very small
groups of cells are used in the analysis. The lack of information due to the small population
size is compensated with the longer integration time of the information. This requires using
relatively big windows compared to the epoch size and those proposed in the literature |2, 100].
Note that some of these studies use a relatively long total portion of recordings for building
a model, although the integration time for calculating spike rates is small. For example in
[16] the integration time is 100 milliseconds, but the last 10 intervals are used to predict
the movement direction, i.e. one second of activity is used for prediction. In the context of
this work, we aim to test for the presence of motor intention from each segment of the data
defined by a certain window position. Evidently, a certain minimal time is needed to collect
the information that is discriminative enough for a classifier. In [65], for a set of cells of
comparable size as those used here the employed integration time is 900 milliseconds, which
also gives good results in our study.
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Figure 4.7: Spike count per window, for the file 'Cru_29’. Upper panels - matrices where
each row corresponds to one cell, and each column to the number of spikes counted within
one window. Illustrated for the windows of 900, 500 and 100 milliseconds, from left to right.
Color coding of spike counts is shown on the bar, right most in the lower row. Lower panels
- percentage of windows containing a certain number of spikes. x axis - the number of spikes
(from 0 to 36 spikes), y axis - the percentage of windows containing certain number of spikes
given on the x axis. These illustrations show the diversity in the set of spike rate vectors. For
the smaller windows this diversity is less pronounced, which can be the explanation for the
decrease in the classification accuracy.

Data visualization presented on the Figure 4.7 gives one possible reason for the obtained
classification results. The upper panels are similar to the Figure 3.1. However, instead of
showing the spike rates used in the analysis, the spike counts are presented. Since the window
of fixed size is employed, the two data representations are equivalent, but this illustration
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shows the variability of the obtained feature vectors more clearly. As before, each row corre-
sponds to one cell, and in this case, each column to one window position. The spike counts are
shown for the three choices of window length, 900, 500 and 100 milliseconds from left to right.
The red dashed line separates the two classes, and the non labeled rate vectors are not shown
here. The non labeled examples are not used in the training phase, and does not contribute to
the observation we want to illustrate. In general, they look relatively similar to the examples
shown on the figure. The lower panels are the histograms calculated from the corresponding
matrices, i.e. those in the same column. The x axis shows the number of spikes in a window,
the value that goes from 0 to 36 in the considered set, and the y axis is the percentage of
windows that contain the number of spikes given on the x axis. The color bar of the right side
of the lower row corresponds to the color coding of the spike counts from the upper panels.
Naturally, bigger windows contain more spikes, i.e. the spike counts increase from right to
left. More important characteristic that can be seen on these figures is the lost of diversity
of the evaluated spike rates. The right most matrix, calculated for W = 100 milliseconds,
contains mainly zero values, i.e. 60% of all the values in the matrix are zero. Around 20% of
windows contain only one spike, around 10% two spikes, and the remaining windows have 3
or 4 spikes. Therefore, most of the rate vectors become similar and the distance between the
two classes decreases. In this particular example, the information contained in the activity of
cells 3, 5 and 7 is almost lost and certain number of non-zero values is maintained only for
the cells 1 and 2. Since most of the values, around 80% of them, contain only zeros and ones
the rate vectors become, practically, the binary code for the classes. This is not an obstacle
for itself, but becomes a problem when working with small populations. Suppose we have an
information coded by a 1000 bits word. If we randomly select 10 out of those 1000 bits, we
will likely lose the encoded information. Having a longer integration time is a compensation
for the small population size. On the left most panel, the spike rates become more diverse,
and the chances for successful classification increase.

The outcome of the last series of tests performed using this method, is shown on the Figures
4.8 and 4.9. As already described in the Section 3.3.1, in order to assess the presence of motor
intention continuously along the recordings, the probability of motor intention is estimated
instead of the binary class. The rate vectors are evaluated using a sliding window as before,
but the training and test phases are somewhat modified. The test set is systematically chosen
in advance. Every time, we will first choose a target and trial to analyze, and then select all
the recordings collected for that target and trial combination. That will include recordings
for all seven tasks. Each combination of trial and target is analyzed this way. The remaining
data is preprocessed as before, and divided into the training and validation set for obtaining
a classifier. No cross-validation is applied here, randomly chosen 20% percents of the data are
assigned to the validation set, and the rest to the training set. The optimal SVM classifier
is, then, applied for the rate vectors calculated from the test examples. For each of the seven
tasks, one probability estimation, a value from the interval [0, 1], is obtained for each window
position. It indicates the presence of motor intention if exceeds 0.5. The employed SVM
software package 18], includes the algorithm for probability estimation in classification tasks.
The probabilities are estimated using a two-step optimization procedure. In the first step, a
pair of parameters is evaluated for each rate vector example from the training set. The two
parameters correspond to the probability that the considered rate vector belongs to one of
the classes. The parameters are described using a fixed function, and the free parameters
are chosen by minimizing the log-likelihood function. In the second step, the constrained
optimization problem is solved in order to compute the probabilities out of the parameters
obtained in the first step.

All the examples shown in the same figure, correspond to the same file within a database,
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Figure 4.8: Probability of motor intention evaluated for the seven tasks, one trial, and one
target position (3, on the Figure 2.7). Window size 500 milliseconds, file 'Uma_54’. First
row: R (left) and RF (right); second row: MR (left), MRF (middle), and ME (right); third
row: NGO (left) and VFIX (right). In grey: the time intervals with high probability of motor
intention according to the corresponding experimental epochs. Hatched: the intervals where
the low probability is expected following the same argument. The probability estimation is
given with the central curve, each cross corresponds to one window position and is placed in
the middle of the window. The threshold value for discriminating between the motor intention
and no intention is indicated with the horizontal red line (at 0.5). Red bars on the top of each
panel are the epoch marks. The corresponding epochs are given in the legend on the right of
each panel. All the results are aligned according to the beginning of the CT epoch. At the
beginning of each experiment some preparatory epochs are included, but they are not relevant
for the presented analysis. Still, the time on the x axis is not aligned to CT to indicate the
duration of the experiments, and the starting time of CT.

the same target position, and are recorded during the same experimental trial, from the same
set of cells. Therefore, the seven panels are comparable. The top two panels in both Figure
10 and Figure 11 represent R and RF tasks. For both tasks the performance is relatively
poor for the window of 500ms. This is the consequence of using relatively large window in the
analysis; for these two tasks, motor intention and no intention related intervals are relatively
short, and, for a bigger window, these tasks are represented with a very small number of cases
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Figure 4.9: The second example of probability estimation, file 'Cru_26’. Window size is 300
milliseconds.

in the learning database. Therefore, the learning set is not informative enough for the correct
classification of R and RF tasks. On the contrary, the example with the smaller window used
shows much better correspondence with the expected results; the increase of probability is
evident for the R task, while motor intention is not present in the rest of the recordings. For
the RF task, it is more difficult to explain the result, but the peak in probability is evident in
the marked interval. The three memory tasks are much easier for classification, and exhibit
better results than the R and RF, for both applied windows. This is expected since MR,
MRF and ME provide much more data to the training set, due to the larger number of
epochs where the presence/absence of motor intention can be reliably identified in advance.
Therefore, these tasks are much better represented during the training process. The obtained
results are better for the longer window, which corresponds to the overall improvement of the
results when longer time spike trains calculating is allowed. Finally, NGO and VFIX show
good correspondence with the expected results; motor intention is present at the beginning
of the recordings, then, it decays in the marked intervals, and eventually increases again at
the end of the experiment.

The last issue that has to be discussed in this context is the representation of experimental
epochs in the set of rate vectors obtained using this method. As shown on the Figure 2.9,
the epoch lengths vary from less than 100 milliseconds (for MTe) to more than 2.5 seconds
(for Memory). Sampling the recordings with a fixed window leads to unequal representation
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of epochs in the training and test set. Consequently, the obtained classifier will be more
influenced by certain epochs, than the others. Some of the spike rates are calculated using
only a part of an epoch, while the others span several epochs. The epochs RT and MT are
much shorter than Memory or THT, for all the tasks. Even for the shortest window (300ms)
some of RT and MT epochs are taken together, while even a long window cannot entirely
cover the Memory or NGO epochs. The number of examples is directly proportional to the
corresponding epoch length, which leads to much bigger data set for bigger epochs. Typically,
the Memory epoch gives rise to the majority of examples for the first class. The RT and
MT epochs are less influential here, than in the first method, since they result in a relatively
small number of examples; furthermore for a relatively large window, the algorithm cannot
separate them from the Memory epoch. Due to the window size and the duration of the THT
the latter is often excluded from the analysis; since in order to take into account the neural
activity of this type a window should entirely fall into THT epoch. For the windows bigger
than 500msec this never happens, while for the smaller ones, THT contributes for no more
than 6% of the total data set size.

WINDOW: 900ms WINDOW: 500ms WINDOW: 100ms

DJJLLJILIJLI.J_lIL E 0 0 |I

. K
R RF MR MRF  ME NGO VFIX R RF MR MRF  ME NGO VFIX R RF MR MRF  ME NGO VFIX

Figure 4.10: Epochs representation in the training and test set obtained from spike rates calcu-
lation using the sliding window. The examined window sizes are 900, 500 and 100 milliseconds,
from left to right. x axis shows the epochs and combination of epochs obtained during spike
rates calculation, y axis shows the contribution of the particular epochs or combination of
epochs to the total set, for each of them the ratio between the number of corresponding exam-
ples and the total number of examples in the set is calculated. The seven tasks are separated
with red lines. Memory examples are additionally marked with M.

