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Abstract

Mudflows are catastrophic events that cause immense damage to infrastructure and
life every year. Local authorities have been trying to mitigate the risk by zoning regula-
tions as well as by building protection structures for many years. These measures have,
however, in most cases been designed based on knowledge from past events. Numerical
models have started emerging about 30 years ago. While a variety of depth-averaged
models are available and implemented in commercial software almost no continuum
models exist, that would allow the extraction of forces acting on buildings and protec-
tion structures. Moreover, no two-phase material models exist that allow the simulation
of the complete process of initiation, propagation and stopping of a flow. This work at-
tempts to fill in an important part of this gap.

First, the basic components of the model are developed for free-surface flow of a
single phase fluid. On this formulation we investigate a meshless method, and come
to the conclusion that the main advantages of the meshless method can be obtained by
using simple finite elements in conjunction with a re-meshing strategy. We show that
the method retains optimal order of convergence.

The two-phase model proposed subsequently formulates the equations of the flow
of a two-phase mixture in a moving reference frame. The problem of updating the posi-
tions of the nodes of two phases is solved by re-creating a new mesh after each update.
The nodal variables are mapped onto this new mesh by linear interpolation. The com-
putation of volume fractions of the two phases is de-coupled from the computation of
the main nodal variables, the phase velocities and the pressure. The volume fractions
are computed by evaluating the change of local density of nodal masses of the phases.

On a series of test problems we demonstrate the performance of the two-phase for-
mulation. We show in particular that sedimentation of a solid phase within a mixture
can be simulated and the results can be verified with an analytical solution. Finally, the
impact of a mudflow on an obstacle is simulated and a time history of the force acting
on the obstacle is extracted. The test problems illustrate the versatility of the method for
simulating a wide variety of problems of two-phase flow.

Keywords: Mudflow, debris flow, free-surface, two-phase flow, Lagrangian fluid dy-
namics, mesh independent discretization, sedimentation, fluid-structure interaction



Résumé

Les coulées de boue sont des évènements catastrophiques qui chaque année causent
des dégâts importants. Depuis longtemps les autorités locales essaient de gérer ce
risque par des règlements de zonage ainsi que par des structures de protection. Ces
mesures sont essentiellement basées sur l’expérience d’évènements antérieurs. Les pre-
miers modèles numériques sont apparus il y a environ 30 ans. Différents modèles bidi-
mensionnels avec profondeur moyennée existent déjà et sont même implémentés dans
des logiciels commerciaux. Par contre il manque des modèles basés sur la mécanique
des milieux continus, qui permettent l’évaluation des forces agissants sur les immeubles
et les structures de protection. De plus, aucun modèle de comportement n’existe, qui
pourrait permettre la simulation du processus complet depuis l’initiation, en passant
par le transport, jusqu’à l’arrêt de l’écoulement. Ce travail essaie de combler cette la-
cune.

Les bases d’un modèle d’écoulement à surface libre pour un fluide monophasé sont
développées tout d’abord. Cette formulation est intégrée à une méthode sans maillage,
et nous montrons que les avantages principaux des méthodes sans maillage sont main-
tenus en utilisant les éléments finis standards en conjonction avec une stratégie de re-
maillage. Nous démontrons ensuite que cette méthode conserve l’ordre de convergence
optimal.

Le modèle biphasé proposé par la suite pose les équations de l’écoulement d’une
mixture biphasée dans un repère mobile. Nous résolvons le problème de la mise à jour
des positions des noeuds des deux phases par génération d’un nouveau maillage après
chaque mise à jour. Les variables nodales sont projetées sur ce nouveau maillage par
interpolation linéaire. Le calcul des fractions volumiques des deux phases est découplé
du calcul des variables nodales primaires, à savoir les vitesses des phases et la pression.
Ces fractions volumiques sont calculées en évaluant le changement de la densité locale
des masses locales des phases.

La performance de la formulation biphasée est finalement mise en évidence sur une
série de problèmes-tests. Nous montrons en particulier qu’il est possible de simuler la
sédimentation d’une phase solide dans une mixture, résultats vérifiés à l’aide d’une
solution analytique. Finalement l’impact d’une coulée de boue sur un obstacle est
simulé et l’évolution temporelle de la force agissant sur l’obstacle est extraite. Les tests
numériques illustrent la polyvalence de l’approche proposée.

Mots-clés: Coulée de boue, lave torrentielle, écoulement à surface libre, écoulement
biphasé, dynamique des fluides Lagrangienne, discrétisation indépendante du mail-
lage, sédimentation, intéraction fluide-structure
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2 Chapter 1 – Introduction

Every year throughout the world, debris flows cause an immense amount of dam-
age to property and people. The growth of population inevitably puts a lot of pressure
on developers to build houses in areas that are exposed to elevated risk of debris flows,
mudflows, landslides and similar events which are often of a hydro-geological nature.
This risk is accentuated by high demand for real estate located in topographically at-
tractive places. Mitigation of the risk is two-fold: One, mitigation requires better zoning
and urban planning measures to single out danger zones. Two, it requires a better un-
derstanding of these events in order to protect the existing infrastructure from damage.
In both cases, numerical modeling can play an important role in risk mitigation by one,
helping to establish maps that outline areas which are in the flow path, and two, com-
puting characteristics of the event such as depth of the flow or slide and forces, both
necessary for designing effective barriers, walls, nets or other protection devices.

Debris flows are flows of a mixture of water with soil, rocks, trees and other debris.
They are in general initiated by a slope failure which can be triggered by, for example,
rainfall, strong groundwater flow or snow melt. Alternatively, a debris flow can also
be caused by a sudden surge of water, caused by the breaking of a dam, rockfall or a
landslide into a lake causing the water to overflow. As the flood surge rushes down
a dry channel it can transform into a debris flow by eroding the bed and picking up
material on its way. The area affected by a debris flow can be separated into an initiation
zone from where most of the debris originates, a propagation zone, usually a narrow
channel or canyon, and a deposition zone where the solid component of the flow is
deposited due to a slope change and a decrease in velocity as a result thereof.

From a modeling point of view, debris flows are characterized as gravity-driven
flows of a multiphase material. During the event, the material undergoes large motion,
which causes the boundary to change continuously. The boundary, and in particular the
free surface, is not known a priori, but part of the solution.

Current state-of-the-art numerical models of debris flow use the thin-layer assump-
tion, stating that the extension of the flow in and perpendicular to the direction of
flow is much larger than the depth of the flow. This justifies the application of depth-
averaging, where the flow is projected onto a line for simple channel models or onto
a two-dimensional mesh (a map). The depth of the flow and the velocity are part of
the solution in each mesh node. A hypothesis on the vertical distribution of stresses is
required to integrate the governing equations over depth.

Numerical modeling of debris flows with depth-averaged models has been a sub-
ject of active research for many years and is still ongoing. Such models have proven to
be very valuable for evaluating run-out distances and flow paths in order to edit haz-
ard maps. Specialized consulting firms have acquired extensive knowledge in applying
existing models. Due to the thin-layer assumption, however, the stresses cannot be pre-
dicted with very high accuracy and the application of these models for obtaining loads
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acting on a protection device is very limited. As an alternative to numerical simula-
tion, in situ measurements in instrumented debris-flow channels can give results that
can be extrapolated to other sites. Full-scale experiments on test sites, where a debris
mixture is released onto an instrumented prototype of a protection system, are another
direction of current debris-flow research. Although, considering the high cost of such
experiments, it is obvious that numerical simulation can play a more important role in
the development of debris flow protection systems. In order to obtain results that have
the required degree of reliability, the next generation numerical model has to be full
scale three dimensional. The present work is an important step in this direction.

Figure 1.1: Simulation of the dam-break problem with a Lagrangian and an Eulerian
mesh.

The goal of this work is to be able to simulate the impact of a mud- or debris flow,
that is running down a slope, on an obstacle, and to obtain detailed time histories of
forces acting on the obstacle. The model has to be able to take into account the complex
material behavior of a debris-water mixture. Focus is put on the development of a ro-
bust algorithmic framework for describing the motion of the mixture. The claim is that
the main features of multi-phase flow can be captured by algorithmically coupling two
materials that each follow a very simple constitutive model. For the sake of simplicity,
we restrict ourselves to two dimensions in the development of the model. However,
most of the components of the model remain valid in three dimensions without any
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major modifications.
Full scale modeling of a fluid undergoing large motion and whose boundary changes

continuously poses special requirements to the spatial description. We chose a formula-
tion where particles move according to their mass and acceleration while being subject
to forces from the surrounding fluid. The incompressible Navier-Stokes equations are
solved in a Lagrangian reference frame at each time step. The Lagrangian reference
frame is updated (moved) to the current spatial position after each step. Since the La-
grangian frame of reference is attached to the material, no discretization is required in
zones where no material is present. This is in contrast to Eulerian methods, where, in
general, large parts containing air have to be modeled. Figure 1.1 illustrates the meshes
used in an Eulerian and in a Lagrangian simulation of a so-called dam-break problem.
The figure shows the outline of the water-filled domain at the beginning of the simu-
lation and shortly after the lateral wall, representing the dam, has been removed. The
free surface is part of the solution in the Lagrangian case. In the Eulerian case the posi-
tion of the free surface has to be computed separately, for example by using a level-set
technique or a surface-reconstruction algorithm. Such a computation can be costly and
introduces additional approximations.

By formulating the problem in a moving reference frame another important disad-
vantage of Eulerian methods is avoided. The total derivative of the velocity gives rise to
a convective term which is not present in a Lagrangian formulation. On one hand, such
a convective term causes spurious oscillations in the velocity field, unless the equations
are stabilized. On the other hand, Lagrangian methods suffer from problems related to
distortion of the mesh. This can be dealt with by re-zoning the nodes and reconnecting
the mesh. The use of meshless methods is also an alternative. In the framework of sim-
ulating free-surface flows it is, however, our opinion that the advantages of Lagrangian
meshes outweigh their disadvantages.

The material behavior of a mudflow is governed by the properties of its constituents,
water and granular material. The grain sizes of the granular material range from very
fine particles, as in clay, to gravel and even boulders. We restrict ourselves in this work
to material with an important fine content, a characteristic property of sediments de-
posited by the melting of a glacier. The high fine content gives the mixture a muddy,
viscous behavior. Keeping in mind that the algorithmic framework is not specific to
any particular kind of material, we limit the scope of this work to a two-phase material
where both the fluid and the solid phase are modeled as viscous fluids.

Both phases are smeared over the fluid domain. This means that no phase interfaces
are considered. The presence of either phase is specified by its volume fraction. Figure
1.2a) illustrates the reality whereas Figure 1.2b) shows the distribution of smeared solid
volume fractions.

The range of Reynolds numbers that the proposed method is expected to cover is
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Figure 1.2: The mass of the solid phase is smeared over the mixture.

below Re = 1000. This covers the laminar flow regime and can be considered a reason-
able assumption for mudflows with high contents of fine particles. In order to lift this
limitation, a turbulence model would have to be included.

The main difficulty in developing an updated Lagrangian method for simulating a
two-phase fluid lies in finding an appropriate way to update the spatial coordinates of
the nodes. Since in each node the velocities of two phases are computed, the update
produces two new nodes, one for each phase. Multiplying the number of nodes by two
at each Lagrangian update is not a solution for obvious reasons. We deal with this fun-
damental problem by re-creating a new set of nodes, on which the solution transported
by the nodes at their updated spatial coordinates is interpolated. This approach solves
at the same time the problem of mesh distortion.

The original features of the presented method are a constitutive model of a two-
phase fluid that we derive from a single-phase viscous fluid, an algorithm to perform
the Lagrangian update for a two-phase material, and an innovative method for com-
puting volume fractions of both phases based on the spatial coordinates of the nodes
before and after the Lagrangian update. This work also sheds a new light on updated
Lagrangian modeling of single-phase flow using meshless methods and it shows that
most of the advantages of meshless methods can be obtained by combining finite ele-
ments with a re-meshing strategy.

The thesis is structured as follows: Chapter 2 establishes the fundamentals of up-
dated Lagrangian modeling of single-phase flows with a free surface. The spatial dis-
cretization technique is presented and the choice of finite elements over meshless meth-
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ods is justified. A series of numerical examples validate the method and show that fre-
quent re-meshing doesn’t deteriorate the results. In Chapter 3, the method for modeling
two-phase flow is laid out. The algorithm for updating the spatial coordinates of the
nodes considering two different phase velocities and the re-meshing and re-mapping
procedures are given. Numerical tests validate and show the versatility of the method.
Chapter 4 gives a detailed description of the implementation of the method into a com-
puter code. Finally, in Chapter 5 we conclude and present a few ideas for further re-
search.
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Chapter 2
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Chapter 2 – Updated Lagrangian modeling of incompressible free-surface

single-phase flows

2.1 Introduction

Accurate capturing of the free surface is essential in simulations of fluid flow problems,
in which the position of the fluid boundary is not known a priori. Arbitrary Lagrangian-
Eulerian methods (ALE) have been used extensively in the past (see, for example [26] or
[5] for some more recent developments). ALE methods in general use a mesh that coin-
cides with the free-surface while interior nodes are moved independently of the fluid.
Purely Eulerian methods on the other hand use a mesh that is fixed in space. Because
the free surface in general doesn’t coincide with element edges it has to be defined in
some other way. The Marker-and-Cell method (MAC) is one of the earliest develop-
ments in this direction, the Volume-of-Fluid method (VOF) and level-set methods are
others. The abundance of different methods indicates that all these methods have their
strength and weaknesses. Some conserve mass with high accuracy, some are concep-
tually very appealing and others are computationally efficient. None of these methods
seems to have all of these mentioned properties. One disadvantage is shared by all Eu-
lerian and ALE methods: The presence of a convective term that requires stabilization
in order to avoid spurious oscillations.

A more elegant way to model free surface flows consists in using Lagrangian meshes.
For examples where updated Lagrangian discretizations have been used for simulating
free-surface flows see [35, 36, 21]. Conceptually speaking we track particles of fluid that
transport their mass and acceleration. These particles are subject to viscous stresses due
to the surrounding fluid. This point of view is similar to the one adopted in Idelsohn et
al. [31].

In a Lagrangian discretization nodes move with the material. Only the region occu-
pied by the fluid has to be modeled. The definition of the free surface is given naturally
by the position of the nodes that lie on it. No convective term requiring stabilization
appears in the momentum equation.

2.2 Updated Lagrangian formulation

In a Lagrangian formulation the position of a node is given by its material coordinate
X, that is the initial position of the material point at time t = 0. The spatial coordinate x

of that same node at time tn+1 defines the motion φ

x = φ(X, tn+1) (2.2.1)

The displacement of the node with material coordinate X is defined as the difference
between the current and the initial coordinate

d(X, tn+1) = φ(X, tn+1) − φ(X, t = 0) = φ(X, tn+1) −X (2.2.2)



2.3 – Governing equations and weak form 9

In the updated Lagrangian formulation all variables are referred to the last known
configuration. The displacement increment of a node X is defined as the difference
between the current coordinate and the coordinate at the last step

Δd(X, tn+1) = φ(X, tn+1) − φ(X, tn) = φ(X, tn+1) − X (2.2.3)

Integrals are evaluated on the last known configuration, and derivatives are expressed
with respect to the last known coordinates. The term ’updated’ stems from the fact that
the domain over which the integrals of the weak form are evaluated has to be updated
at each time step or iteration.

2.3 Governing equations and weak form

We derive the governing equations from conservation of mass and momentum, evalu-
ated on a volume Vx.

2.3.1 Mass conservation

The material derivative D
Dt

of the mass contained in a volume Vx is equal to zero.

D

Dt

∫
Vx

ρ dVx = 0 (2.3.1)

ρ is the mass density. In order to obtain a differential equation, which is valid pointwise,
we first have to move the derivative inside the integral. To do this the volume Vx has to
be expressed with respect to its material configuration VX .

