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Abstract. The main contribution of this paper is a new iterated secret-
key block cipher called 3D, inspired by the AES cipher. The 3D cipher
has an SPN design, operates on 512-bit blocks, uses 512-bit keys, it-
erates 22 rounds, and employs a 3-dimensional state, instead of the 2-
dimensional matrix of the AES. The main innovation of 3D includes the
multi-dimensional state, generalizing the design of Rijndael, and allow-
ing block sizes beyond the 256-bit boundary. This features motivates the
use of 3D as a building block for compression functions in hash functions,
MAC and stream cipher constructions requiring large internal states. We
explain the design decisions and discuss the security of 3D under several
attack settings.

Keywords: block cipher design, 3-dimensional state.

1 Introduction

Secret-key ciphers, such as block and stream ciphers, are designed for fast en-
cryption of large volumes of data. This paper describes a block cipher called
3D, inspired by the design of the AES [16] and with some innovative designs. In
the AES, plaintext, ciphertext, subkeys and intermediate data blocks are repre-
sented by a 2-dimensional 4× Nb state matrix of bytes, where Nb is the number
of 32-bit words in a text block. For example, the state matrix of a 4t-byte text
block, A = (a0, a1, a2, . . . , a4t−1), can be represented

State matrix =

⎛
⎜⎜⎝

a0 a4 . . . a4t−4

a1 a5 . . . a4t−3

a2 a6 . . . a4t−2

a3 a7 . . . a4t−1

⎞
⎟⎟⎠ , (1)

with bytes inserted columnwise. This state matrix provides not only a compact
representation of the plaintext and ciphertext blocks, but was also motivated
by two round transformations in Rijndael: ShiftRows and MixColumns [16]. The
former explicitly operates on the rows of the state, while the latter operates only
on the columns of the state.
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In Rijndael, the block size is variable and ranges from 128 up to 256 bits in
steps of 32 bits [16,26]. In the AES, complete text diffusion is achieved in two
rounds, due to a combination of ShiftRows and MixColumns over a 4× 4 state
matrix. Key diffusion, though, takes longer depending on the key size. As the
block size increases, it takes more rounds to guarantee fast diffusion for both
text and key bits. This may be a reason for the upperbound of 256 bits for
the block size in AES. This fact motivates our research, leading to 3D, with
a larger block size (512 bits) which makes it attractive as a building block in
the Miyaguchi-Preneel, Davies-Meyer or Matyas-Meyer-Oseas construction of
compression functions (in this setting, it can be compared to SHA-512 [15]) in
hash functions [29, p.340], and for stream modes of operation (OFB, CFB) whose
security depends on the size of the internal cipher state, and in pseudorandom
number generators [29, p.173].

This paper is organized as follows: Sect. 2 describes the new block cipher 3D;
Sect. 3 describes the key schedule algorithm of 3D; Sect. 4 shows a security anal-
yses of 3D; Sect. 5 estimates the software performance of 3D; Sect. 6 concludes
the paper.

2 The 3D Block Cipher

The 3D block cipher operates on 512-bit blocks and uses 512-bit keys, both of
which are represented as a 4× 4× 4 state of bytes (a 3-dimensional cube). The
state for a 64-byte data block, A = (a0, a1, . . . , a63), is denoted

State =

⎛
⎜⎜⎝

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

∣∣∣∣∣∣∣∣

a16 a20 a24 a28

a17 a21 a25 a29

a18 a22 a26 a30

a19 a23 a27 a31

∣∣∣∣∣∣∣∣

a32 a36 a40 a44

a33 a37 a41 a45

a34 a38 a42 a46

a35 a39 a43 a47

∣∣∣∣∣∣∣∣

a48 a52 a56 a60

a49 a53 a57 a61

a50 a54 a58 a62

a51 a55 a59 a63

⎞
⎟⎟⎠ , (2)

with bytes inserted columnwise. Each square set of 16 bytes is called a slice of
the state (Fig. 1). Since all three dimensions of the state are equal, we set an
orientation in (2): the set (a0, a1, . . ., a15) represents the front slice or first
vertical slice; the set (a16, a17, . . . , a31) represents the second vertical slice, and
so on. These slices are relevant for operation θ1, described later. Other vertical
slices exist, such as (a0, a1, a2, a3, a16, a17, a18, a19, a32, a33, a34, a35, a48, a49,
a50, a51), which is relevant for operation θ2, described later.

A reason for the 512-bit user key is that key-recovery attacks applied either on
top or at the bottom of a given distinguisher will have to recover 512 subkey bits
with a complexity of 2512, which is about the exhaustive key search effort, and
the same size of the codebook. If the user key was larger, say 1024 bits, shortcut
attacks would become less expensive.

