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Abstract

A generalization of Arıkan’s polar code construction using transformations of the form G⊗n

where G is an ℓ × ℓ matrix is considered. It is shown that a large class of such transformations
polarize symmetric binary-input memoryless channels. Necessary and sufficient conditions are
given for these transformations to ensure channel polarization.

1 Introduction

Polar codes, introduced by Arıkan in [1], are the first provably capacity achieving codes for any
symmetric binary-input discrete memoryless channel (B-DMC) with low encoding and decoding
complexity. Polar code construction is based on the following observation: Let

G =

[

1 0
1 1

]

. (1)

Consider applying the transform G⊗n (where “⊗n” denotes the nth Kronecker power) to a block of
N = 2n bits and transmitting the output through independent copies of a B-DMC W (see Figure
1). As n grows large, the channels seen by individual bits (suitably defined in [1]) start polarizing :
they approach either a noiseless channel or a pure-noise channel, where the fraction of channels
becoming noiseless is close to the symmetric mutual information I(W ).

It was conjectured in [1] that polarization is a general phemonenon, and is not restricted to
the particular transformation G⊗n defined by (1). In this note we give a partial affirmation to
this conjecture. In particular, we consider transformations of the form G⊗n where G is an ℓ × ℓ
matrix for ℓ ≥ 3 and provide necessary and sufficient conditions for such G’s to polarize symmetric
B-DMCs.

2 Preliminaries

Let W : {0, 1} → Y be a B-DMC. Let I(W ) ∈ [0, 1] denote the mutual information between the
input and output of W with uniform distribution on the inputs. Also let Z(W ) ∈ [0, 1] denote the
Bhattacharyya parameter of W , i.e., Z(W ) =

∑

y∈Y

√

W (y|0)W (y|1).
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Figure 1:

Consider a random ℓ-vector U ℓ
1 that is uniformly distributed over {0, 1}ℓ. Let Xℓ

1 = U ℓ
1G, where

G is an ℓ×ℓ invertible {0, 1} matrix and the multiplication is performed over GF(2). Let uℓ
1 and xℓ

1

denote realizations of U ℓ
1 and Xℓ

1 respectively. Define W (i) : {0, 1} → {0, 1}i−1 ×Yℓ as the channel
with input ui, output (yℓ

1, u
i−1
1 ) and transition probabilities given by

W (i)(yℓ
1, u

i−1
1 | ui) =

1

2ℓ−1

∑

uℓ
i+1

Wℓ(y
ℓ
1 | uℓ

1),

where

Wℓ(y
ℓ
1 | uℓ

1) ,

ℓ
∏

i=1

W (yi | xi) =
ℓ

∏

i=1

W (yi | (uℓ
1G)i).

For k ≥ 1 let W k denote the product B-DMC with transition probabilities

W k(yk
1 | x) =

k
∏

j=1

W (yj | x).

Also let Z(i) denote the Bhattacharyya parameter of W (i), i.e.,

Z(i) =
∑

yℓ
1
,ui−1

1

√

W (i)(yℓ
1, u

i−1
1 | 0)W (i)(yℓ

1, u
i−1
1 | 1).

Finally, let I(i) denote the mutual information between the input and output of channel W (i). Since
G is invertible, it is easy to check that

ℓ
∑

i=1

I(i) = ℓI(W ).

3 Polarization

We will say that G is a polarizing matrix if

∃i such that W (i) = W k for some k ≥ 2. (2)
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It will be shown that channel transformations of the form G⊗n polarize symmetric channels if
and only if G is polarizing. This statement is made precise in the following theorem:

Theorem 1. Let G⊗n denote the nth Kronecker power of G and consider the transformation
G⊗n : W → (W (i) : i = 1, . . . , ℓn).

i. If G is polarizing, then for any δ > 0

lim
n→∞

#
{

i ∈ {1, . . . , ℓn} : I(W (i)) ∈ (δ, 1 − δ)
}

ℓn
= 0.

ii. If G is not polarizing, then

I(W (i)) = I(W ) for all n and i ∈ {1, . . . , ℓn}.

Theorem 1 is a direct consequence of Lemmas 1 and 2 below.
Note that any invertible {0, 1} matrix G can be written as a (real) sum G = P + P ′, where P

is a permutation matrix, and P ′ is a {0, 1} matrix. This fact can be inferred from Hall’s Theorem
[3, Theorem 16.4.]. Therefore, for any such matrix G, there exists a column permutation that
results in Gii = 1 for all i. Since the transition probabilities defining W (i) are invariant (up to a
permutation of the outputs yℓ

1) under column permutations on G, we only consider matrices with
1’s on the diagonal.