The Figure 4.10 additionally illustrates these observations. The representation of certain
epochs or combinations of epochs in the set of rate vectors is shown for the file 'Uma 54" and
the three windows, 900, 500 and 100 milliseconds, from left to right. The examples belonging
to the seven tasks are separated by red lines on the figure. The rate vectors calculated from
the Memory epochs alone are marked with M. It is evident that they dominate in both classes,
and particularly the motor intention class. Also, it is evident that THT examples are rarely
present. In the no intention class, i.e. NGO and VFIX tasks, the epochs other than Memory
are better represented than in the opposite class. We can conclude that in these tests, the
comparison is carried, mainly, between Memory epoch in R, RF, MR, MRF, ME on one side,
and NGO, VFIX examples on the other.

4.5 Discussion: Methods comparison and relevant algorithm
parameters

In this chapter we presented the results obtained from the two machine learning based methods
to detect motor intention from multi-electrode and multi-task recordings of neuronal activity.
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The entire database consists of a list of files, and each one of them is analyzed separately,
i.e. one classifier was constructed per file. The results obtained for different files were used to
assess the average and the best performance for the proposed methods. The two approaches
are implemented in order to examine various parameters that influence the performance.
First we evaluated one vector of spike rates per epoch, in order to compare different epochs
and investigate how reliable is their discrimination based on presence and absence of motor
intention. In this context we assessed the single cell role in motor intention coding within a
small population, and the influence of each experimental epoch. In the second series of tests,
we fixed the window size and calculated the rates by shifting that window for a fixed step
size. The performance as a function of the window size is examined in this context.

Precision: In the fist test, the classification of epochs, the obtained error rarely exceeded
30% for the better of two databases, while for the second one this error stayed below 35%.
Most of the examples resulted in the error between 25% and 35% for the first, and 20% to
30% in the second one. The best example we observed in the first database provided around
25% error, and for the second one 18% classification error

In the second method it was more difficult to estimate a general trend, since the results
changed more rapidly for different files. The window length determined the range of observed
errors; for the long window of 900 milliseconds the average error was 22% and 16% for the two
databases, for 500 milliseconds the averages were 25% and 22%, and for the smaller window
of 300 milliseconds, the average errors were 35% for both databases. The best examples from
the database 'Uma’ gave 5% error for W = 900 milliseconds, 10% for 500 milliseconds, and
25% for 300 milliseconds. The database ’Cru’ contains even better examples which give less
than 5% for the window of 900 milliseconds, around 6% for 500 milliseconds, and 15% for
300 milliseconds. The best file is "Cru_ 26’ which also gives good results for the first method,
and additional examination of the included epochs and the balance in error rates for the two
classes revealed no suspicious information.

Epoch contribution: The first method focuses on epoch properties and examine their
role in motor intention extraction. A closer examination of errors obtained from certain
epochs shows that some tasks and epochs systematically outperform the others. Typically, the
precision obtained from NGO and VFIX tasks was much better that for the other examples.
The examples related to these two tasks are all assigned to the same class, no motor intention.
Therefore, it never happens that the same set of recordings provides data in both classes, which
reduces the chance that some additional processes present during an entire recording session
make the examples of the two classes similar. This can be the explanation for the relatively
big percentage of errors on the THT epochs from the remaining five tasks. There, several
epochs preceding THT provide data for the motor intention class, while THT corresponds to
the opposite one. Still, certain similarities between these examples exist, particularly taking
into account the short total duration of recordings (less than 10 seconds). This also provides
an argument to use both the examples of NGO and VFIX tasks, and the examples from
THT epochs. The first set of examples provides good representation of the absence of motor
intention, and cannot be related to the opposite examples at the same time. On the other
hand, the THT examples provide a chance to monitor the motor intention dynamics within
the same recordings. Taking into account both groups, we support the statement that the
extracted information indeed represent motor intention. Additionally, RF and MRF typically
perform worse that the other tasks. Here, the eyes movement is forbidden, as the monkey looks
at the center of the screen throughout the entire experiment, and reaches for he target with
the hand only. Also, in the other tasks, we can observe very small error obtained on the MTe
epoch, the eyes movement time. Also, RTh, the period of preparation for the hand movement,
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provides relatively small error, but only in the R, MR and ME tasks. High classification error
in the tasks that require eyes immobility, and low error in the eye movement epochs, could
indicate that the particular recorded set of cells exhibit stronger motor intention in relation
to eyes, than hand movements.

A potential problem in this classification method is the great variability in the epoch
length. Some rates are calculated using only a couple of hundreds of milliseconds, while for the
others a couple of seconds of activity was available. The Figure 4.7 illustrates the differences
between the rates calculated for small windows and those obtained for the large windows.
The second ones permit much bigger variability in the calculated rate vectors. It would be
advisable to test the obtained results using a method that limits the variability in epoch
length. For example, longer epochs can be divided into several intervals of comparable length
to the smaller epochs. All these intervals can be combined to obtain the feature vectors of
(number of cells)x(number of intervals) size. Then, a method for reduction of dimensionality,
for example PCA, can be employed to obtain equal number of features for each epoch.

Comparison of the two approaches: As already stated in the previous section, the
comparison between the two methods is not straightforward. In order to highlight the dif-
ferences we need to consider the influence of different experimental epochs, included in the
analysis. While the first method equally represents all the epochs, the second is biased toward
the longer ones, due to the adopted sliding window procedure. As shown on the Figure 4.10
the second method dominantly depends on the rate vectors obtained from the Memory epoch.
The THT epochs, the influential source of errors in the first approach, is lost here, which is
likely to decrease the total error. The classification in the second method practically becomes
the comparison between the Memory epochs in the R,RF, MR, MRF, ME on one side, and
NGO and VFIX examples on the other side. On the other hand, the signals belonging to
certain epochs are not separated anymore, as in the first approach, and many of them are
represented in the same rate vectors. It is not clear what impact this has on the complexity
of the classification task.

Taking into account these observations, we can compare results of the two methods. For
the shorter windows, the first method is more precise than the second one. As the window
increases, the second method performs better. The reason for these is twofold. First, for a
bigger window, most of the data in the second method are calculated using longer segments
of spike trains than in the first one. This enables longer time for integration of neural signals,
which is particularly important taking into account a small population size used throughout
the analysis. Also, for all the files, the second method suppresses or, for large windows,
completely removes the most ’critical’ examples, those belonging to the second class, but
that are corrupted by the influence of preceding events corresponding to the first class. The
opposite holds when using the short windows, the integration time decreases, and the ’critical’
epochs are more influential.

Number of cells and single cell influence: Another issue we analyzed is the de-
pendency of the classification performance on the number of available cells in the considered
file. This is a critical parameter, that strongly influences the results. The employed multi-
electrode system permits monitoring of up to fourteen cells at a time, which results in between
two and eleven recorded cells, i.e. a relatively small population. Since we are concentrated on
a theoretical study of the neuronal system behavior during movement planning and execution,
rather than building a robust, long-lasting system the analysis of such small ensembles can
give relevant results in this context. Additionally, a more detailed analysis of the population
size influence is carried on the artificial model, and those results will be presented in the next
chapter.
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A series of tests is carried out in order to examine the influence of each cell in the set. The
outcome indicates that motor intention is coded in a redundant and distributed way. Most of
the cells can be removed without changing the result, or causing a change that statistical tests
do not identify as significant. Removing a critical number of them (even those recognized as
‘the least informative’ ones among them) leads to the performance degradation. Cells that
cause the statistically significant increase of the classification error are less numerous in a file.
Still, this conclusion holds only within a small set of cells recorded simultaneously. Recording
a bigger number of neurons will enable selection of many such cells. The best file example
observed in both databases, "Uma_ 54’, corresponds to this description. It contains three cells
that significantly increase the error when removed from the set, and five more cells whose
removal does not produce change. Still, attempt of classification using the first three cells
only results in much worst performance than for the complete set. Finally, it rarely happens
that some cell significantly deteriorate the classification performance. We can find, more
often, cells that do not contribute much, but do not disturb the computation either. This
might be the consequence of the applied method robustness.

Window size: The second method permits testing the influence of the integration time
length to the algorithm performance. The results obtained for all the files are consistent, the
classification precision is improved when the longer integration time is allowed. The Figure
4.6 summarizes the results and presents the main trends observed. First, the lower panels
show the persistent improvement obtained for the increasing window size, the performance
obtained when averaging results for all the files in the database. The upper panels illustrate
this tendency for each file separately. For the majority of examples the error decreases for
the increasing window, already when comparing the results for 900 milliseconds and 700
milliseconds window this is evident. The difference is even more visible when comparing them
with the 300 milliseconds window results.

Probability of motor intention: The last series of tests estimates the probability of
motor intention along the recordings. The recordings collected for seven tasks, for one fixed
trial and target position are removed from the set before the training to be used in the test
phase. The outcomes are presented on the Figures 4.8 and 4.9. It is difficult to evaluate the
results obtained in these tests, but some mismatches with respect to the expectations can be
observed. The results obtained for the R and RF tasks in the first presented file does not
follow the expectations, while in the second file they are somewhat better. The reason for
that is given on the Figure 4.10, which shows tha R and RF are poorly represented in the set
of rate vectors, due to the short duration of epochs of interest. For the MR, MRF and ME
tasks the results are better, although some mistakes, particularly for the THT are present.
As before, the NGO and VFIX demonstrate the best performance.