The round transformations in 3D are denoted:

– κi: a 4 × 4 × 4 state of bytes representing the 512-bit i-th round subkey is
exclusive-ored bytewise to the i-th round state; the exclusive-or operation is
an involution, and does not seem susceptible to weak keys/subkeys [11];
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Fig. 1. 3D state with vertical slices and byte numbering

– γ: this nonlinear operation is responsible for the confusion property [35] in
3D, and consists of the bytewise application of the AES S-box to all bytes
of the state;

– θ1, θ2: these diffusion operations [35] are applied in alternate rounds in 3D.
They are identical to ShiftRows in AES, but since the state is 3-dimensional,
two different sets of vertical slices of the state (Fig. 1) are affected in turn.
θ1 operates on the vertical slices in Fig. 1, and turn (2) into

⎛
⎜⎜⎝

a0 a4 a8 a12

a5 a9 a13 a1

a10 a14 a2 a6

a15 a3 a7 a11

∣∣∣∣∣∣∣∣

a16 a20 a24 a28

a21 a25 a29 a17

a26 a30 a18 a22

a31 a19 a23 a27

∣∣∣∣∣∣∣∣

a32 a36 a40 a44

a37 a41 a45 a33

a42 a46 a34 a38

a47 a35 a39 a43

∣∣∣∣∣∣∣∣

a48 a52 a56 a60

a53 a57 a61 a49

a58 a62 a50 a54

a63 a51 a55 a59

⎞
⎟⎟⎠ ; (3)

θ2 operates similarly, but transforms (2) into

⎛
⎜⎜⎝

a0 a4 a8 a12

a17 a21 a25 a29

a34 a38 a42 a46

a51 a55 a59 a63

∣∣∣∣∣∣∣∣

a16 a20 a24 a28

a33 a37 a41 a45

a50 a54 a58 a62

a3 a7 a11 a15

∣∣∣∣∣∣∣∣

a32 a36 a40 a44

a49 a53 a57 a61

a2 a6 a10 a14

a19 a23 a27 a31

∣∣∣∣∣∣∣∣

a48 a52 a56 a60

a1 a5 a9 a13

a18 a22 a26 a30

a35 a39 a43 a47

⎞
⎟⎟⎠ ; (4)

– π: the 4×4 MDS matrix of the Anubis cipher [2] is applied to each column of
every vertical slice of the state in (2). The branch number [16] of the Anubis
matrix is 5 since it satisfies the MDS (Maximum Distance Separable) prop-
erty [27]. Since the state is 3-dimensional, complete diffusion is achieved in
three rounds, in combination with θ1 and θ2. This matrix is an involution,
which guarantees the same diffusion power and computational cost for both
the encryption and decryption operations. One matrix multiplication by a
column of a slice of the state costs 4 xors and 5 xtimes, where xtimes means
multiplication by 2 (or the polynomial x) in GF(28). Thus, one matrix mul-
tiplication by one slice costs 16 xors and 20 xtimes. For one state matrix
the cost is 64 xors and 80 xtimes. Let an input slice to π be denoted (a0,
a1, . . ., a15), and the output slice be (b0, b1, . . . , b15). An example of the π
transformation for a single slice is
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⎛
⎜⎜⎝

01x 02x 04x 06x
02x 01x 06x 04x
04x 06x 01x 02x
06x 04x 02x 01x

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

⎞
⎟⎟⎠ , (5)

where the subscript x denotes hexadecimal notation.

All round transformations in 3D operate bytewise. Bytes are treated as ele-
ments over GF(28) = GF(2)[x]/(m(x)), where m(x) = x8 + x4 + x3 + x + 1 is
the same irreducible polynomial of AES. A polynomial p(x) =

∑t
i=0 ai · xi ∈

GF(2)[x], with ai ∈ GF(2), for 0 ≤ i ≤ t, will be denoted by the numerical value∑t
i=0 ai · 2i, and is shortly represented in hexadecimal notation. For example,

m(x) = 11Bx.
The i-th full round of 3D, encrypting a text block X , is denoted τi(X) =

π ◦ θi mod 2+1 ◦ γ ◦ κi(X) = π(θi mod 2+1(γ(κi(X)))), namely function composi-
tion, ◦, operates in right-to-left order. The last round does not include π, and
is denoted ηr−1(X) = θ(r−1) mod 2+1 ◦ γ ◦ κr−1(X). The inverse of a full round
is τ−1

i (X) = κ−1
i ◦ γ−1 ◦ θ−1

i mod 2+1 ◦ π−1(X), and the inverse of the last round is
η−1

r−1(X) = κ−1
r−1 ◦ γ−1 ◦ θ−1

(r−1) mod 2+1. Notice that κi is the only key-dependent
round operation, whereas γ, θ1, θ2 and π are fixed key-independent transforma-
tions. Furthermore, there is an output transformation after ηr−1 consisting of
κr, the r-th round subkey.

Properties of the round components include:

(a) κi = κ−1
i , because the exclusive-or operation is an involution;

(b) γ−1 �= γ because the AES S-box is not an involution but has order 277182,
namely, γ277182[x] = x, ∀x ∈ GF(28) (see [34]);

(c) θi �= θ−1
i , i ∈ {1, 2}, because the inverse of θi requires displacing rows in the

opposite direction in each slice; the order of θi is 4, that is, θ4
i (X) = X , for

i = 1, 2;
(d) π = π−1, because the Anubis matrix is an involution;
(e) γ ◦ θi = θi ◦ γ, namely, γ and θi commute, for i ∈ {1, 2}, since both operate

bytewise; similarly, γ−1 ◦ θ−1
i = θ−1

i ◦ γ−1;
(f) κi ◦ π = π ◦ κ′i, where κ′i = π−1(κi);
(g) κi ◦ θi mod 2+1 = θi mod 2+1 ◦ κ∗i , where κ∗i = θ−1

i mod 2+1(κi);
(h) κi◦γ �= γ◦κi because γ is a non-linear operation with respect to exclusive-or;
(i) π ◦ θi mod 2+1 �= θi mod 2+1 ◦ π because π operates on columns of the state

while θi mod 2+1 operates on rows of the state.

