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Abstract. We prove vanishing results for Lie groups and algebraic groups (over any
local field) in bounded cohomology. The main result is a vanishing below twice the rank for
semi-simple groups. Related rigidity results are established for S-arithmetic groups and
groups over global fields. We also establish vanishing and cohomological rigidity results
for products of general locally compact groups and their lattices.

1. Introduction and statement of the results

1.A. Motivation. The main object of this article is to study the bounded cohomo-
logy of arithmetic groups and semi-simple Lie or algebraic groups. On the one hand, the
results presented below can be approached by comparison with the classical vanishing the-
orems for semi-simple groups due to Borel–Wallach [12], W. Casselman [26], H. Garland
[35], [34], G. Zuckerman [68] and with the classical question of invariance of the cohomo-
logy of arithmetic groups (e.g. A. Borel [4], [6] and Borel–Serre [7]). On the other hand, this
study is motivated by the growing array of applications of previous vanishing or non-
vanishing results in bounded cohomology ever since M. Gromov’s seminal work [37] (see
[47] for a recent survey).

There is a degree of similarity with classical statements: in ordinary cohomology, one
has vanishing below the rank for suitable non-trivial representations ([12], V.3.3 and
XI.3.9), whilst we establish vanishing below twice the rank. None of the classical methods,
however, apply: the cohomology of semi-simple groups can for instance be reduced to Lie-
algebraic questions by the van Est isomorphism in the Lie case, and to twisted simplicial
cohomology on the discrete Bruhat–Tits building in the non-Archimedean case (compare
also Casselman–Wigner [27]). There are a priori obstructions for any such method to
work in bounded cohomology; even one-dimensional objects such as the free group are
known to have bounded cohomology at least up to degree three. Indeed, no non-trivial di-
mension bound in bounded cohomology for any group is known. Still, we do use spherical
Tits buildings.
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Arithmetic groups occur as lattices in semi-simple groups and thus there is a corre-
sponding restriction map in cohomology; its image (for real coe‰cients) is called the invari-

ant part of the cohomology of the arithmetic group. This is the least mysterious part, since
it comes ultimately from (primary and secondary) characteristic classes in the Lie case and
vanishes altogether otherwise. The extent to which the cohomology of arithmetic groups is
invariant has therefore been the focus of thorough investigations; the results depend highly
on the type of the lattice and, in positive Q-rank, invariance holds only in lower degrees,
e.g. of the order n=4 for SLnðZÞ (A. Borel [4], Thm. 7.5). (For surveys, see J.-L. Koszul [41],
J.-P. Serre [59], J. Schwermer [58].)

Eckmann–Shapiro induction provides a link between these questions and the coho-
mology of semi-simple groups with induction modules. The di‰culties in positive Q-rank
are reflected in that the corresponding induction modules are not unitarisable in this case.
In bounded cohomology, it turns out that invariance holds below twice the rank regardless
of the type of the lattice; for instance, up to 2n � 3 for SLnðZÞ. This comes as at a purely
functional-analytic cost and leads us to work with a class of non-separable non-continuous
modules that we call semi-separable. As pointed out to us by M. Burger, our invariance
results show in particular that the comparison map to ordinary cohomology fails to be an
isomorphism in many higher rank cases.

Results in degree two were previously obtained in [18], [20], [45]; see also [51], §6,
which used already non-minimal parabolics. For the special case of SLn, we presented van-
ishing (up to the rank only) in the note [49] using special (mirabolic) maximal parabolics
following our earlier work [46]. It has been established by T. Hartnick and P.-E. Caprace
independently that these methods do not apply to other classical groups (personal commu-
nications).

1.B. Semi-simple groups. We begin with a statement for simple groups in order to
prune out excessive terminology. A local field is any non-discrete locally compact field
(thus including the Archimedean case and arbitrary characteristics).

Theorem 1.1. Let k be a local field, G a connected simply connected almost k-simple

k-group and V a continuous unitary GðkÞ-representation not containing the trivial one. Then

Hn
b

�
GðkÞ;V

�
¼ 0 for all n < 2 rankkðGÞ:

This vanishing holds more generally for any semi-separable coe‰cient GðkÞ-module V with-

out GðkÞ-invariant vectors.

The definition of semi-separability (Section 3.C) does not impose any additional re-
striction on the underlying Banach space of coe‰cient modules, which are by definition
the dual of a continuous separable module. The generality of semi-separability allows
our results to apply notably to certain (non-separable, non-continuous) modules of Ly-
functions that are useful for studying lattices and for applications to ergodic theory (as
well as non-commutative analogues). Further, all representations in our statements can be
uniformly bounded instead of isometric.

In the absence of semi-separability, the statement can indeed fail (Example 3.14). We
also point out that vanishing fails for the trivial representation; H2

bð�;RÞ has been deter-
mined in [18] and extensively used e.g. in [17], [16].
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We now give the general statement for semi-simple groups over possibly varying
fields; this generality is necessary e.g. to view S-arithmetic groups as lattices. Let thus
fGaga AA be connected simply connected semi-simple ka-groups, where fkaga AA are local
fields and A is a finite non-empty set. Consider the locally compact group G ¼

Q
a AA

GaðkaÞ
defined using the Hausdor¤ ka-topologies. As usual, write

rankðGÞ ¼
P
a AA

rankka
ðGaÞ:

Define further minkðGÞ as the minimal rank of almost ka-simple factors of all Ga.

Theorem 1.2. Let V be a semi-separable coe‰cient G-module.

(i) If there are no fixed vectors for any of the almost ka-simple factors of any Ga, then

Hn
bðG;VÞ ¼ 0 for all n < 2 rankðGÞ:

(ii) If we only assume V G ¼ 0, then still

Hn
bðG;VÞ ¼ 0 for all n < 2 minkðGÞ:

Again, the assumptions on V are necessary.

Remark 1.3 (General algebraic groups). The above theorem implies immediately a
vanishing result for general algebraic groups, but the statement becomes somewhat more
convoluted: Let G be the group of rational points, R < G its amenable radical and V a
semi-separable coe‰cient G-module. One has isomorphisms

H�
bðG;VÞGH�

bðG;V RÞGH�
bðG=R;V RÞ;

see e.g. [45], 8.5.2, 8.5.3. Now G=R is semi-simple, and we may pass to the (algebraic) con-
nected component of the identity without a¤ecting vanishing. To account for the lack of
simple connectedness, one replaces the assumption on invariant vectors of the almost sim-
ple factors (of G=R in V R) by the corresponding assumption on their canonical normal co-
compact subgroups as defined in [11], §6 (see also [42], I.1.5 and I.2.3). As an illustration of
this procedure in the related case of Lie groups, see Corollary 4.8.

1.C. Lattices in semi-simple groups. Turning to lattices, the next result shows that
the real bounded cohomology of S-arithmetic groups is invariant below twice the rank.

Corollary 1.4. Let G be as for Theorem 1.2 and let G < G be an irreducible lattice.

Then the restriction map

Hn
bðG;RÞ ! Hn

bðG;RÞ

is an isomorphism for all n < 2 rankðGÞ.

In particular, the real bounded cohomology of S-arithmetic groups is completely de-
termined by the corresponding algebraic group below twice the rank. It is perhaps surpris-
ing that in spite of the vanishing results for non-trivial representations, we still know rather
little about Hn

bðG;RÞ, even for G ¼ SLnðRÞ (some results are in [21], [46]).
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In the Archimedean case, we can use É. Cartan’s correspondence between semi-
simple Lie groups and symmetric spaces to deduce a result on the singular bounded coho-
mology of locally symmetric spaces. In order to state it, we need to introduce a gener-
alisation of the notion of orientability and orientation cover. We call a connected locally
symmetric space ample if its fundamental group lies in the neutral component Isð ~XX Þ� of
the isometry group of its universal cover. Every locally symmetric space has a canonical
smallest finite cover that is ample.

Corollary 1.5. Let X be a connected ample finite volume irreducible Riemannian lo-

cally symmetric space of non-compact type. Then the real singular bounded cohomology

Hn
bðXÞ is canonically isomorphic to Hn

b

�
Isð ~XX Þ�

�
for all n < 2 rankðXÞ.

In particular, it follows that real singular bounded cohomology stabilises (at the ca-
nonical ample cover) along the inverse system of finite covers of X .

With non-trivial coe‰cients, we have results for lattices that are in direct analogy
with the above Theorems 1.1 and 1.2, and indeed can be deduced from them thanks to
the flexibility a¤orded by semi-separability. We first consider lattices in simple groups:

Corollary 1.6. Let k be a local field, G a connected simply connected almost k-simple

k-group, G < GðkÞ a lattice and W any semi-separable coe‰cient G-module W without G-

invariant vectors. Then

Hn
bðG;WÞ ¼ 0 for all n < 2 rankkðGÞ:

Combining this with (a minor variation on) Corollary 1.4, one finds that without any
assumption on the semi-separable coe‰cient G-module W we have isomorphisms

Hn
bðG;WÞGHn

bðG;W GÞGHn
bðG;W GÞ

induced by the inclusion W G ! W and the restriction, respectively.

For general semi-simple groups and arbitrary semi-separable coe‰cient G-module,
the statement takes the form of a rigidity result:

Corollary 1.7. Let G be as for Theorem 1.2, let G < G be an irreducible lattice

and let W be a semi-separable coe‰cient G-module. If Hn
bðG;WÞ is non-zero for some

n < 2 rankkðGÞ, then the G-representation extends continuously to G upon possibly passing

to a non-trivial closed invariant subspace of W.

In parallel to the second part of Theorem 1.2, there is a stronger result but in lower
degrees:

Corollary 1.8. Let G be as for Theorem 1.2, G < G any lattice and W a semi-

separable coe‰cient G-module without invariant vectors. Then

Hn
bðG;W Þ ¼ 0 for all n < 2 minkðGÞ:
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1.D. Product groups and their lattices. In various settings, rigidity results known for
semi-simple groups of higher rank have later been found to admit analogues for products of
general locally compact groups (see e.g. [19], [60], [48], [33]). Accordingly, one finds in [20]
rigidity results for H2

b of general products. Even for products of discrete groups, those results
have found surprising applications [52].

We shall establish statements for products that are analogous to Theorem 1.2 and its
consequences; in the situation at hand, the product case is simpler to prove indeed.

Theorem 1.9. Let G ¼ G1 � � � � � Gl be a product of locally compact second count-

able groups and V be a semi-separable coe‰cient G-module. If V Gi ¼ 0 for all 1e ie l,
then

Hn
bðG;VÞ ¼ 0 En < 2l:

Remark 1.10. This statement is not some ‘‘abstract non-sense’’ like a Künneth for-
mula. First, semi-separability can again not be disposed of, see Example 3.14. Secondly, the
assumption V Gi ¼ 0 is also needed. Finally, the duality contained in the definition of coef-

ficient modules is necessary, see the end of Section 5.C.

A lattice G in G ¼ G1 � � � � � Gl shall be called irreducible if Gj � G is dense in G for
all j. By a result of G. Margulis [42], II.6.7, this definition coincides with the classical no-
tion of irreducibility for lattices in semi-simple groups as long as no Gi is compact; for de-
tails see Remark 4.7. Theorem 1.9 can be used to prove a superrigidity result for represen-
tations of irreducible lattices G < G. To this end, let W be any coe‰cient G-module. Define
WGj

to be the collection of all w A W for which the corresponding orbit map G ! W ex-
tends continuously to G and factors through G=Gj. The irreducibility condition shows that
WGj

has a natural Banach G-module structure (Section 4.C). Of course, one expects
WGj

¼ 0 in general; WGj
3 0 is precisely a superrigidity statement.

Corollary 1.11. Let G ¼ G1 � � � � � Gl be a product of lf 2 locally compact second

countable groups, G < G an irreducible lattice and W be any semi-separable coe‰cient G-

module.

If Hn
bðG;WÞ3 0 for any n < 2l, then WGj

3 0 for some Gj.

Just as Theorem 1.2 implies the restriction isomorphism of Corollary 1.4, we can use
Theorem 1.9 to establish that the real bounded cohomology of irreducible lattices is invari-
ant in a suitable range:

Corollary 1.12. Let G ¼ G1 � � � � � Gl be a product of locally compact second count-

able groups and G < G an irreducible lattice. Then the restriction map

Hn
bðG;RÞ ! Hn

bðG;RÞ

is an isomorphism for all n < 2l.