Comparison with the results from literature: At the end, it is important to discuss
the differences and similarities between this approach and the related studies presented in the
literature. The problem of motor intention decoding can be related to the state estimation
described in [84, 79, 65, 2|. The first three of them, also analyze the parietal cortex activity,
and the last one uses the recordings collected in the premotor cortex. These studies compare
the typical neural activity observed in certain experimental epochs, and develop methods to
distinguish between the related states of the movement. The transitions between the states
can be used to generate 'go’ and 'stop’ signals for the BCI. In our case, the transition between
the motor intention and its absence can be employed in the same context. It is important
to emphasize the major difference between the approaches. These studies aim to distinguish
between different epochs, and all the example of the same class are derived from the same
epoch. On contrary we examine the similarities as well as differences between certain epochs
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in our classification task. All the epochs (or states) are divided into the two groups, and
difference between the two groups as well as the similarity between the examples in the same
group determine the algorithm precision. The examples from the same class could form several
clusters, corresponding to certain epochs, but these clusters have to be sufficiently different
from the ones belonging to the opposite class.

Most of these studies use the state classification to improve the precision of movement
direction estimation, and the obtained precision is reported in that context. In [84] the
activity of the states equivalent to our CT, Memory and RTh epochs is demonstrated, and
the three protocols for state and target estimation are proposed. The method comparable to
our study required recognizing 500 milliseconds of Memory activity to release a ’go’ signal,
and the state classification precision was almost 100% when using 40 cells, and around 90%
for 10 cells. Also, [79] reports 10% error in the classification of five states when using 50 units.
The same precision is obtained for 20 LFP channels, but this result cannot be compared to our
study. In [2], the precision of state classification is not reported alone, but in combination with
target estimation. The four strategies are proposed and the classification precision together
with the latency is reported for them.

The study presented here demonstrates the motor intention identification with approxi-
mately 25% to 35% error for one and 18% to 30% for the other database, using the epoch
classification presented before. The obtained results are inferior to the numbers presented in
other studies, but several differences have to be taken into account in this comparison. The
difference related to the problem definition is already stated, instead of classifying neural ac-
tivity collected during certain epochs, we aim to observe the similarity between several epochs
that we refer to as motor intention. Additionally, the results from the literature demonstrate
a sufficiently big difference between certain epochs like CT, Memory, MTh, MTe or CT, Mem-
ory and RTh that can be detected by a classifier. In our work, we consider Memory, RTh,
RTe, MTh and MTe in the same class, in spite of the evident differences, in order to examine
weather all of them share the same information about the motor intention. Consequently,
the problem proposed here is more difficult since it attempts to identify just one information
encoded in the data out of many others present during a reaching task. The study of error dis-
tribution across experimental epochs shows how well each of the included epochs contributes
to motor intention encoding.

The number of cells used in classification also plays an important role, as already described.
The [84] reports 10% error when estimating three states (CT, Memory and RTh in reaching
tasks) from only 10 cells, and [79] states that 50 units are needed for the similar prediction
of five states, CT, Memory for reach, Memory for saccade, MTh and MTe. In our study we
combine all five listed epochs, together with the THT epoch from reaches and saccades, and
the four additional tasks. Therefore, it is possible that we need more than 50 cells for obtaining
a comparable performance, the assumption that cannot be tested due to the limited size of
considered populations. The second referred study, [79], combines the recordings obtained
sequentially, from different positions and recording sessions, in the same task. We adopted
a different approach, to use only the data recorded simultanecously in the same decoding
session. The alternative approach can be tested here as well, but it does not guarantee a
better performance. The motor intention considered here is a high level neural signal, and
it is not sure whether we can compare its influence on the neural activity obtained during
different sessions, performed in different days.

The integration time used for calculating rates is also an important parameter in these
studies. Its influence is examined in details in the context of target position estimation, but the
conclusions can be extended to extraction of any motor parameter from the neural recordings.
The [77] demonstrates the increase of classification precision for around 25% when increasing
the window size from 250 to 450 milliseconds. There, the neural activity from the Memory
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epoch is used to predict movement toward one of eight targets. The increase in classification
precision for the increasing window size is also demonstrated here, and presented on the
Figure 4.6. It is shown that relatively long windows should be used in order to obtain good
precision. Some of the literature propose using 100 milliseconds [100, 16] or 200 milliseconds
[2] windows for calculating rates from the activity of various cortex regions, although the
results using only 20 milliseconds for the motor cortex cells are reported [39]. The studies
related to the parietal cortex use 250 and 500 milliseconds activity [84], and [65] used 900
milliseconds, the constraint imposed by a small number of cells. Here, only 8 highly tuned cells
are employed for classification. This number is comparable to our study where we used up to
14 cells, but they are randomly chosen which is an additional disadvantage. The employed
window of 900 milliseconds gave good results in our study as well.

The presented analysis is done in an open-loop manner since the entire database was
recorded prior to the analysis. The report [16] shows the reorganization of cortical activity
in the closed-loop tests with respect to the open-loop ones. The closed-loop stands for ’brain
control’” tests where the cursor position is controlled directly from cortical activity, and the
open-loop stands for the off-line estimation of target/trajectory from the recordings collected
while the monkey performed natural movements. The paper [83] demonstrates the successful
trajectory estimation from small populations using linear filters, the result explained by neural
activity adaptation to the closed-loop tests. Therefore, we may hypothesize that repeating
the presented study in a closed-loop tests can improve the performance even for a smaller
recorded population.

Finally, the number of trials in the training data set should be compared. Most of the
methods for target estimation use only a segment of neural activity, often from Memory
epoch. This way, every experimental trial results in one example in the training set for the
classifier. In the state estimation studies, several segments of the same trial corresponding
to different epoch are employed, which is more similar to our approach. In [65] the first
30 trials in each daily session were used for training of a target classifier, while [78| uses
80-100 trials for each of the studied conditions. In [84] 8-16 trials per task and direction
are executed. In this work, as already illustrated on the Figure 2.10, the first six tasks are
executed four times for eight target positions, and the seventh one three times for sixteen
targets. In total, it results in 240 trials in the same file, 80% of which is used for training.
The number of trials per experimental condition is somewhat smaller in this study than in the
examples from the literature. In general, we combine many experimental conditions, tasks
and epochs, in the same classification task, and it is important to represent each of them
well in the training set. Increasing the number of trials per condition can improve the overall
classification performance.

The general conclusion of this study is that the proposed classification problem, namely,
distinguishing tasks, as well as distinguishing epochs within the same recording session, based
on the presence/absence of intention for making a movement, can be solved by a traditional
SVM algorithm with a satisfactory performance. In general, a bigger set of simultanecously
recorded spike trains gives a better performance, but the relation between the number of
recordings and the algorithm performance is not straightforward. We interpret this observa-
tion by the different roles in information processing played by different neurons. Some neurons
play a more important role in encoding motor intention than others. Spike trains from those
neurons are more efficient in building classifiers by machine learning methods than spike trains
from other neurons. On the physiological side, the assumption that posterior parietal cortex
encodes motor intention finds additional support from the results of this study.
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Chapter 5

Artificial neural network

In this chapter we present an artificial neural network constructed to mimic some aspects of
the experiments described in the first chapter. The model represents a moderate size network
of leaky integrate and fire neurons, constructed following the recurrent neural network, or
echo state network paradigm. The network inputs mimic the experiments presented in the
first chapter, and the output spike trains are used in the similar classification procedure as
the experimental data. First, the two selected experiments, RF and NGO, are modeled by
a set of nine signals representing the eight targets and the central fixation light. They are
converted into regular spikes and used as the inputs into a network that can 'memorize’ the
instructions for a limited period of time. The evoked spiking activity from the layer of neurons
is analyzed similarly as the data collected during the experiments on monkeys. The goal was
to identify the presence and absence of activity following the combination of input signals that
indicate a movement. In the context of this model we call it the 'motor intention’, although
a relation with the signal obtained from the experimental data cannot be established for such
a simplified model. The aim of this study is not to evoke motor intention in an artificial
network using the appropriate combination of inputs. The mechanisms that create motor
intention in the cortex, or in its parietal region are not completely examined and claiming
that a limited knowledge combined with a limited size model produces the same signal as the
complex biological system would be very hypothetical. Instead, our goal was to formulate a
simple model which behavior resembles that of the biological system and can be used to test
some relevant parameters listed in the previous chapter. Precisely, we want to demonstrate the
improvement of the classification precision when the number of considered artificial neurons
increases. This question has arisen as a consequence of decoding motor intention from small
sets of simultaneously recorded spike trains. The results presented here support the intuition
that the same method applied for sufficiently big populations result in good classification of
the signal of interest. Also, the influence of integration time used to calculate spike rates is
assessed.