Using these properties, one can prove that the encryption and decryption frame-
works of 3D are similar. Consider the r-round 3D encryption of a plaintext block
P , resulting in the ciphertext block

C = κr ◦ ηr−1 ◦©r−2
i=0 τi(P ) =

κr ◦ θ(r−1) mod 2+1 ◦ γ ◦ κr−1 ◦©r−2
i=0 (π ◦ θi mod 2+1 ◦ γ ◦ κi)(P ) . (6)
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The decryption scheme is

P =©0
i=r−2τ

−1
i ◦ η−1

r−1 ◦ κ−1
r (C) , (7)

which can be expressed as P =©0
i=r−2(κ

−1
i ◦γ−1◦θ−1

i mod 2+1◦π−1)◦η−1
r−1◦κ−1

r (C).
From (a) and (d): P =©0

i=r−2(κi ◦ γ−1 ◦ θ−1
i mod 2+1 ◦ π) ◦ η−1

r−1 ◦ κr(C). From (e)
and (f): P =©0

i=r−2(κi◦θ−1
i mod 2+1◦γ−1◦π)◦κr−1◦θ−1

(r−1) mod 2+1◦γ−1◦κr(C) =
κ0◦θ−1

1 ◦γ−1◦©1
i=r−1(π◦κi◦θ−1

i mod 2+1◦γ−1)◦κr(C) = κ0◦θ−1
1 ◦γ−1◦©1

i=r−1(κ
∗
i ◦

π ◦ θ−1
i mod 2+1 ◦ γ−1) ◦ κr(C)= κ0 ◦ θ−1

1 ◦ γ−1 ◦ κ∗1 ◦©1
i=r(π ◦ θ−1

(i−1) mod 2+1 ◦ γ−1 ◦
κ∗i )(C),

where κ∗r = κr and κ∗i = π(κi), for i < r. Thus, the encryption (6) and de-
cryption (7) frameworks are similar, except for the order of some round subkeys,
and some inverse transformations. Consequently, both schemes have the same
cryptographic strength [21].

Properties (h) and (i) show that the round subkeys cannot be moved around or
sorted out from the other round transformations because of the non-
commutativity property. Thus, it is not possible to arbitrarily remove key-
independent cipher operations, such as γ, θ1, θ2 and π.

The suggested number of rounds for 3D is 22. This decision is in line with
Rijndael, where the block size ranges from 128 up to 256 bits, and roughly
one round is added for every additional 32 bits in the block size. Thus, as-
suming Rijndael with 256-bit block iterates 14 rounds, 3D iterates 22 rounds.
This number of rounds is more than enough to counter the attacks described
in Sect. 4, and further, there is still a large margin of security. For performance
comparison, the AES operates on 128-bit blocks, and iterates (up to) 14 rounds;
3D encrypts four times more texts at a time but iterates 8/14 ≈ 57% more
rounds.

3 Key Schedule of 3D

For r-round 3D encryption and decryption operations, (r + 1) 512-bit subkeys
are needed. The number of rounds is r = 22, as explained in Sect. 2.

The key schedule works as follows:

– the 512-bit user key K = (k0, k1, . . . , k63) becomes the first round
subkey;

– in [36], Wu described an attack on block ciphers with a variable number of
rounds. A suggested countermeasure is to combine the number of rounds in
the cipher, for instance, in the key schedule, so that cipher instances with
different number of rounds are not useful for this attack. This suggestion has
been adopted in 3D. Let κ∗ represent the exclusive-or of the subkey state
with a constant 4× 4× 4 matrix depending on the number of rounds, r, and
the Anubis matrix:
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⎛
⎜⎜⎝

r 2r 4r 6r
2r r 6r 4r
4r 6r r 2r
6r 4r 2r r

∣∣∣∣∣∣∣∣

2r r 6r 4r
4r 6r r 2r
6r 4r 2r r
r 2r 4r 6r

∣∣∣∣∣∣∣∣

4r 6r r 2r
6r 4r 2r r
r 2r 4r 6r
2r r 6r 4r

∣∣∣∣∣∣∣∣

6r 4r 2r r
r 2r 4r 6r
2r r 6r 4r
4r 6r r 2r

⎞
⎟⎟⎠ , (8)

where multiplication is in GF(28); these constants are used to avoid patterns
in the user key to propagate to round subkeys. Without these constants, a
user key with all bytes equal could lead to subkeys with all bytes equal, for
instance. It could make 3D susceptible to related-key [4], slide or advanced
slide attacks [8], independent of the number of rounds.