Another application of Theorem 1.9 is a vanishing result for R. Thompson’s group,
see Section 6.C.
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1.E. Global fields and adélic groups. Recall that a global field is a finite extension
either of the rationals Q (a number field), or a field of rational functions in one variable
over a finite field. The ring AK of adèles is the restricted product of the completions of K.
In particular, there is a diagonal embedding K ! AK realizing K as principal adèles.

The strong approximation property places adélic groups within the scope of our re-
sults for products; the following rigidity result does not have any restriction on the degree n.

Theorem 1.13. Let K be a global field and G a connected simply connected almost

K-simple K-group. Let W be any semi-separable coe‰cient GðKÞ-module.

If Hn
b

�
GðKÞ;W

�
3 0 for some n, then the GðKÞ-representation extends continuously to

GðAKÞ upon possibly passing to some non-trivial closed sub-module of W.

In fact, we will see that the extended representation in the above result can be as-
sumed to be trivial on infinitely many local factors.

The restriction map corresponding to the embedding K ! AK yields an isomorphism
as in Corollary 1.4, but in all degrees (for degree two, see [20], Theorem 28).

Corollary 1.14. The restriction map

H�
b

�
GðAKÞ;R

�
! H�

b

�
GðKÞ;R

�
is an isomorphism in all degrees.

When K has characteristic zero, Borel–Yang show in [13] that the usual cohomology
H��GðKÞ;R

�
is isomorphic to the cohomology of the product of Archimedean completions

of GðKÞ. In order to deduce from Corollary 1.14 a corresponding result in bounded coho-
mology, we would need a vanishing for p-adic groups and trivial coe‰cients. The strategy
of Borel–Yang is very di¤erent from ours, as they use a limiting argument whilst ap-
proximating GðKÞ with S-arithmetic groups; this allows them to apply the main result of
Blasius–Franke–Grunewald [3] (or A. Borel [5] in the K-anisotropic case; the positive char-
acteristic analogue is due to G. Harder [38]).

1.F. Comments on the proofs. The proof of Theorems 1.1 and 1.2 can be consider-
ably simplified provided (i) one considers continuous unitary representations (or separable

coe‰cient modules, which are automatically continuous [45], 3.3.2) and (ii) one remains
below the rank rather than twice the rank. We suggest to the reader to keep this setting in
mind as a guide to reading the general semi-separable case; the additional di‰culties of the
general situation are justified first and foremost by the fact that they are the key to the re-
sults for lattices.

More specifically, here is a very brief outline of the proof in the simpler case (thus
unsuitable for lattices). Let G ¼ GðkÞ be a simple group as in Theorem 1.1 and V be a con-
tinuous unitary G-representation without invariant vectors. An investigation (following
Borel–Serre [8]) of the topologised Tits building of G establishes a topological analogue
of the Solomon–Tits theorem [62]. (Recall that the latter states that, as abstract simplicial
complexes, such buildings have the homotopy type of a bouquet of spheres; this purely
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combinatorial statement is also exposed by H. Garland in [34], App. 2.) The topological
analogue can be formulated as an exact sequence of sums of continuous V -valued function
spaces of the form CðG=Q;VÞ, where Q ranges over all standard parabolic subgroups of G.
If r is the rank of G, there are 2r such parabolics and the function spaces fit into an exact
sequence of length r. Since V is a continuous G-module, there is an isomorphism between
CðG=Q;VÞ and (a continuous avatar of) the induced module associated to V viewed as a
Q-module. This leads to investigating the cohomology H�

bðQ;VÞ. The boundedness of co-
chains allows to factor out the amenable radical of Q, and the classical Mautner phenom-
enon then implies that the latter cohomology vanishes. This will then lead to vanishing be-
low the rank r in this setting.

In order to deal with the general case, one possibility is to seek a measurable version
of the Solomon–Tits theorem, as Ly-induction holds for all coe‰cient modules. At first
sight, it is not clear whether the arguments can be adapted; indeed, the idea behind
Solomon–Tits is to retract to a point all the building except for the chambers opposite a
Weyl chamber, but this locus is a null-set. However, as a consequence of a discussion of
coe‰cient modules (Section 3.B), it turns out that the corresponding cohomological result
still holds (Theorem 3.9). The flexibility of measurable induction also allows us to double
the rank by running the arguments for the spherical join of two (opposite) copies of the
building.

For our results about products, we shall propose a rudimentary analogue of the Tits
building for arbitrary products, namely a ‘‘spherical join’’ of Poisson boundaries (Section
5). The intuition here is that if B is the Poisson boundary of a random walk on any group G

and B� the boundary of the associated backward walk, then there is a one-dimensional
simplicial complex B � B� which has some aspects of a (doubled) Tits building. In presence
of a product of l factors, the join of these spaces is an object of dimension 2l� 1.

We shall try to introduce all needed notation and background. For more details on
the (relative) theory of semi-simple groups, we refer to Borel–Tits [9], [10] or G. Margulis
[42], Chap. I. For more background on bounded cohomology, see [20] and [45].

2. Continuous simplicial cohomology and Tits buildings

In this section, we consider an elementary and rather unrestricted notion of topolo-
gised simplicial complexes for which one can define continuous cohomology; we then com-
pute this cohomology in the case of Tits buildings. One could work instead within the (well-
known) framework of simplicial objects in the category of spaces. Since all the theory we
need is defined and proved below in two pages, we feel that the additional structure and
restrictions of simplicial objects would be a burden; this accounts for our simple-minded
approach.

The result for Tits buildings presented in Section 2.B is based on the work of Borel–
Serre on sheaf cohomology [8], §1–3; we need a more general setting than treated in [8] in
order to deal with non-discrete modules and mixed fields; thus we present a complete proof.
Our topological approach follows however closely the algebraic arguments of Borel–Serre;
we caution the reader that the sign conventions are di¤erent (the conventions of [8] being
non-simplicial).
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2.A. Continuous simplicial cohomology. Recall that an abstract simplicial complex is
a collection X of finite non-empty sets which is closed under taking non-empty subsets. We
write XðnÞ for the collection of n-simplices, namely sets of cardinality n þ 1, and abuse no-
tation by identifying Xð0Þ with the union of its elements. (We shall also occasionally call
simplex the simplicial complex of all non-empty subsets of a given finite set.)

To define cohomology, it is convenient to introduce orientations; but the following
weaker structure serves the same purpose.

Definition 2.1. A su‰cient orientation on an abstract simplicial complex X is a par-
tial order on Xð0Þ which induces a total order on every simplex.

For instance, a (numbered) partition Xð0Þ ¼ Xð0;1Þ t � � � tXð0; rÞ defines a su‰cient
orientation provided every simplex contains at most one element of each Xð0; jÞ; this forces
dimðXÞe r � 1.

One defines the face maps

qn; j : X
ðnÞ ! Xðn�1Þ ðnf 1; 0e j e nÞ

by removing the element xj from a simplex fx0 < � � � < xng; it follows

qn�1; iqn; j ¼ qn�1; j�1qn; i for all 0e i < j e n:

Definition 2.2. A su‰ciently oriented topologised simplicial complex, or sot com-

plex, is an abstract simplicial complex X endowed with a topology and a su‰cient orienta-
tion such that all face maps are continuous.

We emphasize the di¤erence with realizations of X; in the present case, we simply
have a topology on the set X ¼

F
nf0

XðnÞ of simplices. Our simple-minded definition of sot

complexes does not even impose that XðnÞ be closed in X.

A morphism of sot complexes is a simplicial map that is continuous on each XðnÞ and
is compatible with the su‰cient orientations. The continuous simplicial cohomology is de-
fined exactly as in the abstract simplicial case but adding the continuity requirement:

Definition 2.3. Let X be a sot complex and V an Abelian topological group.
Consider the space CðXðnÞ;VÞ of all continuous maps (cochains) with the convention
Cðj;VÞ ¼ 0. Define the coboundary operators

dn : CðXðn�1Þ;VÞ ! CðXðnÞ;VÞ; dn ¼
Pn

j¼0

ð�1Þ jq�
n; j:

The continuous simplicial cohomology Hn
c ðG;VÞ is defined as kerðdnþ1Þ=rangeðdnÞ.

An example of a morphism of sot complexes is provided by the inclusion map
X0 ! X of a subcomplex X0 of X. In this situation, one defines the relative continuous sim-
plicial cohomology H�

cðX;X0;VÞ as the cohomology of the subcomplex of CðXð�Þ;VÞ con-
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sisting of the spaces

CðXðnÞ;X
ðnÞ
0 ;VÞ ¼ f f A CðXðnÞ;VÞ : f j

X
ðnÞ
0

¼ 0g:

A subcomplex X0 LX is said closed if each X
ðnÞ
0 is closed in XðnÞ.

Lemma 2.4. Let X be a metrisable sot complex and X0 LX a closed subcomplex.

Then there is a natural long exact sequence

� � � ! H�
cðX;X0;VÞ ! H�

cðX;VÞ ! H�
cðX0;VÞ ! H�þ1

c ðX;X0;VÞ ! � � �

for any locally convex topological vector space V.

Proof. In view of the classical ‘‘snake lemma’’, we need to show that

0 ! CðXðnÞ;X
ðnÞ
0 ;VÞ !i CðXðnÞ;VÞ !r

CðXðnÞ
0 ;VÞ ! 0

is an exact sequence for all n, where i is the inclusion and r the restriction. The point at issue
is surjectivity on the right. This amounts to the fact that V is a universal extensor for metric
spaces, i.e. to a V -valued generalisation of Tietze’s extension theorem. The latter is the con-
tent of J. Dugundji’s Theorem 4.1 in [31]. r

(Dugundji’s construction provides in fact a right inverse for r which is linear and of
norm one, compare [43], 7.1.)

We shall need the following form of excision.

Lemma 2.5. Let f : X ! Y be a surjective morphism of sot complexes and X0 LX,
Y0 LY subcomplexes with f ðX0Þ ¼ Y0. Assume that f is injective on XnX0 and is open.

Then f induces an isomorphism

H�
cðY;Y0;VÞ !G H�

cðX;X0;VÞ

for any Abelian topological group V.

Proof. The map f induces an isomorphism already at the cochain level. r

Here is a trivial example of a sot complex:

Example 2.6. Let C be an abstract simplicial complex and Z a topological space.
Consider for every n the space XðnÞ ¼ CðnÞ � Z endowed with the product topology, where-
in CðnÞ has the discrete topology. Any orientation of C provides a su‰cient orientation on
X, with inclusions and face maps defined purely on the first variable. In other words, the
abstract simplicial structure on X amounts to considering the product with Z considered as
a 0-complex. Abusing notation, we write X ¼ C� Z. The identification of CðXðnÞ;VÞ with
C
�
CðnÞ;CðZ;VÞ

�
induces a natural isomorphism

H�
cðX;VÞ !G H��C;CðZ;VÞ

�
for any Abelian topological group V . We shall only use this construction in case C is finite
and contractible.
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2.B. The case of Tits buildings. Let fkaga AA be a family of local fields, where A is a
finite non-empty set. For each a, let Ga be a connected simply connected semi-simple ka-
group, Ta a maximal ka-split torus, Wa ¼ NGa

ðTaÞ=ZGa
ðTaÞ the associated relative Weyl

group. (Where N and Z denote normalisers and centralisers respectively.) Let Pa be a
minimal parabolic ka-group in Ga containing Ta. Let Sa be the simple roots of Ga relatively
to Ta associated to Pa; we identify Sa with the corresponding set of reflections in Wa. Recall
that to every subset I LSa one associates the parabolic ka-group Pa; I generated by Pa and

the centraliser ZGa
ðTa; I Þ of Ta; I ¼

� T
a A I

ker a

��
; in particular, Pa;j ¼ Pa and Pa;Sa

¼ Ga.

Recall also that Sa contains rankka
ðGaÞ elements. We assume throughout this section that

Ga has no ka-anisotropic factors, which implies in particular Sa3j. All spaces of ka-points
will be endowed with the ka-topology.