This chapter is organized in the following way. In the Section 5.1 some basic facts re-
garding the RNN theory are listed, together with some examples of modeling parietal cortex
on different level of details, reported in the literature. The Section 5.2 describes the building
blocks of the model, the neuron and synapse models, together with the network description,
emphasizing the parameters of interest. An important step in building the model is the for-
malization of the selected experimental tasks described in the Section 5.3. In the Sections 5.4
and 5.5 the procedure for designing appropriate networks is described, and the classification
task and results are described in the Section 5.6. Finally, we will conclude with the Section
5.7.
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5.1 Background: RNN and neuronal network models

At the beginning of this chapter a short description of the concept of recurrent networks
(RNN) and liquid state machines (LSM) is presented. This computational paradigm was
introduced in the context of spiking networks in [54, 53, 42, 37|, while [40] develops the same
concept for the networks with analog nodes, so called echo state networks (ESN). We focus
on the first type of networks, that will be implemented in the model studied here. Several
characteristic of the LSM make it a good model for the neural computations in the brain. The
real-time computing is feasible here, due to the ’liquid states’ paradigm. In other words, the
network is not required to reach a stable state, or to switch between stable states in order to
complete the certain task. Instead, it is constantly in transition, following the input signals.
This enables fast computing that can be related to the functions of the cortex. Another
characteristic that relates the LSM with the cortex is the parallelism of computations. It
is evident that the brain can perform a huge amount of operations in parallel, and under
certain conditions the LSM can execute multiple operations. The mentioned condition is first
recipe for generating such networks, the imposed connectivity structure among the nodes has
to be sufficiently sparse to enables diversity inside the network. Having strong coupling in
the system will lead to synchronization of some of the network nodes, effectively decreasing
the number of computational units able to contribute to different tasks. Finally, the short-
term memory is typically observed in these networks. The input signals affect the adjacent
nodes, and they convey the information further through the network. Each node represents a
dynamical system of certain complexity, and its internal states become affected by the input
signals. This way, the inputs are 'memorized’ in the network states for a certain period of
time, dependent on the network parameters choice.

Another specific issue related to the LSM and ESN is the adopted training procedure.
While the classical machine learning theory applied for the recurrent neural networks proposes
the complex and computationally demanding backpropagation algorithm, here the training is
reduced to solving a linear regression problem. Instead of an additional modification of the
network parameters to fit the data, we assume that the network nodes modify their states
according to the network inputs, and since the information about the inputs is already stored,
the remaining task is to tune the outputs to represent the input-output function properly.
Therefore, the training procedure is reduced to solving a linear regression problem, and the
precise explanation of one such task will be presented in the Section 5.5.2.

Several implementations of the LIF model are reported in the literature. In [37] a relatively
detailed model of a cortical column is implemented using the LIF concept, while in [42]
somewhat different task is posed for a similar system. The LIF is generated and trained to
mimic the motor cortex and operate a 2-joint robot arm.

Although we cannot provide any biological explanation for the model, nor assign it to any
particular cortex region, it is useful to refer to several prominent studies of the parietal cortex
mechanisms through the models. The examples that will be listed here should illustrate the
variety of models used to explain particular processes and characteristics observed through
the experimental work on the parietal cortex. We will not attempt to provide an extensive
overview of such studies, the only motive behind this is to illustrate several attempts to explain
experimental observations in the parietal cortex through appropriately constructed models.

In [75] a relatively simple model of network is used to illustrate a possible mechanism that
leads to gain field generation phenomenon present in the parietal cortex. A spike rates model
for neurons, or rather small neuronal ensembles, is implemented. Each connection between
two neurons is represented as a combination of Gaussian functions that depend of he preferred
directions of the connected cells. This study demonstrates the rise of gain field in a network
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of this type, hypothesizing that the recurrent connections in combination with directional
tuning generate the phenomenon of interest.

One another study [102] attempts to explain the integration of sensory inputs of various
modalities in the parietal cortex through the appearance of gain fields. The experiments
illustrate that this region is influenced by various signals, like eye-related, hand-related, audio
and other signals, that are initially coded in different coordinate systems. An interesting
question arising from the experimental studies is how are the inputs transformed from one to
another coordinate system, and in which system they are represented in the PC. This study
analyzed several models consisting of three layers and receiving signals in eye-centered, head-
centered of body-centered coordinates. The report analyzes and compares the differences in
models evoked by different inputs.

Unlike these two studies using the minimal description for the network elements, in [23] a
detailed model is presented. This report examines the influence of the synaptic receptor, NM-
DAR and AMPAR and GABAaRs, to several processes in the parietal cortex, like population
directional tuning, memory and influence of distractors, and others.

To summarize, the researchers proposed various models to study the processes observed
in the parietal cortex. The level of details in the models goes from a simple rate model, to
the complex Hodgkin-Huxley model, and from static synapses described by a single constant,
to biologically plausible synapse models. The general principle was to implement as simple
as possible model that can still manifest the property of interest.

In this report we adopted the LSM for two reasons, related to the parameters which
influence we wanted to examine. First, for studying the population size effect, we needed
a network of neurons that communicate among themselves but exhibit different behavior in
relation to the examined problem. For assessing the window size influence, we needed a
spiking network which possesses a certain memory. For a network that can solve the given
problem in one step, there is no need to integrate outputs over a certain time interval.

5.2 Building elements

In this section the elements of the adopted model are described, and the corresponding no-
tation, used throughout the entire chapter, will be introduced. A simplified network model
is implemented in this study for several reasons. First, we aim to model some functional
properties of the cortex region, and the obtained neural activity during reaching and saccadic
movements. The biological system, the cortex network, involved in such tasks is extremely
complex, and although its certain characteristics are known many other mechanisms are still
an object of experimental studies, as described in the first chapter. We do not aim to assess
all its properties, but just some of its functionality relevant in this context, in order to test
the parameters that cannot be analyzed otherwise. The experiments representation is also
very simplified and contains only the basic feature of the real experiments. Since we already
approximate many characteristics of the system of interest, and the input signals, there is
no reason to implement detailed model for cells and synapses. For cells, we use the leaky
integrate and fire (LIF) model, and for the synapses pulse coupling that includes the synaptic
weight, the propagation delay, and the rise and decay times for the pulse.

5.2.1 LIF neuron model

The leaky integrate and fire neuron is implemented according to the expressions given in
[35, 24]. It captures only the cell membrane potential dynamic of the real neurons, and does
not include any description of the ion channels or ion fluctuation through the cell membrane.
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Therefore this model can produce action potentials but does not contain details of the mech-
anisms behind it. Mathematically, it is described by one dynamic equation for the membrane
potential, and the membrane resetting condition. Such neuron models, described by a single
variable, are also called the single-compartment models. The entire cell membrane is repre-
sented as a parallel connection of a resistor and a capacitor, and the mathematical expression
for that is:

du(t) , I¢
= —i"(t) + =
dt ORS

where ¢ represents the membrane capacity, u(t) is the membrane potential, i"(¢) the
membrane current expressed as the current per unit area, I° the external current divided with
the total surface of the neuron A. In the LIF model i is a single passive leakage term, a
function of membrane potential. Therefore, the equation becomes

du(t ty—u"  I°
ndut) _ ) w10
dt rm A
where ™ is the membrane resistance and u” the resting potential. Finally, the same
equation can be expressed in the form that will be further used in this study

du(t
T di ) = —u(t) +u" + R™I¢ (5.1)
7™ = Mr™ is the membrane time constant and R™ = A-r™ the total membrane resistance.

The membrane potential can take any value from the interval [u", uth], i.e. between the resting
and threshold potential. When it reaches the threshold value, an action potential is generated
and the membrane potential is returned to its resting state, the condition formally expressed

as:

if u(t*) = u' > u(t e t*, t* +77)) =", tf =1t" (5.2)

The spike times will be further denoted as ¢/ throughout this text. The time constant
7" represents the refractory time, the interval of time after the release of an action potential
while the cell remains in the resting state, and the membrane potential cannot increase.

For a constant input current /¢ = const. and assuming a cell in the resting state at the
time ¢ = 0, the membrane potential as a function of time can be evaluated analytically

u(t) =" + R™I° <1 - e—f/“”)

and the time of the next action potential is given as t/ = —7™In (1 - “;};L_IZT)

5.2.2 Synapse model

Following the same argument as before, the model for synaptic coupling is also simplified and
so called pulse-coupling in adopted. There, the only parameters included are the synaptic
weight, the propagation delay, and the pulse rise and decay time constants for each action
potential, as described in [35].

The total input current for a cell 7 is given with the expression:

Ii(t) = wh - ay(t —t]) (5.3)
5

This function is obtained as a summation of all the synaptic currents coming to the cell
1 from the cells connected to it. The time of the f-th spike for the cell j is denoted as tf ,
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and wlfj is the synaptic weight at the time tj-v . The function a;;(t — tf ) approximates the

post-synaptic current increase as a result of the incoming spike at tf from the cell j, and it is
given as

t—Ay; t=Ay;
q =T T2
[6 . @(t — Aij)

aij(t): s,1 5,2
ij g

The model parameters are the pulse rise time constant Tfj’l, the decay time constant 7'%’2,

the synaptic propagation delay A;;, and ¢, the normalization constant calculated to obtain 1
as the maximal value of a(-). The notation ©(-) is a Heaviside function which indicates that
for a presynaptic spike at tf , the postsynaptic potential appears at tf + Ay

The last expression can be simplified if we assume that the two pulse constants, the rising
and the decay time, are similar and replace them with one constant Tf‘j The expression used
in the model presented in this section is:

t_AfL - sij
e T @(t — AU) (54)

ai(t) =q-
The notation wzfj in the Equation 5.3 indicates that the synaptic weight can be a function
of the previous spikes. According to the conclusions presented in [66, 55|, and synaptic model
implemented in the network simulation tool in [67], this parameter can change as a function
of all the spikes appearing at the synapse until the considered moment in time. This should
not be mistaken for the long-term synaptic plasticity which should be additionally modeled
if needed. The model, named dynamical synapse, increases the variability of synaptic inputs
and corresponds better to the experimental evidences. As described in [55, 96] instead of using
the constant synaptic weight w;;, i.e. the constant contribution of each presynaptic spike to
the cell membrane potential, this parameter is the function of all the previous transmitted
spikes up to the time ¢/, and defined as

wlszwij'Uf'Rf

Here, w;; represents the absolute synaptic efficacy, i.e. the synaptic weight in a situation
when all the ’resources’ of a connection are active and can contribute to the increase of the
cell membrane potential following a presynaptic action potential. The function Uf describes
a fraction of available 'resources’ responding to the presynaptic spike at ¢/, and depends on
the previous spikes as

Ul =00 U1 - U0)e AT

where U? gives the fraction of 'resources’ reacting to the first spike in the set, Atf =
t/ — /=1 is the inter spike interval, and 7Y the decay time constant for U/. Finally, the R/
is the fraction of the synaptic 'resources’ remaining available after the presynaptic spike at
time t/, and depends on the previous presynaptic spikes as

RN =14 (RI U/ 1RV 1) e /T7,

where 77 represents the recovery time after the inactivation caused by a presynaptic action
potential.