D

Dt

∫
Vx

ρ dVx =
D

Dt

∫
VX

ρ J dVX

=

∫
VX

DρJ

Dt
dVX (2.3.2)

Now we apply Reynold’s transport theorem and transform the integral back to the spa-
tial frame of reference.∫

VX

DρJ

Dt
dVX =

∫
VX

(
Dρ

Dt
J + ρ

D J

Dt

)
dVX

=

∫
VX

(
Dρ

Dt
+ ρ∇ · v

)
J dVX

=

∫
Vx

(
Dρ

Dt
+ ρ∇ · v

)
dVx (2.3.3)
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Here we used the fact that DJ
Dt

= D
Dt

∂x
∂X

= J∇ · v, where v is the velocity of a material
point. Arbitrariness of the volume Vx allows us to write

Dρ

Dt
+ ρ∇ · v = 0 (2.3.4)

or, alternatively

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.3.5)

If the fluid is incompressible, then the mass density is constant (Dρ
Dt

= 0). In this case the
equation of mass conservation reduces to

∇ · v = 0 (2.3.6)

2.3.2 Momentum conservation

The rate of change of the momentum of a volume Vx is equal to the stresses σ acting on
the boundary Sx of the volume Vx and the body force b

D

Dt

∫
Vx

ρv dVx =

∫
Sx

σ · n dSx +

∫
Vx

b dVx (2.3.7)

Again, we need to transfer the term on the left-hand side to the material configuration
and apply Reynold’s transport theorem

D

Dt

∫
Vx

ρv dVx =
D

Dt

∫
VX

ρv J dVX

=

∫
VX

Dρv J

Dt
dVX

=

∫
VX

(
Dρ

Dt
v J +

Dv

Dt
ρ J +

DJ

Dt
ρv

)
dVX

=

∫
VX

(
Dρ

Dt
v +

Dv

Dt
ρ+ ρv∇ · v

)
J dVX (2.3.8)

Now we can use the equation of mass conservation (Equation 2.3.4) and transfer the
integral back to the spatial domain∫

VX

(
Dρ

Dt
v +

Dv

Dt
ρ+ ρv∇ · v

)
J dVX =

∫
VX

(
Dv

Dt
ρ

)
J dVX

=

∫
Vx

(
Dv

Dt
ρ

)
dVx (2.3.9)
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Using the divergence theorem on the first term on the right hand side of Equation
2.3.7 we obtain ∫

Sx

σ · n dSx =

∫
Vx

∇ · σ dVx (2.3.10)

Substituting Equations 2.3.9 and 2.3.10 into Equation 2.3.7 yields∫
Vx

(
Dv

Dt
ρ

)
dVx =

∫
Vx

∇ · σ dVx +

∫
Vx

b dVx (2.3.11)

Because this has to be true for any control volume Vx the following holds:

ρ
Dv

Dt
= ∇ · σ + b (2.3.12)

2.3.3 Constitutive relation

The stress tensor σ can be decomposed into a viscous stress tensor τ and a pressure p.

σ = τ + pI (2.3.13)

Remark 2.3.1 We adopt the following sign convention: Applying a positive pressure to a com-
pressible medium causes the medium to expand.

For a Newtonian fluid with a dynamic viscosity of μ the viscous stress tensor is

τ = μ(∇v + (∇v)T ) + λ(∇ · v)I (2.3.14)

Remark 2.3.2 In order to guarantee that the normal stress acting on a surface in a fluid at rest
is equal to the pressure p, the viscous stress tensor τ has to be purely deviatoric. This leads to

tr τ = (2μ+ 3λ)∇ · v = 0

Substituting λ = −2/3μ into Equation 2.3.14 yields the following expression for τ :

τ = μ

[
∇v + (∇v)T − 2

3
(∇ · v)I

]
Substituting the strain rate tensor ε̇ = 1

2

(∇v + (∇v)T
)

into the constitutive relation
yields:

τ = 2μ

(
ε̇− 1

3
(∇ · v)I

)
(2.3.15)

Remark 2.3.3 As we have seen in Equation 2.3.6 the divergence of the velocity is equal to zero
for incompressible materials. In order to remain most general we leave it in the formulation. In
the next chapter, which treats two-phase flow, the divergence of the phase velocities is not zero
anymore.
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2.3.4 Summary of the initial/boundary value problem

Now we can summarize the boundary value problem on a domain Ω and for ]0, T [, an
open time interval of length T . For incompressible Newtonian fluids we state: Given b,
g, h, v0 and p0, find v and p on Ω× ]0, T [ such that

ρ
Dv

Dt
= ∇ · τ + ∇p+ b on Ω× ]0, T [ (2.3.16)

∇ · v = 0 on Ω× ]0, T [ (2.3.17)

v = g on ∂Ωg × ]0, T [ (2.3.18)

σ · n = h on ∂Ωh × ]0, T [ (2.3.19)

v(t = 0) = v0 on Ω (2.3.20)

∂Ωg denotes the Dirichlet part of the boundary of Ω, the part on which we impose the
displacement g, and ∂Ωh the Neumann part, where surface tractions h are imposed.

2.3.5 Weak form

Let Si = {vi ∈ H1(Ω) | vi = gi on Γgi
} be a space of trial functions, Vi = {wi ∈

H1(Ω) | wi = 0 on Γgi
} a space of test functions and P = {p ∈ L2(Ω)} a space of both

trial and test functions 1 . Then the weak form of Equations 2.3.16 to 2.3.20 can be stated
as: Find vi(t) ∈ Si and p(t) ∈ P , t ∈ [0, T ], such that for all wi ∈ Vi and q ∈ P the
following equation holds:

B(w, q;v, p) = L(w, q) (2.3.21)

where

B(w, q;v, p) =

∫
Ω

ρw · Dv

Dt
dΩ +

∫
Ω

∇w : D : ∇vdΩ +

∫
Ω

∇ · wpdΩ

+

∫
Ω

q∇ · vdΩ (2.3.22)

L(w, q) =

∫
Ω

ρw · bdΩ +

∫
Γh

w · hdΓ −
∫

Ω

∇w : D : ∇gdΩ

−
∫

Ω

q∇ · gdΩ (2.3.23)

D is the constitutive matrix, defined in Appendix A.1. The viscous stress tensor can be
written as τ = D : ∇v.

1H1(Ω) is the space of functions u for which the inner product (u, u)1 =
∫
Ω(u2 + (u,i)2) dΩ is finite

and the norm ||u||1 =
√

(u, u) exists (i denotes the spatial dimensions. i = 1, 2 for 2D and i = 1, 2, 3 for
3D). L2(Ω) is the space of functions u for which the inner product (u, u) =

∫
Ω u2 dΩ is finite and the norm

||u||L2 =
√

(u, u) exists.
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Note that in the equations of the weak form no frame of reference has yet been spec-
ified. The integrals in Equations 2.3.22 and 2.3.23 can be evaluated on a fixed spatial
domain Ω(x) or on a moving domain Ω(X) attached to the material. This choice is dic-
tated by what is more convenient in evaluating the integrals. As mentioned earlier we
choose an updated Lagrangian formulation, where the integrals and spatial derivatives
are evaluated on the last known configuration Ω(X, tn).

2.3.6 Semidiscrete matrix form

Introducing a set of approximations discretizing the space into Equation 2.3.21 and us-
ing arbitrariness of the test functions leads to a semidiscrete matrix equation where time
is kept continuous

Ma + Kv = f (2.3.24)

a is a vector of nodal accelerations and v is a vector of nodal velocities and pressures:

a = [a1
x a1

y 0 · · · aI
x aI

y 0 · · · an
x an

y 0]T

v = [v1
x v1

y p1 · · · vI
x vI

y pI · · · vn
x vn

y pn]T

where the superscript I ∈ {1, · · · , n} identifies a node. We now proceed by present-
ing a time-stepping algorithm that solves Equation 2.3.24 at a time t = tn+1. Spatial
discretization is described in Section 2.5.

2.4 Time integration scheme

Equation 2.3.24 is non-linear since both matrices M and K change at each time the nodes
of the mesh are moved. The unknowns of the equation are velocity and acceleration.
The displacement is required to update the nodal coordinates at the end of each iter-
ation, but it is not an unknown of the equation. The trapezoidal family of methods,
adapted for nonlinear problems, can be used for time stepping. In order to compute the
displacement we use the finite difference formula of the Newmark family of methods.

2.4.1 Generalized trapezoidal family of methods

We wish to satisfy the following equation at time tn+1:

M(xn+1)an+1 + K(xn+1)vn+1 = Fext
n+1 (2.4.1)

The position xn+1 = xn + Δdn+1 is the (unknown) position at the end of step tn+1.



14
Chapter 2 – Updated Lagrangian modeling of incompressible free-surface

single-phase flows

The left-hand side can be grouped into a non-linear term N. This is done following
the work by Hughes, Pister and Taylor [27]. The generalized trapezoidal algorithm can
then be stated as:

N(an+1,vn+1,xn+1) = Fext
n+1 (2.4.2)

with

an+1 =
1

Δtγ
(vn+1 − ṽn+1) (2.4.3)

Δdn+1 = Δd̃n+1 + Δt2βan+1 (2.4.4)

and predictors given by

ṽn+1 = vn + Δt(1 − γ)an (2.4.5)

Δd̃n+1 = Δtvn +
Δt2

2
(1 − 2β)an (2.4.6)

Remark 2.4.1 Note that this formulation is similar to the one used by Idelsohn et al. [31], before
he introduces the time splitting. Choosing his parameter θ = 1 and γ = 1 in our formulation
the two are identical.

Now we like to write the system of equations in terms of increments of velocities.
Linearization of N at iteration i yields

∂N(ai
n+1,v

i
n+1,x

i
n+1)

∂vi
n+1

Δv = Fext
n+1 −N(ai

n+1,v
i
n+1,x

i
n+1) (2.4.7)

with

∂N(ai
n+1,v

i
n+1,x

i
n+1)

∂vi
n+1

=
∂(M(xi

n+1)a
i
n+1)

∂vi
n+1

+
∂(K(xi

n+1)v
i
n+1)

∂vi
n+1

(2.4.8)

In this work we assume that the two matrices M and K don’t change during an iteration,
that is we assume that:

M(xi+1
n+1) = M(xi

n+1) (2.4.9)

K(xi+1
n+1) = K(xi

n+1) (2.4.10)

With this assumption the tangent matrix in Equation 2.4.8 becomes

∂N(ai
n+1,v

i
n+1,x

i
n+1)

∂vi
n+1

≈ M(xi
n+1)

1

Δtγ
+ K(xi

n+1) (2.4.11)
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1. At tn+1 do:

Initialize the iteration counter:

i = 0

Predictor phase:

xi=0
n+1 = xn + Δd̃n+1

Mesh update

vi=0
n+1 = ṽn+1

ai=0
n+1 = 0

2. Compute the residual force, the tangent stiffness matrix and solve the
linear system of equations:

ΔF = Fext
n+1 − N(ai

n+1,v
i
n+1,x

i
n+1)

K∗ =
1

Δtγ
M(xi

n+1) + K(xi
n+1)

K∗Δv = ΔF

3. Corrector phase:

vi+1
n+1 = vi

n+1 + Δv

ai+1
n+1 =

1

Δtγ
(vi+1

n+1 − ṽn+1)

xi+1
n+1 = xi

n+1 + Δdi+1
n+1 = xi

n+1 +
Δtβ

γ
Δv

Mesh update

4. Test if computation has converged: If |ΔF| < C ∈ R, go to 1. (step
n = n+ 1). Else go to 2. (iteration i = i+ 1).

Table 2.1: Generalized trapezoidal algorithm.
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Remark 2.4.2 This approximation introduces a small error into the numerical method. It is
the same approximation as the one followed by Idelsohn and coworkers in [31] for updated La-
grangian free-surface flows.

The algorithm is summarized in Table 2.1.

Remark 2.4.3 The algorithm presented in Table 2.1 has been chosen in view of being applied to
the two-phase formulation presented in the following chapter. Since the two-phase formulation
has to provide a framework for various types of material behavior, from viscous fluids to solidified
material, the time stepping algorithm has to be able to accommodate a displacement-dependent
stiffness term. With such an additional term the algorithm can easily be adapted to the Newmark
family of methods, with parameters γ and β. We choose a backward Euler method, with γ = 1,
and β = 0.5 for the computation of the displacements. Most numerical tests, unless mentioned
otherwise, are performed using γ = 0.9 and β = 0.49. The results are almost identical (see
solitary-wave test in Section 2.6.6).

2.4.2 Mesh update

For the sake of generality we perform two updates at time step tn+1: The first update at
the beginning of the time step sets the spatial coordinates of the nodes to the predicted
positions x̃n+1. The second update sets the spatial coordinates to the corrected positions
xi+1

n+1 according to the new solution. In order to reduce computational cost the update
for the predictor at the next step and the update after the last iteration at the previous
step can be combined. After the nodes have been updated the domain has to be re-
meshed and the variables need to be re-mapped onto the new nodes. The procedure is
summarized in Table 2.2.

2.5 Spatial discretization and numerical approximation

The spatial discretization of the fluid domain consists of representing the continuous
material by a set of discrete nodes, at which the solution of the governing equations are
computed. The nodes, together with a set of interpolation functions to interpolate the
solution between the nodes, define the numerical approximation to the boundary value
problem.

We introduce the same numerical approximation to the velocity field v and the pres-
sure field p

vh
i (X) = N I(X)vI

i (2.5.1)

ph(X) = N I(X)pI (2.5.2)
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1. Update the spatial coordinates of the nodes

(a) Predictor step:

x̃n+1 = xi=0
n+1 = xn + Δd̃n+1

= xn + Δtvn +
Δt2

2
(1 − 2β)an (1)

(b) Corrector step:

xi+1
n+1 = xi

n+1 + Δdi+1
n+1 = xi

n+1 +
Δtβ

γ
Δv (2)

2. Find the boundary of the fluid, using the α-shape method (see
Appendix A.2)

3. Re-mesh inside the boundary (re-zone the nodes and create new
triangles, see Section 2.5.4)

4. Re-map the nodal variables on the new mesh (see Section 2.5.5)

Table 2.2: Mesh update algorithm.
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where vI
i are the components of vI , the velocity and pI the pressure at node I . N I(X)

is the shape function of node I evaluated at the material coordinate X. It is important
to note that the shape functions are functions of material coordinates. When taking
material derivatives with respect to time only the nodal values are affected while the
shape functions remain constant.

ah
i (X) = N I(X)aI

i = N I(X)
DvI

i

Dt
(2.5.3)

In the updated Lagrangian formulation spatial derivatives are taken with respect to the
last known configuration Ω(X), which is identical to the current configuration Ω(x) at
the end of the last time step. We can therefore write

∇vh(X) =
∂N I(X)

∂X
vI (2.5.4)

A matrix form can be obtained by substituting the above trial functions together
with the corresponding test functions into Equation 2.3.21. The global matrix equation
(Equation 2.3.24) then becomes

[
M 0

0 0

]{
a

0

}
+

[
K G

GT 0

]{
v

p

}
=

{
f

0

}
(2.5.5)

2.5.1 Numerical approximation

We seek an approximation that minimizes the distance between the field variables v and
p and their approximations vh and ph throughout the domain. For fixed meshes finite
element approximations are well adapted and have many desirable properties, such
as convergence (the error decreases as the mesh is refined), compact support (shape
functions are defined on an element, and are zero elsewhere), the interpolation property
(N I = 1 at node I and N I = 0 at all other nodes) or the partition of unity property (in
each point the sum of all shape functions is equal to unity).