– the remaining round subkeys are computed as Ki = π ◦ θi mod 2+1 ◦ γ′ ◦
κ∗(Ki−1), i ≥ 1, and K0 = K. The transformation γ′ consists of the byte-
wise application of the AES S-box to alternate columns of the state as
follows:

⎛
⎜⎜⎝

S[a0] a4 a8 a12

S[a1] a5 a9 a13

S[a2] a6 a10 a14

S[a3] a7 a11 a15

∣∣∣∣∣∣∣∣

a16 S[a20] a24 a28

a17 S[a21] a25 a29

a18 S[a22] a26 a30

a19 S[a23] a27 a31

∣∣∣∣∣∣∣∣

a32 a36 S[a40] a44

a33 a37 S[a41] a45

a34 a38 S[a42] a46

a35 a39 S[a43] a47

∣∣∣∣∣∣∣∣

a48 a52 a56 S[a60]
a49 a53 a57 S[a61]
a50 a54 a58 S[a62]
a51 a55 a59 S[a63]

⎞
⎟⎟⎠ .

(9)

The encryption subkey generation can be performed on-the-fly. Storing the last
round subkey, Kr, instead of K allows on-the-fly decryption subkey generation
since all key schedule operations are invertible: Ki = κ∗ ◦ γ′−1 ◦ θ−1

i mod 2+1 ◦
π(Ki+1), 0 ≤ i < 22.

Due to the similarity with the encryption framework, it can be shown that
complete key diffusion is achieved after three subkeys are generated, that is,
every byte of K3 already depends on every byte of K0.

As for performance, notice that the key schedule costs slightly less than a
single encryption, although both use similar operations.

4 Security Analyses

In the following, we analyse 3D under several attack settings.

4.1 Plaintext Leakage

Due to the birthday paradox [29], after about 2n/2 encryptions, either in ECB
or CBC modes, an n-bit block cipher starts to leak information about the
plaintext [21], in a ciphertext-only (CO) setting. For 3D, this leakage happens
after 2512/2 = 2256 block encryptions (or decryptions), which sets an upper-
bound on the number of plaintext blocks encrypted before the key has to be
changed.
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4.2 Related-Key Attack

In [3], Biham developed an attack method on arbitrary n-bit block ciphers, that
depends only on the key size. Thus, his attack is also independent of the number
of rounds. This attack is supported by the birthday paradox, and has complexity
2k/2 encryptions, for a k-bit user key. Even though for 3D the key size is equal
to the block size, the corresponding attack complexity is 2512/2 = 2256, which
matches the attack complexity in Sect. 4.1.

There are many kinds of related-key attacks, such as in Sect. 4.5 and [4,20],
and all of them depend on the design of the key schedule algorithm. The key
schedule of 3D shares components with its encryption framework (Sect. 3). It
implies that (xor) difference propagation works similarly in both schemes, which
is relevant for related-key attacks, where the adversary cannot choose the key,
but knows or can choose a relationship between keys used for encryption. In
particular, it takes three (full) rounds for any single byte difference to spread
across the full key state, that is, a single byte difference in the user key(s)
will affect the (full) third round subkey and beyond. Consequently, related-key
attacks are not expected to be effective against 3D, since any nonzero difference
in the key spreads to the entire key state after the third subkey (comparatively,
complete diffusion in the key schedule of AES takes six or more rounds depending
on the key size).

4.3 Non-surjective and Davies’ Attacks

Non-surjective attacks on block ciphers have been suggested by Rijmen et al.
in [33], motivated by non-surjective round functions in Feistel ciphers, such as
CAST and Khufu [30]. Similarly, Davies’ attack [13] exploit the Feistel struc-
ture of DES, and subkey bits shared between neighboring S-boxes. The 3D
cipher follows an SPN design, and not only its round function, but also its
internal components are bijective mappings. Moreover, no subkey bits are dupli-
cated or shared among S-boxes. Therefore, non-surjective attacks do not apply
to 3D.

4.4 Interpolation, Higher-Order Differential and χ2 Attacks

In [17], Jakobsen and Knudsen described attacks on a cipher called PURE and on
a variant of the SHARK block cipher [32]. In both cases the attacks were made
possible because the ciphers had a compact algebraic (polynomial/rational) ex-
pression which could be solved with manageable complexity (up to a certain
number of rounds). We have not found any compact (polynomial) representa-
tion of round function of 3D (over GF(28)), or of its round components which
leads to an effective attack (to the full 22-round 3D). We do not consider expres-
sions such as in [14], which although compact, did not lead to an effective attack
on AES. Analogously, because of the non-linear order of the S-box, we do not
expect higher-order differential attacks [23,25] to succeed against 3D. Following
a similar reasoning, we do not expect χ2 attacks [24] nor mod-n attacks [19] to
apply to 3D.
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4.5 Slide and Advanced-Slide Attacks

In [7,8], the slide and advanced-slide attacks were described against Feistel ci-
phers whose key schedules had a periodic behavior. Moreover, in these attacks,
symmetries in the cipher framework, suggested that this structure could be
twisted and slided in order to partially match another copy of itself. Thus, these
attacks depend on a self-similarity in the cipher structure, and a degree of pe-
riodicity in the key schedule. In 3D, the key schedule was designed to avoid
patterns in the user key to propagate to the subkeys, including the periodicity
necessary in [7,8]. Moreover, there is a round asymmetry due to θ1 and θ2. We
conclude that such attacks do not apply to 3D (Sect. 2).