In order to keep the model as simple as possible, all the synaptic weights are constant in
our model. The additional complexity introduced by dynamical synapses (i.e. two dynamical
equations for each connection) will not contribute significantly to our model, already simplified
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in many aspects. Further more, the effect we want to demonstrate can be observed in the
system with constant weights, without using the more realistic synapses. We will keep the
notation w;; in the following sections to emphasize the use of constant weights.

5.2.3 Network

The entire network consists of NV cells, and each cell i is described by the following expression:

du;(t
i)

— m it — 1! € n ,
Mg = ) R D wian(t = )+ IE() + I (1) + J; (5.5)

Jf
In addition to the synaptic current, the direct external current 7¢(¢) and noise I"(t) are
included. The last term J; represents the internal current in the model which provides a slow
spiking of the cell, even in the absence of synaptic and other inputs.
Therefore, the entire network as a collection of cells is represented as N = {C;},_; n-
Each cell C; with all its input currents can be described by one dynamical equation and a set
of parameters

Cz‘ = {Tima Rzna Sia If(t)? I:l(t)’ JZ TZ‘T u:‘" uih} (56)

where 7" represents the refractory time, and ] and uﬁh the resting state and the threshold
potentials, as before. The set of incoming synapses to the neuron ¢ depends on the parameters

Si = {wij, 75, Az‘j}jzluN- (5.7)

5.3 Formalization of the behavioral tasks

Before describing the implemented model in detail, it is important to explain the model inputs
and outputs derived from the original experiments presented in the first chapter. As already
stated, this model aims to mimic some relevant aspects of the experiments and, following
that requirement, its inputs are created to resemble the control signals in the experiments.
The minimal subset of tasks needed for modeling the signals of interest is employed, only two
tasks are defined and presented at the network input.

Input signals: Two input-output protocols are defined, one that corresponds to the
experiments involving a movement, and one for the tasks that forbid every movement. In
other words, the two contrasted tasks are included, one that should demonstrate our substitute
signal for 'motor intention’, and the other that exhibits no such signals. As already mentioned,
the nine model inputs are available, eight for the target positions and one for the central
light /go signal.

The illustration of the two protocols is given on the upper panels on the Figure 5.1. On the
left task, the red pulse represents the ’go’ signal, and the succeeding black one demonstrates
the target direction. The green pulse at the bottom of the panel is the desired output, the
‘motor intention’ that should appear shortly after the target presentation. The network should
memorize the instruction to move, and reacts immediately after detecting the pulse on any
of the input channels for targets. On the left panel, the red pulse is not presented at the
beginning of the trial, instead, the target pulse appears alone, and it should not evoke the
increase in the output activity. The lower panel presents a series of typical input signals, the
red CT channel is the 'go’ signal as before, and the eight targets are presented in the remaining
eight rows. The beginning and duration of the pulses is randomly chosen, according to the

90



procedure that will be described later, in order to impose enough variability in the training
and test sets. The interval between the two successive trials have to remain within certain
limits.

RF TASK NGO TASK
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Figure 5.1: Input-output protocol and typical inputs to the model. Top - the equivalent
experimental tasks presented along with the set of signals defining the two protocols. Left
panel - red line is the 'go’ signal, it should be memorized until the target signal (black)
appears. The green output, the ‘'motor intention’ is shown on the bottom of the panel. Right
- the ’go’ signal is absent and the target appears alone. This combination should not generate
the increasing output activity. Central panel - a typical series of input signals, top row is the
‘g0’ signal (marked as CT), and the inputs corresponding to the eight targets are given below.

Tasks: The two described protocols can be compared to the RF and NGO tasks. The first
of them, RF, is selected among the tasks that require a movement, while the NGO represents
the absence of movements. The choice of RF among the five candidate tasks is motivated
by several arguments. As before, we kept the elements of the model as simple as possible
but still sufficient to demonstrate the characteristics of interest. Following this principle, the
protocol that initiates a movement needs only three segments - the interval of waiting for
the instructions, the ’go’ signal followed by the movement execution, and the final waiting
phase. The type of movement executed after the ’go’ signal is irrelevant here. An abstract
concept of movement, the motor intention, is required in this context rather than the actual
effector activity. The initial step in the protocols can be related to the CT, while RTh and
MTh correspond to the interval after the end of the 'go’ signal and the beginning of the target
signal. The THT corresponds to the end of the target signal and the decrease in the output
activity. In the second protocol, the target presentation can be related to the IS signal in
NGO, and the following time interval corresponds to the Memory and THT.
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At the end, several observations related to the choice of input-output protocols should
be emphasized. Although we defined the first pulse as the ’go’ signal and the second as the
target position, the network likely 'perceives’ them in the opposite way. The first pulse is the
information about the 'movement’ that should be memorized, and the target signal serves as
the instruction to ’go’, i.e. to increase the output activity. Although these inputs and the
original experiments can be related, as already described, some differences are evident. In
the experiments, the central light indicates the beginning of the task followed by the target
appearance. This sequence is presented for both, RF and NGO tasks, not just the first one.
What distinguishes them is the color of the presented target, that indicates the executed task,
i.e. the required activity after the target presentation. Indicating the color in this context
is not practical, instead, the information of interest should be indicated by the presence or
absence of certain signals. Among the two available signals, the CT and the target, we have
chosen to alter the first of them. Using the target as the 'go’ cue will not require any memory
for correct execution of the tasks, the summation of all the target inputs will be sufficient
for generating the right output. Still, the presented task is not particularly complex, but is
sufficient for demonstrating the effect of interest.

Finally, the justification for using a network in this context should be presented. Clearly,
we needed a network in order to analyze the influence of the population size, but some
requirements for the task presented to the network have to be satisfied. In other words, a
single cell should not be sufficient for reproducing the input-output dependency and a network
should be needed. Here, a single cell is theoretically able to solve the task if we allow any
choice of model parameters. Therefore, we set the parameter 7" in such a way that a single
cell cannot do the task, i.e. the cell memory is not sufficient for generating the right output.

5.4 Model and implementation details

The complete model is presented on the Figure 5.2, the series of pulses illustrated on the
Figure 5.1 is brought to the first layer of the network, denoted as ’conversion of signals’ on
the figure. Its outputs are further transmitted to the hidden layer, the recurrent network.
Model output on the figure represents all the spike trains collected from the neurons of the
hidden layer. They represents the 'recorded database of spike trains’ for this model. They
are first examined to chose the best generated models, and then, the outputs of those models
are tested using the same methods as described for the experimental data.

5.4.1 Input layer

The first layer represents a simple translator from the pulses to the regular spike trains, that
are more suitable as the inputs into the main network layer. The nine excitatory LIF neurons
are placed in the input layer, each converting one of the input signals. The cells of this layer
are described using the expression (5.1) for the LIF neurons, and the set of parameters

sz = {Tima Rina wvgn,e’ Iie(t)v T‘T’m) u'r“,z'n) uz?h,in}’ Vi=1.9. (58)

(2 3 3 3

These parameters are set to produce regular spike trains with frequency close to the
theoretical maximum when a current is present at the input.

The inputs in form of spike trains are further transmitted into the recurrent network of
the middle layer. The synapses between these two layers are given with the equation (5.4)
and the parameters

in,RNN __ in s
S = {wij, T

ij> Aij}z‘:1..N,j:1..9 : (5.9)
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Figure 5.2: The scheme of the model: the first layer (left most) converts the input pulses into
spike trains, the recurrent network of LIF neurons (middle) memorizes the inputs and produces
a collection of spike trains on the output. Those spike trains are used in the classification
tasks similar to those performed for the experimental data.

5.4.2 Hidden layer/RNN

The second layer represents a recurrent neural network (RNN) that exhibits a short-term
memory property necessary for solving the presented problem.

The total set of N neurons is divided into Ng excitatory and Ny inhibitory cells. Each of
them is modeled as a LIF neuron, but the parameters are different. The nodes are intercon-
nected in the random fashion, using the pulse coupling model described before. The network
receives inputs from the first conversion layer, and its outputs are used for estimating the
network ’quality’ according to some criteria that will be described later, and for examining
the analysis methods used on the experimental data, as well. The set of parameters that
defines the layer includes the two types of cells, the excitatory C¥ and the inhibitory C! ones.
The recurrent connections inside the hidden layer can be excitatory-excitatory, inhibitory-
inhibitory, or between an excitatory and an inhibitory cell. The choice of the parameters
depends on weather they transfer signals from excitatory or from inhibitory cells. The in-
coming connections from the input layer are already described in the previous section, and
the output connections depends on the analysis method and will be described later. The
parameters defining the model are

cr = {m RE,SESLSMN ), gE, 7w wl (5.10)
ST o= {wfj, e, A%}jzl..Nz’ z € {B,1}, ¥i=1.N,. (5.11)

A particularly important point in developing this type of networks is the imposed connec-
tivity structure. As proposed in the literature, the sparse matrix of connections is required to
ensure a sufficient diversity inside the network. Here, each node is connected to around 20%
other, randomly chosen, nodes in the network.