We now consider the locally compact group G ¼
Q
a AA

GaðkaÞ and define W ¼
Q
a AA

Wa,

S ¼
F
a AA

Sa, r ¼
P
a AA

rankka
ðGaÞ ¼ jSj. By abuse of language, we call parabolic all subgroups

Q < G of the form Q ¼
Q
a AA

QaðkaÞ, where Qa are arbitrary parabolic ka-groups in Ga. For

any I LS we define the parabolic group

PI ¼
Q
a AA

Pa; IXSa
ðkaÞ

and write P ¼ Pj. The collection of these PI coincide with those parabolics that contain P;
we call them standard parabolics. The correspondence I 7! PI is an isomorphism of
ordered sets. Any parabolic Q can be conjugated to PI for some I ¼ IðQÞ and the set of
such Q for a given I identifies with G=PI . We call IðQÞ the type of Q. The relative Bruhat
decomposition of the factors Ga (see [9], Théorème 5.15, and [10], §3) provides a decompo-
sition

G=P ¼
F

w AW

CðwÞ; where CðwÞ ¼ PwP=P:ð2:iÞ

Warning: The notation (2.i) is consistent with [8] (for a single field) since we shall use
arguments analogous to theirs; however, in [9], [10], CðwÞ would correspond to the pre-
image PwPLG.

The above setting gives rise to a Tits system and the associated Tits building T;
namely, the Tits system is the product of the classical Tits systems of the factors, and T
the join of the Tits buildings of all Ga. We now describe in more detail the Tits building
T viewed as a sot complex. For each I LS, consider the compact G-space G=PI , recalling
that each GaðkaÞ=Pa; IXSa

ðkaÞ can be identified with the ka-points of the smooth projective
ka-variety Ga=Pa; IXSa

. For any 0e ne r � 1 we define the compact space

TðnÞ ¼
F

jI j¼r�1�n

G=PI :

We note that this definition extends consistently to the singleton Tð�1Þ ¼ G=G but we shall
not use this ‘‘augmented’’ simplicial complex in this section. One can consider TðnÞ as a
space of n-simplices over the space Tð0Þ of maximal proper parabolic subgroups QkG

as follows. A set fQ0; . . . ;Qng (distinct Qi) is a simplex if and only if Q ¼ Q0 X � � �XQn is
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parabolic; in that case, we have Q A TðnÞ and we identify Q with that simplex. More pre-
cisely, the type IðQÞ is IðQ0ÞX � � �X IðQnÞ.

We can endow T with a su‰cient orientation by means of the partition of Tð0Þ into
its r types. More precisely, we fix any order on S and for x; x 0 A Tð0Þ we declare x < x 0

whenever x A G=PSnfsg, x 0 A G=PSnfs 0g with s < s 0. Notice that all face maps are unions of
canonical projections G=PI ! G=PJ , where I L J and jJj ¼ jI j þ 1.

Theorem 2.7. For every locally convex topological vector space V ,

Hn
c ðT;VÞ ¼ 0 ðEn3 0; r � 1Þ; and H0

c ðT;VÞ ¼ V :

Remark 2.8. The above theorem gives a complete description of H�
cðT;VÞ, because

the remaining term of degree r � 1 is readily understood. Indeed, since all r face maps qr�1; j

on Tðr�1Þ have disjoint ranges, namely the various G=Pfsg, one has an identification

Hr�1
c ðT;VÞ ¼ CðG=P;VÞ=

P
s AS

CðG=Pfsg;VÞ:ð2:iiÞ

Whilst (2.ii) keeps a clear view of the G-representation, another identification has the ben-
efit of presenting Hr�1

c as a function space with no quotient taken. To this end, let w0 be the
longest element of W . Since Cðw0Þ is open in the compact space G=P (see [9], 4.2, or [10],
3.13 and 3.15), there is a natural inclusion of the space C0

�
Cðw0Þ;V

�
of functions vanishing

at infinity into CðG=P;VÞ. We shall see in the proof of Theorem 2.7 that this inclusion in-
duces an isomorphism

C0

�
Cðw0Þ;V

�
!G Hr�1

c ðT;VÞ:

This identification can also be obtained by direct means.

In preparation for the proof, we introduce a filtration along (2.i) which parallels sim-
plicially for T the topological filtration considered by Borel–Serre [8] for the topological
realization of the building associated to a semi-simple group. Let l be the length function
on W with respect to S and fix an enumeration W ¼ fw1; . . . ;wNg with the property that
lðwiÞe lðwjÞ for all i < j; in particular, w1 is the neutral element and wN ¼ w0 the longest.
For 1emeN, define a subcomplex Tm LT by retaining only the subset

Sm
j¼1

PwjPI=PI LG=PI

as I kS. In other words, Tm is the subcomplex spanned by the m collections CðwjÞ of
chambers, j em. Thus this defines an increasing sequence of subcomplexes of T. For in-
stance, T1 is the Weyl chamber at infinity and is isomorphic to the finite simplex of all
proper standard parabolic subgroups, with dual inclusion; at the other extreme, TN ¼ T.
It follows from [10], Théorème 3.13 and Corollaire 3.15, applied to each factor Ga that all
Tm are closed subcomplexes of T.

Proposition 2.9. We have H�
cðTm;Tm�1;VÞ ¼ 0 for every 1 < m < N and any locally

convex topological vector space V.
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Proof. We define Im ¼ fs A S : lðwmsÞ > lðwmÞg (as in Borel–Serre [8]). The as-
sumption m3 1;N implies respectively Im 3S; j; see [15], IV, §1, Ex. 3. The type Im con-
tains information about TmnTm�1 as follows: For any I jL Im, there are no simplices of type
I in TmnTm�1. On the other hand, if I L Im, then the map G=P ! G=PI restricts to a ho-
meomorphism of CðwmÞ onto its image. (Both statements follow from [10], 3.16, applied to
each Ga, see [8], 2.4.)

Consider now the ðr � 1Þ-simplex C of all proper subsets I kS with dual inclusion;
thus its vertices are all the sets Snfsg as s ranges over S. This is a model for the Weyl cham-
ber at infinity in which CI ¼ fJ : I L Jg is the face (subcomplex) fixed by all reflections
s A I . There is a canonical identification CGT1, I 7! PI ; we orient C accordingly. Con-
sider further the subcomplex

Dm ¼
S

s ASnIm

Cfsg ¼
S

I jLIm

CI LC:ð2:iiiÞ

Since Im 3j;S, the abstract simplicial complex Dm is (non-empty and) contractible, being
a union of a proper subset of codimension one faces. Following Example 2.6, we deduce
that Hn

c

�
Dm � CðwmÞ;V

�
vanishes for n > 0 and is (canonically) V for n ¼ 0. The same

statement holds for the sot complex C� CðwmÞ. In particular, Lemma 2.4 implies

H�
c

�
C� CðwmÞ;Dm � CðwmÞ;V

�
¼ 0:ð2:ivÞ

We consider the map

C� CðwmÞ ! T; ðI ; bwmPÞ 7! bwmPI=PI A G=PI :

This map ranges in Tm and preserves the su‰cient orientations; it is a morphism and is
open. The properties of Im mentioned above and (2.iii) show that this map sends
Dm � CðwmÞ to Tm�1 and that it restricts to a homeomorphism

ðCnDmÞ � CðwmÞ !
G S

ILIm

PwmPI=PI ¼ TmnTm�1:

The claim of the proposition thus follows from Lemma 2.5 and equation (2.iv). r

Proof of Theorem 2.7. Apply inductively Proposition 2.9 to the long exact sequence
of Lemma 2.4, starting with the finite simplex T1 as subcomplex of T2. Since the cohomo-
logy of T1 is V in degree zero and vanishes otherwise, the same is true for TN�1. Since
TNnTN�1 ¼ CðwNÞ consists of top-dimensional simplices only (specifically, all chambers
opposite the chamber fixed by P), we have Hn

c ðT;TN�1;VÞ ¼ 0 for all n3 r � 1. It follows
that Hn

c ðT;VÞ vanishes for n3 0; r � 1 while for n ¼ 0 it is V and

Hr�1
c ðT;VÞGHr�1

c ðT;TN�1;VÞ ¼ CðTðr�1Þ;T
ðr�1Þ

N�1 ;VÞ:

The right-hand side is C
�
G=P;G=PnCðwNÞ;V

�
. Since CðwNÞ is open in the compact space

G=P, the restriction to CðwNÞ yields an identification

C
�
G=P;G=PnCðwNÞ;V

�
¼ C0

�
CðwNÞ

�
as claimed in Remark 2.8. r

178 Monod, Semi-simple groups and bounded cohomology



3. Complements on bounded cohomology

3.A. Background. (For more details or proofs of the facts below, we refer to [45].)
Let G be a locally compact group. A Banach G-module V is a Banach space V with a linear
representation of G by isometries. We usually denote all such representations by p (in con-
tempt of the resulting abuses of notation). The module is called continuous if the map
G � V ! V is continuous, which is equivalent to the continuity of all orbit maps G ! V .
A coe‰cient G-module is the dual of a separable continuous G-module; it is in general nei-
ther separable nor continuous.

Lemma 3.1. Let G be a locally compact group and V a Banach G-module.

(i) If all orbit maps are weakly continuous, then V is continuous.

(ii) If V is a separable coe‰cient module, then it is continuous.

(iii) If V is the dual of a Banach G-module V [, then all orbit maps of V are weak-�
continuous if and only if V [ is continuous.

Proof. The first assertion is a classical fact, see e.g. [28], 2.8. The second can be
found in [45], 3.3.2. The third follows from (i). r

Let W be a standard (s-finite) measure space with a measurable measure class preserv-
ing G-action. For any coe‰cient module V , the space Ly

w�ðW;VÞ of bounded weak-� mea-
surable function classes is a coe‰cient module when endowed with the representation

�
pðgÞ f

�
ðoÞ ¼ pðgÞ

�
f ðg�1oÞ

�
:ð3:iÞ

More generally, one defines an (adjoint) operator pðcÞ for any c A L1ðGÞ by integrating
(3.i) in the sense of the Gelfand–Dunford integral [14], VI, §1. We reserve the notation
LpðW;VÞ, pey, for strongly measurable Lp-maps (in the sense of Bochner) and write
LpðWÞ if V ¼ R.

R. Zimmer’s notion of amenability [67], ch. 4, for the G-space W is equivalent to the
appropriate concept of (relative) injectivity for the modules Ly

w�ðW;VÞ and in particular
suitable resolutions consisting of such modules realize the bounded cohomology H�

bðG;VÞ.

Recall that there is a long exact sequence in bounded cohomology associated to suit-
able short exact sequences of coe‰cient modules. The natural setting in the context of rel-
ative homological algebra is to consider sequences that split in the category of Banach
spaces and yields the expected long exact sequence in complete generality [45], 8.2.7. How-
ever, using E. Michael’s selection theorem [44], 7.2, one can prove the long exact sequence
for arbitrary short exact sequences of continuous modules for locally compact groups [45],
8.2.1(i). A di¤erent argument also establishes the sequence for dual short exact sequences of
coe‰cient modules [45], 8.2.1(ii). (We point out however that the latter can also be reduced
to the former thanks to a special case of Proposition 3.5 below.)

In any case, successive applications of the long exact sequence yield the following
result.
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Proposition 3.2. Let G be a locally compact second countable group, rf 1 and let

0 �! V ¼ W�1 �!d0
W0 �!d1 � � � �!dr

Wr �!drþ1
0

be an exact sequence of either dual morphisms of coe‰cient G-modules or morphisms of con-

tinuous Banach G-modules. Suppose that Hq
bðG;WpÞ vanishes for all pf 0, qf 0 with

p þ qe r � 1. Then

Hn
bðG;VÞ ¼ 0 E0e ne r � 1:

Remark 3.3. Notice that the vanishing assumptions do not concern Wr. Thus we
could equivalently work with an exact sequence terminating with Wr�2 ! Wr�1 and the ad-
ditional assumption that the latter map has closed range, setting Wr ¼ Wr�1=dWr�2, which
in the dual case is a coe‰cient module by the closed range theorem.

