

Efficient Protocols for Set Membership and Range Proofs

Jan Camenisch¹ Rafik Chaabouni^{1,2} abhi shelat³

¹IBM ZRL ²EPFL LASEC ³U. of Virginia

ASIACRYPT 2008

December 9, 2008

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Introduction Our Focus Interest

- Honest Verifier Model (Malicious Verifier possible)
- Asymptotically Better Efficiency
 Drastiagly, Compatitive

(日)

Usefulness?

- Cryptography Primitives
- Revocation Credentials (Freshness of a Token)
- Anonymous Credentials (Identity and Authentication Proofs)

000

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example: Use of Range Proof

- Offer from IACR to travel to Melbourne, Australia for the Asiacrypt 2008 conference.
- Restriction for young PhD candidates: under 26, but older than 18.
- Strict age anonymity for the airplane company.
- Bob wants to go (he has a paper accepted).

Prior State of the Art

- Introduction
 - Our Focus Interest
 - Community Interest
- Prior State of the Art
 - Common Range Proofs
 - Berry Schoenmakers' Scheme

3 Our New Solutions

- Better Solutions?
- Breeding Ground
- New Set Membership
- Application to Range Proof

Conclusion

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

ASIACRYPT 2008 5/27

Boudot's range proof with RSA assumption

• Positivity proofs:
$$x \in (a, b) \Leftrightarrow \begin{cases} 0 < x - a; \\ 0 < b - x. \end{cases}$$

- In presentation: Sum of four square.
- Lagrange Theorem ~1770: Any positive number can be represented as the sum of four square

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

Prior State of the Art Common Range Proofs

Introduction	Prior State of the Art	Our New Solutions	Conclusio

Sum of square method

- Rabin and Shallit 1986: probabilistic polynomial time (PPT) algorithm (4 square method)
 - \rightarrow Some numbers can be represented as the sum of three square (Numbers that cannot be the sum of 3 squares: $4^n(8x+7)$)
- Application to positivity proofs by Lipmaa in 2001 for the 4 square method
- Application to positivity proofs by Groth in 2005 for the 3 square method

Disadvantages

- RSA Assumption
- Large Complexity: $O(k^4)$

くロト (部) (ア・・ ア・・

Eall	loro.	Dit	Commitmont
FOIK	lore.	БΠ	Comminent
			001111111110110

Public parameters: $\Phi = [0, 2^k)$, *C* and *C_i*

Prover

$$m \in \Phi$$
, $m = \prod_{i=0}^{k-1} m_i 2^i$

$$C = Com(m), C_i = Com(m_i)$$

 $PK\{(m_i, \forall i) : C_i = Com(m_i) \land m_i \in \{0, 1\}\}$

Prior State of the Art

0000000

OR-Proof ~2 Schnorr proofs

Verifier

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Prior State of the Art Common Range Proofs

Schnorr proof		
Prover $x = \log_{a} h$		Verifier h
$d = g^u, \ u \in_R \mathbb{Z}_p$	d >>	
	<c< td=""><td>$c \in_R \mathbb{Z}_p$</td></c<>	$c \in_R \mathbb{Z}_p$
r = u + cx	_	$g^{r} \stackrel{?}{=} dh^{c}$

Prior State of the Art

0000000

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

ASIACRYPT 2008 9/27

・ロト・日本・ キョン・ヨン・ 油

Prior State of the Art Common Range Proofs

Introduction	Prior State of the Art	Our New Solutions	Conclusion

Verifier

Folklore Bit Commitment

Public parameters: $\Phi = [0, 2^k]$, C = Com(m) and $C_i = Com(m_i)$

Prover

 $m\in \Phi,\;m=\prod_{i=0}^{k-1}m_i2^i$

 $\frac{PK\{(m_i, \forall i) : C_i = Com(m_i) \land m_i \in \{0, 1\}\}}{OR - Proof \sim 2 \text{ Schnorr proofs}}$

Properties

- No RSA Assumption
- Still Large Complexity: O(k)

Building Blocks

- Improvments of folklore bit decomposition
- Exact proofs for small intervals
- Reduction of arbitrary ranges [0, b) into 2 bit decompositions

Prior State of the Art

0000000

Our New Solutions

- AND-composition: $[0,b) = [0,2^k) \cap [b-2^k,b)$
- OR-composition: $[0,b) = [0,2^{k-1}) \cup [b-2^{k-1},b)$

Earlier Work

• [LAN02]

ASIACRYPT 2008 11/27

Decomposition of Upper Bound

- Product case b = de
- Sum case b = d + e
- Recursion down to Schnorr proofs
- Complexity of number b: minimal number of element 1 in order to write b with products and sums of element 1, including parentheses 7 = (1 + 1) * (1 + 1 + 1) + 1.

Prior State of the Art

000000

Our New Solutions

Complexity?

• Asymptotic Complexity Still: $O(\log b) \sim O(k)$

Our New Solutions

Conclusion

- 1 Introduction
 - Our Focus Interest
 - Community Interest
- Prior State of the Art
 - Common Range Proofs
 - Berry Schoenmakers' Scheme

Our New Solutions

- Better Solutions?
- Breeding Ground
- New Set Membership
- Application to Range Proof

Conclusion

イロト イポト イヨト イヨト

Our Solution

•
$$Com(u, \ell) = O\left(\frac{k}{\log k - \log \log k}\right)$$

- No RSA Assumptions
- Very competitive solution.