4.6 Truncated Differential Analysis

As a preliminary differential analysis [5], consider truncated differentials [23], such
as (10), where ‘Δ’ stands for an arbitrary nonzero exclusive-or byte difference,
while ’0’ stands for a zero byte difference.

⎛
⎜⎝

Δ 0 0 0
Δ 0 0 0
Δ 0 0 0
Δ 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ π◦θ1◦γ◦κ0→

⎛
⎜⎝

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

π◦θ2◦γ◦κ1→

⎛
⎜⎝

Δ 0 0 0
Δ 0 0 0
Δ 0 0 0
Δ 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ θ1◦γ◦κ2→

⎛
⎜⎝

Δ 0 0 0
0 0 0 Δ
0 0 Δ 0
0 Δ 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ π→

⎛
⎜⎝

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

θ2◦γ◦κ3→

⎛
⎜⎝

Δ Δ Δ Δ
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
Δ Δ Δ Δ

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
Δ Δ Δ Δ
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
Δ Δ Δ Δ
0 0 0 0
0 0 0 0

⎞
⎟⎠ π→

⎛
⎜⎝

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

⎞
⎟⎠ (10)

The 4-round truncated differential (10) demonstrates that complete text dif-
fusion in 3D is achieved in exactly three rounds (see the last three rounds). There
are 25 active S-boxes [9] in (10), and this fact is independent of the position of
the single Δ byte difference after the first round. Analogously, this behaviour is
independent of (10) starting with a round using θ1 or θ2. Notice that (10) holds
with probability 28/232 = 2−24, due to the difference propagation after the first
round, where four byte differences turn into a single byte difference. The re-
maining difference propagation patterns hold with certainty. Comparatively, for
4-round AES there are also at least 25 active S-boxes. These figures show that
3D has the same expected resistance to differential cryptanalysis (DC) as the
AES.

An advantage of truncated differentials (compared to conventional differential
characteristics) is that the probability of the former is independent of the S-boxes
used in the cipher.
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Consider the (hypothetical) 2-round iterative truncated differential (11), that
holds with probability (28/232)4 = 2−96. This probability accounts for the θ2

transformation in which four nonzero byte differences in the same column become
a single output difference after each slice of the state. Each such event has
probability 28/223 = 2−24.

⎛
⎜⎝

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ π◦θ1◦γ◦κ0→

⎛
⎜⎝

Δ 0 0 0
Δ 0 0 0
Δ 0 0 0
Δ 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
Δ 0 0 0
Δ 0 0 0
Δ 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
Δ 0 0 0
Δ 0 0 0
Δ 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
Δ 0 0 0
Δ 0 0 0
Δ 0 0 0

⎞
⎟⎠

π◦θ2◦γ◦κ1→

⎛
⎜⎝

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ (11)

For a random permutation the output difference of (11) would appear with
probability about (2−8)48 = 2−384 because there are 48 zero byte differences at
the output. Thus, (11) is a distinguisher of 3D from a random permutation, for
up to six rounds, with probability (2−96)3 = 2−288. Repeating (11) four times,
namely, for eight rounds, leads to a probability of (2−96)4 = 2−384, which is the
same as for a random permutation. One can also start the distinguisher with the
state after π ◦ θ1 ◦ γ ◦ κ0. That means that the iterative truncated differential
start in an even round (with θ2). The results are analogous.

Suppose one makes a pool of 232 chosen plaintexts (CP) in which the bytes in
positions (0,16,32,48) of the state (2) range over all possible 32-bit values, while
the remaining bytes are arbitrary constants. This pool leads to about 263 text
pairs (plaintext and ciphertexts). The output difference contains 60 zero byte
differences. Thus, one expects that 263 · (2−8)60 = 2−417 < 1 pairs satisfy the
output difference of (11). This approach does not work.

Suppose one tries to guess the 16 bytes of AK0, and use pools of 2128 plaintexts
with difference at bytes in positions (0, 5, 10, 15, 16, 21, 26, 31, 32, 37, 42, 47, 48,
53, 58, 63) of the state. Each such pool can lead to 2128(2128 − 1)/2 ≈ 2255 text
pairs. Still 2255 · (2−8)60 = 2−225 < 1 survives filtering by output difference of
(11). Notice that due to the structure of 3D, with θ1 and θ2 in every other round,
any iterative differential needs to have an even number of rounds, otherwise, it
could not be concatenated to itself.

4.7 Linear Analysis

A linear distinguisher [28] for 3D would be similar to (10) except that Δ is
replaced by Γ , denoting a nonzero bitmask, while 0 denotes a zero (empty or
trivial) bitmask. Thus, such linear distinguisher would reach three rounds with
21 active S-boxes, and according to [16], the associated bias would be (2−4)21 =
2−84. For four rounds, the bias would be (2−4)25 = 2−100. Comparatively, for
the AES the number of active S-boxes across four rounds is at least 25. These
figures show that 3D has the same expected resistance to linear cryptanalysis as
the AES. The questions of linear hulls [31] and multiple linear relations [18] in
3D are left as open problems.
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4.8 Multiset Analysis

Consider the first-order multiset [12,6] distinguisher in (12), where ’A’ denotes
an active byte, ’P’ denotes a passive byte, ’B’ denotes a balanced byte and ’?’
denotes an unpredictable byte exclusive-or sum. The distinguisher (12) reaches
4.25 rounds, or more precisely, κ4 ◦ π ◦ θ2 ◦ γ ◦ κ3 ◦ π ◦ θ1 ◦ γ ◦ κ2 ◦ π ◦ θ2 ◦ γ ◦
κ1 ◦ π ◦ θ1 ◦ γ ◦ κ0.