Proof of Proposition 3.2. We shall prove the following statement by induction on q

from q ¼ 0 to q ¼ r � 1:

Hq
bðG; ker dpþ1Þ ¼ 0 Epf 0 with p þ qe r � 1:ð3:iiÞ

This yields the statement of the proposition since at p ¼ 0 we have ker d1 GV . We observe
that all spaces ker d� have a natural structure of Banach (respectively coe‰cient) G-module
since ker d� is closed (respectively weak-� closed). For q ¼ 0, we have ðker dpþ1ÞG LW G

p

which vanishes, yielding (3.ii). Now if qf 1, we have a short exact sequence

0 ! ker dpþ1 ! Wp ! ker dpþ2 ! 0

which, in the dual case, is still dual. The associated long exact sequence [45], 8.2.1, contains
the following piece:

Hq�1
b ðG; ker dpþ2Þ ! Hq

bðG; ker dpþ1Þ ! Hq
bðG;WpÞ:

The induction hypothesis together with the vanishing assumptions entails the vanishing of
Hq

bðG; ker dpþ1Þ. This is the induction step and thus concludes the proof. r

(A similar but less explicit proof follows from considering the spectral sequence that
H�

bðG;�Þ associates to the exact sequence in the statement.)

3.B. Complements on Banach modules. If G is a topological group and V is any
Banach G-module, we denote by CV (or CGV when necessary) the collection of all ele-
ments v A V for which the associated orbit map G ! V is continuous. This defines a closed
invariant subspace and any Banach G-module morphism V ! U restricts to CV ! CU .
Moreover, the definition of bounded cohomology implies readily

H�
bðG; CVÞ ¼ H�

bðG;VÞ:ð3:iiiÞ

(See [45], §1.2 and 6.1.5, for this and more on C.) This does not, however, allow us to deal
exclusively with continuous modules, because weak-� limiting operations involved in
amenability require duality, which is not preserved under the functor C.
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Proposition 3.4. Let G be a locally compact second countable group and V a coe‰-

cient G-module. Then CV ¼ L1ðGÞV ¼ L1ðGÞCV.

Proof. We sketch the argument given in the proof of [45], 3.2.3. The inclusion
L1ðGÞV L CV follows from the continuity of the G-action on L1ðGÞ. The existence of ap-
proximate identities in L1ðGÞ (see e.g. [30], 13.4) shows that L1ðGÞCV is dense in CV . The
factorization theorem of J. P. Cohen (see [30], 16.1) implies that L1ðGÞCV is closed in CV .
Thus CV ¼ L1ðGÞCV LL1ðGÞV L CV , completing the proof. r

Let 0 ! A !a B !b C ! 0 be an exact sequence of (morphisms of) Banach modules.
Then a has closed range and thus admits a continuous inverse by the open mapping theo-
rem; it follows readily that one has

0 ! CA !a CB !b CC ! 0

exact except possibly at the right. It turns out that the functor C is actually exact on dual
exact sequences of coe‰cient modules and that there is also a converse statement:

Proposition 3.5. Let G be a locally compact second countable group and

dn : Ln�1 ! Ln dual morphisms of coe‰cient G-modules ðn ¼ 1; 2Þ. Then

L0 !d1
L1 !d2

L2

is an exact sequence if and only if

CL0 !d1
CL1 !d2

CL2

is exact.

Proof. Su‰ciency. Recall first that for any coe‰cient G-module V , the closed sub-
module CV is weak-� dense in V . Indeed, if fcag is a net of functions ca A L1ðGÞ that con-
stitutes a suitable approximate identity, then cav is in CV and tends weak-� to v, see [45],
3.2.3. It follows in particular that d2d1 ¼ 0 since this map is weak-� continuous and van-
ishes on CL0.

Let now v A kerðd2Þ. The net fpðcaÞvg converges to v and belongs to CL1 X kerðd2Þ
since d2 is dual and hence commutes with pðcaÞ by the definition of weak-� integration.
Therefore, there is for each a some ua A CL0 with d1ðuaÞ ¼ pðcaÞv. Notice that the norm
of pðcaÞv is bounded by kvk. Therefore, by the open mapping theorem applied to the sur-
jective map CL0 ! C kerðd2Þ obtained by restricting d1, we can choose the family fuag to be
bounded in norm. By the Banach–Alaoğlu theorem, the net fuag has a weak-� accumula-
tion point u A L0. Since d1 is dual, d1ðuÞ ¼ v.

Necessity. We shall prove more, assuming merely that there be closed submodules
Cn LLn containing CLn and such that the map dn restricts to an exact sequence
C0 ! C1 ! C2. Let now v be in the kernel kerðd2jCL1

Þ. Observe that the latter coincides
with C kerðd2Þ and that kerðd2Þ is a coe‰cient module since d2 is weak-� continuous. There-
fore, by Proposition 3.4 there is v 0 A kerðd2jCL1

Þ and c A L1ðGÞ with v ¼ pðcÞv 0. Since
v 0 A CL1 LC1, there is w 0 A C0 LL0 with d1ðw 0Þ ¼ v 0. Define w ¼ pðcÞw 0, which is in CL0.
Since d0 is dual, it commutes with pðcÞ and therefore v ¼ d0ðwÞ. r
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Lemma 3.6. Let G be a locally compact second countable group and V the dual of a

separable Banach space. Consider the coe‰cient G-module Ly
w�ðG;VÞ where V is endowed

with the trivial G-action. Then CLy
w�ðG;VÞ coincides with the space of bounded right uni-

formly continuous functions G ! V.

Proof. We sketch the argument given in [45], 4.4.3. By the above Proposition 3.4,
any continuous vector f can be written pðcÞ f 0 for some c A L1ðGÞ and f 0 A Ly

w�ðG;VÞ.
The claim then follows readily by continuity of the G-representation on L1ðGÞ. r

Corollary 3.7. Let G be a locally compact second countable group, H < G a closed

cocompact subgroup and V the dual of a separable Banach space. Then

CLy
w�ðG=H;VÞ ¼ CðG=H;VÞ: r

Remark 3.8. If V is a coe‰cient G-module with non-trivial action, then the above
statements are a priori no longer true, due to the lack of continuity of the representation on
V . One can however establish another statement in that setting. Write Cw�ðG=H;VÞ for
the space of weak-� continuous maps, which are automatically bounded since weak-� com-
pact sets are norm-bounded by the Banach–Steinhaus theorem [2]. Then CLy

w�ðG=H;VÞ is
contained in Cw�ðG=H;VÞ and therefore coincides with CCw�ðG=H;VÞ. (Notice that
Cw�ðG=H;VÞ is closed in Ly

w�ðG=H;VÞ and hence is a Banach G-module.) This state-
ment is proved by considering the isometric involution A of Ly

w�ðG;VÞ defined by
ðAf ÞðgÞ ¼ pðgÞ½ f ðg�1Þ� and applying Lemma 3.6.

For the next theorem, we use the notations of Section 2.B. We recall that the Haar
measures induce a canonical invariant measure class on homogeneous spaces ([61], Theo-
rem 23.8.1). Accordingly, there is a canonical measure class on each TðpÞ. The following is
a measurable analogue of Theorem 2.7.

Theorem 3.9. Let V be the dual of a separable Banach space. We have an exact se-

quence

0 ! V ! Ly
w�ðTð0Þ;VÞ ! Ly

w�ðTð1Þ;VÞ ! � � � ! Ly
w�ðTðr�1Þ;VÞð3:ivÞ

of dual morphisms of coe‰cient G-modules with closed ranges.

Proof. The closed range condition needs only to be proved for the last map since
elsewhere it will follow from exactness. By the closed range theorem, it is enough to show
that the pre-dual map L1ðTðr�1Þ;V [Þ ! L1ðTðr�2Þ;V [Þ has closed range, equivalently is
open. But this map is the direct sum over s A S of the r surjections

L1ðG=P;V [Þ ! L1ðG=Pfsg;V
[Þ;

each of which is open by the open mapping theorem.

We now turn to exactness. We apply Theorem 2.7 and have an exact sequence

0 ! V ! CðTð0Þ;VÞ ! CðTð1Þ;VÞ ! � � � ! CðTðr�1Þ;VÞ:
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Each space CðTðpÞ;VÞ is a direct sum of terms CðG=PI ;VÞ, and therefore Corollary 3.7
shows that CðTðpÞ;VÞ coincides with CLy

w�ðTðpÞ;VÞ. As for the initial term, V ¼ CV since
we chose the trivial G-action on V . Therefore Proposition 3.5 implies the exactness of the
sequence (3.iv). r

Remark 3.10. We take advantage of the fact that the morphisms in the sequence
(3.iv) do not depend on the module structure on V . However, one can also establish the
exactness of (3.iv) di¤erently when V is a non-trivial coe‰cient G-module. In that case, ap-
ply Theorem 2.7 to the locally convex space given by V in its weak-� topology to obtain an
exact sequence of modules Cw�ðTðpÞ;VÞ starting with V . The stronger version of the ‘‘ne-
cessity’’ part that we proved for Proposition 3.5 shows that the sequence CCw�ðTðpÞ;VÞ
starting with CV is also exact. Since CCw�ðTðpÞ;VÞ ¼ CLy

w�ðTðpÞ;VÞ by Remark 3.8, one
concludes again with Proposition 3.5.

3.C. Semi-separable modules and Mautner phenomenon.

Definition 3.11. Let G be a locally compact second countable group and V a coe‰-
cient G-module. We call V semi-separable if there exists a separable coe‰cient G-module U

and an injective dual G-morphism V ! U .

Remark 3.12. For Proposition 3.15 below, we shall only use that the coe‰cient G-
module U is continuous, which follows from Lemma 3.1. We will not need that the map
V ! U is adjoint, continuous or even linear; the above definition could therefore be re-
placed with requiring that V admits an auxiliary uniform structure for which the action is
continuous and by uniformly equicontinuous uniform maps. This would however prevent
further applications of this concept, such as in Section 5.B.

Semi-separability is not a restriction on the underlying Banach space, since the dual
of any separable Banach space admits an injective dual continuous linear map into a sepa-
rable dual, indeed even into l2. It is however a restriction on the G-representation; for in-
stance, let G be a countable group of homeomorphisms of some compact metrisable space
K . Let V be the G-module of Radon measures on K with integral zero, which is a coe‰-
cient module. One can verify that V is not semi-separable when K does not admit a G-
invariant measure.

For a basic non-separable semi-separable example, let W be a standard probability
space with a measurable measure-preserving G-action. The coe‰cient module LyðWÞ is
non-separable (unless W is atomic and finite). It is however semi-separable in view of the
map LyðWÞ ! L2ðWÞ, which is dual.

Increasing the generality, let H be another locally compact second countable group
and b : G �W ! H a measurable cocycle. Let V0 be a coe‰cient H-module and define a
coe‰cient G-module V ¼ Ly

w�ðW;V0Þ by the (dual) representation

�
pðgÞ f

�
ðoÞ ¼ p

�
bðg�1;oÞ�1�

f ðg�1oÞ;ð3:vÞ

where g A G and o A W.

Lemma 3.13. If V0 is semi-separable, then so is V.
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Proof. Let U0 be as in Definition 3.11 for V0 and define U ¼ L2ðW;U0Þ with repre-
sentation given by the same formula (3.v). Since U0 is a separable dual (of, say, U [

0 ), it has
the Radon–Nikodým property [29], III.3.2, and hence U is the dual of L2ðW;U [

0 Þ, see [29],
IV.1.1. Now the map V0 ! U0 induces an adjoint injective G-map

V ¼ Ly
w�ðW;V0Þ ! Ly

w�ðW;U0Þ ¼ LyðW;U0Þ ! L2ðW;U0Þ ¼ U

to a separable coe‰cient module. r

As a non-commutative analogue of LyðWÞ, we point out that the group von Neu-
mann algebra of a countable group G is a semi-separable G-module, since its predual is
the Fourier algebra AðGÞ which contains l2ðGÞ densely, see [32].

We provide now an example showing at once that the existence of a finite invariant
measure is crucial in Lemma 3.13 and that the main results of this paper do not hold in the
absence of semi-separability.

Example 3.14. Let G ¼ GðRÞ be a simple Lie group and assume that the associated
symmetric space is of Hermitian type. Assume that G is connected and simply connected
(as an algebraic group, not as a Lie group). For instance, consider the symplectic groups
G ¼ Sp2nðRÞ. Then H2

bðG;RÞ is one-dimensional [20], §5.3. Let now V ¼ LyðGÞ=R; this is
a coe‰cient G-module since it is the dual of the continuous separable G-module L1

0ðGÞ of
integral zero L1-functions. The dimension-shifting trick [45], 10.3.5, which is just an ap-
plication of the long exact sequence, shows H2

bðG;RÞGH1
bðG;VÞ. Thus H1

bðG;VÞ is non-
trivial regardless of the rank of G, which is n in the example at hand. This shows the neces-
sity of the semi-separability assumption since V G ¼ 0.