2.5.1.1 Finite element method

The computational domain is decomposed into non-overlapping elements. Each ele-
ment is defined by its nodal connectivity. On each element a local coordinate system is
introduced, based on which the local approximation, the shape functions, are defined.
These shape functions have local support, i.e. they are zero outside the element. The
shape functions defined on an element are of polynomial form. For an isoparametric
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linear triangular finite element we define the following mapping between local coordi-
nates ξ and η and global material coordinates X and Y

X = ξ X1 + η X2 + (1 − ξ − η)X3 (2.5.6)

Y = ξ Y1 + η Y2 + (1 − ξ − η) Y3 (2.5.7)

Figure 2.1 shows the mapping of the parent domain of a linear triangular finite element
to the global domain. The coordinates (ξ, η) are also called barycentric coordinates. In

Figure 2.1: Mapping between parent and global domain for the linear isoparametric
triangular finite element.

the parent triangle they represent the areas of the sub-triangles as shown in the figure.
The computation of barycentric coordinates for an arbitrary point (X, Y ) is described
in Table 2.3. For the linear triangle one Gauss point with the barycentric coordinates
η = ξ = 1/3 is used. The shape functions and their derivatives for this element are
given by

N =

⎡
⎣φ1

φ2

φ3

⎤
⎦ =

⎡
⎣ ξ

η

1 − ξ − η

⎤
⎦ (2.5.8)

∇N =

⎡
⎣φ1

,ξ φ1
,η

φ2
,ξ φ2

,η

φ3
,ξ φ3

,η

⎤
⎦ =

⎡
⎣ 1 0

0 1

−1 −1

⎤
⎦ (2.5.9)

In order to show the form of the shape functions we show the interpolated value on a
rectangular grid, where all nodal values are equal to 0 except at one node, where the
value is 1 (Figure 2.2). The derivatives in x-direction are given in Figure 2.3.

A well-known problem of finite element modeling using Lagrangian formulations
occurs if the nodes of the mesh undergo large motions. Individual elements can deform
excessively until they eventually become invalid. Numerically this becomes the case if
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The barycentric coordinates of a node (X, Y ) with respect to
a triangle Δ123 (see Figure 2.1) can be computed as follows:

d11 = (X3 −X1)(X3 −X1) + (Y3 − Y1)(Y3 − Y1)

d12 = (X3 −X1)(X2 −X1) − (Y3 − Y1)(Y2 − Y1)

d13 = (X3 −X1)(X −X1) + (Y3 − Y1)(Y−Y1)

d22 = (X2 −X1)(X2 −X1) − (Y2 − Y1)(Y2 − Y1)

d23 = (X2 −X1)(X −X1) + (Y2 − Y1)(Y−Y1)

D = d11d22 − d2
12

ξ =
d22d13 − d12d23

D

η =
d11d23 − d12d13

D

Table 2.3: Computation of barycentric coordinates.

Figure 2.2: Finite element shape function.
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Figure 2.3: Finite element shape function derivative.

the determinant of the Jacobian det(J), given in Equation 2.5.10, becomes negative.

det(J) = det

[
∂X
∂ξ

∂X
∂η

∂Y
∂ξ

∂Y
∂η

]
= (X1 −X3)(Y2 − Y3) − (Y1 − Y3)(X2 −X3) (2.5.10)

For such a situation it would be desirable to have a numerical approximation that is
defined solely based on the positions of the nodes, not requiring any connectivity infor-
mation. Such methods are generally referred to in the literature as “meshless methods”.

Meshless methods have been a subject of active research for many years. The idea in
the first developments such as Smoothed Particle Hydrodynamics (SPH) was to formu-
late interaction between particles, without having to construct a mesh. This way all the
information such as mass, velocity, temperature, is transported with the particle and no
internal variables have to be stored at integration points. Particle methods are in general
formulated in an updated Lagrangian framework where the equations are written in a
frame of reference attached to the particles. While in the beginning meshless methods
were mainly used to solve problems of a discrete nature, such as in astrophysics or gran-
ular flow, they have recently become increasingly popular in the context of continuum
problems.

The main idea is to construct interpolations based on the distance to nodes in a
neighborhood. Many different variants of meshless methods exist, for a review of early
work see for example Belytschko et al. [3]. In our work we are interested in a method,
that allows to approximate the solution of a boundary value problem in a discrete set of
nodes, without having to be concerned about constructing a mesh. The most straight-
forward method to achieve this is point collocation, where a set of differential equations
is solved without the need of having to integrate a weak form (see, for example Oñate
et al. [41]). Problems with stability in collocation methods have, however, led us to
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explore meshless methods that make use of a weak form. In the following we present
the Natural Element Method (NEM) which shares many desirable properties with the
finite element method, such as compact support, the interpolation or Kronecker-delta
property and the partition of unity property.

2.5.1.2 Natural Element Method

The Natural Element Method has been introduced by Sukumar et al. ([49] and [50]).
It uses the geometrical concept of natural neighbors in order to define an interpolation
that is solely based on point locations. The concept of natural neighbors emerges from
the Voronoi diagram of a set of points. A Voronoi cell of a node I includes all points that
are closer to node I than to any other node. Figure 2.4 illustrates a set of nodes with its

Figure 2.4: Voronoi diagram (solid lines) and Delaunay triangulation (dashed lines) for
a set of nodes.

corresponding Voronoi diagram (solid lines) and its underlying Delaunay triangulation
2 (dashed lines). Natural neighbors of a node are all nodes whose Voronoi cells are
adjacent to the Voronoi cell of the node.

The construction of the Sibson interpolant for any point x is illustrated in Figure
2.5. It involves the construction of a secondary Voronoi diagram (dashed lines) and
the computation of the areas of polygons resulting from intersecting the (secondary)

2See Appendix A.2 for a description of Delaunay triangulations
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Figure 2.5: Computation of Sibson interpolant at a point X; Voronoi edges (thick lines)
and Delaunay triangulation (thin lines). After insertion of a point X a secondary Delau-
nay triangulation and Voronoi diagram is constructed (dashed thick and thin lines). Ai,
Aj and Ak stand for the areas of the hatched polygons and are used in the computation
of the shape functions corresponding to nodes Xi, Xj and Xk.
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Voronoi cell around point x with the (primary) Voronoi cells attributed to each natural
neighbor of point x. The Sibson interpolant is then computed as

Φi =
Ai∑nNN

k=1 Ak

(2.5.11)

where Ai are the areas as defined in Figure 2.6 and nNN is the number of natural neigh-
bors of point x.

Figure 2.6: Sibson interpolant.

Figure 2.7: Derivative of Sibson interpolant.

The Sibson interpolant on a square grid interpolating a value of 1 at the center node
and values of 0 at all other nodes is shown in Figure 2.6, the derivative in Figure 2.7. It
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can be seen that the shape function has a compact support that coincides with the union
of circles circumscribed around the Delaunay triangles that have the central node as a
vertex.

In order to assemble the global stiffness matrix we have to integrate local, or elemen-
tal, stiffness matrices on subdomains of a background mesh. In the case of NEM we use
a Delaunay triangulation, since this structure already is available from the evaluation of
the shape functions. On the triangles of the background mesh we evaluate the elemen-
tal matrices by Gauss quadrature. Other techniques exist, for instance nodal integration
techniques (an overview of nodal integration techniques can be found in [44]) or Monte-
Carlo methods. While Monte-Carlo methods suffer from high computational cost and
low accuracy nodal integration techniques seem to be a viable alternative, if one needs
to avoid the construction of a mesh by all means. The elemental matrices obtained from
Gauss quadrature are larger than those obtained from triangular finite elements, be-
cause the computation of NEM shape functions depends not only on the nodes of the
triangle, but on all the natural neighbors of the Gauss points of the triangle.

Meshless shape functions are in general rational functions, as can be seen in Equation
2.5.11. Gauss quadrature allows to exactly integrate polynomial functions. For rational
functions, however, it can only approximate the integral. Even by using a very high
order Gauss integration rule meshless shape functions can therefore not be integrated
exactly. Additionally to the error introduced by approximating the exact solution v and
p by vh and qh an error stemming from inexact evaluation of the integrals is introduced
by the method. This can be illustrated as follows: We wish to compute the mass matrix
Me of an element e. Using Gauss quadrature on nQ quadrature points, we have (see
Belytschko, Liu and Moran [4], p. 166)

Me = ρ

∫
Ωe

NTNdΩ = ρ

nQ∑
Q=1

wQNT (XQ)N(XQ)dΩ (2.5.12)

where XQ are the coordinates and wQ the weights of the quadrature points. This Equa-
tion is exact if the shape functions N are polynomials of order m ≤ 2nQ − 1. For NEM
shape functions Equation 2.5.12 is only satisfied approximately.

The result is that meshless methods cannot represent linear solution fields exactly.
This is observed in a linear patch test, which will not be passed by most meshless meth-
ods.

2.5.2 Mesh-independent finite element method

The computation of NEM shape functions requires the construction of a Voronoi tessel-
lation. Because the shapes of the Voronoi cells depend only on node locations the main
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requirement for a method to be called meshless is met. The construction of a Voronoi
tessellation produces as a by-product a Delaunay triangulation, therefore it is a natural
choice to use the triangulation as a background mesh for numerical integration. During
the implementation of the NEM we decided to implement linear triangular finite ele-
ment shape functions based on the Delaunay triangulation for comparison. The main
difference between the two methods turned out to be the computation of the shape
functions. All other steps in the solution procedure are identical. The claim is therefore
that triangular finite elements defined on a continuously updated Delaunay triangulation have
the same meshless characteristics as the NEM.

The use of meshless methods for updated Lagrangian simulations is often justified
by the lower sensitivity to irregular meshes (e.g. [21]). The presence of interior angles
to triangles of the mesh that are close to 180◦ deteriorates the accuracy of the results
obtained by the finite element method. Such large angles are, however, a result of ir-
regularly spaced nodes, as can be seen in Figure 2.8. In a) a regular triangular mesh is

Figure 2.8: Regularity of meshes: a) Regularly spaced nodes, b) Irregularly spaced
nodes, c) Irregularly spaced nodes with regularized triangles.

shown. The situation in b) illustrates a typical distribution of nodes after a horizontal
stretching motion. Here some elements clearly are badly shaped as they have interior
angles close to 180◦. In c) a new triangulation based on the same nodes as in b) is con-
structed. Far fewer triangles are badly shaped, in fact only triangles located on the
boundary still have relatively large interior angles. Changing from mesh b) to mesh c)
involves no re-mapping of nodal variables, as the nodal positions are not changed. In
fact step b) to c) is exactly what has to be done when new NEM shape functions based
on the nodal set in b) are to be computed. So the problem with badly shaped finite ele-
ments, that is triangles with interior angles close to 180◦, only occurs on the boundary.

Instead of using a meshless method we deal with the problem of uneven distribution
of nodes by a re-meshing strategy. Then standard finite elements can be used that pass
a linear patch test and have well established convergence properties. Moreover, as we
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will see in the next chapter, re-meshing is specifically required by the Lagrangian update
of the nodes of the two-phase formulation and will therefore not create any additional
computational overhead. For the single-phase formulation we claim that finite elements
with re-meshing is more accurate than NEM.

The central question is: What is the best way to obtain accurate solutions, if the nodes are
distributed unevenly? In our opinion the answer is to remediate the uneven distribution
by re-meshing. Then standard finite elements can be used that pass a linear patch test
and whose convergence properties are well established. We claim that this method is
more accurate for simulating free-surface fluid dynamics problems than NEM.

2.5.3 Volumetric locking and stabilization of the velocity-pressure
mixed formulation

The existence of a unique finite element solution that converges at optimal rate depends
on the satisfaction of the so called Ladyshenkaya-Babuška-Brezzi condition, a.k.a. the
LBB-condition. The mathematical foundations of the condition, that sometimes is also
called the inf-sup condition, can be found in Babuška [2] and Brezzi [6]. For a more
application-oriented perspective of the LBB-condition and its implications for modeling
of incompressible media we suggest reading of chapter 4 in Hughes [24]. The LBB
condition postulates that certain combinations of velocity and pressure interpolation
functions lead to volumetric locking in the velocity field and spurious oscillations in
the pressure field. In particular this is the case for interpolations of equal order for
the velocities and the pressure, which is most convenient from the point of view of
implementation.

For a long time it was believed that meshless methods alleviate volumetric locking
because the shape functions depend on more nodes than in commonly used finite ele-
ments. Further investigations showed that volumetric locking, and spurious pressure
oscillations, can still occur if the approximation is built on a smaller domain of influ-
ence. This has been analyzed in Dolbow et al. [19] for EFG. For the NEM enriched
shape functions that do not exhibit locking have been introduced by González et al.
[22]. Special treatment of the incompressibility constraint is still required. Meshless
methods, as compared to finite elements, therefore don’t offer any new alleviated way
to avoid the locking phenomenon.

Many common finite elements, such as the triangle with linear velocities and pres-
sure, don’t satisfy the LBB-condition and therefore suffer from volumetric locking. Other
elements, for instance the linear triangle with nodes located at midsides, cannot be used
for free surface flow as triangles on the free surface, which are connected to the rest of
the domain by only one edge, would be allowed to rigidly rotate around the midnode
of the shared edge (see Hughes [24] p. 250). An alternative triangular element that does
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not lead to spurious pressure oscillations at low velocities is the MINI-element, used in
Braess et al. [5].

As an alternative to using interpolation functions that satisfy the LBB-condition the
finite element solution to a boundary value problem can be stabilized by adding addi-
tional terms to the weak form or by solving for velocities and pressure separately. For
the use in our model we investigated several stabilization methods, namely finite incre-
ment methods, pressure-stabilizing Petrov-Galerkin methods, Galerkin/least-squares
methods and fractional step methods.

Finite increment methods have been developed by Oñate and co-workers. The basic
idea is to take into account the discrete nature of the solution spaces. When comput-
ing derivatives of the governing equations over a finite element (or a finite increment)
higher order terms of a Taylor expansion are retained which serve as stabilizing terms
in the weak form. It is important to note that these higher order terms represent a mea-
sure of the deviation of the discrete solution from the exact solution. Adding such terms
to the weak form can be seen as penalizing it with the local error, therefore forcing the
discrete solution to approach the exact solution. As the mesh is refined the stabilization
terms go to zero, an important property of any stabilization method. A detailed descrip-
tion of finite increment calculus for stabilizing incompressible solid and fluid mechanics
problems can be found in Oñate et al. [42].

Pressure-stabilizing Petrov-Galerkin methods follow a similar rationale. Here terms
resulting from multiplying the momentum equation with the gradient of the pressure
test function are added to the weak form (Hughes et al. [25]).

B(wh, qh;vh, ph)PSPG = B(wh, qh;vh, ph)

−
nel∑
e

τe

(∫
Ωe

∇qh · (ρDvh

Dt
−∇ · τ(vh) −∇ph)dΩ

)
(2.5.13)

L(wh, qh)PSPG = L(wh, qh) −
nel∑
e

τe

(∫
Ωe

∇qh · bdΩ
)

(2.5.14)

τe is a stabilization parameter for element e defined further down in the text. Such a
method satisfies consistency, because the stabilization terms disappear if vh and qh are
replaced by v and q. The additional terms penalize strong pressure gradients by the
residual of the momentum equation and spurious oscillations of pressures are therefore
avoided. Because the test functions are different from the trial functions it is considered
a Petrov-Galerkin method.

Remark 2.5.1 When linear approximations are used the term ∇ · τ(vh) cancels because it in-
volves second derivatives. In meshless methods this term has to be computed for the method to
be consistent.
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Remark 2.5.2 If we omit the inertial term (as in the steady state case) and the body force term
in Equation 2.5.14 then we recover the original stabilization method by Brezzi and Pitkäranta
[7].

Galerkin/least-squares methods form a general framework that includes pressure-
stabilizing Petrov-Galerkin and puts them into a context with other stabilization meth-
ods such as streamline-upwind Petrov-Galerkin, if an Eulerian reference frame is used.
Stabilization is achieved by adding least-squares terms of the residual of the momentum
equation to the weak form (see Hughes, Franca and Hulbert [28]).

B(wh, qh;vh, ph)GLS = B(wh, qh;vh, ph)

+

nel∑
e

τe

(∫
Ωe

(ρ
Dwh

Dt
−∇ · τ(wh) −∇qh) · (ρDvh

Dt
−∇ · τ(vh) −∇ph)dΩ

)
(2.5.15)

L(wh, qh)GLS = L(wh, qh)

+

nel∑
e

τe

(∫
Ωe

(ρ
Dwh

Dt
−∇ · τ(wh) −∇qh) · bdΩ

)
(2.5.16)

Remark 2.5.3 In the steady-state case and when linear finite elements are used, the Galerkin/least-
squares method is identical to pressure-stabilizing Petrov-Galerkin, with the exception of the sign
of the stabilization term.