・ロト・日本・ キョン・ヨン・ 油

Shaking the Tree of Knowledge

- Why bit decomposition? What about base 3?
 - \rightarrow Generalization to base *u*...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction	Prior State of the Art	Our New Solutions	Cond
		000000000000000000000000000000000000000	

Verifier

Base u Commitment

Public parameters: $\Phi = [0, u^{\ell}), C = Com(m) \text{ and } C_i = Com(m_i)$

Prover $m \in \Phi, \ m = \prod_{i=0}^{\ell-1} m_i u^i$

$$PK\{(m_i, \forall i): C_i = Com(m_i) \land m_i \in \{0, \dots, u-1\}\}$$

 ℓ OR-Proofs ~ O(u)Schnorr proofs

Not Enough...

• Asymptotic Complexity: $O(u \cdot \ell)$

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

ASIACRYPT 2008 16/27

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

lusion

Shaking the Tree of Knowledge

- Why Schnorr proofs for basic set membership?
 - → Signature based solution (Boneh-Boyen signatures in the Adaptive Oblivious Transfer of Jan Camenisch, Gregory Neven, and abhi shelat)
 - Cryptographic accumulators based solution (elements compression into a single accumulator with a witness on the accumulator membership for each element)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Set Membership Protocol

 Reduction of Set Membership to proving knowledge of signed messages without revealing them

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

ASIACRYPT 2008 18/27

< ロ > < 同 > < 回 > < 回 > : < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Our New Solutions Application to Range Proof

Introduction Prior State of the Art Our New Solutions Conclusion

Use Set Membership to efficiently solve Range Proof.

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

・ロト ・四ト ・ヨト・ヨト・

ASIACRYPT 2008 19/27

Insight

- *u*-ary decomposition $[0, u^{\ell})$ e.g. for $u = 5 \Rightarrow 334 = 2 \cdot 5^3 + 3 \cdot 5^2 + 1 \cdot 5^1 + 4 \cdot 5^0$
- Signature based Set Membership for set $\mathbb{Z}_u = \{0, 1, ..., u-1\}$

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

ASIACRYPT 2008 20/27

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Our New Solutions

Our New Solutions Application to Range Proof

Range Proof Protocol Public parameters: $\Phi = [0, u^{\ell}), C = Com(m)$ and $C_i = Com(m_i)$ Prover Verifier $m \in \Phi, m = \prod_{i=0}^{\ell-1} m_i u^i$ $\{A_i\}$ $A_i = Sign(i), \forall i \in \mathbb{Z}_{ii}$ $\{V_i\}$ $V_i = Blind(A_{m_i}), \forall j$ $PK\{(m_i,r_i,z_i): C_i = g^{m_j} h^{r_j} \land e(V_i,y) = e(V_i,g)^{-m_j} e(g,g)_i^z\}$

Communication Complexity

 $O(u) + O(\ell) + O(\ell) \cdot O(1) = O(u+\ell) \text{ v.s. } O(u \cdot \ell)$

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

ASIACRYPT 2008 21/27

Our New Solutions

Asymptotic Communication Complexity

- Relation to security parameter: $u^{\ell} \ge 2^{k-1}$
- Possible optimal choice for *u* could be $u = \frac{k}{\log k}$

•
$$Com(u, \ell) = O\left(\frac{k}{\log k - \log \log k}\right)$$

・ロト・日本・ キョン・ヨン・ 油

Introduction Prior State of the Art Our New Solutions Conclusion

Practical Communication Complexity

- Concrete optimization possible in the choice of u
- Minimize $Com(u, \ell)$ under constraint $u \log^2 u = \frac{c_2 \log b}{c_1} = B$

• Vaudenay's hint:
$$u = \frac{B}{\log^2 u} = \frac{B}{(\log B - 2\log \log u)^2}$$

Prior State of the Art Our New Solutions Conclusio

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Handling arbitrary ranges [a, b)

- General case (AND-composition): $u^{\ell-1} < b < u^{\ell}$
- $m \in [a,b) \Leftrightarrow m \in [a,a+u^{\ell}) \cap m \in [b-u^{\ell},b)$
- 2 other potential optimizations
- If $b a = u^{\ell}$, $m \in [a, b) \Leftrightarrow m a \in [0, u^{\ell})$

• If
$$a + u^{\ell-1} < b$$
 OR-composition:
 $[a,b) = [b - u^{\ell-1},b) \cup [a,a + u^{\ell-1})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Our New Solutions

Recall Bob's Example

- Bob wants to apply for IACR offer (free trip to Asiacrypt 08 for PhD candidates with 18 ≤ age < 26).
- Using the Unix Epoch system to encode the birth date, we obtain the following allowed range: [347184000,599644800)

Our New Solutions Application to Range Proof

Potential Example

- Communication load comparison for range proof [347184000,599644800):
- For very large ranges, Boudot's method wins with the strong RSA assumption
- If no RSA assumption made, our scheme performs better.
- Complexity varies with range and setup assumptions.

Scheme	Communication Complexity
Our new range proof	45824 bits
Boudot's method	48946 bits
Standard bit-by-bit method	96768 bits
Schoenmakers' method	50176 bits

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Our New Solutions

00000000000000

Conclusion	Introduction	Prior State of the Art	Our New Solutions	Conclusion

- Further work in progress by Helger Lipmaa for general case of arbitary ranges.
- Bob can travel safely without being bothered with age anonymity
- Questions?

\end{session}

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Efficient Protocols for Set Membership and Range Proofs Jan Camenisch, Rafik Chaabouni, abhi shelat

ASIACRYPT 2008 27/27