We develop the example a bit further to show that one gets counter-examples even
without involving in any way trivial modules (as here R). Consider the case n ¼ 1 of the
previous example, so that G GSL2ðRÞ. Let V0 be any (non-trivial) irreducible continuous
unitary G-representation of spherical type and set V ¼ LyðG;V0Þ=V0. It is known that
H2

bðG;V0Þ is one-dimensional [21], 1.1, and thus as before H1
bðG;VÞ is non-trivial. Again,

this would be incompatible with the statement of Theorem 1.1 but for the semi-separability
assumption. These examples also show the necessity of semi-separability in Theorem 1.9,
setting l ¼ 1.

We now adopt the notations introduced at the beginning of Section 2.B. For contin-
uous unitary representations, the following is the well-known Mautner phenomenon [42],
II.3.

Proposition 3.15. Let V be a semi-separable coe‰cient G-module, I LS and v A V TI .

Then v is fixed by some almost ka-simple factor of GaðkaÞ for all a A A such that Sa jL I .

Remark 3.16. The set SanI determines which almost ka-simple factor(s) will fix v. In
fact, being simply connected, the Ga are direct products of their almost simple factors ([64],
3.1.2, p. 46). Thus, upon adding multiplicities to A accordingly, one can get a more precise
statement for products of almost simple groups.

Proof of Proposition 3.15. Let V ! U be the map of Definition 3.11. Since it is in-
jective, it su‰ces to prove the proposition for the image of v in the G-module U , which is
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continuous (Remark 3.12). Therefore, we suppose without loss of generality that V itself is
continuous.

The classical Mautner lemma as established in [42], II.3.3(b), now finishes the proof.
Indeed, the entire argument given therein applies in greater generality and really shows the
following. If G acts continuously by isometries on some metric space V and v A V is TI -
fixed, then it is fixed by some almost ka-simple factor of GaðkaÞ for all a A A such that
Sa jL I . For the reader’s convenience, we sketch the argument. First, the continuity and iso-
metry assumptions imply immediately that v is fixed by any g A G such that the closure of
ftgt�1 : t A TIg contains the identity. Next, the contracting properties of the TI -action on
the unipotent radical of PI determine a large part of this radical consisting of such g. The
same argument holds for the radical of the opposite parabolic P�

I and the Bruhat decom-
position implies that together these unipotents generate the adequate almost simple fac-
tor(s). r

It follows from the definition that a weak-� closed submodule of a semi-separable co-
e‰cient module is still a semi-separable coe‰cient module; we record for later use that the
property passes also to quotients in a special case:

Lemma 3.17. Let G be a locally compact second countable group, N pG a normal

subgroup and V a semi-separable coe‰cient G-module. Then V=V N is a semi-separable co-

e‰cient G-module.

Proof. Let V ! U be as in Definition 3.11. Observe that V N , U N are weak-�
closed and G-invariant; hence V=V N , U=U N are also coe‰cient G-modules. The G-
equivariance of the injection V ! U implies the injectivity (and definiteness) of the map
V=V N ! U=U N , which is also adjoint. r

4. Vanishing

4.A. Semi-simple groups. Theorem 1.1 is a special case of (both statements in) The-
orem 1.2 and will therefore not be discussed separately.

Remark 4.1 (compact factors). Let G be as for Theorem 1.2 and let K pG be the
product of the groups of ka-points of all ka-anisotropic factors of all Ga, which is compact
(see e.g. [55]). We thus have canonical identifications

H�
bðG;VÞGH�

bðG;V KÞGH�
bðG=K ;V KÞ

for any Banach G-module V , see [45], 8.5.6, 8.5.7. Since ka-anisotropy is equivalent to the
vanishing of the ka-rank, we have rankðG=KÞ ¼ rankðGÞ and minkðG=KÞfminkðGÞ. This
implies that we can and shall assume throughout the proof of Theorem 1.2 that there are no
anisotropic factors. Point (i) will then be established under the slightly weaker hypothesis
that there are no vectors fixed simultaneously by some isotropic factor and by K .

Proof of Theorem 1.2 (i). We adopt the notations of the theorem; since by Remark 4.1
we can assume for all a that Ga has no ka-anisotropic factors, we are in the situation
of Section 2.B. However, we shall rather apply the results of that section to the group
~GG ¼ G � G, itself also an example of the same setting. In an attempt at suggestive nota-
tion (and perhaps with a view on potential extensions to Kac–Moody groups), we write
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~AA ¼ A tA�, ~SS ¼ S t S�, etc., where A� is just a disjoint copy of A, and so on. We then
choose opposite roots for the second factor, so that when I L ~SS is entirely contained in S�,
the group P�

I is indeed the parabolic opposite to the corresponding parabolic in the first
factor, justifying the notation.

The rank r of Section 2.B is r ¼ 2 rankðGÞ. We apply Theorem 3.9 and obtain an
exact sequence

0 ! V ! Ly
w�ðTð0Þ;VÞ ! Ly

w�ðTð1Þ;VÞ ! � � � ! Ly
w�ðTðr�1Þ;VÞð4:iÞ

of adjoint maps with closed ranges. We set Wp ¼ Ly
w�ðTðpÞ;VÞ for pe r � 1 and

Wr ¼ Wr�1=dWr�2. Let G act on each TðpÞ via the diagonal embedding D : G ! ~GG.
Now each Wp is a coe‰cient G-module for the representation (3.i) which uses the G-
representation on V . (This representation was not used in establishing the exactness of the
sequence (4.i) of ~GG-modules, and indeed ~GG does not act on V .) In conclusion, we have a
dual exact sequence

0 �! V ¼ W�1 �!d0
W0 �!d1 � � � �!dr

Wr �!drþ1
0

of coe‰cient G-modules. In order to prove case (i) of Theorem 1.2, the goal is now to es-
tablish the vanishing assumptions of Proposition 3.2.

We prove that in fact H�
bðG;WpÞ vanishes altogether for all 0e pe r � 1. Since

H�
bðG;�Þ commutes with finite sums [45], 8.2.10, it su‰ces to show

H�
b

�
G;Ly

w�ð ~GG= ~PP~II ;VÞ
�
¼ 0

for all ~II with j~II j ¼ r � 1 � p. We can write ~PP~II ¼ PI � P�
I � , with PI and PI � standard para-

bolics for G and ~II ¼ I t I �. The set PI � P�
I � LG contains P � P�, which is of full measure.

Indeed, since P� ¼ w0Pw0, the set P � P� is the translated of the big cell in the Bruhat de-
composition, which is Zariski-open (compare also [9], 4.2). Since the G-action on ~GG is diag-
onal, it follows that there is a canonical isomorphism of coe‰cient G-modules

Ly
w�ð ~GG= ~PP~II ;VÞGLy

w�
�
G=ðPI XP�

I �Þ;V
�

(where now in the right-hand side P�
I � is also considered as a subgroup of the same factor

G). We now apply the induction isomorphism (à la Eckmann–Shapiro) for bounded coho-
mology [45], 10.1.3, to the subgroup PI XP�

I � of G, recalling that it takes a simpler form
since V is a G-module rather than just a PI XP�

I �-module [45], 10.1.2(v); namely:

H�
b

�
G;Ly

w�
�
G=ðPI XP�

I �Þ;V
��

GH�
bðPI XP�

I � ;VÞ:

At this point we observe that the condition pf 0 forces at least one of the sets I , I � to
be a proper subset of S. We shall assume I 3S, the other case being dealt with in a
symmetric fashion. By abuse of language, we call Lévi decomposition the decomposition
PI ¼ VI zZGðTI Þ, where Pa; IXSa

¼ Va; IXSa
zZGa

ðTa; IXSa
Þ is a Lévi decomposition and

VI ¼
Q
a AA

Va; IXSa
ðkaÞ. Consider the subgroup

R ¼ ðVI zTI ÞXP�
I � < PI XP�

I �
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and observe that it is normal. Being soluble and hence amenable, there is an isomorphism
[45], 8.5.3,

H�
bðPI XP�

I � ;VÞGH�
bðPI XP�

I � ;V RÞ:

Since TI < R, we have V R LV TI . Thus Proposition 3.15 implies that the elements of V R

are fixed by some almost ka-simple factor of GaðkaÞ for all a A A such that Sa jL I . There is
at least one such a since I 3S. In view of the assumption of Theorem 1.2, we conclude
V R ¼ 0; this completes the proof that H�

bðG;WpÞ vanishes. r

4.B. A first glance at products. Our main results on products will be established in
Section 5 below; in order to complete the proof of Theorem 1.2 (ii), we present here a dif-
ferent type of argument where the number of factors does not contribute anything to the
vanishing. Consider the following condition on a locally compact second countable group
H for an integer m A N.

ð�mÞ The space Hq
bðH;VÞ vanishes for all semi-separable coe‰cient H-modules V

with V H ¼ 0 and all qem.

Proposition 4.2. Let G ¼ G1 � � � � � Gl be a product of locally compact second

countable groups and let m A N. If each Gi has property ð�mÞ, then so does G.

Proof. We argue by induction on l and observe that the case l ¼ 1 is tautological.
Let now lf 2. Upon writing G as G1 �

Q
i31

Gi, we see that the induction hypothesis allows

us to suppose l ¼ 2. We thus set G ¼ G1 � G2 and consider a semi-separable coe‰cient G-
module V with V G ¼ 0.

We claim first that Hq
bðG;UÞ vanishes for qem for any semi-separable coe‰cient G-

module U with either U G1 ¼ 0 or U G2 ¼ 0. By symmetry, we consider only U G1 ¼ 0. We
consider the (dual) exact sequence of G-modules

0 ! U ! Ly
w�ðG2;UÞ ! Ly

w�ðG2
2 ;UÞ ! � � � ! Ly

w�ðG
pþ1
2 ;UÞ ! � � � :

In view of Proposition 3.2 and Remark 3.3, it su‰ces to prove that Hq
b

�
G;Ly

w�ðG
pþ1
2 ;UÞ

�
vanishes for all pf 0 and all qem. We recall the identification of Ly

w�ðG
pþ1
2 ;UÞ with

Ly
w�
�
G=G1;L

y
w�ðG

p
2 ;UÞ

�
, see [45], 2.3.3, and the special form of the induction isomorphism

already mentioned above ([45], 10.1.2(v) and 10.1.3); it follows the isomorphism

Hq
b

�
G;Ly

w�ðG
pþ1
2 ;UÞ

�
GHq

b

�
G1;L

y
w�ðG

p
2 ;UÞ

�
;ð4:iiÞ

wherein G1 acts trivially on G
p
2 , pf 0. In particular, we may represent the Haar measure

class by a finite measure and we see that Ly
w�ðG

p
2 ;UÞ is semi-separable as a G1-module. Now

since Ly
w�ðG

p
2 ;UÞG1 is Ly

w�ðG
p
2 ;U

G1Þ which vanishes, the right-hand side of (4.ii) vanishes by
the assumption on G1. In conclusion, the claim is established indeed.

The space V G1 is weak-� closed and we have a dual exact sequence of coe‰cient G-
modules

0 ! V G1 ! V ! V=V G1 ! 0:ð4:iiiÞ
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All three are semi-separable, see Lemma 3.17. By assumption, we have ðV G1ÞG2 ¼ 0. On
the other hand, one verifies readily that ðV=V G1ÞG1 vanishes, see [45], 1.2.10. Therefore,
the long exact sequence [45], 8.2.1(ii), associated to (4.iii), together with the above claim,
shows that Hq

bðG;VÞ vanishes for all qem. r

Proof of Theorem 1.2 (ii). Since each Ga is simply connected, it is the direct product
of its almost simple factors (see [64], 3.1.2, p. 46). Therefore, we can assume that each Ga is
almost ka-simple. The statement now follows by combining the case of a single factor in (i)
with Proposition 4.2 for m ¼ 2 minkðGÞ � 1. r

4.C. Lattices. Let G be a locally compact second countable group, G < G a lattice
and W a coe‰cient G-module. Recall [45], 10.1.1, that one defines the Ly-induced coe‰-
cient G-module V ¼ Ly

w�ðG;WÞG by the right translation G-action. This module can also
be viewed as a special case of the construction given for ergodic-theoretical cocycles in Sec-
tion 3.C by taking for W a Borel fundamental domain for G in G and considering the cor-
responding cocycle b : G �W ! G. In particular, Lemma 3.13 applies:

Lemma 4.3. If W is semi-separable, then the Ly-induced module V ¼ Ly
w�ðG;WÞG is

a semi-separable coe‰cient G-module. r

The induction isomorphism [45], 10.1.3 reads

H�
bðG;WÞGH�

bðG;VÞ:ð4:ivÞ

The two corollaries not involving irreducibility can now be readily deduced from the corre-
sponding theorems on semi-simple groups. Corollary 1.6 being a special case of Corollary
1.8, we give:

Proof of Corollary 1.8. A G-invariant element of the induced semi-separable coe‰-
cient G-module V is a constant map G ! W ; being G-equivariant, it ranges in W G and
thus vanishes. Therefore, point (ii) of Theorem 1.2 together with the induction isomor-
phism (4.iv) yields the statement of the corollary. r

We now introduce the additional material needed for the general results on irreduc-
ible lattices. Let again G, G and W be as in the beginning of this Section 4.C. Let further
N pG be a closed normal subgroup. In keeping with the notation of the Introduction, de-
note by WN LW the collection of all w A W such that the orbit map G ! W , g 7! pðgÞw
can be extended to a continuous map G ! W factoring through G=N. This set is possibly
reduced to zero.