Fractional step methods take another approach to stabilizing the pressure for tran-
sient incompressible flow. By separating the momentum equation and the continuity
equation and solving separately for velocities and pressures satisfaction of the LBB-
condition can be avoided, at least as long as the time step doesn’t become too small. An
in-depth discussion of the LBB-condition in the context of fractional step methods can
be found in Guermond et al. [23].

Many different variations of fractional step methods exist, the interested reader can
for instance consult Codina [12] and references therein for a more thorough analysis.
Idelsohn et al. [31], who we referenced earlier, use the scheme proposed by Codina.
The main idea is to split the momentum equation into two parts, use the first part to
compute an intermediate velocity while using the previous pressure, and then use the
continuity equation to compute the new pressure. Finally the second part of the split
momentum equation is used to compute the new velocity at the end of the time step. A
by-product of this splitting of the system of equations is the reduction of the number of
equations that have to be solved simultaneously. However, additional approximations
introduced by these methods leads to some loss of accuracy.
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For the present problem we seek a numerical method that gives stable solutions
while being easy to integrate in an updated Lagrangian setting. We expect the pressure-
stabilizing Petrov-Galerkin method to best meet these requirements.

2.5.3.1 Stabilization parameter for pressure-stabilizing Petrov-Galerkin

After having settled for a specific method the stabilization parameter τe used in Equa-
tions 2.5.13 and 2.5.14 has to be defined. For incompressible flow in the steady-state
regime the parameter from [25] can be used:

τe =
αh2

e

2μ
(2.5.17)

where α is a dimensionless parameter and he a characteristic element diameter. For
unstructured meshes generated with a Delaunay mesher he is set equal to the maximum
triangular side length. This definition, however, doesn’t account for the inertial forces
present in the transient regime. We use the modified stabilization parameter given in
Tezduyar et al. [54]:

τe =
1√(

2ρ
Δt

)2
+

(
2μ
αh2

e

)2
(2.5.18)

Δt is the time step length.
With these stabilization terms the weak form is now complete. The global matrix

equation 2.5.5 is modified as follows:[
M 0

0 0

]{
a

0

}
+

[
K G

GT S

]{
v

p

}
=

{
f

fs

}
(2.5.19)

where S and fs are the stabilization terms arising from Equations 2.5.13 and 2.5.14. De-
tails on computing the individual sub-matrices in Equation 2.5.19 are given in Appendix
A.1.

2.5.4 Re-meshing

Re-meshing of the computational domain assures a mesh of good quality throughout
the simulation. Due to the update of the nodal coordinates the finite elements deform
and will eventually become invalid, unless the domain is re-meshed. Re-meshing con-
sists of two steps: Re-zoning of the nodes, and re-creating the elemental connectivi-
ties. Both steps don’t have to be performed after each Lagrangian update. At relatively
small mesh deformation all elements remain well-shaped, i.e. all element Jacobians are
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greater than zero. Neither re-meshing nor re-zoning has to be performed. As deforma-
tion increases, some elements become badly shaped (Jacobian J ≤ 0) and new element
connectivities based on the same set of nodes have to be established. Re-zoning is re-
quired only at very large deformation, if nodes become clustered along lines due to
stretching in one direction. Re-zoning the nodes in order to create an evenly spaced
nodal set restores a good quality approximation.

For the sake of generality we re-mesh in this work after every iteration. More so-
phisticated methods can be obtained by using indicators of mesh distortion or error
estimators. Methods of selective local re-meshing can be found for example in Malcevic
et al. [35] or Radovitzky et al. [45].

2.5.5 Re-mapping procedure

After a new, evenly spaced set of nodes has been created all the nodal variables have to
be mapped onto the new nodes. We accomplish this task by linear interpolation, thus
using the same interpolation as in the finite element approximation.

Proposition 2.5.4 The solution obtained from the finite element method using linear shape
functions converges quadratically with respect to the mesh size. Linear interpolation of the
solution onto a new set of nodes also converges at least quadratically. The re-mapping therefore
doesn’t introduce an error of order lower than 2 and quadratic convergence of the numerical
method is retained. This is shown numerically in Section 2.6.3.

Remapping of masses is not required in this case since the fluid is considered in-
compressible and the mass density therefore constant. The nodal masses for the next
iteration can be obtained by simply computing lumped mass matrices on the new nodal
configuration.

The velocities and accelerations, the pressure and the incremental solution vector
[Δv Δp]T have to be mapped from the previous mesh to the new mesh at the current
iteration. The re-mapping procedure consists of:

For each node (X, Y ) of the new mesh, do:

• Find the triangle Δ123 of the previous mesh, that contains node (X, Y ).

• Compute the barycentric coordinates ξ and η of node (X, Y ) with respect to trian-
gle Δ123 as explained in Table 2.3. The barycentric coordinates correspond to the
weights that are used to interpolate a variable at node (X, Y ) within the nodes of
triangle Δ123.

• Interpolate all variables φ at node (X, Y ): φ = ξφ1 + ηφ2 + (1 − ξ − η)φ3
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Figure 2.9: Algorithm for detection of contact with boundary and correction, illustrated
for the situation of contact along a straight line and in a corner.

In order to test if a point (X, Y ) is contained in a triangle with vertices (X1, Y1), (X2, Y2)

and (X3, Y3) we can again use the barycentric coordinates: If min(ξ, η, 1 − ξ − η) > 0,
then the point is located inside the triangle. In order to narrow down the number of
triangles to test to those that are close to point (X, Y ) we use the method for spatial
search described in Section 4.3.

2.5.6 Detection of contact at the fluid boundary

Nodes on the free surface can eventually come in contact with a fixed boundary as the
flow mass propagates along its downhill path. We chose to deal with this contact prob-
lem in a very simple way. Figure 2.9 illustrates the algorithm for the nodal update,
contact detection at the boundary and correction of the coordinates of the nodes in con-
tact with the boundary. The fixed boundary is specified as a sequence of straight line
segments. As the Lagrangian update of the nodal positions is carried out we test for all
nodes whether their new location is above or below the fixed boundary. If it is below,
then the node is projected perpendicularly onto the nearest fixed boundary segment
(Situation A). If the node is below a segment, but in a corner (Situation B), the node is
projected back to the corner. This relatively crude method results in a small loss of mass
every time a node is projected back onto the fixed boundary. Also it produces shocks
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and small pressure jumps. However these effects appear to be acceptable in the context
of our simulations.

2.6 Numerical tests

The single-phase model is verified and validated according to the program of tests
shown in Table 2.4.

Single-phase
tests

Aspect to be verified Comparison with

Hydrostatic patch test Interpolation Exact result
Transient lid-driven cavity
flow

Stabilization Steady state norm (Equa-
tion 2.6.3)

Stratified flow Mass flux at inflow vs.
outflow, re-mapping on
fixed mesh, convergence

Exact result

Flow over step Performance at high Re,
re-zoning on fixed mesh

Denham et al. [16]

Flow over step with free
surface

Free surface Qualitatively

Solitary wave Conservation of energy Energy balances (Equation
2.6.9)

Droplet formation Surface tension Qualitatively
Dam break Rezoning, surface tension Mass conservation, CPU-

time

Table 2.4: Verification tests for single-phase model.

2.6.1 Hydrostatic patch test

A hydrostatic patch test is performed on an inclined, fluid-filled container (Figure 2.10).
The fluid under a body load of b = [0 − 10]T is at rest, or in other words, the velocity
is equal to zero while the pressure distribution is linear (hydrostatic). The density is
ρ = 1000 and the viscosity μ = 0.001. Even though this is a static problem, it is analyzed
using the transient algorithm described earlier. One time step of Δt = 0.001 is com-
puted. The test is performed using linear triangular finite elements and the NEM with
two different Gauss quadrature rules. The L2 error norms for the pressure and velocity,
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Figure 2.10: Geometry used in the hydrostatic patch test.

given in Table 2.5, are defined for scalars and vectors as:

||q||L2 =

√∫
Ω

q2 dΩ (2.6.1)

||q||L2 =

√∫
Ω

(q · q) dΩ (2.6.2)

h ||pexact − ph||L2 ||vexact − vh||L2

Finite elements 0.1 6.8 · 10−7 6.6 · 10−18

NEM 1 GP
0.1 6.9 · 10−1 4.8 · 10−4

0.05 1.7 8.3 · 10−4

0.02 8.8 2.6 · 10−3

NEM 25 GP
0.1 1.2 · 10−1 2.0 · 10−4

0.05 4.6 · 10−1 4.1 · 10−4

0.02 3.1 1.2 · 10−3

Table 2.5: Error norms for the hydrostatic patch test. Comparison between FEM and
NEM, using Gauss quadrature with 1 and 25 integration points.

While the linear finite elements pass this patch test the natural neighbor-based method
doesn’t. Not only is the latter unable to represent exactly a linear pressure field, the er-
ror even increases as the mesh is refined. Clearly the velocity field that results from a
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NEM computation shows spurious, meaningless oscillations, arising from the fact that
the weak form cannot be integrated exactly even if the exact solution is linear. Using a
higher order integration rule decreases the error only marginally. While not-fulfillment
of a linear patch test doesn’t necessarily cause problems in the case of a solid mechanics
application it is clearly unacceptable for an updated Lagrangian method. These spuri-
ous velocities will be used to update the nodal positions at the end of every time step
and the error will therefore accumulate with time.

2.6.2 Transient lid-driven cavity flow

The stabilization added to the method modifies the equation of conservation of mass,
introducing a small compressibility to the formulation. One effect of this artificial com-
pressibility is a delay in how fast a steady state flow regime can be reached. This is
tested on a lid-driven cavity flow test, which is a well studied problem for incompress-
ible elasticity as well as incompressible fluid dynamics. The test consists of a fluid filled
squared domain on which a constant horizontal velocity is imposed on the top bound-
ary. On all other boundaries zero velocity is imposed. Figure 2.11 shows the mesh
used in all computations. Since the boundary of the computational domain stays fixed

Figure 2.11: Mesh and boundary conditions used in the computations for the cavity-
flow problem. The mesh is composed of 1105 nodes.

throughout the analysis we use the same fixed finite element mesh, on which the nodal
variables are mapped back after each Lagrangian update. Starting from a fluid at rest
the convergence toward the steady state solution is examined by looking at the change
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in velocity between two consecutive time steps:

esteady =
||vn+1

h − vn
h||L2,Ω

||vn+1
h ||L2,Ω

(2.6.3)

Three sets of analyses are performed: One where the complete momentum equation is
included in the pressure gradient stabilization (denoted c in the results), and two where
the inertial term is dropped. These two analyses are performed for two different mass
densities of the fluid: ρ1 = 1 and ρ2 = 100. The viscosity μ is in all analyses equal to
unity. The following stabilization parameters have been tested: α = [0.001, 0.05, 1., 20].
The computations are performed on a mesh consisting of 1105 nodes, using a time step
of length Δt = 0.05. The results in Figure 2.12 show the steady state error on a logarith-
mic scale plotted as a function of time.
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Figure 2.12: Steady state convergence for cavity flow: a) ρ = 1, b) ρ = 100, c) consistent
stabilization with ρ = 100.

Remark 2.6.1 For all methods the solution tends toward a steady state. The rate at which the
solution converges is higher for problems at low Reynolds numbers, where inertial effects are less
important.

Remark 2.6.2 The consistent stabilization, that is when the inertial term in Equation 2.5.13
is included in the stabilization, does not improve the rate at which the solution converges to a
steady state.

Remark 2.6.3 The value of the stabilization parameter appears to have very little influence on
this particular problem. In the following we use α = 0.5.
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2.6.3 Stratified flow

With this relatively simple test we want to show that the solution converges with op-
timal rate. The test is performed on the geometry illustrated in Figure 2.13. Again,

Figure 2.13: Geometry used in the stratified-flow test.

the nodal variables are mapped back on the same fixed mesh. At the inflow section a
parabolic distribution of horizontal velocity with a maximum velocity of vx = 1 and
vx,y = 0 at the top is imposed. The vertical velocity component along all four bound-
aries is set equal to zero. On the lower horizontal boundary the horizontal velocity is set
to zero while at the upper boundary the tangential force is zero. At the outflow bound-
ary zero pressure is imposed. The analysis is performed for Reynolds numbers of 10,
100 and 1000. The definition of the Reynolds number is given by

Re =
vρD

μ
(2.6.4)

where v is the cross-sectional average of the velocity, ρ the density, μ the dynamic viscos-
ity and D a characteristic length of the cross section, in this case the height of the fluid
domain. The density is ρ = 10 in all analyses, while the viscosity values of μ1 = 0.01 and
μ2 = 1 are taken to vary the Reynolds number. The results for three structured meshes
with 226, 502, 851 and 1814 nodes are computed, using a time step length of Δt = 0.02.

Remark 2.6.4 Such a test with well defined boundaries fixed in space would typically be per-
formed in an Eulerian description. Using an updated Lagrangian description we need to pay
special attention to the inflow and outflow boundary conditions. A material point located on the
inflow boundary at a time tn+1 was outside the computational domain at time tn. Imposing a
constant velocity in time on the inflow boundary therefore implies that the velocity is constant
along streamlines in upstream direction. In the current problem this can be assumed to be true as
the velocities in the exact solution are purely horizontal and identical for all vertical sections. For
more complex flows we need to consider perturbed zones near the inflow and outflow boundaries
where neglecting to convect velocities introduces a small error.

In Figure 2.14 we show the evolution with time of the L2 error norm of the velocity
for Reynolds numbers of 10 and 1000. Due to the compressibility introduced by the sta-



38
Chapter 2 – Updated Lagrangian modeling of incompressible free-surface

single-phase flows

0 0.5 1
−3

−2.5

−2

−1.5

−1

−0.5
Re = 10

time [s]

lo
g(

||v
−

vh || L 2/||
v|

| L 2)

0 0.05 0.1
−1.5

−1

−0.5

0

0.5

1
Re = 1000

time [s]

lo
g(

||v
−

vh || L 2/||
v|

| L 2)

 

 
226 nodes
502 nodes
851 nodes
1814 nodes

Figure 2.14: Evolution of the velocity error for stratified flow.

bilization steady state is not reached immediately. After a certain time the error reaches
a plateau, which can be considered steady state. For a given discretization the steady
state error cannot get smaller than this value. The residual errors at steady state are
plotted against the numbers of nodes in a logarithmic plot in Figure 2.15. For Re = 10
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Figure 2.15: Convergence of the velocity error for stratified flow.

the convergence rate is quadratic. However, at Re = 1000 the solution doesn’t converge
at all. If we look at a contour plot of the velocities after steady state has been reached in
the Re = 1000 test (see Figure 2.16) we can see that the vertical velocity is non-zero over
a large portion of the domain. This is a result of the compressibility introduced by the
stabilization. Since this error propagates from time step to time step we cannot expect
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Figure 2.16: Contour lines of the horizontal and vertical velocities for stratified flow at
Re = 1000.

to conserve optimal rates of convergence throughout the analysis. In this perspective
the rate at which the error of the Re = 10 test tends to zero can be considered a good
result.

In problems that involve the motion of a free surface mass conservation is essential.
In order to obtain a measure for how well the mass in conserved we compute the dif-
ference between the volume of fluid entering and leaving the computational domain.
For an incompressible fluid this difference should be equal to zero. We integrate the
horizontal velocity along the in- and outflow boundaries:

qin =

∫
Γinflow

vx dS (2.6.5)

qout =

∫
Γoutflow

vx dS (2.6.6)

errormass =
qout − qin

qin
(2.6.7)

In Figure 2.17 we show the mass error as a function of time for Reynolds numbers of 10,
100 and 1000. The time to reach steady state conditions decreases as the mesh is refined.
At the same time the error in steady state decreases. Here we observe close to second
order convergence for all Reynolds numbers, as can be seen in Figure 2.18.
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Figure 2.17: Mass error for stratified flow.
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Figure 2.18: Convergence of mass error for stratified flow.
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2.6.4 Flow over a backward-facing step

In this simulation we test the mesh independent updated Lagrangian finite element
method for incompressible flows at Reynolds numbers of 191 and 3015. For comparison
we use experimental results obtained by Denham et al. [16] for turbulent flow and
Denham et al. [17] for laminar flow.