The following lemma gives necessary and sufficient conditions for (2) to be satisfied:

Lemma 1. For any B-DMC W ,

i. If G is not upper triangular, then there exists an i for which W (i) = W k for some k ≥ 2.

ii. If G is upper triangular, then W (i) = W for all 1 ≤ i ≤ ℓ.

Proof. Let G(ℓ−i) be the (ℓ − i) × (ℓ − i) matrix obtained from G by removing its last i rows and
columns. Let the number of 1’s in the last row of G be k. Clearly W (ℓ) = W k. If k ≥ 2 then
G is not upper triangular and the first claim of the lemma holds. If k = 1, then W (ℓ) = W , and
(x1, . . . , xℓ−1) is independent of uℓ. One can then write

W (ℓ−i)(uℓ−i−1
1 , yℓ

1 | uℓ−i) =
1

2ℓ−1

∑

uℓ
ℓ−i+1

Wℓ(y
ℓ
1 | uℓ

1)

=
1

2ℓ−1

∑

uℓ−1

ℓ−i+1
,uℓ

Pr[Y ℓ−1
1 = yℓ−1

1 | U ℓ
1 = uℓ

1] Pr[Yℓ = yℓ | Y ℓ−1
1 = yℓ−1

1 , U ℓ
1 = uℓ

1]

(a)
=

1

2ℓ−1

∑

uℓ−1

ℓ−i+1
,uℓ

Wℓ−1(y
ℓ−1
1 | uℓ−1

1 ) Pr[Yℓ = yℓ | Y ℓ−1
1 = yℓ−1

1 , U ℓ
1 = uℓ

1]

=
1

2ℓ−1

∑

uℓ−1

ℓ−i+1

Wℓ−1(y
ℓ−1
1 | uℓ−1

1 )
∑

uℓ

Pr[Yℓ = yℓ | Y ℓ−1
1 = yℓ−1

1 , U ℓ
1 = uℓ

1]

=
1

2ℓ−1

[

W (yℓ | 0) + W (yℓ | 1)
]

∑

uℓ−1

ℓ−i+1

Wℓ−1(y
ℓ−1
1 | uℓ−1

1 )
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where (a) follows from the fact that Glk = 0, for all k < ℓ. Therefore yℓ is independent of
the inputs to the channels W (ℓ−i) for i = 1, . . . , ℓ − 1. This is equivalent to saying that channels
W (1), . . . ,W (ℓ−1) are defined by the matrix G(ℓ−1). Applying the same argument to G(ℓ−1) and
repeating, we see that if G is upper triangular, then we have W (i) = W for all i. On the other
hand, if G is not upper triangular, then there either exists an i for which G(ℓ−i) has at least two 1s
in the last row, which in turn implies W (i) = W k for some k ≥ 2.

Remark 1. The above lemma says that all transformations that are not upper triangular are
polarizing. Moreover, upper triangular transformations have no effect on the channel, i.e., each bit
sees an independent copy of W after an upper triangular transformation.

Corollary 1. For any polarizing transformation G, there exists an i ∈ {1, . . . , ℓ} and k ≥ 2 for
which

I(i) = I(W k) (3)

Z(i) = Z(W )k. (4)

Proof. The first claim is trivial. The second claim follows from the fact that the Bhattacharyya
parameter of any product channel

∏

j Wj is given by
∏

j Z(Wj).

4 Convergence

Consider the recursive channel combination given in [1], using a polarizing transformation G. Fol-
lowing Arıkan, associate to this construction a tree process {Wn;n ≥ 0} with

W0 = W

Wn+1 = W (Bn+1)
n ,

where {Bn;n ≥ 1} is a sequence of i.i.d. random variables defined on a probability space (Ω,F , µ),
Bn being uniformly distributed over the set {1, . . . , ℓ}. Define F0 = {∅,Ω} and Fn = σ(B1, . . . , Bn)
for n ≥ 1. Define the processes {In;n ≥ 0} = {I(Wn);n ≥ 0} and {Zn;n ≥ 0} = {Z(Wn);n ≥ 0}.

Observation 1. {(In,Fn)} is a bounded martingale and therefore converges a.s. and in L1 to a
random variable I∞.

Lemma 2. If W is symmetric and G is polarizing, then

I∞ =

{

1 w.p. I(W ),

0 w.p. 1 − I(W ).