Lemma 4.4. If G � N is dense in G, then WN is a closed G-invariant linear subspace

and thus WN has a structure of continuous G-module that extends the G-structure and de-

scends to a continuous G=N-module structure. Moreover, there is a canonical G-equivariant

isometric isomorphism WN G CV N.

Remark 4.5. The notation CV N is not ambiguous since one checks

ðCGVÞN ¼ CGðV NÞ ¼ CG=NðV NÞ

(notation introduced in Section 3.B).
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Proof of Lemma 4.4. In view of Lemma 3.6 (with left and right exchanged), the ele-
ments of CV are continuous maps and may thus be evaluated at the identity. This provides
us with a G-equivariant map CV ! W . The density assumption implies that its restriction
E : CV N ! W is isometrically injective; moreover, it ranges in WN . On the other hand, for
any w A WN there is a continuous map G ! W , g 7! pðgÞw which is automatically left uni-
formly continuous. This provides an isometric right inverse to E : CV N ! WN . r

In fact we shall often use the above lemma as follows.

Lemma 4.6. If G � N is dense in G and V N 3 0, then WN < W is a non-zero G-

submodule which extends uniquely to a continuous G-module and descends to a continuous

G=N-module.

Proof. In view of Lemma 4.4, it su‰ces to prove that CV N is non-zero. Observe that
V N is a coe‰cient G-module and recall Remark 4.5. Since V N 3 0, the statement follows
from the fact that the submodule of continuous vectors of a coe‰cient module is always
weak-� dense [45], 3.2.3. r

Remark 4.7 (irreducibility). Let G be as for Theorem 1.2, let K pG be the product
of all compact factors (cf. Remark 4.1) and let G < G be a lattice. Margulis’ criterion [42],
II.6.7, shows that G is irreducible if and only if G � N is dense in G whenever N is the pro-
duct of K with at least one isotropic factor. As pointed out in Remark 4.1, Theorem 1.2 (i)
holds under the assumption that V N ¼ 0 for all such N.

Proof of Corollary 1.4. Let V ¼ Ly
0 ðG=GÞ be the integral zero subspace of

Ly
0 ðG=GÞ, which identifies to the quotient LyðG=GÞ=R. Then V is a semi-separable coe‰-

cient G-module, as follows either by a trivial case of Lemma 3.17 or by mapping it into
L2

0ðG=GÞ. A combination of the long exact sequence with the induction isomorphism
(4.iv) shows that in order to prove the corollary, it su‰ces to prove that H2

bðG;VÞ vanishes
for all n < 2 rankðGÞ (this is also explained in [45], Corollary 10.1.7). Since G is irreducible,
V N ¼ 0 for every N as in Remark 4.7 (this can be seen as a trivial case of Lemma 4.6).
Thus Theorem 1.2 indeed establishes the required fact. r

As noted in Remark 1.3, our results can be adapted to more general algebraic groups
or Lie groups. In fact, in order to prove Corollary 1.5, some arrangements are needed in
Corollary 1.4 to accommodate for the fact that algebraic connectedness and simple con-
nectedness of R-groups do not coincide with their topological counterpart for the groups
of R-points. Therefore, we first propose the following variant of Corollary 1.4 (which is
more general than what we shall need).

Corollary 4.8. Let L be any connected Lie group and let G < L be an irreducible lat-

tice. Then the restriction map

Hn
bðL;RÞ ! Hn

bðG;RÞ

is an isomorphism for all n < 2 rankR

�
L=RadðLÞ

�
.

(For the sake of this statement, we understand irreducible in the ad hoc acception that
G � N be dense in L whenever N pL is non-amenable.)
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Proof. We first assume that L is a connected semi-simple Lie group with finite
centre and no compact factors (this is the case needed for Corollary 1.5). Then there is a
connected semi-simple R-group G such that L ¼ GðRÞþ, see [11], 6.14. Let p : ~GG ! G be
an algebraic universal cover over R, so that ~GG is connected and simply connected (for gen-
eral existence, see e.g. [54], 2.10). Then GðRÞþ ¼ p

�
~GGðRÞþ

�
by [11], 6.3. On the other hand,

~GGðRÞþ ¼ ~GGðRÞ; indeed, this is a special case of the Kneser–Tits problem but was already
known to É. Cartan [23], see [10], 4.8. In any case, setting ~LL ¼ ~GGðRÞ, we have a finite cover
p : ~LL ! L and consider the lattice p�1ðGÞ in ~LL. The corresponding restriction and inflation
maps form a commutative square

Hn
bðL;RÞ ���!rest

Hn
bðG;RÞ???yinfl

???yinfl

Hn
bð~LL;RÞ ���!rest

Hn
bð~GG;RÞ:

Both inflation maps are isomorphisms since the kernel of p is finite [45], §8.5. By Corollary
1.4, the lower restriction map is an isomorphism when n < 2 rankRð~LLÞ. This finishes this
case since RadðLÞ is trivial and the real rank of L is rankRð~GGÞ.

We now consider the general case. Let RpL be the product of the radical RadðLÞ
and the compact part of the semi-simple group L=RadðLÞ. Then L=R is as in the first case
and has same real rank as L=RadðLÞ. Moreover, Auslander’s theorem [1] implies that the
group G ¼ G=ðGXRÞ is still a lattice in L=R (in this generality it is due to H.-C. Wang [65];
see [56], 8.27). We have again a commutative diagram

Hn
bðL=R;RÞ ���!rest

Hn
bðG;RÞ???yinfl

???yinfl

Hn
bðL;RÞ ���!rest

Hn
bðG;RÞ:

The inflation maps are still isomorphisms because R and GXR are amenable [45], §8.5.
This time, the upper restriction map is an isomorphism by the first case, concluding the
proof. r

Proof of Corollary 1.5. Let X be as in the statement and ~XX its universal cover. Since
X is ample, its fundamental group G ¼ p1ðXÞ is a lattice in the connected Lie group
L ¼ Isð ~XXÞ�. We recall the following facts (see e.g. [39]): L is semi-simple with finite centre
and without compact factors; G is irreducible in L; the real rank of L is the geometric rank
of X . Therefore, we can apply Corollary 4.8. The result now follows from the fact that
there is an isomorphism H�

bðX ÞGH�
bðG;RÞ. The latter admits a direct proof in the present

case since ~XX is contractible, though it can also be seen as a trivial case of a much deeper
result of M. Gromov [37], p. 40. r

Proof of Corollary 1.7. Suppose Hn
bðG;WÞ3 0 for some n < 2 rankkðGÞ. In view of

the induction isomorphism (4.iv), we have Hn
bðG;VÞ3 0 and thus Theorem 1.2 with Re-

mark 4.7 implies that there is N pG with V N 3 0 and G � N is dense in G. Thus Lemma
4.6 finishes the proof. r
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5. Product groups

There is of course no (non-trivial) Tits building structure for general groups. For
products of arbitrary groups Gi, however, we will use a very basic variant of the idea of
Tits building. The idea is to consider probability Gi-spaces Bi as zero-dimensional simpli-
cial complexes endowed with a measure class structure; then the join of these complexes is a
high-dimensional simplicial complex, also endowed with a measure class.

5.A. Joins. Let B1; . . . ;Br be standard probability spaces. For any subset
I L f1; . . . ; rg we define the probability space BI ¼

Q
i A I

Bi, with Bj ¼ fjg. Further, define
the finite measure spaces

BðpÞ ¼
F

jI j¼pþ1

BI ; �1e pe r � 1:

For I ¼ fi0 < � � � < ipg and 0e j e p we consider the canonical factor map BI ! BInfijg;
one obtains thus maps qp; j : BðpÞ ! Bðp�1Þ. Let now V be the dual of a separable Banach
space; the maps qp; j induce bounded linear maps

dp; j : Ly
w�ðBðp�1Þ;VÞ ! Ly

w�ðBðpÞ;VÞ; 0e j e pe r � 1:

We define dp ¼
Pp

j¼0

ð�1Þ j
dp; j and observe Ly

w�ðBð�1Þ;VÞGV .

Remark 5.1. Let V [ be a predual of V and recall that Ly
w�ðBðpÞ;VÞ is the dual of

L1ðBðpÞ;V [Þ. If we still denote by qp; j the maps L1ðBðpÞ;V [Þ ! L1ðBðp�1Þ;V [Þ, then dp; j is
the adjoint of qp; j and in particular each dp is adjoint.

If we were dealing with abstract simplicial complexes, then it would be a standard
fact that the cohomology of Bð�Þ vanishes in degrees other than 0 and r � 1, because, for
instance, of a spectral sequence for joins (see e.g. [53]). In our setting, one has to take
both measurability and almost everywhere identifications into account; resorting to explicit
calculation, we find that this creates no di‰culties:

Lemma 5.2. Let B1; . . . ;Br be standard probability spaces and V the dual of a sepa-

rable Banach space. Then the sequence

0 ! V ! Ly
w�ðBð0Þ;VÞ ! � � � ! Ly

w�ðBðr�1Þ;VÞ

is exact.

Proof. We consider elements f A Ly
w�ðBðpÞ;VÞ as families ð fI Þ where fI A Ly

w�ðBI ;VÞ
and jI j ¼ p þ 1. Define

sp; j : Ly
w�ðBðpÞ;VÞ ! Ly

w�ðBðp�1Þ;VÞ; 0e j e pe r � 1;

as follows:

ðsp; j f ÞJ ¼
P

ij�1<i<ij

Ð
Bi

fJWfig for J ¼ fi0; . . . ; ip�1g:

191Monod, Semi-simple groups and bounded cohomology



It is understood in the above formula that the summation bounds ij�1 < i < ij reduce to
i < i0 when j ¼ 0, to ip�1 < i when j ¼ p and impose no restriction when j ¼ p ¼ 0. We

define sp ¼
Pp

j¼0

ð�1Þ j
sp; j and claim that

dpsp þ spþ1dpþ1 ¼ r � Id on Ly
w�ðBðpÞ;VÞ; �1e pe r � 2;ð5:iÞ

with the convention that s�1 and d�1 are zero. In order to verify the claim, one checks the
following relations by direct calculation:

dp;ksp; j ¼ spþ1; jdpþ1;kþ1 for 0e j e k � 1e p;

dp;ksp;k ¼ spþ1;kdpþ1;kþ1 þ spþ1;kþ1dpþ1;k þ Id for 0e k e p;

dp;ksp; j ¼ spþ1; jþ1dpþ1;k for 0e k þ 1e j e p:

In addition, one verifies

Ppþ1

k¼0

spþ1;kdpþ1;k ¼
�
r � ðp þ 1Þ

�
� Id on Ly

w�ðBðpÞ;VÞ:

Putting everything together yields indeed (5.i) (the case p ¼ �1 is immediate). This claim
finishes the proof of the lemma. r

In order to gain one more degree in Theorem 1.9, we shall need the following infor-
mation on the end of the exact sequence of Lemma 5.2.

Lemma 5.3. The map dr�1 : Ly
w�ðBðr�2Þ;VÞ ! Ly

w�ðBðr�1Þ;VÞ has closed range.