The geometry of the problem consists of a narrow inlet part and a sudden enlarge-
ment after a backward-facing step (Figure 2.19). The boundary conditions are vx = 0

Figure 2.19: Mesh used in the backward-facing step problem at Re = 3015.

and vy = 0 everywhere, except at the outflow boundary where zero normal traction is
specified and at the inflow boundary where the horizontal velocity profile is imposed.
At the outflow boundary the pressure is set to zero. The Reynolds numbers in both
computations are computed using the height of the step h1 as characteristic length D

(Re = vρD/μ = 3015). For both tests the results are shown after 1000 time steps. Table
2.6 summarizes the parameters.

Re v μ ρ Δt Nnodes

191 0.287 0.01 10 0.2 7887

3015 0.00387 0.001 1000 50 2530

Table 2.6: Parameters used in backward-facing step problem.

For the test at Re = 3015 the inflow profile measured in [16] with an average ve-
locity of v = 0.003015, is prescribed. In Figure 2.20 the numerical results are compared
to measured values at several vertical sections. The agreement in terms of horizontal
velocity is not very good, in particular the zone behind the step where a vortex is cre-
ated extends too far to the right in the simulation. This discrepancy is a result of the
inability of the simulation to capture the fine scales of the turbulent flow. Either a finer
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Figure 2.20: Comparison between experimental and numerical results for flow over a
backward- facing step at Re = 3015.

discretization near the boundaries, ideally using mesh adaptivity, could capture bound-
ary layers more accurately, or a turbulence model could be adopted that would include
the influence of the fine scales. For flows at high Reynolds numbers a method that is
able to resolve the small scales of velocity fluctuations is indispensable.

Better results can be expected in the test where Re = 191. Here the velocity profile
at the inflow section was set to a parabolic distribution with a maximum of 0.287. The
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Figure 2.21: Comparison between experimental and numerical results for flow over a
backward- facing step at Re = 191.
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result in Figure 2.21 shows a very good agreement between experimental and numerical
results. This confirms that the numerical method performs well in the low Reynolds
number range.

2.6.5 Flow over a backward-facing step with free surface

The next step in the verification and validation procedure is to test the updated La-
grangian formulation for representing an evolving free surface. The goal is to be able
to obtain a smooth free surface without spurious oscillations or saw-tooth patterns. To
this end we simulate flow over a backward-facing step, similar to the test in the previ-
ous section, but this time without the top boundary being fixed. The geometry shown
in Figure 2.22 with the dimensions L1 = 0.5, L2 = 1.5 and h1 = h2 = 0.25) is used. At the

Figure 2.22: Geometry of the backward-facing step with free surface.

inflow boundary a constant horizontal velocity of v = 2 and a vertical velocity equal to
zero are imposed. The zero vertical inflow velocity has as a consequence that the fluid
depth at the inflow boundary is constant. At the outflow boundary the traction is set
equal to zero and no Dirichlet condition is imposed on the pressure. The Reynolds num-
ber for this problem is Re = 500, using h1 as the characteristic length of the problem.
Figure 2.23 shows streamlines after 1000 time steps at t = 2 seconds when the flow is ap-
proximately steady. The velocities are smooth and no oscillations are visible at the free
surface. Behind the step a small-amplitude recirculation region appears. Right after the
inflow boundary on the left side the initially constant velocity profile gradually adapts
to a near-parabolic distribution. During this process the mean velocity decreases, which
in turn raises the free surface. The overall qualitative aspect of this result doesn’t reveal
any deficiency in the numerical method.

2.6.6 Solitary wave

In this test a horizontal displacement is prescribed to the side of a rectangular, fluid-
filled container of a length of 300 (see Figure 2.24). This displacement creates a solitary
wave propagating on the free surface from left to right, rebounds from the wall and
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Figure 2.23: Streamlines and velocity magnitude for flow over a backward-facing step
with free surface.

Figure 2.24: Geometry of the solitary wave problem

Figure 2.25: Solitary wave, using NEM: Zoom to the left boundary where the horizontal
velocity is prescribed. Colors represent the vertical velocity field.
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travels back in the opposite direction. The displacement that we have to impose in
order to create this very specific type of wave is taken from [43]:

dx =

√
4

3
h0η0

(
1 + tanh

(√
3

4

η0

h3
0

ct− 4

))
(2.6.8)

where η0 = 0.86 is the wave height, h0 = 10 the fluid depth, t the time, c =
√
gh0(1 + η0

h0
)

the speed of propagation of the wave on the free surface and g = 10 the (vertical) gravi-
tational acceleration. The analyses are performed using a time step Δt = 0.1 and a mesh
composed of 337 nodes. The density ρ is chosen to be ρ = 1 and two values of viscosity,
μ = 0.001 and μ = 100, are selected.

In this simulation we look at energy conservation for analyses using different values
of viscosity. Before showing the results using finite elements we show the results of
an attempt to employ the NEM to simulate this problem at μ = 0.001. A zoom on
the zone near the boundary where the velocity is imposed (Figure 2.25) shows strongly
oscillating vertical velocity fields for three selected time steps. The analysis eventually
has to be terminated due to the velocity field producing a very uneven fluid surface.
Using a higher order integration rule doesn’t improve the result. The problem is caused
by the method not satisfying the patch test exactly (see Section 2.6.1) and precludes the
use of NEM shape functions in similar types of low viscosity problems.

In the following we investigate conservation of energy more closely. To this end the
internal, kinetic and potential energies are computed at each time step. The internal
energy is the energy dissipated by viscous forces. The rate of change in total energy can
be written as

Ė︸︷︷︸ = σ : ∇v︸ ︷︷ ︸ + ρv · a︸ ︷︷ ︸ + ρg · v︸ ︷︷ ︸
total energy internal energy kinetic energy potential energy
rate rate rate rate

(2.6.9)

In order to obtain the change of total energy the kinetic energy rate is integrated symbol-
ically (

∫
ρv·adt = 0.5ρv·v) whereas the internal and potential energy rates are integrated

numerically. Figure 2.27 shows the partial and the total energies for the two analyses
with different viscosities. We can see that the partial energies increase as mechanical
work is put into the system by moving the left wall. The applied work is transformed
into kinetic energy, potential energy, and a part of is is dissipated by viscous forces. As
the wave reaches the wall on the right side after about 40 seconds the water level at the
wall raises. This is caused by kinetic energy being transformed into potential energy. At
about 44 seconds the water depth at the wall reaches its maximum while kinetic energy
drops to zero (numerical value 0.42). The wave rebounds and continues to travel back
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and forth until all kinetic energy is eventually dissipated. In both analyses the free sur-
face is perfectly smooth, which is a very good result in particular for the low-viscosity
case. The free surfaces are shown in a surelevated view in Figure 2.26.
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Figure 2.26: Energy balance for solitary wave problem.

For the analysis at μ = 100 the energy that is input into the system is almost imme-
diately dissipated (transformed into internal energy or heat). Because the fluid offers
more resistance to the applied movement of the wall if the viscosity is higher the total
energy is slightly higher in the case of μ = 100.

The exact potential energy after all kinetic energy has dissipated can be computed
analytically. The total horizontal displacement by which the left wall is moved results in
a raise in water depth and thus an increase of potential energy of 3462. This increase can
be compared to the change in potential energy obtained from the computation with a
high value of viscosity. The relative error of the potential energy computed numerically
is only about 10−5, after the kinetic energy has been dissipated almost completely at
t = 200 seconds. The total energy, that is the sum of kinetic, potential and through vis-
cous forces dissipated energy should remain constant throughout the analyses. This is
approximately true for the high-viscosity analysis, whereas for the low-viscosity anal-
ysis we note a small drop of total energy. This drop can be attributed to numerical
dissipation of the time integration algorithm.

In order to investigate numerical dissipation, we compare results for μ = 0.001 ob-
tained with the time stepping algorithm using various sets of parameters. The sets
(γ = 0.9, β = 0.49), (γ = 1, β = 0.5) and (γ = 0.5, β = 0.5) are compared using two
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Figure 2.27: Energy balance for solitary wave problem.
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different time steps: Δt = 0.1 and Δt = 0.2. Figure 2.28 shows an excerpt of the to-
tal energy. The algorithm with γ = 1 dissipates slightly more energy than γ = 0.9.
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Figure 2.28: Detail of the total energy balance for the solitary wave problem.

With γ = 0.5 the total energy is almost constant. The small bumps even decrease as
the time step size is reduced. Neither of the algorithms show any oscillatory behavior.
For γ �= 0.5 numerical dissipation increases for larger time step sizes. In the following
numerical tests the set of parameters (γ = 0.9, β = 0.49) is used. This somehow arbi-
trary choice is justified since for the use in general test cases, some dissipation of high
frequencies is desirable.

An analysis with μ = 0.001 and Δt = 0.1 but without re-zoning of nodes and re-
mapping of variables yielded results that were indistinguishable from those shown in
Figure 2.27.

2.6.7 Formation of drop due to surface tension effect

Free surface flows of viscous materials generally tend to preserve sharp angles at the
free surface. This is the case for example in the dam-break problem as can be seen in
Section 2.6.8. The reason for this anomaly is the fact that in a small element at the free
surface the gravity load produces no shear forces that could deform the corner element
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sufficiently to smooth the corner out. The only way to obtain smooth edges in such
a case is to include surface tension to the numerical model. A simple way to do this
is by applying nodal forces normal to the boundary nodes that are proportional to the
curvature of the boundary. The implementation follows the description of Caboussat
[8].

Ffs = χκn (2.6.10)

where χ is a constant of proportionality, depending on the two media that are in contact

Figure 2.29: Computation of curvature in two dimensions.

at the boundary and has the unit of N
m

. κ is the curvature ( 1
m

) and n is the outward unit
normal vector to the boundary. The curvature κ at a node can be estimated by comput-
ing the inverse radius of the circle passing through the node and its two neighbors on
the boundary (see Figure 2.29). κ can then be computed as follows:

p = 0.5(dAB + dBC + dAC) (2.6.11)

κ =
4
√

(p(p− dAB) ∗ (p− dBC) ∗ (p− dAC)

dABdBCdAC

(2.6.12)

dAB is the distance between points A and B. For concave boundaries the curvature has
to be multiplied by −1.

As a simple test for the implementation of the surface tension the formation of a
droplet under gravity loading is computed. Figure 2.30 shows the deformation of the
initially rectangular fluid into a drop. Initially sharp corners are completely smoothed
out. After 20 seconds the drop is in equilibrium and the pressure distribution becomes
hydrostatic.
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Figure 2.30: Droplet formation due to surface tension. Shading shows pressure distri-
bution.

2.6.8 Dam break

A square block of fluid at rest is released by instantaneously removing the ’dam’ on the
right side (see Figure 2.31). This problem is characterized by the material undergoing

Figure 2.31: Geometry of the dam-break problem.

large deformations. We compare three strategies to deal with this problem: Finite ele-
ments with and without re-zoning, and NEM where the nodes are not re-zoned. In this
study the density is set to ρ = 1 and the viscosity to μ = 100. The time step length is
chosen to be Δt = 0.5. The models consist of approximately 430 nodes.

The different approaches are compared in three ways. Figure 2.32 shows the relative
error in conserving the volume of the fluid. While the results using FEM are almost
identical, with a maximum relative error being smaller than 2 · 10−5, the volume error
using the NEM is considerably larger. Table 2.7 summarizes the volume errors as well
as the runout distances (the maximum horizontal coordinate). Figures 2.33 and 2.34
show the meshes, colored by the pressure, at t = 10. It is interesting to see that the
volume error for NEM doesn’t decrease monotonically as we increase the order of the
integration rule. Looking at Figure 2.34 it seems that the 3 Gauss-point rule yields less
stiff results than the one- and 25-Gauss-point rules. To this point we have no explanation
for this anomaly. It confirms nevertheless our choice of using finite elements rather than
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Figure 2.32: Dam break: Relative volume error.

Method maximum relative volume error runout distance
FEM without re-zoning −1.9 · 10−5 2.545

FEM with re-zoning −1.9 · 10−5 2.546

NEM 1 GP −3.8 · 10−4 2.544

NEM 3 GP −3.9 · 10−3 2.635

NEM 25 GP −2.5 · 10−4 2.548

Table 2.7: Summarized results at t = 10 for the dam break test.
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Figure 2.33: Dam break: Geometries at t = 10 seconds. a) FEM, b) FEM with re-zoning
of nodes, c) FEM with surface tension.

Figure 2.34: Dam break: Geometries at t = 10 seconds. Results obtained by using NEM:
a) 1 Gauss point, b) 3 Gauss points, c) 25 Gauss points.
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the natural neighbor-based method.
An additional result (Figure 2.33 c) points out the smoothing effect surface tension

has on the free surface. The results a) to c) can not be distinguished by the bare eye,
except for the distribution of nodes. Finally CPU-times are compared in Figure 2.35 for
a series of analyses on meshes with varying numbers of nodes. The slope of the log-
log plot for all three curves are approximately identical. In absolute values the FEM
with re-zoning is the most expensive method, followed by the NEM, and FEM without
re-zoning being the cheapest.
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Figure 2.35: Scaling of CPU time for different discretization schemes.

As a conclusion from these comparisons we can say that FEM with re-zoning is likely
to be the most efficient while remaining accurate in the presence of highly distorted
meshes, for which regular FEM would fail. The analysis using the NEM with one-
Gauss-point integration has slightly faster CPU-time than FEM with re-zoning, but the
much lower accuracy in terms of mass conservation is an important disadvantage for
the analysis of free-surface flows.

2.7 Conclusions

It has been the goal of this chapter to establish the fundamentals of free-surface flow
of an incompressible single-phase fluid. A mixed velocity-pressure formulation with
stabilization of the pressure has been proposed and implemented using linear triangu-
lar finite elements. The stabilization method has shown to suppress spurious pressure
oscillations effectively in all numerical tests. The lid-driven cavity-flow test has allowed
to select appropriate stabilization parameters and has shown that it is not mandatory
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for the stabilization to be consistent. All together the formulation is not very sensitive
to the stabilization method, especially in the range of low Reynold’s numbers.

The choice of an updated Lagrangian formulation has shown to be capable of accu-
rately capturing the free surface of fluids. Smooth surfaces are obtained, even in the
solitary-wave problem, where small perturbations could, due to the very low viscosity
of the fluid, easily propagate and pollute the solution.

The updated Lagrangian formulation, in combination with re-meshing and
re-mapping of nodal variables, yields second order convergence in terms of velocity
up to the range of Re = 10 and in terms of the conserved mass up to the range of
Re = 100. This very important result has been obtained on the example of stratified
flow. Up to Re = 200 the method accurately reproduces experimental results, as has
been shown in the test of flow over a backward-facing step. The type of mudflows that
we are interested in modeling is within this range.

Triangular finite elements as well as a meshless method, the Natural Element Method
(NEM) have been tested. Finite elements perform better than the NEM, in particular in
terms of mass convergence. Instabilities at the free surface, as evidenced in the solitary-
wave problem, further confirm the choice of the numerical approximation. While the
ideas of meshless methods have had a considerable influence on the development of the
approach, it has become apparent in the process that the main features of most mesh-
less methods can be obtained using finite elements in combination with a re-meshing
strategy.
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3.1 Introduction

In this section we develop a two-phase model for simulating free-surface flows. The
model has to be capable of tracking two different materials, constituents of a mixture,
during their propagation down a slope. At each time step the model has to provide
velocities of both phases, pressures and volume fractions everywhere in the mixture.
The goal is to obtain a model providing a framework for the implementation of various
types of material behavior. The target problem to be solved is the flow of two-phase
mixture down a slope and its impact on an obstacle. From this analysis we want to
obtain detailed time histories of forces acting on the obstacle.