5.4.3 Output

The linear output layer was first used with the described model in order to test the network
performance in a rigorous fashion and defines the criteria for the network ’quality’. The eight
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outputs are calculated from the activity of the hidden layer, one for each target position using
the expressions

u?ut _ Rout Z out out t B tf) (512)
7Aout
out out t- AQ@ T Out out
CY,L] (t) = q We Tig @(t — Al] ) (513)

v

The parameters defining the layer are given with these equations.

5.5 Tuning and selection of networks

So far, the model is defined as a three layer network with nodes in the form of LIF neurons,
and synapses modeled as the pulse coupling. The set of free parameters for each of the
layers is just listed in the previous section, and the full description of the model is given in
the Appendices (A.2, A.3, A.4). Most of these parameters are defined in advance, in the
process of network initialization. They are either fixed values, or are chosen from a uniform
or Gaussian distribution (depending on the parameter), with the properly chosen parameters.
This corresponds to the liquid state machine paradigm for training the RNN. According to
that, the parameters of the hidden layer are selected in advance, in such a way that the network
posses some generally good properties. No training in the hidden layer is performed. The only
coefficients calculated in the training step are in the output layer. The choice of the input
and hidden layer parameters is described in details in the Appendix A.5, according to the
procedure proposed in [14]. Here, we will describe the procedure for selecting the appropriate
networks for further tests corresponding to those described in the previous chapters.

The software used in the presented study is either written in Matlab, or as a combination
of the Matlab code and the functions provided in the publicly available software package
CSIM, described in details in [36], and available at [1]. All the listed equations are discretized
with the 1 millisecond time step, using the Euler method for numerical integration.

5.5.1 Randomly generated networks and selection criteria

As already described, the majority of network parameters are set in advance, according to
the procedure described in the appendices. This design method aims to develop networks
with good properties in general, i.e. with enough capacity to learn various tasks. The key
step in this process is the choice of internal connectivities in the network of the hidden
layer. Although the literature proposes some strategies for improving this choice we will use
the randomly selection of the connectivity structure in this study. As described, the only
requirement for the network is a sufficiently sparse topology. Every node in the network has
to be connected to around 20% of other nodes, that are chosen randomly from the network.
For examples, in a network of 500 cells, each of them will have 10 connections. This way, the
obtained topology is random, but sufficiently sparse to ensure diversity in the dynamics of
the nodes.

Similarly, every input layer node is connected to around 20% of the middle layer nodes.
This way, only a small number of the RNN nodes receives the information about one particular
input, and it is further spread across the network through the internal connections. On
contrary, the eight output nodes are connected to all the ones in the middle layer. The a(-)
function plays the role of the kernel that converts pulses from one node into a continuous
signal, then, such signals are summed up for all the nodes in the middle layer.
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As described in the Appendix (A.5), the majority of network parameters are chosen to be
either constants, or generated from some distribution of known parameters. The only param-
eters that have to be tuned later are the weights of the output layer connections, and W, g,
the parameter that defines the mean and variance of the Gaussian distribution used to obtain
the weights connections of the excitatory and inhibitory cells. This parameter, effectively
tunes the strength of these weights, and it will be chosen through the cross-validation.

Instead of tuning the hidden layer parameters through some iterative procedure, we will
generate a random network in such a way to improve the chances for good outcome without
doing any training. The output coefficients are set in the training phase, together with the
value for W,,g. In the test phase, the eight outputs are calculated for the new set of inputs
and the old coefficients, and the number of correct outputs will be counted. The ’correct’
outputs are determined according to the criteria that will be described in what follows.

This procedure can be summarized in four steps:

e Initialize the network by choosing all the parameters of the input and hidden layer,
and the time constants of the output layer. Select the parameter W, g as well, in a
systematic way, in order to obtain the best choice for the parameter in a series of tests.

e (Calculate the remaining output coefficients by solving the linear regression, the proce-
dure that will be described in the next section.

e (Calculate the network outputs for the new set of inputs.

e Evaluate the mismatch between each output signal and the target signal. According
to the errors obtained for the eight outputs, and the criteria that determines the al-
lowed number of errors, select a group of 100 representative networks to be used in the
classification tests.

5.5.2 Training phase

Writing the equation (5.13) in the discrete time, we obtain the following expression, also
written in the vector form

uty) = Y wiag(t, —t])
Jf
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Written for the last d samples, this equation becomes
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where the matrix K; contains all the kernel functions evaluated for the spike trains ob-

u

tained in the considered interval in time

Zﬁaﬂ(tn—t;‘) Zjﬁfaﬂ(tn_dﬂ—t;”)
K; =

Zﬁaw(tn—t;) zjﬁfam(tn_dﬂ—t;f)

95



Denote the target output for the node i as y;(¢). This corresponds to the signals marked
with green on the Figure 5.1. Suppose we use the last d samples for the training. As already
stated, the considered model is discretized, together with its input, output and target signals.
The d last samples of the target signal can be represented as [y;(tn) yi(tn1 .. yi(t — d)]”.
Then, the set of output coefficients can be calculated as

wi Yi(tn)

wit | _ L. | viltar)
7

win' Yi(tn—d+1)

which gives the expression for the calculation of output weight coefficients.

Test phase: The coefficients obtained during training are used to estimate the model
outputs for a new set of input signals. Typically the outputs of the networks are very irregular,
and, in order to estimate weather they correspond to the expected 'pulses’ or not, the energy
of the output was calculated during the interval of time where the pulse was expected. The
output was considered to show a pulse whenever that energy exceeded the threshold value.
For a series of input ’tasks’, the number of output 'pulses’ was calculated and the number
of mismatches, with respect to the target signal. If this mismatch does not exceed 10%, the
output is considered to work correctly.

The entire test phase included generation of many random networks and testing the num-
ber of correct outputs for each of them. This task with the linear outputs is not the ultimate
goal of this study. Instead the equivalent classification as the one presented for the experi-
mental data is performed. The procedure described here was used for network selection only.
The idea was to test all the randomly generated networks under somewhat different conditions
than for the main classification task, and chose the best among them that way. Also, since
the procedure required generating and testing many networks, it was suitable to work with a
method faster than SVM. The set of 200 networks is obtained this way. The tested network
size was 100 and 500 cells.

The remaining network parameter W,,p was systematically chosen in advance, and for
each tested value the percentage of selected among all the generated networks was calculated.
The results are summarized in the Table 5.1 in order to illustrate the efficiency of the method,
and the total number of generated networks needed to obtain the selected 200.

Wk 0.001 | 0.003 | 0.005 | 0.01 | 0.015 | 0.02
% of selected networks | 4.5 25 49 29 21 7

Table 5.1: The percent of selected networks among all the generated ones, as a function of
the average connection strength in the hidden layer, W,,g. Illustration of the efficiency of
the procedure, and the number of networks that has to be generated in order to have the 200
selections.

5.6 Tasks classification

For the set of 200 networks, obtained using the procedure described in the previous section,
the similar classification task was imposed as in the case of experimental data analysis. The
goal was to test the influence of some parameters, particularly the number of neurons, on
the classification precision. The influence of the window length was also assessed, but the

96



obtained results revealed certain problems of the model than will be discussed later. For
repeating these tests, the output linear layer was removed, and the spiking activity from
the middle recurrent network was available. No particular tuning of the system parameters
was done in order to ensure that this activity corresponds to the target, or mimic the motor
intention. Still, keeping the 'good’ set of parameters selected in the previous step guarantees
good performance here as well.

5.6.1 Binary classification

The last step in the model study aims to mimic the method applied for the analysis of
the experimental data. The spike trains collected from the recurrent neural network are
converted into spike rates and the vectors of rates obtained for the whole set or a portion
of the set of simulated artificial neurons. The rate vectors are used for training and testing
an SVM type classifier, as before. The increasing network activity during the combination
of pulses indicating a 'movement’ should be detected from the rates. This increasing activity
is the equivalent of 'motor intention’ in our model. As another parallel to the experimental
data study, the two input pulses will be called ’epochs’, since they are created to mimic the
experimental epochs CT, and RTh-MTh.

In order to repeat the two modes of data analysis presented before, the two procedures for
calculating rates are applied, as shown on the Figure 5.3. In the first of them (second row on
the figure), the integration time starts immediately after the rising edge of the target pulse
and lasts for a certain interval of time defined in advance. In some of the tests, only the first W
milliseconds after the start of the target signal were used, similarly as in the analysis presented
in |77, 92]. Also, the entire duration of the ’epoch’ was used for calculating rates, which
corresponds to our first data analysis method that classifies experimental epochs according
to the presence and absence of motor intention. Alternatively, the rates are calculated using
the window of fixed size and dividing each epoch duration into the maximal number of non-
overlapping segments, which is similar to our second data analysis method. In other words,
three options for the integration time are applied, two of them repeating the method used in
the previous tests on the experimental data, and one that was presented in the literature.

—

INPUTS
RATES
CALCULATION 1
N O T A T L e
RV1 RV1
CALCULATION 2
8 A T T T
RV1 RV2 RV3 RV1 RV2

Figure 5.3: The two methods to calculate rates. Upper panels, the two types of input signals
used in the model. Second row, the first method to calculate rates, corresponds to the epoch
classification studied one the experimental data. Bottom row, the second method similar to
the second method used for the experimental data.
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The obtained rate vectors are used as the inputs to the classifier, as before. In the training
phase, the first set of such data is used to tune the free parameters of the SVM algorithm,
o and C. Here, the simpler grid search method is applied along with the cross-validation.
Then, the second set of data is generated and used to test the performance of the classifier.