Proof. We argue as for Theorem 3.9, now using the notation of Remark 5.1: By the
closed range theorem, it su‰ces to prove that qr�1 : L1ðBðr�1Þ;V [Þ ! L1ðBðr�2Þ;V [Þ is
open. Since we are in the top degree r � 1, this map is the direct sum of surjective maps
qr�1; j. The latter are open by the open mapping theorem. r

5.B. Ergodicity with coe‰cients. Let G be a locally compact second countable
group and X a standard probability space with a measurable G-action (thus G preserves
the measure class but not necessarily the measure). Recall that the action is ergodic if and
only if every G-invariant measurable map X ! R is essentially constant. In this definition,
one can of course replace R with several other spaces, for instance any separable Banach
space, since only the Borel structure is of relevance. This suggests the following definition
proposed by M. Burger and the author:

Definition 5.4 ([20], [45]). The G-action on X is ergodic with coe‰cients if every G-
equivariant measurable map X ! U to any separable coe‰cient G-module U is essentially
constant.

(Equivalently, is it enough to consider only maps that are bounded.)
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We recall for the above definition that on separable dual Banach spaces the strong,
weak and weak-� Borel structures all coincide (see e.g. [45], 3.3.3).

Lemma 5.5. Let V be a semi-separable coe‰cient module. If the G-action on X is

ergodic with coe‰cients, then one has an identification Ly
w�ðX ;VÞG GV G.

Proof. Let V ! U be an injective adjoint G-morphism into a separable coe‰cient
module U . In particular, this map is weak-� continuous and thus induces an equivariant
injection of Ly

w�ðX ;VÞ into Ly
w�ðX ;UÞ ¼ LyðX ;UÞ. This implies already that all elements

of Ly
w�ðX ;VÞG are essentially constant; but their essential value is invariant by equivari-

ance. r

Proposition 5.6. Let G ¼ G 0 � G 00 be a product of locally compact second countable

groups, let X be a standard probability G 00-space and let V be a semi-separable coe‰cient G-

module. If the G 00-action on X is both ergodic with coe‰cients and amenable, then there is a

natural isomorphism

H�
b

�
G;Ly

w�ðX ;VÞ
�
GH�

bðG 0;V G 00 Þ:

Proof. Define the coe‰cient G-module Un ¼ Ly
w�
�
G 0nþ1;Ly

w�ðX ;VÞ
�

and consider
the sequence

0 ! Ly
w�ðX ;VÞ ! U0 ! U1 ! � � �

with the usual homogeneous coboundary maps. Since the G-action on G 0nþ1 � X is amena-
ble and Un GLy

w�ðG 0nþ1 � X ;VÞ ([45], 2.3.3), each Un is a relatively injective G-module
and therefore the complex

0 ! U G
0 ! U G

1 ! � � � ! U G
n ! � � �ð5:iiÞ

realizes H�
b

�
G;Ly

w�ðX ;VÞ
�
. On the other hand, we have

U G
n ¼ Ly

w�
�
G 0nþ1;Ly

w�ðX ;VÞG 00�G 0
¼ Ly

w�ðG 0nþ1;V G 00 ÞG 0

by Lemma 5.5. Therefore, the complex (5.ii) can also be written as the non-augmented
complex of G 0-invariants of the familiar resolution

0 ! V G 00 ! Ly
w�ðG 0;V G 00 Þ ! Ly

w�ðG 02;V G 00 Þ ! � � �

used to compute H�
bðG 0;V G 00 Þ. r

The existence of (non-trivial) G-spaces that are ergodic with coe‰cients is not obvi-
ous; for instance, the multiplication action on G itself is not ergodic with coe‰cients unless
G ¼ 1. The following result is therefore useful.

Theorem 5.7 ([20], [50]). For every locally compact second countable group G there

exist standard probability spaces B, B� with amenable G-actions such that the diagonal G-

action on B � B� is ergodic with coe‰cients. Furthermore, one can choose B, B� isomor-

phic. r
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We indicate below a short proof in the special case where G is finitely generated (and
hence discrete). This proof follows the original argument provided in [20] for compactly
generated locally compact groups; it has the peculiar feature to reduce a general statement
for arbitrary finitely generated groups to classical properties of the group SL2ðRÞ. The dif-
ferent and more general proof later provided by V. Kaı̆manovich in [50] shows that in fact
one can take for B the Poisson (or Poisson–Furstenberg, or ghoti) boundary of any ‘‘spread
out, non-degenerate’’ random walk and for B� the boundary of the backward random
walk. In any case, one may always arrange B� ¼ B, whence the terminology of double er-

godicity used in [20]. The amenability of such actions was established in [66].

Let thus G be a finitely generated group. There is an epimorphism F ! G for some
finite rank non-Abelian free group F ; let N pF be its kernel. One can realize F as a lattice
in H ¼ SL2ðRÞ. Consider the (isomorphic) H-spaces H=P and H=P�, where P is a mini-
mal parabolic. In particular, those are amenable H-actions since P is an amenable group,
and thus also amenable F -actions since F is closed in H. It follows that the G-actions on
the factor spaces B, B� of N-ergodic components are also amenable. In view of the canon-
ical factor map H=P � H=P� ! B � B�, it su‰ces now to show that the F -action on
X ¼ H=P � H=P� is ergodic with coe‰cients. We claim that it su‰ces to show that the
H-action has this property; that latter fact follows from the Bruhat decomposition and
the Mautner phenomenon exactly as in Section 3.C, thus finishing the proof. As for the
claim, let f : X ! U be a bounded F -equivariant map as in Definition 5.4. Now ‘‘induce’’
it to an H-equivariant map X ! L2ðH=F ;UÞ. If the latter is constant, then so is f , proving
the claim.

Here is an elementary consequence that could perhaps also be established directly
using an appropriate fixed point theorem (and is implicitly contained in [20]):

Lemma 5.8. Let G be locally compact second countable group and V a semi-separable

coe‰cient G-module. Then H1
bðG;VÞ vanishes and H2

bðG;VÞ is Hausdor¤.

Proof. Let B and B� ¼ B be as in Theorem 5.7 and realize H�
bðG;VÞ as the coho-

mology of the complex

0 ! Ly
w�ðB;VÞG ! Ly

w�ðB2;VÞG ! Ly
w�ðB3;VÞG ! � � � :

By Lemma 5.5 and the definition of the homogeneous coboundary maps, this complex
starts with

0 ! V G !0 V G !e Ly
w�ðB3;VÞG ! � � �

where e is the inclusion of constant maps. This proves both claims since e has closed
range. r

Notice that the first statement of Lemma 5.8 can be considered as the trivial case of
our main results when the number of factors in a product (or the rank of a semi-simple
group) is one.

5.C. On Theorem 1.9 and consequences. We shall use the following fact, which fol-
lows from the definition of amenable actions: For a finite family of groups each given with
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an amenable action, the product action of the product of these groups on the product space
is also amenable.

Proof of Theorem 1.9. We use the notations of the theorem. For each 1e ie l, we
denote by Bi and Biþl amenable Gi-spaces such that the diagonal Gi-action on Bi � Biþl is
ergodic with coe‰cients (by virtue of Theorem 5.7). We adopt now the notation of Section
5.A with r ¼ 2l and endow all spaces BðpÞ with their natural G-action. Defining
Wp ¼ Ly

w�ðBðpÞ;VÞ, Lemmata 5.2 and 5.3 put us in the situation of Remark 3.3. Therefore,
we can apply Proposition 3.2 and thus conclude the proof of Theorem 1.9 if we show that
Hq

bðG;WpÞ vanishes for all qf 0 and all 0e pe r � 1.

Since H�
bðG;�Þ commutes with finite direct sums [45], 8.2.10, it su‰ces to show that

Hq
b

�
G;Ly

w�ðBI ;VÞ
�

vanishes whenever jI j ¼ p þ 1. We write G ¼ G 0 � G 00, where G 00 is the
product of all Gi with either i or i þ l in I , and G 0 the product of the remaining factors. The
G 00-action on BI is amenable and we claim that it is ergodic with coe‰cients. Indeed, let U

be a separable coe‰cient G 00-module; we need to show that every element in Ly
w�ðBI ;UÞG 00

is constant. There is a natural identification of coe‰cient G 00-modules [45], 2.3.3,

Ly
w�ðBI ;UÞGLy

w�
�
Bip ;L

y
w�
�
Bip�1

; . . . ;Ly
w�ðBi0 ;UÞ . . .

��
;

where I ¼ fi0; . . . ; ipg. Using successively the invariance under Gi0 (or Gi0�l), then Gi1 (or
Gi1�l), and so on, we find that G 00-invariant elements are constant, establishing the claim.
We are thus in the setting of Proposition 5.6 and deduce

Hq
b

�
G;Ly

w�ðBI ;VÞ
�
GH

q
bðG

0;V G 00 Þ:ð5:iiiÞ

Since I contains at least one element, there is at least one factor occurring in G 00; therefore
V G 00 ¼ 0 and the above vanishes as was to be shown. r

Remark 5.9. Recall (3.iii) that the right-hand side in (5.iii) is identical with
Hq

bðG 0; CG 0V G 00 Þ, and of course

CG 0V G 00 ¼ CGV G 00
L CGV Gi

for any factor Gi of G 00. Therefore, we established the conclusion of Theorem 1.9 under the
slightly weaker assumption that V is a semi-separable coe‰cient G-module with CV Gi ¼ 0
for all 1e ie l.

Proof of Corollary 1.11. We use the notations of Section 4.C and recall that the in-
duced G-module V is semi-separable, see Lemma 4.3. Suppose that WGj

vanishes for all j.
By Lemma 4.4, this implies CV Gi ¼ 0 for all 1e ie l. In view of the refinement of Theo-
rem 1.9 established in the above Remark 5.9, we deduce that Hn

bðG;VÞ vanishes for all
n < 2l. (Instead of using Remark 5.9, one can replace Lemma 4.4 by Lemma 4.6.) By the
induction isomorphism (4.iv), it follows that Hn

bðG;WÞ vanishes in the same range, finish-
ing the proof. r

Proof of Corollary 1.12. The proof of Corollary 1.4 applies word for word, replac-
ing only Theorem 1.2 with Theorem 1.9. r
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We end this section with an example. Let G be a (discrete) group and let V be the
kernel of the integration (i.e. co-augmentation) map l1ðGÞ ! R. Then V is a Banach G-
module for the left regular representation but is not dual. We oberve that H1

bðG;VÞ van-
ishes if and only if G is finite, as follows readily from the long exact sequence associated
to the extension 0 ! V ! l1ðGÞ ! R ! 0, see e.g. [45], 8.2.1(i). However, if G is a pro-
duct of infinite groups Gi, then V Gi ¼ 0 for all i.

5.D. Global fields and adèles. Let K be a global field and G a connected simply con-
nected almost K-simple K-group. Recall that the ring AK of adèles is the restricted product
of the completions Kv where v ranges over the set V of places of K. We write G ¼ GðKÞ
and G ¼ GðAKÞ and recall that G is a lattice in G by results of A. Borel and Behr–Harder
(see [42], I.3.2.2).

For any ULV we denote by GU the direct factor of G obtained as restricted product
over U. Let ALV be the set of places v such that G is Kv-anisotropic and set I ¼ VnA,
so that G ¼ GA � GI. Recall that A is finite (see e.g. [63], 4.9) and that GA is compact.
The strong approximation theorem (see e.g. [42], II.6.8) states that G � GU is dense in G as
soon as ULV contains at least one element of I.

Proof of Theorem 1.13. Let W be a semi-separable coe‰cient GðKÞ-module and
assume that Hn

b

�
GðKÞ;W

�
3 0 for some n. Let l > n=2 and choose a partition

V ¼ V1 t � � � tVl such that each Vi contains at least an element of I. In view of the pre-
ceding discussion, we are contemplating an irreducible lattice

G < G ¼ GV1
� � � � � GVl

:ð5:ivÞ

Therefore, Corollary 1.11 applies and proves the theorem. r

Suppose that we choose the above decomposition of V in such a way that each Vi

contains infinitely many places. Then, when Corollary 1.11 states that for some i the mod-
ule WGVi

is non-zero, it provides us indeed with a G-representation which is trivial on infi-
nitely many local factors GðKvÞ.