3.1.1 Classification of mud- and debris-flow models

In a review paper from 1996, Hutter, Svendsen and Rickenmann summarize previous
work in the field of numerical modeling of mud or debris flows and classify the vari-
ous methods [30]. The authors chose a classification according to the structure of the
underlying mathematical equations as well as according to the numerical procedure for
spatial discretization.

Mathematical structure: A hierarchical structure can be established as follows: The
simplest approach, a single-component model, employs the mass and momentum bal-
ance equations of a solid-fluid mixture. On the other side the two-component approach
makes use of the individual mass and momentum balance equations of a solid and a
fluid phase. It considers interaction between the phases through the solid and the fluid
stress tensors as well as through a direct interaction force, also called drag force. A third
category of approaches can be situated in between the two previous ones. Instead of
using the balance equations of both phases only the mass balance of the solid phase and
the mass and momentum balance equations of the mixture are taken into account.

Generally speaking the two-component approach can be custom tailored to take into
account the largest variety of phenomena, such as erosion and sedimentation, while
a single-component approach can effectively model situations where fluctuations of
phase concentrations are not too important.

Spatial discretization: From simple mass point models to fully fledged three-di-
mensional debris-flow models several degrees of sophistication in terms of spatial dis-
cretization techniques can be found in the literature. Simple hydraulic models reduce
the initially three-dimensional problem to two or one spatial dimensions. Averaging of
the fluid-flow equations over the depth yields a family of methods that can accurately
predict mean flow velocities, flow depths and run-out distances. Channel models are
essentially one-dimensional in the direction of the flow path. These averaged models
require special attention when complex geometries, surface effects such as base erosion
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or friction, or important variations of velocities, concentrations of solid particles or other
quantities play a role. Finally three-dimensional models are capable to take into account
the largest range of phenomena on complex terrain.

3.1.2 Review of mud- and debris-flow literature

Current state of the art in mud- or debris-flow modeling is almost exclusively based on
depth-averaged models. The governing equations are integrated over depth and the
depth of the flow, the velocity and the stress at the base are computed for each grid
point. While some authors assume a hydrostatic pressure distribution (O’Brian et al.
[40]) others assume a velocity profile and compute the pressure as a function of the
averaged velocity (Savage et al. [46]).

Single-phase models have been used extensively in the past for modeling of mud-
flows. Newtonian models that are used in hydraulics can be extended to account for the
transport of solid material up to a certain volume fraction. These models can be refined
by allowing the viscosity of the fluid to vary as a function of the solid volume fraction or
the shear strain rate. Such constitutive models are referred to as non-Newtonian fluid
models. Bingham fluids have a yield shear stress below which no flow occurs. They can
be used for instance for simulating the stopping of a flow as the slope flattens out. A
lot of work in this field has been done by Chen, see for instance [11, 10]. Many depth-
averaged mud-flow models use a combination of Newtonian or non-Newtonian fluids
together with a Mohr-Coulomb friction law at the base of the flow ([46, 40]). In current
engineering practice the flood-routing software FLO-2D 1, which implements a depth-
averaged formulation and offers a variety of constitutive models, is commonly used to
predict flow-paths and establish hazard maps.

Single-phase models are however limited when it comes to predict complex behavior
of mudflows without being able to calibrate the model. As Hutter points out in [29]
this is mainly due to neglecting the effect of the interstitial fluid. The effect of pore
pressure on the fluidization of a solid-fluid mixture is often indispensable for accurately
describing the mechanics of mudflows.

Two-phase models have been around for a long time in the literature describing pro-
cesses in nuclear engineering, where the behavior of air-water mixtures are analyzed.
The efforts of the petroleum industry have also led to considerable progress in the field
of modeling of multi-phase fluids. The books by Soo [48] and Kolev [33] are two ref-
erences worth citing. In the field of mud or debris flows Takahashi [53] was one of the
first researchers recognizing the importance of taking into account the interaction be-
tween two phases and integrating it in a mathematical model. Svendsen et al. [52] laid

1www.flo-2d.com
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out a thorough foundation for a general mixture of multiple phases by deriving all the
balance equations from thermodynamical principles. Finally, Iverson and Denlinger
[32, 18] generalized the depth-averaged model by Savage et al. [46] for the flow of a
two-phase mixture over three-dimensional terrain.

In the process of depth averaging information on the distribution of stresses and
velocities is lost. In order to compute forces on protection structures a detailed vertical
profile of stress is required. Such detailed information can however only be obtained
from full three-dimensional continuum models. Furthermore a continuum approach
is the only sound way to obtain a model that can simulate all aspects of mudflows:
Initiation of the flow, propagation, entrainment of material on the flow path, extent of
spreading of the deposition zone, velocity of propagation and forces. Only a few such
models, that offer the possibility for such capabilities to be integrated, are available in
the literature. We note the work of Shao et al. [47] and Laigle et al. [34], who adopted
a meshless method to simulate the impact of a mudflow on a structure. Both authors
used a single-phase, non-Newtonian model.

3.1.3 Proposed model

In this chapter we develop a continuum theory for modeling the flow of a two-phase
material. The scope of the model is for the purpose of testing limited to two spatial
dimensions, although all the components are intended to be extensible to three dimen-
sions. The mixture is assumed to be incompressible.

In the flow of a mixture of two phases the interaction between the phases becomes
very important. We provide an algorithmic framework that tracks the evolution of two
phases by their volume fractions. The starting point for our model is a single-phase
viscous fluid. By choosing both phases to be viscous fluids we are able to match single-
phase behavior as a limit case. A momentum exchange term models interaction be-
tween the two phases. Such a model should be capable of modeling the sedimentation
of a denser phase within a less dense phase. This conceptually simple model allows
to analyze its behavior on simple test problems, and can accommodate more complex
material behavior without major changes to the formulation.

Similar to the single-phase fluid, the motion of the two-phase fluid is described in
an updated Lagrangian frame of reference. The benefits for capturing the advancing
front of a fluid have been clearly pointed out. Only the domain occupied by the flow is
discretized. Since in an updated Lagrangian formulation the reference frame is attached
to the material, and the material undergoes a different motion depending on what phase
is considered, the update of nodal coordinates becomes more delicate than in the single-
phase formulation. In our model we compute the velocities of both phases in each node
of the mesh. The Lagrangian update of the coordinates of each node then leads to two
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different spatial coordinates for each phase. Each Lagrangian update therefore doubles
the number of nodes. At the next step we choose to create an entirely new mesh with
about the same number of nodes as before the update. On this new mesh the phase
velocities are mapped from the updated nodal coordinates. By doing so we are also able
to conserve a mesh of good quality with even nodal spacing throughout the domain.

The physical description of the two-phase fluid is inspired by the definitions given
by Kolev in [33] and Soo [48]. The phases are defined as follows:

• The fluid phase is a homogeneous mixture of water and microscopic solid parti-
cles. These solid particles are surrounded by water only.

• The solid phase consists of soil particles that are sufficiently large so they start
to sediment during the time span considered for the analysis. The solid phase
includes water contained in pores and a fine layer surrounding the soil particles.

We assume both phases to be present in the entire domain. This means that no
phase interfaces need to be tracked, the two phases are smeared over the volume. Their
corresponding presence is given by a volume fraction that takes values between 0 and 1.
The volume fractions, which appear in all equations, are assumed to be constant during
one iteration. The volume fractions are updated at the end of each iteration.

In order to remain most general in the description of the two-phase fluid a mathe-
matical structure is chosen that uses the momentum balance equations of both the solid
and the fluid phase. The mass balance equations of both phases are combined into one
equation that enforces the conservation of the mass of the mixture. With the pressure
being the same in both phases we have 5 equations for 5 nodal unknowns.

The modeling assumptions and their justifications are summarized in Table 3.1.
The mathematical description of the two-phase fluid model is given in the following.

The presence of phase p ∈ {s, f}, where indices s and f stand for the solid and the fluid
phase, is given by the volume fraction Cp:

Cp =
Vp

V
(3.1.1)

where V is the control volume and Vp is the volume within V that is occupied by phase
p. From assumption D it can be concluded that

Cs + Cf = 1 (3.1.2)

Considering a control volume that is fixed in space another important observation can
be made:

∂Cs

∂t
+
∂Cf

∂t
= 0 (3.1.3)
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Assumption Justification
A: Both phases present in entire domain Granular nature of mixture doesn’t allow

one phase to occupy the entire volume
B: Single pressure for both phases Grain-to-grain contacts occur randomly.

No continuous grain skeleton exists,
which could transmit a solid pressure

C: Solid phase as a viscous fluid The solid material is nearly incompress-
ible, interaction between grains increase
with increasing shear

D: The two phases occupy the computa-
tional domain completely, without leav-
ing voids

The mass of the flow is assumed to be
fully saturated (Section 5.2.2 discusses an
extension for the partially saturated case)

E: The volume fractions remain approxi-
mately constant during an iteration

No sharp and rapidly moving gradients
of volume fractions are present in the
two-phase fluid

Table 3.1: Assumptions made in modeling of the two-phase flow.

3.2 Governing equations

The governing equations of two-phase flow are an equation of mass conservation and
an equation of momentum conservation for both phases. Furthermore the stress in each
phase is given by a constitutive relation and interaction between the two phases is gov-
erned by a momentum exchange relation. The model of the two phases smeared over
the entire volume occupied by the mixture requires volume averaging of the govern-
ing equations of each phase. In the end it should be possible to retrieve the governing
equations of a single-phase viscous fluid by summing up the equations of each phase.

The equations of mass and momentum conservation of the phases can be derived
by multiplication with the volume fractions and by adding the momentum exchange
term to the equation of conservation of momentum. In the following we present a more
thorough derivation that can be obtained by volume averaging. Such a derivation is ex-
pected to show exactly what assumptions are made if we go from a model with discrete
interfaces between the phases to a smeared model, where in each point both phases are
present. In the process we assume two distinct phases with well defined interfaces to
be blended in a mixture in such a way that the phase interfaces are scattered evenly
through the domain. We follow the procedure of volume averaging as it is laid out in
the book by Soo [48].
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3.2.1 Volume averaging of governing equations of two-phase flow

The operation of volume averaging is indicated by triangular brackets 〈·〉. Volume av-
eraging can be applied to any scalar, vector or tensor quantity φp belonging to phase
p:

〈φp〉 =
1

V

∫
Vp

φp dV = Cp〈φp〉i (3.2.1)

Vp is the volume in V that is occupied by phase p, Cp the volume fraction of phase p and
V denotes the control volume. The intrinsic average 〈φp〉i is:

〈φp〉i =
1

Vp

∫
Vp

φp dV (3.2.2)

Volume averages of derivatives of a quantity φp are given by Reynold’s transport theo-
rem. The following derivatives of φp are used:

〈∂φp

∂t
〉 =

∂〈φp〉
∂t

− 1

V

∫
Γ

φpv
Γ · np dS (3.2.3)

〈∇φp〉 = ∇〈φp〉 +
1

V

∫
Γ

φpnp dS (3.2.4)

〈∇ · φp〉 = ∇ · 〈φp〉 +
1

V

∫
Γ

φp · np dS (3.2.5)

Γ is the interface between phases. vΓ is the velocity of the interface and np defines the
unit normal vector pointing outward from phase p.

Averages of products are expressed as the product of an averaged value with the
intrinsic average of the other value:

〈φpψp〉 = 〈φp〉〈ψp〉i (3.2.6)

The volume fraction of phase p can be written as a limit as the control volume V
tends to zero:

Cp = lim
V →0

1

V

∫
Vp ⊂V

1 dV (3.2.7)

With these relations we can establish the governing equations of two-phase flow.

3.2.2 Conservation of mass

Volume averaging of Equation 2.3.5 of phase p and application of the rule for averages
of products leads to:

〈∂ρp

∂t
〉 + 〈∇ · (ρpvp)〉 = 0

∂〈ρp〉
∂t

+ ∇ · (〈ρp〉i〈vp〉) = − 1

V

∫
Γ

ρp(vp − vΓ) · npdS (3.2.8)
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The integral on the right-hand side represents the rate of mass generation per unit vol-
ume of phase p. Since in our model no mass exchange occurs between the two phases
this integral is equal to zero. If we let the control volume V tend to zero as in Equation
3.2.7 we obtain

∂Cpρp

∂t
+ ∇ · (Cpρpvp) = 0 (3.2.9)

or, in a reference frame attached to the material

DCpρp

Dt
+ Cpρp∇ · vp = 0 (3.2.10)

3.2.3 Conservation of momentum

Volume averaging of the single-phase momentum equation (2.3.12) over phase p gives

〈ρp
Dvp

Dt
〉 = 〈∇ · σp〉 + 〈ρpb〉 (3.2.11)

Expanding the inertial term as a product of averages

〈ρp
Dvp

Dt
〉 = 〈ρp〉〈Dvp

Dt
〉i (3.2.12)

In order to use Equation 3.2.3 we need to expand the total derivative

〈Dvp

Dt
〉i = 〈∂vp

∂ t
〉i + 〈vp(∇ · vp)〉i

=
∂〈vp〉i
∂ t

− 1

V

∫
Γ

vp(v
Γ · np)dS

+〈vp〉i〈∇ · vp〉 (3.2.13)

=
∂〈vp〉i
∂ t

− 1

V

∫
Γ

vp(v
Γ · np)dS

+〈vp〉i
(
∇ · 〈vp〉i +

1

V

∫
Γ

vp · npdS

)
(3.2.14)

Since 〈vp〉i is the convective velocity of phase p, the total derivative of 〈vp〉i can be iden-
tified as:

〈Dvp

Dt
〉i =

D〈vp〉i
Dt

− 1

V

∫
Γ

vp(v
Γ · np)dS

+〈vp〉i 1

V

∫
Γ

vp · np dS (3.2.15)
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As we let the control volume V , and with it the volume Vp ⊂ V , tend to zero the intrinsic
average phase velocity 〈vp〉i is equal to vp. The surface integrals can then be combined:

〈Dvp

Dt
〉i =

Dvp

Dt
− 1

V

∫
Γ

vp((v
Γ − vp) · np)dS (3.2.16)

As for the conservation of mass the integral on the right-hand side reduces to zero be-
cause no mass is exchanged between phases.

The volume average of the stress divergence evaluates to the following expression:

〈∇ · σp〉 = ∇ · 〈σp〉 +
1

V

∫
Γ

σp · np dS (3.2.17)

Finally the conservation of momentum of phase p can be written as:

Cpρp
Dvp

Dt
= ∇ · 〈σp〉 + Cpρpb +

1

V

∫
Γ

σp · np dS (3.2.18)

The surface integral represents the exchange of momentum between the two phases.

3.2.4 Momentum exchange

As we have seen above a momentum exchange term arises naturally if we apply vol-
ume averaging on the momentum conservation equation of one of the phases. This
momentum exchange term is expressed in the form of a surface integral over the inter-
face between the two phases. Lets denote the momentum exchange term, transferring
momentum from the fluid phase to the solid phase, by msf :

msf =
1

V

∫
Γ

σs · ns dS (3.2.19)

From the point of view of the fluid phase the momentum exchange term has to be equal
but with opposite sign: mfs = −msf .

mfs = −msf =
1

V

∫
Γ

σf · nf dS (3.2.20)

In order to verify that this reciprocity is satisfied we have to make sure that the following
holds:

σs · ns = −σf · nf on Γ (3.2.21)

Continuity of the stress at the interface requires σs = σf . The unit normal vector point-
ing outward of the fluid phase is equal to the negative of the unit normal vector point-
ing outward of the solid phase: ns = −nf . Reciprocity between the two momentum
exchange terms is therefore satisfied.
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As mentioned earlier we don’t model any phase interfaces, both phases are smeared
over the entire domain. Therefore we need to find a way to describe the momentum
exchange that doesn’t require an explicit description of an interface. Furthermore due
to the smearing over the volume both phases are present in a point in space and their
velocities are not equal. Instead of formulating momentum exchange between two spa-
tially separated fluids across an interface we have to find a formulation that relates the
phase velocities in one point. To gain insight in the structure of the term let us consider
the following analogies:

• Lets imagine two parallel plates separated by a small space hwhich is filled with a
viscous fluid of viscosity μ. If we move one plate with a constant velocity v relative
to the other plate then the velocity distribution between the plates is linear. For
Newtonian fluids (viscous fluids) the shear stress τ is proportional to the velocity
gradient: τ = μ ∂v

∂h
. The force we have to apply per unit area of the plate in order

to maintain the velocity constant can then be expressed by

F = μ
∂v

∂h
h = μv (3.2.22)

• Stokes’ law says that the drag force F applied to a very small spherical particle of
radius r such that it moves through a viscous fluid at constant velocity v is of the
form

F = 6πμrv (3.2.23)

μ is the viscosity. For a cloud of particles that is sufficiently dense this formula is
no longer valid, the proportionality between F and v however is retained.