⎛
⎜⎝

A P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

⎞
⎟⎠ π◦θ1◦γ◦κ0→

⎛
⎜⎝

A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

⎞
⎟⎠ θ2◦γ◦κ1→

⎛
⎜⎝

A P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
A P P P

∣∣∣∣∣∣∣

P P P P
P P P P
A P P P
P P P P

∣∣∣∣∣∣∣

P P P P
A P P P
P P P P
P P P P

⎞
⎟⎠ π→

⎛
⎜⎝

A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣

A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣

A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣

A P P P
A P P P
A P P P
A P P P

⎞
⎟⎠ θ1◦γ◦κ2→

⎛
⎜⎝

A P P P
P P P A
P P A P
P A P P

∣∣∣∣∣∣∣

A P P P
P P P A
P P A P
P A P P

∣∣∣∣∣∣∣

A P P P
P P P A
P P A P
P A P P

∣∣∣∣∣∣∣

A P P P
P P P A
P P A P
P A P P

⎞
⎟⎠ π→

⎛
⎜⎝

A A A A
A A A A
A A A A
A A A A

∣∣∣∣∣∣∣

A A A A
A A A A
A A A A
A A A A

∣∣∣∣∣∣∣

A A A A
A A A A
A A A A
A A A A

∣∣∣∣∣∣∣

A A A A
A A A A
A A A A
A A A A

⎞
⎟⎠ κ4◦π◦θ2◦γ◦κ3→ (12)

⎛
⎜⎝

B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣

B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣

B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣

B B B B
B B B B
B B B B
B B B B

⎞
⎟⎠ γ→

⎛
⎜⎝

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞
⎟⎠

An attack on 4.75-round 3D using (12) would partially decrypt κ5 ◦θ1 ◦γ, and
recover κ5 bytewise. The distinguisher (12) provides an 8-bit condition. After two
λ-sets [12], there remains 28 ·(2−8)2 < 1 wrong subkey byte candidates. The cost
per subkey byte is therefore, 2 · 28 = 29 chosen plaintexts (CP), 28 · 28 + 28 ≈ 216

computations of κ5 ◦ θ1 ◦ γ. That means 64 · 216 · 0.75/4.25 ≈ 219.5 4.75-round
computations.

Consider now the higher-order multiset distinguisher (13) that uses λ-sets
with 2128 texts. A byte belonging to a 128-bit active word is denoted A∗ to
indicate that although the bytes are scattered across the state, they jointly form
a 128-bit active word; similarly, a byte belonging to a 128-bit balanced word is
denoted B∗; a byte belonging to a 128-bit passive word is denoted P ∗; a byte
belonging to a 128-bit even word is denoted E∗; different subscripts indicate
different 128-bit words.
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⎛
⎜⎝

A∗ P P P
P A∗ P P
P P A∗ P
P P P A∗

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

⎞
⎟⎠ θ1◦γ◦κ0→

⎛
⎜⎝

A∗ P P P
A∗ P P P
A∗ P P P
A∗ P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
P P P P