Proof of Corollary 1.14. We perform the same decomposition (5.iv) and then apply
Corollary 1.12. r

6. Further considerations

This section presents additional material not needed for the body of the article and
therefore the presentation is more elliptical.

6.A. Towards stabilisation. We would like to suggest how certain results of this pa-
per could perhaps be used in the study of stabilisation. Given a sequence Gn LGnþ1 L � � �
of classical groups Gn with natural inclusions, the question is whether and in what range the
corresponding restriction maps are isomorphisms for cohomology with trivial coe‰cients.
The classical situation is well understood and is of importance notably via the cohomology
of the limiting object Gy, which plays a rôle in topology (see e.g. [24] and [4], §12). In
bounded cohomology, some limited information is known for SLn, see [46].
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Let G be a general semi-simple group as in Section 2.B and keep the notation intro-
duced there; in particular, r ¼ jSj ¼ rankðGÞ. For any I LS we consider the (generalised)
Lévi decomposition PI ¼ VI zZGðTIÞ as introduced in Section 4.A. We denote by GI the
quotient of ZGðTI Þ by its centre and call it the semi-simple part of PI .

Theorem 6.1. There is a first quadrant spectral sequence E�;�
� converging to zero below

degree r such that

Ep;q
1 G

L
jI j¼r�p

Hq
bðGI Þ ðE0e pe r; EqÞ:

Moreover, these isomorphisms intertwine the di¤erential with alternating sums of restriction

maps.

The convergence ‘‘below degree r’’ means Ep;q
y ¼ 0 for all p þ q < r. As for the last

statement, it is to be precised as follows: there are indeed inclusions ZGðTI ÞLZGðTJÞ
whenever I L J; the corresponding restriction map descends to a map H�

bðGJÞ ! H�
bðGJÞ

via the inflation isomorphisms.

In order to use Theorem 6.1 for stabilisation, one probably ought to use the fact that
these restrictions are modelled on the acyclic simplex of proper subsets of S with dual in-
clusion. (For instance, this fact shows a contrario that the second tableau E2 of Theorem
6.1 must vanish at those indices where stabilisation holds.)

Proof of Theorem 6.1, sketch. Consider the double complex defined by

LyðGpþ1 �Tðq�1ÞÞG ðp; qf 0Þ

with Tð�1Þ ¼ G=G. Arguing exactly as in [46], [49], one can apply Theorem 3.9 to establish
that one of the two associated spectral sequences converges to zero below degree r. One of
the few di¤erences is that we chose here to include the empty simplex Tð�1Þ so that we are
really considering the spectral sequences resulting from applying the functor H�

bðG;�Þ to
the augmented complex of Theorem 3.9. The other spectral sequence, whilst it abuts to the
same result up to grading (which is irrelevant for vanishing), has the following first tableau:

Ep;q
1 ¼ H

q
b

�
G;LyðTðq�1ÞÞ

�
G

L
jI j¼r�p

H
q
bðPI ÞG

L
jI j¼r�p

H
q
bðGIÞ:

The statement about the di¤erentials is established by a calculation using 10.1.7 and
10.1.2(v) in [45] and the fact that we have commuting restrictions and inflations. r

6.B. Application to ergodic theory. The orbit-equivalence rigidity results of [52]
make extensive use of the second bounded cohomology. More precisely, the class C of all
countable groups G with non-vanishing H2

bðG;VÞ for some mixing unitary representation V

is considered. On the one hand, this class contains all groups that are negatively curved in a
rather general sense. On the other hand, the methods introduced in [20], [45] provide an
array of tools to analyse H2

b, including a ‘‘splitting’’ result implying the degree two case of
our Theorem 1.9.

A careful review of the proofs given in [52] shows that they can be extended to a more
general case using Theorem 1.9. Let thus C n be the class of countable groups G with non-
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vanishing H
p
bðG;VÞ for some pe n and some mixing unitary representation V . As a first

example, here is an extension of the ‘‘prime factorization’’ phenomenon (see the discussion
of Theorem 1.16 in [52]). We refer to that paper for terminology.

Theorem 6.2. Let G ¼ G1 � � � � � Gn and L ¼ L1 � � � � �Ln be products of torsion-

free (infinite) countable groups. Assume that all the Gi are in C n.

If G is measure-equivalent to L, then after permutation of the indices Gi is measure-

equivalent to Li for all i.

The discussion of this section has to be taken with a caveat since we do not know
examples showing that the inclusions

C ¼ C 2 L � � �L C n L C nþ1 L � � �

are proper. In the opposite direction, however, the results of the introduction show that
G B C n when G is either a lattice in a semisimple group of rank > n=2 or a product of
more than n=2 infinite factors (or a lattice in such a product). Further, a group GðKÞ as in
Section 1.E does not belong to any C n at all; likewise for Thompson’s group, see Section
6.C.

Our second example extends [52], Corollary 2.21.

Theorem 6.3. Let G ¼ G1 � � � � � Gn be a product of torsion-free groups in C n and let

Y be a mildly mixing G-space.

If this action is orbit-equivalent to any mildly mixing action of any torsion-free count-

able group L on a probability space X , then there is an isomorphism LGG. Moreover, the

actions on X and Y are then isomorphic.

On the proofs of Theorems 6.2 and 6.3. We only indicate what needs to be added to
the arguments in [52]. Let V be a mixing unitary Gi-representation and view it also as a
G-module. We first observe that the inflation map

H�
bðGi;VÞ ! H�

bðG;VÞ

is injective in all degrees since the restriction provides it with a left inverse. Given a
measure- (or orbit-) equivalence, one obtains by induction a semi-separable coe‰cient L-
module W of the form W ¼ Ly

w�ðW;VÞ described in Section 3.C. Whilst L2-induction re-
quired us to work in degree two in [52], it was shown there that there is an injective map in
any degree for Ly-induction

H�
bðG;VÞ ! H�

bðL;W Þ;

see the proof that Proposition 4.5 implies [52], Theorem 4. Our Theorem 1.9 applies pre-
cisely in the generality of semi-separable modules such as this Ly-induced module and for
the right degrees. Now the proofs continue unchanged; one uses that elements of W are in
fact strongly measurable as maps W ! V . A last remark on the assumptions of Theorem
6.3 is that mildly mixing actions of torsion-free groups are automatically essentially
free. r
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6.C. A note on Richard Thompson’s group. Recall that R. Thompson’s group F is
defined by generators and relations as follows:

F ¼ hgi; i A N : g�1
i gjgi ¼ gjþ1 Ej > ii:

It is apparent from this presentation that F is finitely generated and is not much harder
to check that it is finitely presented, see [22]. Further, F is isomorphic to the group of
orientation-preserving piecewise linear homeomorphisms of the interval ½0; 1� that have fi-
nitely many dyadic breaking points and whose slopes are powers of two, see loc. cit. Under
this identification, we denote by FA the subgroup of homeomorphisms with support in a set
AL ½0; 1�. We recall that the derived subgroup F 0 ¼ ½F ;F � corresponds to the group Fð0;1Þ
of homeomorphisms with trivial germ at 0 and 1.

Proposition 6.4. We have Hn
bðF ;VÞ ¼ 0 for all n and all mixing unitary F-

representations V.

Furthermore, if V is any semi-separable coe‰cient F-module such that Hn
bðF ;VÞ3 0

for some n, then every finitely generated subgroup of F 0 has non-zero fixed vectors in V.

We suspect that a stronger statement should hold regardless of the well-known open
question of the amenability of F . For the record, there are many other groups with the
above properties.

Proposition 6.5. Every countable group embeds into a finitely generated (indeed 3-

generated) group F satisfying all conclusions of Proposition 6.4.

Proof of Proposition 6.4. Let V and n be as in the second statement of the proposi-
tion; let R < F 0 be a finitely generated subgroup. Then R < FA1

for some dyadic interval A1

contained in the open interval ð0; 1Þ. Choose further dyadic intervals A2; . . . ;Al L ð0; 1Þ
such that all Ai are pairwise disjoint and l > n=2. Thus F contains the subgroup

P ¼ FA1
� � � � � FAl

:

All FAi
are conjugated because of the transitivity properties of F on ½0; 1�; therefore, in view

of Theorem 1.9, it su‰ces to show that Hn
bðP;VÞ does not vanish. In fact, even the compo-

sition of restriction maps

H�
bðF ;VÞ ! H�

bðP;VÞ ! H�
bðFA1

;VÞ

is injective because FA1
is co-amenable in F . We refer to the proof of [25], Corollary 2.3, for

the latter fact and to [45], 8.6.6, for the injectivity of the restriction.

The initial claim of the proposition now follows by considering any infinite finitely
generated subgroup of F 0. r

Proof of Proposition 6.5. Let G be a countable group; it can be embedded in a 2-
generated simple group S by a theorem of A. Gorjuškin [36] and P. Schupp [57]. We let F

be the restricted wreath product of S by Z, which means F ¼ LzZ for L ¼
L
Z

S and Z

acting on L by shifting the coordinates. Thus F is 3-generated and its derived subgroup is L.
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The argument now has similarities with the case of the Thompson group. Let V and n

be as in the statement and R < L a finitely generated subgroup. There is a finite set A1 LZ

such that R < FA1
, where FA1

¼
L
A1

S < L. We choose now disjoint Z-translates Ai of A1

and consider P ¼ FA1
� � � � � FAl

. This time, however, P need not be co-amenable in F .
Therefore we let P 0 ¼ P0 � P, where P0 ¼

L
n<n0

S and n0 denotes the smallest element of Z

to belong to any Ai. Now P0 and hence also P 0 is co-amenable in F , as was observed in
[50]. Therefore we deduce from Theorem 1.9 that some factor of P 0 has invariant vectors;
this concludes the proof since P0 also contains conjugates of FA1

and hence of R.

For the initial claim, we need again an infinite finitely generated subgroup of F 0. If
there were none, F 0 would be locally finite and thus F would be amenable; in that case,
the vanishing of H�

bðF ;�Þ would be automatic for all coe‰cient modules. r
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(2) 97 (1973), 499–571.

[12] Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of

reductive groups, Princeton University Press, Princeton, N.J., 1980.

[13] Armand Borel and Jun Yang, The rank conjecture for number fields, Math. Res. Lett. 1 (1994), no. 6,

689–699.
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Society, Zürich (2006), 1183–1211.

[48] Nicolas Monod, Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc. 19 (2006),

no. 4, 781–814.

[49] Nicolas Monod, Vanishing up to the rank in bounded cohomology, Math. Res. Lett. 14 (2007), no. 4,

681–687.

[50] Nicolas Monod and Sorin Popa, On co-amenability for groups and von Neumann algebras, C. R. Math.

Acad. Sci. Soc. R. Can. 25 (2003), no. 3, 82–87.

[51] Nicolas Monod and Yehuda Shalom, Cocycle superrigidity and bounded cohomology for negatively curved

spaces, J. Di¤. Geom. 67 (2004), 395–455.

201Monod, Semi-simple groups and bounded cohomology



[52] Nicolas Monod and Yehuda Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. Math. (2)

164 (2006), no. 3, 825–878.

[53] James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA,

1984.

[54] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure Appl. Math. 139,

Academic Press Inc., Boston, MA, 1994, translated from the 1991 Russian original by Rachel Rowen.

[55] Gopal Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc.

Math. France 110 (1982), no. 2, 197–202.

[56] Madabusi Santanam Raghunathan, Discrete subgroups of Lie groups, Ergebn. Math. Grenzgeb. 68, Springer-

Verlag, New York 1972.

[57] Paul E. Schupp, Embeddings into simple groups, J. London Math. Soc. (2) 13 (1976), no. 1, 90–94.

[58] Joachim Schwermer, Cohomology of arithmetic groups, automorphic forms and L-functions, Cohomology

of arithmetic groups and automorphic forms (Luminy-Marseille 1989), Lect. Notes Math. 1447, Springer,

Berlin (1990), 1–29.

[59] Jean-Pierre Serre, Cohomologie des groupes discrets, Séminaire Bourbaki, 23ème année (1970/1971), Exp.
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[68] Gregg J. Zuckerman, Continuous cohomology and unitary representations of real reductive groups, Ann.

Math. (2) 107 (1978), no. 3, 495–516.

EPFL, 1015 Lausanne, Switzerland

e-mail: nicolas.monod@epfl.ch

Eingegangen 1. November 2007, in revidierter Fassung 24. Dezember 2008

202 Monod, Semi-simple groups and bounded cohomology