Proof. By the convergence in L1 of In we have E[|In+1−In|]
n→∞
−→ 0. Since G is a polarizing matrix,

Lemma 1 implies

In+1 = I(W k
n ) with probability at least

1

ℓ
,
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for some k ≥ 2. This in turn implies

E[|In+1 − In|] ≥
1

ℓ
E[(I(W k

n ) − I(Wn)] → 0. (5)

It is shown in the Appendix that for any symmetric B-DMC Wn, if I(Wn) ∈ (δ, 1 − δ) for some
δ > 0, then there exists an η(δ) > 0 such that I(W k

n ) − I(Wn) > η(δ). We therefore conclude that
convergence in (5) implies I∞ ∈ {0, 1} w.p. 1. The claim on the probability distribution of I∞
follows from the fact that {In} is a martingale, i.e., E[I∞] = E[I0] = I(W ).

Corollary 2. If W is symmetric and G is polarizing, then {Zn} converges a.s. to a random variable
Z∞ and

Z∞ =

{

0 w.p. I(W ),

1 w.p. 1 − I(W ).

Proof. The proof follows from the fact that In → I∞ a.s. and the inequalities [1]

I(Q)2 + Z(Q)2 ≤ 1

I(Q) + Z(Q) ≥ 1.

for any B-DMC Q.

Theorem 2. Given a symmetric B-DMC W , an ℓ × ℓ polarizing matrix G, and any β < 1/ℓ,

lim
n→∞

Pr[Zn ≤ 2−2nβ

] = I(W ).

Proof Idea. For any polarizing matrix it can be shown that Zn+1 ≤ ℓZn with probability 1 and
that Zn+1 ≤ Z2

n with probability at least 1/ℓ. The proof then follows by adapting the proof of [2,
Theorem 3].

5 Discussion

Using Arıkan’s rule for choosing the information set, polar codes of blocklength N = ℓn can be
constructed starting with any polarizing ℓ× ℓ matrix G. The encoding and successive cancellation
decoding complexities of such codes are O(N log N). Using similar arguments, it is easy to show
that polar codes of blocklength N =

∏n
i=1 ℓi can be constructed from generator matrices of the form

⊗iGi, where each Gi is a polarizing matrix of size ℓi × ℓi. The encoding and successive cancellation
decoding complexities of these codes are also O(N log N).

Appendix

In this section we prove the following:
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Lemma 3. Let W be a symmetric B-DMC and let W k denote the product channel

W k(yk
1 | x) =

k
∏

i=1

W (yi | x).

If I(W ) ∈ (δ, 1 − δ) for some δ > 0, then there exists an η(δ) > 0 such that I(W k)− I(W ) > η(δ).

We will use the following theorem in proving Lemma 3:

Theorem 3 ([4]). Let W1, . . . ,Wk be k symmetric B-DMCs with capacities I1, . . . , Ik respectively.
Let W (k) denote the channel with transition probabilities

W (k)(yk
1 | x) =

k
∏

i=1

Wi(yi | x).

Also let W
(k)
BSC denote the channel with transition probabilities

W
(k)
BSC

(yk
1 | x) =

k
∏

i=1

WBSC(ǫi)(yi | x),

where BSC(ǫi) denotes the BSC with crossover probability ǫi ∈ [0, 1
2 ], ǫi , h−1(1 − Ii), where h

denotes the binary entropy function. Then, I(W (k)) ≥ I(W
(k)
BSC

).

Remark 2. Consider the transmission of a single bit X using k independent symmetric B-DMCs
W1, . . . ,Wk with capacities I1, . . . , Ik. Theorem 3 states that over the class of all symmetric channels
with given mutual informations, the mutual information between the input and the output vector is
minimized when each of the individual channels is a BSC.

Proof of Lemma 3. Let ǫ ∈ [0, 1
2 ] be the crossover probability of a BSC with capacity I(W ), i.e.,

ǫ = h−1(1 − I(W )). Note that for k ≥ 2,

I(W k) ≥ I(W 2) ≥ I(W ).

By Theorem 3, we have I(W 2) ≥ I(W 2
BSC(ǫ)). A simple computation shows that

I(W 2
BSC(ǫ)) = 1 + h(2ǫǭ) − 2h(ǫ).

We can then write

I(W k) − I(W ) ≥ I(W 2
BSC(ǫ)) − I(W )

= I(W 2
BSC(ǫ)) − I(WBSC(ǫ))

= h(2ǫǭ) − h(ǫ)

> η(δ) (6)

for some η(δ) > 0. In the above, (6) follows from the fact that I(W ) ∈ (δ, 1 − δ) implies ǫ ∈
(φ(δ), 1

2 − φ(δ)) where φ(δ) > 0.
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