⎞
⎟⎠ θ2◦γ◦κ1◦π→

⎛
⎜⎝

A∗ P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣

P P P P
P P P P
P P P P
A∗ P P P

∣∣∣∣∣∣∣

P P P P
P P P P
A∗ P P P
P P P P

∣∣∣∣∣∣∣

P P P P
A∗ P P P
P P P P
P P P P

⎞
⎟⎠ π→

⎛
⎜⎝

E∗
1 P P P

E∗
1 P P P

E∗
1 P P P

E∗
1 P P P

∣∣∣∣∣∣∣

E∗
2 P P P

E∗
2 P P P

E∗
2 P P P

E∗
2 P P P

∣∣∣∣∣∣∣

E∗
3 P P P

E∗
3 P P P

E∗
3 P P P

E∗
3 P P P

∣∣∣∣∣∣∣

E∗
4 P P P

E∗
4 P P P

E∗
4 P P P

E∗
4 P P P

⎞
⎟⎠ θ1◦γ◦κ2→

⎛
⎜⎝

E∗
1 P P P

P P P E∗
1

P P E∗
1 P

P E∗
1 P P

∣∣∣∣∣∣∣

E∗
2 P P P

P P P E∗
2

P P E∗
2 P

P E∗
2 P P

∣∣∣∣∣∣∣

E∗
3 P P P

P P P E∗
3

P P E∗
3 P

P E∗
3 P P

∣∣∣∣∣∣∣

E∗
4 P P P

P P P E∗
4

P P E∗
4 P

P E∗
4 P P

⎞
⎟⎠ π→

⎛
⎜⎝

E∗
1 E∗

1 E∗
1 E∗

1
E∗

1 E∗
1 E∗

1 E∗
1

E∗
1 E∗

1 E∗
1 E∗

1
E∗

1 E∗
1 E∗

1 E∗
1

∣∣∣∣∣∣∣

E∗
2 E∗

2 E∗
2 E∗

2
E∗

2 E∗
2 E∗

2 E∗
2

E∗
2 E∗

2 E∗
2 E∗

2
E∗

2 E∗
2 E∗

2 E∗
2

∣∣∣∣∣∣∣

E∗
3 E∗

3 E∗
3 E∗

3
E∗

3 E∗
3 E∗

3 E∗
3

E∗
3 E∗

3 E∗
3 E∗

3
E∗

3 E∗
3 E∗

3 E∗
3

∣∣∣∣∣∣∣

E∗
4 E∗

4 E∗
4 E∗

4
E∗

4 E∗
4 E∗

4 E∗
4

E∗
4 E∗

4 E∗
4 E∗

4
E∗

4 E∗
4 E∗

4 E∗
4

⎞
⎟⎠ π◦θ2◦γ◦κ3→

⎛
⎜⎝

A∗
1 A∗

1 A∗
1 A∗

1
A∗

1 A∗
1 A∗

1 A∗
1

A∗
1 A∗

1 A∗
1 A∗

1
A∗

1 A∗
1 A∗

1 A∗
1

∣∣∣∣∣∣∣

A∗
2 A∗

2 A∗
2 A∗

2
A∗

2 A∗
2 A∗

2 A∗
2

A∗
2 A∗

2 A∗
2 A∗

2
A∗

2 A∗
2 A∗

2 A∗
2

∣∣∣∣∣∣∣

A∗
3 A∗

3 A∗
3 A∗

3
A∗

3 A∗
3 A∗

3 A∗
3

A∗
3 A∗

3 A∗
3 A∗

3
A∗

3 A∗
3 A∗

3 A∗
3

∣∣∣∣∣∣∣

A∗
4 A∗

4 A∗
4 A∗

4
A∗

4 A∗
4 A∗

4 A∗
4

A∗
4 A∗

4 A∗
4 A∗

4
A∗

4 A∗
4 A∗

4 A∗
4

⎞
⎟⎠ κ5π◦θ1◦γ◦κ4→

⎛
⎜⎝

B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣

B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣

B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣

B B B B
B B B B
B B B B
B B B B

⎞
⎟⎠ γ→

⎛
⎜⎝

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞
⎟⎠ (13)

Thus, (13) covers 5.25 rounds. An attack on 5.75-round 3D using (13) would
partially decrypt κ6 ◦ θ2 ◦ γ, and recover κ6 bytewise, by comparing if each byte
position before γ is balanced. The distinguisher (13) provides an 8-bit condition
per byte. After two λ-sets [12], there remains 28 · (2−8)2 < 1 wrong subkey byte
candidates. The cost per subkey byte is therefore, 2·2128 = 2129 chosen plaintexts
(CP), 28 ·2128 = 2136 computations of κ6◦θ2◦γ. That means 64·2136 ·0.75/5.75 ≈
2139 5.75-round computations.

4.9 Impossible Differential Analysis

The impossible differential (ID) technique was formerly described in [22]. A 4.75-
round impossible differential distinguisher of 3D is depicted in (14), where ’Δ’
denotes a nonzero byte difference, ’0’ denotes a zero byte difference, and ’?’
denotes an unknown difference (can be zero or not). There are two truncated
differentials in (14) that hold with certainty, one in the encryption direction,
covering π ◦ θ2 ◦ γ ◦ κ3 ◦ π ◦ θ1 ◦ γ ◦ κ2 ◦ π ◦ θ2 ◦ γ ◦ κ1 and the other in the
decryption direction, covering κ4◦γ−1◦θ−1

1 ◦π◦κ5◦γ−1◦θ−1
2 . The contradiction

in difference propagation (denoted �→ and �←) happens after the third π layer:



3D: A Three-Dimensional Block Cipher 263

there are four zero byte differences in the decryption direction after π, while all
these bytes are nonzero before π. There are similar ID distinguishers that cause
contradiction in the other slices of the state.

⎛
⎜⎝

Δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ π◦θ2◦γ◦κ1→

⎛
⎜⎝

Δ 0 0 0
Δ 0 0 0
Δ 0 0 0
Δ 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

θ1◦γ◦κ2→

⎛
⎜⎝

Δ 0 0 0
0 0 0 Δ
0 0 Δ 0
0 Δ 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ π→

⎛
⎜⎝

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

θ2◦γ◦κ3→

⎛
⎜⎝

Δ Δ Δ Δ
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 0 0
Δ Δ Δ Δ

∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
Δ Δ Δ Δ
0 0 0 0

∣∣∣∣∣∣∣

0 0 0 0
Δ Δ Δ Δ
0 0 0 0
0 0 0 0

⎞
⎟⎠ π→

⎛
⎜⎝

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

⎞
⎟⎠

κ4◦γ−1◦θ
−1
1�←

⎛
⎜⎝

0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞
⎟⎠ π←

⎛
⎜⎝

0 Δ Δ Δ
0 Δ Δ Δ
0 Δ Δ Δ
0 Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

⎞
⎟⎠

κ5◦γ−1◦θ
−1
2←

⎛
⎜⎝

0 Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
0 Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
Δ Δ Δ Δ
0 Δ Δ Δ
Δ Δ Δ Δ