The influence of two algorithm parameters is examined in this series of tests, the number
of cells used for the classification, and the size of the window employed to calculate rates.
Each of the performed tests can be summarized as follows,

Select one of the generated 200 networks, each containing 100 cells,

Chose the window size and the method for calculating spike rates; the tested values are
W e {10, 30,50,80} milliseconds,

Chose the percentage of cells in the set that will be used in the analysis, M € {5, 10, 20, 30,50} %.

Select the M % of all the available cells in the set, and for the selected set calculate the
two groups of spike rates, for the training and for the test phase.

Use the training set to obtain the optimal values for the parameters C' and o.

For the optimal classifier obtained, use the test set of rate vectors to evaluate the method
precision.

Repeat the test with the same parameters M and W 100 times to obtain a statistically
valid estimation of the classifier performance.

The method is applied for each of the 200 available networks. For each of them every
value for M is tested. Also, all the listed methods for choosing W are implemented. For each
combination (M, W) a random set of M cells is selected and the rates are calculated for each
of them according to the given method and window length. Every test is repeated 100 times
and the error estimation is obtained as the average over those values. Notice that the window
can be 10, 30,50, 80 milliseconds in these tests. The values for this parameter in the model
are not comparable to the one in the experiments, since it scales with the network coefficients
and is determined by the choice of the network parameters.

5.6.2 Results: Classification precision as a function of population size

In this section the results obtained from the described artificial network study will be pre-
sented. As already described, the 'motor intention’ classification that mimic the analysis of
the experimental data is carried. In fact, the system aims to identify the increase in the
network activity resulting from the combination of input signals that signalize 'motion’. The
goal of the study is not the sole classification of outputs, but examination of the influence
of two parameters, the number of cells in the population used for information decoding, and
the integration time allowed for rates calculation. Therefore, the two parameters were varied
throughout the tests, the number of cells used to calculate inputs for the classifier, and the
window size, W, used for the rates. The number of cells is represented as the percentage of the
total number of cells in the set M, i.e. the portion of the network nodes. These parameters
are tested for all combinations of values listed in the previous section, and using the three
methods for rates calculation - positioning the window right after the start of the target pulse,
using the entire duration of the target pulse (i.e. ’epoch’), and segmenting the pulse with the
sliding window of fixed size, without overlapping.

The Figures 5.4 and 5.5 show the average performance of the classifier for certain values
of M and W. For each pair of them, the 100 repetitions of the same trial is completed and
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mean, maximal and minimal values are shown on the figure. The mean values lay on the
curves shown on the figure, and the corresponding bars mark the maximal and the minimal
value obtained. The only difference between the two figures is the protocol for using window
when calculating rates. In the tests shown on the Figure 5.4 only one rate vector is evaluated
for each trial, the window of fixed length is placed immediately after the start of the target
signal. This way the window collects the ’first reaction’ of the system to the rapid pulse input.
In the second series of tests, window size is still fixed, but it samples the data from the entire
interval corresponding to the target pulse. Therefore, some of the obtained rate vector will
correspond to the beginning of the ’epoch’, but the other will fall at its end.

Considering the window size influence, none of these tests correspond to the experimental
evidences. There, the classification error constantly decreases as the window size increases,
for all the tested windows. On the Figure 5.4, the similar result as in the experimental study
is obtained for larger populations used, for at least 30% of the cells. For a smaller set of cells
the error starts to increase after 50 milliseconds. For every population size, using the entire
epoch instead of its fraction increases the error.
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Figure 5.4: The average results obtained for the selected set of values for M and W. First
method, only one rate vector per task calculated. The window is placed immediately after
the start of the target pulse. The right most value - the result obtained when using the entire
‘epoch’ to calculate rates, added for comparison. Different curves correspond to the different
number of cells used in the analysis. x axis - window size, y axis - the percent of correctly
classified targets.

In the second test shown on the Figure 5.5, the error dependency on the window size is
practically the opposite from expected. The error tends to increase with the window size,
again being the biggest when the entire epoch is considered.

A possible explanation for these results is the network memory. As already stated, the
implemented network possesses the short-term memory and its states (or nodes in this case)
save the input information in certain form for some time. It is possible that in this case, the
epoch duration exceeds the duration of network memory. While at the beginning, an intensive
activity follows the signal appearance, at the end of the window it fades, making the end of the
epoch very different with respect to the beginning. This can explain why are both methods
sensitive to the window increase, and why using the entire epoch deteriorates the results.
The comparison of the two methods shows that the second one outperforms the first one for
the short windows, and becomes similar for the bigger windows. We may assume that this
happen because the network needs certain time to integrate input information, therefore using
only the small initial period of activity gives worst results than using many short windows
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Figure 5.5: The average results obtained for the selected set of values for M and W. Several
rate vectors per trial calculated, a window of fixed length is moved along the target pulse.
The last value in both figures is the result obtained when using the entire ’epoch’ to calculate
rates, the result added for comparison. Different curves correspond to the different number
of cells used in the analysis. x axis - window size, y axis - the percent of correctly classified
targets.

sampling the entire epoch duration, even its ending. For a sufficiently large window, bigger
than the half of the average epoch duration, both methods become the same.
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Figure 5.6: The classification error decreases for the increasing number of cells. Each green
cross is the result obtained from one trial for the fixed window size of 30 milliseconds. For 5
cells the error is around 25%, but for 50 it falls below 10%. x axis - number of cells, y axis -
classification error.

Although the study of the window length influence does not correspond entirely to our
expectations, the error dependency on the population size does. The Figure 5.6 emphasizes
this result. Here, the results are aligned according to the number of cells used in the analysis
(note that since we use networks of 100 nodes, the percentage of cells M is equal to the
number of cells). The green crosses represent the mean values obtained in a series of tests
for the fixed window size of 30 milliseconds. Evidently, for the increasing population size the
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error decreases. Similarly to our experimental results for 5 cells the error is around 25%, but
for 50 cells it falls below 10%.

5.7 Conclusion

In this section we presented an artificial neural network, developed to simulate some selected
characteristics of the experiments presented in the previous chapters. The input signals into
the network mimic two tasks out of seven on the Figure 2.8, approximatively the RF and the
NGO tasks. In the first of them, the initial period is defined by the central light on the screen.
As long as it is on, the monkey should not move or plan a movement. Immediately after it
goes off the target signal appears and the movement starts. In the model that should evoke an
increase in the network activity. In the NGO task, after presentation of the control time and
the target the monkey should stay immobile. In order to avoid using an additional instruction
signal, which is given as a target color in the experiments, the absence of CT should indicate
lack of movement. Of course, in the real experiments, it is necessary to signalize the start of
the trial and prepare the monkey for what follows.

The central part of the model represents the recurrent network in the hidden layer. Such
networks are proposed as the computational paradigm behind the short-term memory in the
brains, and one of the principles for functioning of neural circuits [54, 53, 37]. Without
discussing that assumption, we employed the RNN in this model in order to obtain a spiking
network with the short-term memory. The spiking network was necessary to test the influence
of the number of cells to the classification precision. Similarly, the memory was required for
testing the window size effect on the performance, but also to maintain the minimum of
characteristics of the original system studied.

As demonstrate in the previous section, the precision improvement due to the population
size increase is justified here. This problem was also studied in the context of BCI literature.
Several studies examined the minimal number of cells needed for the extraction of reliable
control signals for the BCI [100, 77]. The presented model does not allow testing the window
size influence reliably. The alternative systems, able to maintain longer memory, and even to
solve the memory delay tasks will be studied in the future.
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Chapter 6

Conclusion

The conclusion obtained from this study are summarized in this chapter. The possible future
developments and additional tests are also listed here.

The central question in this study, the identification of motor intention in the neural
signals, is formulated as a classification problem and solved using a traditional classification
method. The first considered problem is the classification of experimental epochs, based on
the average neural activity in each epoch calculated for a set of simultaneously recorded cells.
The average obtained classification error falls between 25% and 35% of misclassification for
the less successful database, and between 18% and 30% for the better one. Analyzing just
the average performance is not sufficient in this context. The contribution of each epoch,
and the error distribution per epoch has to be taken into account. The obtained results show
good discrimination between the data collected in separate trials, but the identification of the
change in motor intention during the same trial was a more difficult problem. It is expectable
that various other signals influence the entire duration of a trial, and eventually corrupt
the information of interest. Analysis of longer trials, with more than one alteration between
movement and its absence can highlight this question. Similar test for a continuous movement
could reveal interesting results. The systematically better results are obtained during the
tasks and epochs related to the eye movement, and preparation for the eye movement. This
might indicate that the eye-related signals stronger modulate the cell activity in this region.
Generally, area 7 is considered to be a visually dominant region, but the study in [10] revealed
the presence of hand-related as well as combinatorial cells along with the eye-dominant ones.

Throughout this study we included only the simultaneously recorded cells in the same
decoding task. This resulted in small populations of up to 14 cells considered at the same
time. This is also an argument that should be taken into account when evaluating the ob-
tained classification results. It was possible to assess the influence of every single cell in so
small populations. The obtained results reveal the three types of cells with respect to their
contribution to motor intention coding. The majority of cells does not significantly influence
the precision when removed from the set alone. Still, removing a critical number of such cells
leads to degradation in performance. The other type are more important cells, which absence
from the set significantly deteriorates the result. For only a few cells the improvement of
the result was observed after removing the cell. The obtained results might illustrate a dis-
tributed and redundant coding of motor intention in the considered cortex region. Also, the
fact that the majority of cells does not have a negative influence on the classification, might
be a property of the cells alone, or the result of the robustness of the applied algorithm.