Both analogies lead to a linear relationship between the drag force msf and the differ-
ence in velocities between the two phases. We therefore adopt the following expression:

msf = −mfs = K ′
drag(vs − vf ) (3.2.24)

De la Cruz and Spanos come to the same conclusion in [15] by expanding the surface
integral in powers and keeping only the lowest order terms.

An expression for K ′
drag can be derived by considering a fluid moving past a cloud

of particles, which has been done in Soo [48]. This leads to

K ′
drag =

75

2

Cs

(1 − Cs)2

μf

a2
= Kdrag

Cs

(1 − Cs)2
μf (3.2.25)

where a is a radius of a particle. Kdrag = 75
2a2 has the unit of [m−2]. Its value has to be

determined based on an estimation of the particle diameter a. Even if this model is valid
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only approximately and for an idealized granular phase it can serve as an indication for
selecting appropriate values ofKdrag. For mud-flows it gives values ofKdrag in the range
between 1 for very coarse-grained mixtures and 105 for slurry flows with a large fines
content. In problems where the volume fractions vary only slightly and the distribution
is smooth K ′

drag can be assumed to be constant.

3.2.5 Constitutive relation

The constitutive relations of the two-phase fluid are derived from the constitutive re-
lation of a single-phase viscous fluid. In order to make sure that the limit case of two
phases with exactly the same properties is identical to the situation of a single phase the
following relation has to hold:

〈σ〉 = 〈σs〉 + 〈σf 〉 (3.2.26)

This relation is satisfied for the following constitutive equations:

〈σs〉 = Cs (τ(vs) + pI) (3.2.27)

〈σf 〉 = Cf (τ(vf ) + pI) (3.2.28)

The deviatoric stress tensors are defined as

τ(vs) = 2μs

(
ε̇(vs) − 1

3
(∇ · vs)I

)
(3.2.29)

τ(vf ) = 2μf

(
ε̇(vf) − 1

3
(∇ · vf)I

)
(3.2.30)

where μs and μf are the dynamic viscosities of the solid and the fluid phase. The rates
of deformation are given by ε̇s = 1

2
(∇vs + (∇vs)

T ) and ε̇f = 1
2
(∇vf + (∇vf)

T ). With
these constitutive relations Equation 3.2.26 becomes

〈σ〉 = 〈σs〉 + 〈σf〉
= 2Csμs

(
ε̇(vs) − 1

3
(∇ · vs)I

)
+ 2Cfμf

(
ε̇(vf) − 1

3
(∇ · vf )I

)
+ pI (3.2.31)

If we substitute the viscosities μs and μf by the same viscosity of a single-phase fluid
and we assume that both phase velocities are equal, then we obtain the constitutive
relation of the single-phase fluid:

〈σ〉 = 〈σs〉 + 〈σf 〉
= 2(Cs + Cf)μ

(
ε̇(v) − 1

3
(∇ · v)I

)
+ pI

= 2μ

(
ε̇(v) − 1

3
(∇ · v)I

)
+ pI (3.2.32)
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3.2.6 Summary of the initial/boundary value problem

The equations to be solved in the boundary value problem are the two equations of
conservation of momentum and one equation of conservation of mass. The equation of
conservation of mass is obtained by combining the equations of conservation of mass of
each phase and by assuming incompressible behavior of both phases:

∂ρs

∂t
=
∂ρf

∂t
= 0 (3.2.33)

∇ρs = ∇ρf = 0 (3.2.34)

Mass conservation of the two-phase mixture is established on a control volume that is
fixed in space. In this case we can use Equation 3.2.9 for phase p. Taking into account
incompressibility of both phases mass conservation of phase p simplifies to:

∂Cp

∂t
+ ∇ · (Cpvp) = 0 (3.2.35)

Combining this equation for phase s and for phase f and using the fact that the time
derivatives of the volume fractions are related (Equation 3.1.3) yields the following
equation of conservation of mass of the two-phase mixture:

∇ · (Csvs) + ∇ · (Cfvf ) = 0 (3.2.36)

Conservation of momentum can be obtained from combining Equation 3.2.18 with
Equations 3.2.27, 3.2.28, 3.2.19 and 3.2.20.

The boundary value problem consists in solving the following equations for veloci-
ties and pressure, given the boundary conditions gs, gf , hs, hf and the initial conditions
vs,0, vf,0 and p0:

Csρs
Dvs

Dt
= ∇ · [Cs(σ

d(vs) + pI)
]
+ Csρsb + msf on Ω× ]0, T [ (3.2.37)

Cfρf
Dvf

Dt
= ∇ · [Cf(σ

d(vf ) + pI)
]
+ Cfρfb + mfs on Ω× ]0, T [ (3.2.38)

0 = ∇ · (Csvs) + ∇ · (Cfvf) on Ω× ]0, T [ (3.2.39)

vs = gs on ∂Ωgs × ]0, T [ (3.2.40)

vf = gf on ∂Ωgf
× ]0, T [ (3.2.41)

σs · n = hs on ∂Ωhs × ]0, T [ (3.2.42)

σf · n = hf on ∂Ωhf
× ]0, T [ (3.2.43)

vs(t = 0) = vs,0 on Ω (3.2.44)

vf(t = 0) = vf,0 on Ω (3.2.45)

∂Ωgp denotes the part of the boundary on which we impose the displacement gp, while
∂Ωhp denotes the Neumann part, where we impose surface tractions hp. The index p is
a placeholder and can take the values s or f .
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3.3 Weak form and stabilization

The global weak form is established as follows: Let Ss
i = {vs

i ∈ H1(Ω) | vs
i = gs

i on Γgs
i
}

and Sf
i = {vf

i ∈ H1(Ω) | vf
i = gf

i on Γgf
i
} be spaces of solid and fluid trial functions,

Vs
i = {ws

i ∈ H1(Ω) | ws
i = 0 on Γgs

i
} and Vf

i = {wf
i ∈ H1(Ω) | wf

i = 0 on Γgf
i
} spaces

of solid and fluid test functions and P = {p ∈ L2(Ω)} a space of both trial and test
functions 2 . Then the weak form associated with Equations 3.2.37 to 3.2.45 consists in
finding vs

i ∈ Ss
i , v

f
i ∈ Sf

i and p ∈ P , such that for all ws
i ∈ Vs

i , w
f
i ∈ Vf

i and q ∈ P the
following equation holds:

M :

∫
Ω

Csρsws · v̇s dΩ +

∫
Ω

Cfρfwf · v̇f dΩ

−K∇C : −
∫

Ω

ws∇Cs · (τ(vs) + pI) dΩ

−
∫

Ω

wf∇Cf · (τ(vf ) + pI) dΩ

−G∇C : −
∫

Ω

ws · ∇Cs p dΩ −
∫

Ω

wf · ∇Cf p dΩ

G : +

∫
Ω

Cs∇ · wsp dΩ +

∫
Ω

Cf∇ · wfp dΩ

K : +

∫
Ω

Csε̇(ws) : σd(vs) dΩ

+

∫
Ω

Cf ε̇(wf) : σd(vf) dΩ

−h : −
∫

Γ

ws · t dΓ −
∫

Γ

wf · t dΓ

−f : −
∫

Ω

Csρsws · b dΩ −
∫

Ω

Cfρfwf · b dΩ

V : +

∫
Ω

Kdragws · (vs − vf) dΩ

−
∫

Ω

Kdragwf · (vs − vf) dΩ

GT : +

∫
Ω

Csq∇ · vs dΩ +

∫
Ω

Cfq∇ · vf dΩ

(G∇C)T : +

∫
Ω

q∇Cs · vs dΩ +

∫
Ω

q∇Cf · vf dΩ = 0 (3.3.1)

2The letters s and f identify the phases. In general they are used as subscripts, except when there
already is an index. In that case they are written as superscripts (Example: The velocity of the solid phase
vs = [vs

x vs
y]T .
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The left column identifies the discrete matrices corresponding to each term in the weak
form. The semidiscrete matrix form is given below.

3.3.1 Stabilization

The present two-phase formulation of a mixture of two incompressible viscous fluids
requires stabilization in order to prevent spurious oscillations in the pressure field. This
is due to the choice of equal order interpolation functions, analogously to the single-
phase formulation in Section 2.5.3. The stabilization terms to be added to the weak
form are the same as previously. The following terms are added to the weak form

nele∑
e=1

τe

∫
Ωe

∇q · ∇pdΩ︸ ︷︷ ︸ −
nele∑
e=1

τe

∫
Ωe

∇q · bdΩ︸ ︷︷ ︸ (3.3.2)

S fs

where the stabilization parameter τe of element e is given by

τe =
1√(

2ρ̄
Δt

)2
+

(
4μ̄
αh2

e

)2
(3.3.3)

μ̄ = Csμs+Cfμf is the average viscosity, ρ̄ = Csρs+Cfρf the average density, Δt the time
step length and he a characteristic element length. For the dimensionless stabilization
parameter α the same value as in the single-phase formulation is chosen (α = 0.5).

3.3.2 Semidiscrete matrix form

Introducing approximations for the test- and trial functions of the velocities and pres-
sure into the weak form and making use of arbitrariness of the test functions leads to
the following semidiscrete matrix form:[

M 0

0 0

]{
a

0

}
+

[
K − K∇C + V G − G∇C

−GT − (G∇C)T S

]{
v

p

}
=

{
h + f

fs

}
(3.3.4)

Details about the calculation of the elemental arrays and matrices can be found in Ap-
pendix A.3. To simplify notation we summarize the above equation in the same form as
for the single-phase formulation:

Ma + Kv = f (3.3.5)

where the nodal acceleration and velocity vectors are given by

a = [as,1
x as,1

y af,1
x af,1

y 0 · · · as,I
x as,I

y af,I
x af,I

y 0 · · · as,n
x as,n

y af,n
x af,n

y 0]T

v = [vs,1
x vs,1

y vf,1
x vf,1

y p1 · · · vs,I
x vs,I

y vf,I
x vf,I

y pI · · · vs,n
x vs,n

y vf,n
x vf,n

y pn]T
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The superscript I ∈ {1, · · · , n} identifies a node.

3.4 Time integration scheme

Time stepping is performed using the generalized trapezoidal algorithm presented in
Section 2.4 for the single-phase model. Discretization in time of the semidiscrete matrix
form at t = tn+1 leads to:

M(xn+1, C
n+1
s , Cn+1

f )an+1 + K(xn+1, C
n+1
s , Cn+1

f )vn+1 = Fext
n+1 (3.4.1)

The volume fractions Cs and Cf are recomputed after each iteration. The detailed al-
gorithm allowing to advance the solution to the next time step is given in Table 3.2.

The mesh update algorithm for the two-phase formulation is described next.

3.4.1 Mesh update

Table 3.3 summarizes the algorithm, which is very similar to the single-phase algorithm
in the previous chapter (Table 2.2). The main difference resides in point 1, where the
Lagrangian update produces two updated nodes. This is addressed in Section 3.4.1.1.
Points 2 and 3 are identical in the single-phase algorithm. Note that re-meshing is now
required in order to maintain a constant number of nodes. The re-mapping of nodal
variables in point 4 is also slightly different. The phase velocities are mapped from the
corresponding deformed mesh of the phase onto the new mesh. The pressure is mapped
from the union of all updated nodes of the two phases onto the new mesh.

3.4.1.1 Lagrangian update

The updating of the spatial coordinates of the nodes is slightly different from the single-
phase case. The update is still performed for the predictor step, applying the displace-
ment increment Δd̃n+1, and for the corrector step, using Δdi+1

n+1. For clarity we explain
the update procedure for a general update using an increment Δd, updating a coordi-
nate x0 to x1. The update yields the new nodal coordinates

x1
s = x0 + Δds (3.4.2)

x1
f = x0 + Δdf (3.4.3)

x0 is the previous spatial coordinate of the node, which is identical for both phases, and
x1

s and x1
f are the new spatial coordinates of the solid and the fluid material points.
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1. At tn+1 do:

Initialize the iteration counter: i = 0

Predictor phase:

xi=0
n+1 = xn + Δd̃n+1

• Mesh update

• Compute volume fractions Cs(x
i+1
n+1)

and Cf(x
i+1
n+1) (Section 3.6)

vi=0
n+1 = ṽn+1

ai=0
n+1 = 0

2. Compute the residual force, the tangent stiffness matrix and solve the linear
system of equations:

ΔF = Fext
n+1 −N(ai

n+1,v
i
n+1,x

i
n+1, Cs(x

i
n+1), Cf(x

i
n+1))

K∗ =
1

Δtγ
M(xi

n+1, Cs(x
i
n+1), Cf(x

i
n+1)) + K(xi

n+1, Cs(x
i
n+1), Cf(x

i
n+1))

K∗Δv = ΔF

3. Corrector phase:

vi+1
n+1 = vi

n+1 + Δv

ai+1
n+1 =

1

Δtγ
(vi+1

n+1 − ṽn+1)

xi+1
n+1 = xi

n+1 + Δdi+1
n+1 = xi

n+1 +
Δtβ

γ
Δv

• Mesh update

• Compute volume fractions Cs(x
i+1
n+1) and

Cf(x
i+1
n+1) (Section 3.6)

4. Test if computation has converged: If |ΔF| < C ∈ R, go to 1. (step n = n+1).
Else go to 2. (iteration i = i+ 1).

Table 3.2: Generalized trapezoidal algorithm for two-phase formulation.
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1. Update the spatial coordinates of the nodes

(a) Predictor step:

• Interior nodes:

x̃n+1
s = xn+1,i=0

s = xn + Δd̃n+1
s (1a)

x̃n+1
f = xn+1,i=0

f = xn + Δd̃n+1
f (1b)

• Boundary nodes:

x̃n+1
m = xn+1,i=0

m = xn + Δd̃n+1
m

= xn + CsΔd̃n+1
s + CfΔd̃n+1

f (1c)

with

Δd̃n+1
s = Δtvn

s + (0.5 − β)Δt2an
s

Δd̃n+1
f = Δtvn

f + (0.5 − β)Δt2an
f

(b) Corrector step:

• Interior nodes:

xn+1,i+1
s = xi

n+1 + Δdn+1,i+1
s = xn+1,i

s +
Δtβ

γ
Δvs (2a)

xn+1,i+1
f = xi

n+1 + Δdn+1,i+1
f = xn+1,i

f +
Δtβ

γ
Δvf (2b)

• Boundary nodes:

xn+1,i+1
m = xi

n+1 + Δdn+1,i+1
m

= xi
n+1 + CsΔdn+1,i+1

s + CfΔdn+1,i+1
f (2c)

with

Δdn+1,i+1
s =

Δtβ

γ
Δvs and Δdn+1,i+1

f =
Δtβ

γ
Δvf

2. Find the boundary of the fluid, using the α-shape method (see Appendix A.2)
3. Re-mesh inside the boundary
4. Re-map the nodal variables on the new mesh (see Section 2.5.5)

Table 3.3: Mesh update algorithm for two-phase formulation.
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For nodes that are part of the boundary before the Lagrangian update a slightly
different update strategy is adopted. A unique displacement increment for both phases
is applied to the material points of the solid and the fluid phase in order to update
the boundary to a well-defined position (Figure 3.1 a). The unique displacement of the

Figure 3.1: Lagrangian update of nodes on the boundary: a) Modified update using
displacement of mixture dm, b) Strict update using displacements of phases ds and df .

boundary is given by the displacement of the mixture:

dm = Csds + Cfdf (3.4.4)

Remark 3.4.1 In this work we tried other approaches that relax the hypothesis of presence of
both phases to the benefit of applying the real displacements of the phases, according to Figure
3.1 b). This brings up several problems. The updated configuration is not consistent with the
assumption that the volume fractions remain approximately constant during an iteration. Since
the velocities at the boundary are obtained by assuming volume fractions between 0 and 1, the
single-phase domain after the update should only contain that same volume fraction of the single-
phase material. The complement would have to be void in order to conserve mass.