∣∣∣∣∣∣∣

Δ Δ Δ Δ
0 Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

⎞
⎟⎠ (14)

Distinguisher (14) can be used to recover κ0 in an attack on 5.75-round 3D,
by placing (14) in the last 4.75 rounds. The attack would proceed as follows:

(a) choose a pool 232 texts with all possible values in positions 0, 5, 10, 15 of
the state, and arbitrary constants in the remaining byte positions. From one
pool, one can generate 232(232 − 1)/2 ≈ 263 pairs with nonzero difference in
these four byte positions, and zero difference in the remaining positions;

(b) from (14), about 263 · 2−32 = 231 pairs satisfy the four zero byte differences
at the ciphertext;

(c) guess 32 subkey bits in byte positions 0, 5, 10, 15 of κ0, and partially decrypt
the first round π ◦ θ1 ◦ γ ◦ κ0 for the pairs in item (b); filter those pairs that
have a single nonzero byte difference in the leftmost column of the first
vertical slice of the state after π; this is a 24-bit filtration condition, since
it holds with probability 2−3∗8; so, 232−24 = 28 wrong key are suggested by
(14) per text pair;

(d) due to collisions, the number of wrong subkeys surviving, using one text
pool, is 232(1 − 28/232)2

31
= 232(1− 2−24)2

31 ≈ 232/e128 < 1, so the correct
subkey can be uniquely identified;

The attack complexity is 232 CP, about 232 ·231 = 263 one-round computations to
recover 32 subkey bits. To recover the full first round subkey requires repeating
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the attack sixteen times, yielding 16 · 263/5.75 ≈ 265.5 5.75-round computations,
and 232 memory.

5 Software Performance

Since 3D and AES/Rijndael share very similar components, it is natural to
compare them. Due to the large block size, each 3D encryption roughly equals
four AES encryptions, with bytes interleaved due to θ1 and θ2. Note that 3D
iterates 22 rounds, and the AES has at most 14 rounds (for 256-bit keys). Thus,
the latter has a better performance than the former. Although 3D provides
more opportunities for parallelism than AES or Rijndael, this feature has not
been exploited in performance comparisons.

6 Conclusions

This paper described a new secret-key block cipher called 3D, aimed at secure
and fast encryption of large volumes of data. The design of 3D was inspired by
the AES, in which text and key blocks are represented by a 2-dimensional state
matrix of bytes. The main innovation of 3D is the 4× 4× 4 3-dimensional state
of bytes, that led to improvements in design, security and potential applications
(hash functions, MACs, stream ciphers, pseudorandom number generators).

Table 1 lists the attack complexities of our security evaluation of 3D.

Table 1. Attack complexities on reduced-round 3D cipher

Attack Time Data Memory #Rounds Comments

Multiset 219.5 29 CP 28 4.75 Sect. 4.8
ID 265.5 236 CP 232 5.75 Sect. 4.9

Multiset 2139 2129 CP 2128 5.75 Sect. 4.8

The block size of 3D can be parameterized. For instance, if the underlying
cipher operations were performed over GF(216) instead of over GF(28), then the
block size would double to 64 ·16 = 1024 bits, but the storage of a 16×16 S-box
becomes prohibitive. We have chosen the field GF(28) since it is adequate even
for smartcard processing, and because it avoids endianness issues.

Alternatively, keeping the bytewise operations, larger states could also be
constructed with dimensions 5 × 5 × 5 or 6 × 6 × 6, for instance, but requiring
new and larger MDS matrices. Mini-cipher versions of 3D can use a 3 × 3 × 3
state of bytes, but a new 3 × 3 MDS matrix is needed. For analysis purposes,
mini versions of 3D could use 4-bit words instead of bytes, leading to a 256-bit
block cipher.

In [1], Barkan and Biham described the concept of dual ciphers, which means
an isomorphism between the original cipher framework and another instance
with isomorphic mappings for the plaintext, ciphertext and key. As an exam-
ple, they described duals of the AES, which also exists for Rijndael and 3D. It
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is an open problem how to exploit dual ciphers in an effective attacks against
AES/Rijndael, 3D and similar ciphers. Analogously, the algebraic attacks de-
scribed by Courtois and Pieprzyk [10] against the AES (and 3D) still remain as
open research problems.
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A Appendix A

A test vector for 3D follows in hexadecimal notation.

– plaintext P1:
⎛
⎜⎜⎝

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

⎞
⎟⎟⎠

– key K1:
⎛
⎜⎜⎝

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

⎞
⎟⎟⎠

– ciphertext C1 = E(K1, P1):
⎛
⎜⎜⎝

efx 93x 49x 10x
f3x eax f5x 8cx
d0x eex f8x 7cx
fex 58x 54x 33x

∣∣∣∣∣∣∣∣

67x b2x b4x 59x
03x 46x 33x edx
ebx 70x 28x dax
2bx abx 40x 34x

∣∣∣∣∣∣∣∣

adx 01x 4fx 3ax
b6x 22x 7fx 40x
62x ddx 29x 67x
d3x 66x d5x 4cx

∣∣∣∣∣∣∣∣

0cx 97x fex e7x
cdx 02x 52x b3x
84x 53x 14x 1dx
5fx 63x 0bx 0ax

⎞
⎟⎟⎠
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