Finally, the dependency of the algorithm precision on the window length used to calculate
spike rates is assessed through a separate analysis method. The obtained result is consistent
with the reports in the literature [77]. The classification error decreases with the increasing
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window size. This result cannot be directly compared to the first described study due to the
difference in epoch treatment.

Several additional tests can be proposed in this context. A different segmentation of net-
works can be implemented, for example in such a way to compensate for the great variability in
the epoch size. That would rule out a potential problem that could arise from this difference.

Also, an attempt to analyze the entire population of sequentially recorded cells can be
made. Still a bigger number of available cells is not a guarantee of a successful result. It
is not clear weather the motor intention manifests itself equally in the recordings collected
during different sessions.

The second approach to the same problem is carried through the model study. As already
described, the spiking recurrent network is employed together with the input-output protocol
able to capture some relevant aspect of the experimental tasks. The influence of the two
parameters was examined using the model, the considered population size and the length of
the window used to calculate spike rates. The networks tested here contained 100 and 500
cells, the size imposed by the computational load. Still, it was sufficient to complete the
analysis of interest. A subset of cells of a fixed size was selected randomly from the network,
and the classification was done using only the spike trains corresponding to the selected cells.
The examined populations were comparable or bigger than those used in the data analysis.
The decrease of the classification error was evident for the increasing number of cells. This
result indicates that the similar performance can be expected when using recordings from
more cells in the task of motor intention classification from the experimental data.

For examining the influence of the window length, we needed a network of certain prop-
erties. First, a certain memory was required from the network, as well as in the choice of the
input-output relation. Also, we implemented the spiking neuron model instead of the rate
one, in order to have the same rate computation procedure as in the study of the experimental
data.

The window size tests did not match entirely to our expectations. A probable reason
behind it is the particular choice of network parameters that define too short network memory
for the attempted task. In the context of the population size study, the model gave the
expected behavior, indicating a probable precision improvement for the increasing number of
cells.

The additional developments and tests that can be done for this model are numerous.
First, a more challenging set of tasks can be formulated. It will be interesting to combine
the inputs that mimic different sensory modalities, and observe the mechanisms of their
combination in the network nodes, in order to produce a certain set of signals/actions at the
output. Also, implementing the memory delay task can give a better framework for testing the
window length impact. For example, a similar analysis as the one applied on the experimental
data in [77] can be reproduced.

Many improvements related to the recurrent network itself can be made. The random
generation of recurrent connections is the first and the simplest solution, and better methods
for connectivity network generation can be proposed. An attempt to study the rejected,
together with the accepted networks in the network selection procedure, described in the
previous chapter, can give some indication what makes a network successful in solving the
task of interest.

A more regular network topology can also be tested, for example a standard 3D column
instead of a single layer of neurons. Also, the options for simulating somewhat bigger networks
should be considered.
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Appendix A

Spiking network: model and
parameters tuning

A.1 Input signals

As described in the Section 5.3 the ’experimental tasks’ are described through nine inputs, one
for the control time/’go’ signal, and eight for the eight targets. Each of them is represented
as a pulse with unit amplitude and randomly chosen starting time 7T and duration T,;. Both
of them are selected from a uniform distribution

Ts ~ [Ts1,Ts2], Tg ~ [Tar, Tao)

The duration of each 'task’ (two inputs and a pause) is between 130 and 310 milliseconds.
A series of such ’tasks’ are concatenated to form the inputs in the training and in the test
phase.

A.2 Input layer parameters

Each of the cells from the input layer is modeled as the standard LIF neuron, given as

i dui(t in.c i
PO i) 4w RPN, Vi€, 0.

The resetting condition is defined as before, defining the minimal firing frequency of the
spike trains transfered into the next layer

if Ul(t*) _ u;h,in N ’U,(t e [t*7t* + TZ.?“,in]) _ u’r,in7 tf — *
The set of parameters describing the model are
e Membrane time constant for the input layer: 7.7,
e

e Scaling coefficient for the input currents: wf" ,

e Membrane resistance for the input layer cells Ré",

Input current pulse: I£(t),

Refractory time for the input cells: 7, in

e Membrane potential in the resting state: u;m,

th,in
i .

Threshold potential: u
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A.3 Hidden layer / Recurrent neural network

The two types of cells are represented in this layer, the excitatory and the inhibitory cells, as
usually in the neural networks. The same equations are used for both types of cells
TZ-“T duz (t)
dt
The synaptic input currents from the excitatory and the inhibitory neurons are described
as

= —u;(t) + RY [IF (t) + II (t) + I (t) + I"°(t) + JF], = € {B,I}.

) = Y who(t—t])
Jf

ey ey x
= Zwij'q W'GXP - -O(t — Af),
5 K Y
x e {E,I}.

The input currents from the first layer are given with

) = > wia(t—t)

f.7=1.9
= i gin! ~ B0 L1 AF Ot — A
wlj q 5,in\9 exp s,in [V
f.9=1..9 (Tij ) Tij

and the set of parameters is

e The membrane time constants for the excitatory and inhibitory cells in the RNN layer:

E _I
Ti s Ty

e Membrane resistance for the both types of cells: RZ-E , RiI ,

E 1

e Internal weight connections in the RNN layer: w;;, wj;,

e Rise and decay time constants for the post synaptic potential: TZ-S’E, T,

e Synaptic delay: AiEj, Afj.

in

e Weights for the signals coming from the first layer: w7,

e Rise and decay time constant for the inputs from the first layer: 7",

e Synaptic delay for the signals from the first payer: A,

e Noise for the excitatory and inhibitory cells: I™F(t), I™(¢),

7 (3
e Intrinsic cell current that enables cell spiking even in the absence of external inputs:
JE, J1,

. E 1
e Refractory times: 7,7, 7.,

e Resting potentials: uZ’E, ult

thyE  th,I
u.

7 ()

e Threshold potentials: u
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A.4 Linear output

As already described in one of the previous sections, the outputs of the model, the linear
combination of output spike trains is given as

’U,(-mt _ Routz out out t—tf) VZ:].&

ou tiA?JM
out t _ out t— Aij - ‘risfout Ot — Aout
g (1) (Ts,out)ge ! ( i)
i

where the model parameters are

e Output resistance: R“!,

e Synaptic time constants Tfj out and synaptic delay AOUt.

the value ¢°“, as well as the equivalent parameters in the other layers is not included among
the network parameters, since it is calculated from the requirement that the maximum of the
function «(-) should be 1.

A.5 Parameters selection

The hidden layer parameters are chosen according to the general recipes for generating a
RNN, and the values proposed in [14]|. The publicly available software package used for some
of the tests here also proposes some default values.

Input layer

e The membrane time constant: 7‘}” = 30ms.

e Scaling coefficients for the input currents are equal for each cell: w!® = 0.01. Each signal
from the Figure 5.1 is input to one cell from this layer, and the output spike trains are
transfered to multiple cells in the RNN.

e Membrane resistance: Rﬁ” =10 MQ.

e Refractory times for the input cells correspond to those of the excitatory neurons: 7{ i —
3ms.

e The reset potential is chosen from the uniform distribution: u,"™ ~ Unif [13.5,14.5] mV..

e The threshold potential: ufhm = 15mV.

Recurrent network parameters

e The membrane time constants are chosen to be equal for all cells: 7 = 7/ = 30ms.
e The membrane resistances are also equal: RF = Rl = 10MQ.

e Synaptic time constants for excitatory and inhibitory neurons are chosen from the uni-
form distribution, but with different distribution parameters:
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e The connection strength for the excitatory synapses is randomly generated from the

Gaussian distribution: wg ~ Gauss (WmE, 10_3WmE),

e The connection weight for the inhibitory synapses is also generated from the Gaussian
distribution as wilj ~ max Gauss (—2EmE, 10_3WmE),

e The synapse time constants are chosen from the uniform distributions from the different
intervals for the excitatory and the inhibitory cells
5% ~ Unif [2.5,3.5] ms, 7" ~ Unif 5, 7] ms.

e Synaptic delay is derived from the same uniform distribution for both types of cells:
AL, Al ~ Unif[0.1,1]

e Weights for the connections coming from the first layer: wgl = 0.01,
e Time constants for the connections from the input layer: T;j’in ~ Unif 2.5, 3.5],

e The synaptic transmission delay from the input layer: Ai;l ~ Unif [0.1, 1],

e The Gaussian noise is included in every cell membrane equation, and is equal for the

excitatory and the inhibitory cells: I" = I T~ Gauss(0, ol), where ol = 5mV.

e The auto inject current, the parameter that enables cell spiking with certain frequency in
the absence of external currents, is also chosen from the uniform distribution: J¥, JI ~
Unif [13.5,14.5] nA,

e The refractory times are fixed for both types of cells: 7, E 3ms, 7, - 2ms,

rE r, I
Uu - ~

e The resting potentials are chosen the same way as for the input layer cells: u,"™, u,

Unif [13.5,14.5] mV,

e Finally, the threshold potentials are set as: ulmf = u:’l = 15mV.

i

Output layer

e The output resistance R is not chosen separately, since it can be taken into account

with the weight coefficient wf]“t. This parameter is chosen in the training procedure,
described in the Section 5.5.
e The synapse time constant is set as: Tfj’om = 20ms,

e and there is no need to define the output transmission delay since it has no influence
on the network behavior: Ag* = 0.
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