Remark 3.4.2 Using the displacement increment of the mixture for the update of the boundary
satisfies Equation 3.2.36 and therefore conserves the volume of the mixture

∇ · vm = ∇ · (Csvs + Cfvf) = ∇ · (Csvs) + ∇ · (Cfvf ) = 0 (3.4.5)

3.5 Spatial discretization

The computational domain is discretized in the same way as for the single-phase for-
mulation. Each node has 5 degrees of freedom, two components for the velocity of each
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phase and one pressure. The approximation is defined on linear finite element triangles,
which are obtained from a Delaunay triangulation.

3.6 Computation of volume fractions

Computation of volume fractions is done at the beginning of each time step and after
each iteration, based on the computed velocity fields vs and vf . The problem can be
stated as follows: Using the set of nodes before the update and the nodal sets of the fluid and
the solid phases after the update, the volume fractions are to be computed on the new, re-zoned
nodal set. While Equation 3.2.36 ensures conservation of the global volume the algorithm
for computing the volume fractions is responsible for conserving the mass of each phase
(or volume in the case of incompressible media). Furthermore the method should yield
smooth volume fraction fields. Several methods have been tried out, the one retained
is the one that best respects the above requirements. In the following some steps of the
process that led to the current method are explained.

3.6.1 Background

De-coupling of the computation of the volume fractions from the computation of the
velocities and the pressure is justified by the assumption that variations of volume frac-
tions during an iteration are small. The volume fractions can therefore be updated a
posteriori based on the positions of the nodes while being kept constant during the
computation of the primary unknowns. The idea is that the Lagrangian update of the
nodes creates a new distribution of the phases, where all the information necessary to
compute volume fractions is available at the updated nodes. Computation of volume
fractions basically consists of evaluating the local density of each phase. In the following
we investigate several ideas.

The first approach considers the two sets of nodes with a triangulation for each phase
separately. The phase mass (or volume) of each node is distributed onto the nodes of
the containing triangle of the new mesh according to the barycentric coordinates. This
is schematically illustrated in Figure 3.2 a). In this process the total mass of both phases
is deposited completely on the nodes of the new mesh. The volume fractions are then
computed by dividing the phase volume in each node by the sum of the volumes of
both phases. This method conserves mass exactly, however the volumes of material
deposited on the new nodes do not necessarily fit the local volume available to the
nodes. This method turned out to be too sensitive to the mesh and yielded unstable
results.

Similar methods can be imagined, where a large number of particles is pushed
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Figure 3.2: Methods for computing volume fractions: a) Convection of nodal masses, b)
Particle pushing or Particle-In-Cell, c) Compaction of Voronoi cells.
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through the mesh according to the velocity interpolated at their initial position. The
idea is illustrated in Figure 3.2 b). The mass of the particles is then attributed to the
containing element of the new mesh, or it is deposited onto the nodes as in the method
above. In this method mass is also conserved exactly, however the computational cost
of performing a large number of point-in-triangle searches can become prohibitively
high. Such methods are sometimes referred to as particle pushing or Particle-In-Cell (PIC)
methods and are commonly used in the field of plasma physics. For an example of
a PIC-method for computing multi-phase flows Andrews et al. [1] is noted. In their
paper the authors present a de-coupled method where the governing equations of the
fluid phase are solved on an Eulerian grid and the particle phase is treated separately
in a Lagrangian framework.

Finally Figure 3.2 c) shows a method that attempts to capture densification or deden-
sification of a cloud of nodes, using Voronoi cells as nodal control volumes. The volume
of material of one phase in the control volume is assumed to be constant before and
after the Lagrangian update. By computing the change in total volume of the Voronoi
cell new volume fractions can be computed on the deformed mesh of both phases. In a
re-mapping step these volume fractions have to be interpolated on the nodes of the new
mesh. The interpolated volume fractions then need to be regularized in order to satisfy
Cs + Cf = 1. The experience with such techniques however has shown strong mesh
dependence, due to which the resulting volume fraction fields are not smooth and often
oscillate.

Remark 3.6.1 Another approach for computing volume fractions consists in using a differential
equation, the conservation of mass of a single phase, and computing volume fractions using a
time-stepping algorithm. The results of an initial implementation using an Eulerian reference
frame were not satisfying. A Lagrangian approach might be more adequate. The main ideas are
outlined in Appendix A.4.

3.6.2 Current Method

In the methods illustrated above mesh dependence is the biggest problem, leading to
volume fraction distributions that are not smooth. The current approach therefore at-
tempts to obtain an estimate of the densification of nodal masses, that is independent
of any nodal connectivity. Instead of evaluating the densification around a node by ex-
actly computing volumes of Voronoi cells, we evaluate the distances between the node
and its neighbors. Weighting the volume fractions of the neighbors with the distance to
the node of interest gives an estimation of the local density of a phase. The method is
described in the following.

A0,p
i denotes the approximation of the local density of phase p at node i before the
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Lagrangian update, A1,p
i is the same value after the update, i.e. on the deformed con-

figuration. The local densities A0,p
i and A1,p

i are evaluated using a linear hat-function of
radius R, centered at node i:

A0,p
i =

∑
j

(R− d0
ij)C

0,p
j (3.6.1)

A1,p
i =

∑
j

(R− d1,p
ij )C0,p

j (3.6.2)

where C0,p
j is the volume fraction of phase p at node j, before the update. d0

ij and d1,p
ij

are the distances between nodes i and j in the undeformed and in the deformed con-
figuration of phase p. The method is illustrated in Figure 3.3. Since the approximated

Figure 3.3: Illustration of the method for computing volume fractions on the deformed
configurations of both phases.

local densities are computed on the nodes of the old mesh, they have to be interpolated
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onto the re-zoned nodes of the new mesh. In each node I of the new mesh the volume
fraction of the solid phase is computed according to

C1,s
I = C0,s

I +
A1,s

I

(A1,s
I + A1,f

I )
− A0,s

I

(A0,s
I + A0,f

I )
(3.6.3)

C1,f
I = C0,f

I +
A1,f

I

(A1,s
I + A1,f

I )
− A0,f

I

(A0,s
I + A0,f

I )
(3.6.4)

In a last step, the volume fractions are multiplied by a correction factor such that the
total volume occupied by either phase doesn’t change. This correction factor is defined
for the entire domain as

Λp =
mass of phase p after deformation

initial (exact) mass
(3.6.5)

The method is summarized in Table 3.4.

1. For each node i of the old mesh, do

For each phase p = s, f , do

1.1 For each node j within a distance R, evaluate
distance d0

ij to node i in the undeformed con-
figuration and compute A0,p

i =
∑

j(R−d0
ij)C

0,p
j

1.2 For each node j within a distance R, evaluate
distance d1,p

ij to node i in the deformed config-
uration and compute A1,p

i =
∑

j(R − d1,p
ij )C0,p

j

1.3 InterpolateA0,p
i andA1,p

i onto the new re-zoned
mesh

2. For each node I of the new mesh, compute new volume
fractions (Equations 3.6.3 and 3.6.4)

3. Correct volume fractions: Cp
I = C1,p

I Λp (Equation 3.6.5)

Table 3.4: Algorithm for computing volume fractions.

Remark 3.6.2 The radius R in Equations 3.6.1 and 3.6.2 is a parameter that has to be chosen
by the user. It has to be small in order to limit numerical diffusion of sharp gradients, but it
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cannot be too small in order to still produce smooth results. Appropriate values are in the range
between 0.6h and 0.8h, where h is the average spacing between nodes. Tests showed that in this
range varying the radius R has very little influence on the resulting volume fraction fields.

3.6.2.1 Analysis of the performance of the method for computing volume fractions

The method presented above is capable of computing volume fractions based on a
neighborhood of nodes. In order to examine the influence of the mesh and the length of
the time step, thus the displacement, on the resulting volume fraction field, we impose
a predefined motion to the nodes of the mesh. This way we eliminate the physics of
two-phase flow from the method which allows us to focus on the purely algorithmic
computation of volume fractions. We perform two tests on the unit squares shown in
Figure 3.4 a) and b). In both tests the motion imposed to the nodes of the mesh corre-

Figure 3.4: Analysis of the method for computing volume fractions. Illustration of the
performed tests.

sponds to a vortex. The nodes rotate around the origin with an angular velocity of ω(r),
given by

ω(r) =

{
(0.5 − r)2 ∀ r < 0.5

0 ∀ r ≥ 0.5
(3.6.6)
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where r is the distance from the origin. The new coordinates (x′, y′) of a node with initial
coordinates (x, y) can be computed as{

x′

y′

}
=

[
cos(ω) − sin(ω)

sin(ω) cos(ω)

]{
x

y

}
(3.6.7)

In these tests we use a fixed structured mesh on which the volume fractions are in-
terpolated after each increment of motion. In other words, the re-zoned mesh is always
identical to the initial undeformed mesh.

Uniform initial volume fraction distribution. In the first test, shown in Figure 3.4
a), the entire square is filled with a uniform mixture of phases 1 and 2. The initial
volume fractions are C1 = C2 = 0.5. On phase 1 a rotation of ω1(r) = ω(r) about the
origin is applied, while on phase 2 a rotation of ω2(r) = −ω(r) is imposed. The test is
performed using different time step sizes: Δt = {1, 0.5, 0.2, 0.05, 0.02, 0.01}. The total
time analyzed is equal to 1 for all computations. In Figure 3.5 the results are shown
on the upper right quadrant of the unit square. The amplitude of the deviation from

Figure 3.5: Deviation from initial distribution of volume fractions.

the initial volume fraction is about 2.5 · 10−4 for all computations. Because the patterns
are almost identical we can conclude that the error in the volume fractions does not
depend on the number of time steps, it depends only on the final displacement a node
undergoes with respect to its neighbors. The computation of volume fractions at the
end of each iteration does not introduce a constant error.
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Two vertically separated phases. In this test, illustrated in Figure 3.4 b), the rotation
imposed to both phases is

ω1(r) = ω2(r) =

{
ω(r) ∀ t < 20

−ω(r) ∀ t ≥ 20
(3.6.8)

The vortex motion is imposed in 20 steps of length Δt = 1, then the motion is reversed
for another 20 steps. The final positions of all material points are identical with the
initial positions. The goal is to see how well the straight vertical line separating the
two phases is preserved during the motion and at the end of the computation. The
initial volume fractions are C1 = 0.99 and C2 = 0.01 on the right half and C1 = 0.01 and
C2 = 0.99 on the left half. The computations are performed on four meshes consisting of
221, 613, 1301 and 3281 nodes. Figure 3.6 shows the volume fractions after 20 steps and
after 40 steps. The results show that the accuracy with which the separation between

Figure 3.6: Distribution of volume fractions for imposed vortex motion. The green line
indicates the exact solution, the thin blue line indicates the contour line of C1 = C2 = 0.5

of the numerical result.

the two regions is captured increases as the mesh is refined. The gradient of volume
fraction becomes steeper near the separation while at the same time the contour line
C1 = C2 = 0.5 gets closer to the exact separation line.
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3.7 Numerical tests

The two-phase model is verified and validated according to the program of tests shown
in Table 3.5. The tests have to verify that the implementation of the model accurately
represents the conceptual description. Some of these aspects are quantifiable, such as
conservation of mass or energy and speed of sedimentation. Other aspects are to be
verified qualitatively, such as the ability of the denser phase to settle within the mix-
ture, or the change in behavior as a parameter is varied. Validation of the two-phase
model is mainly done in a qualitative manner. This due to the lack of suitable experi-
mental results of flow events that can be represented by a two-dimensional model. Also
the present computational method primarily provides a framework for later implemen-
tation of constitutive behaviors that more closely represent debris flows or mudflows.
For an in-depth review of verification and validation of numerical models the reader is
referred to Oberkampf et al. [39].

Two-phase tests Aspect to be verified Comparison
with

Laminar flow Equivalence with single-phase model Single-phase
Flow over backward-
facing step

Equivalence with single-phase model Single-phase

Flow over backward-
facing step with free
surface

Stability of free surface Qualitatively

Sedimentation Drag force, constitutive model Soo [48]
Vertical separation Sharp gradients of volume fractions Qualitatively
Heavy drop Sharp gradients of volume fractions,

free surface
Qualitatively

Dam break Effect of varying drag force coeffi-
cient

Qualitatively

Dam break on inclined
slope impacting on obsta-
cle

Force acting on obstacle Qualitatively,
hand calcula-
tion

Table 3.5: Verification tests for two-phase model.

3.7.1 Equivalence between two-phase and single-phase fluid

The two-phase formulation is based on viscous flow of a single phase fluid. Therefore
the behavior of the single-phase fluid has to be recovered as the material properties den-
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sity and viscosity of both phases of the two-phase fluid are set equal to the parameters
of the single-phase fluid. Two numerical tests, stratified flow as in Section 2.6.3 and
flow over a backward-facing step as in Section 2.6.4 are performed with different (but
constant) volume fractions and drag coefficients. Drag coefficients Kdrag between 0 and
10′000 and solid volume fractions Cs in the range between 0.5 and 0.8 have been tested.
The L2-norms of the difference in velocity (||vtp − vsp||L2 , sp for single-phase and tp for
two-phase) and pressure (||ptp − psp||L2) obtained for all the tests are equal to machine-
zero for all time steps. We can thus claim that the two-phase formulation is equivalent
to the corresponding single-phase formulation, when both phases have identical prop-
erties. In this case the two-phase formulation also converges quadratically to the exact
solution, as has been shown for the single-phase formulation in Section 2.6.3.

3.7.2 Sedimentation

Sedimentation of a phase of solid particles in a viscous fluid is a problem of great inter-
est for many industrial processes. In the context of debris flows it is an important test
for the interaction behavior between the two phases. This test serves as a verification
that the drag force term acts as intended. We compare our results with the analytical so-
lution given by Soo [48]. His formulation is slightly different from ours, therefore some
adjustments need to be made. In his solution, Soo neglects diffusion. The conservation
of momentum of the solid and the fluid phase are, using our notation and re-arranging
some terms

Csρs
Dvs

Dt
= −Cs

∂p

∂z
− Cs(ρs − ρf ) g + CsρsF (vf − vs) (3.7.1)

Cfρf
Dvf

Dt
= −Cf

∂p

∂z
− ρf g − CsρsF (vf − vs) (3.7.2)

Using the same one-dimensional form in vertical direction Equations 3.2.37 and 3.2.38
become, using the same convention for pressure

Csρs
Dvs

Dt
=

∂
[
Cs(σ

d
zz(vs) − p)

]
∂z

− Csρsg + msf (3.7.3)

Cfρf
Dvf

Dt
=

∂
[
Cf(σ

d
zz(vf ) − p)

]
∂z

− Cfρfg − msf (3.7.4)

Remark 3.7.1 The body force is defined slightly differently in the two formulations. Soo defines
it as a buoyant density. Furthermore, in order to be able to obtain an analytic solution, he
assumes that ρf  ρs. Under this assumption the two forms are identical. We use ρs = 10 and
ρf = 0.001.
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Remark 3.7.2 By neglecting diffusion Soo sets σd
zz equal to zero. For numerical reasons we

cannot do this in our model, however by choosing small values of viscosity this is approximately
true. In this analysis we use μs = μf = 0.01.

Considering the two remarks above, the equations used by Soo are almost identical to
Equations 3.7.3 and 3.7.4. The only remaining difference is the term involving the gra-
dient of the volume fraction. Such a p∇Cs-term is present in the model by Soo. This
term acts as a force against the separation of the phases. In order to verify the imple-
mentation we omit the volume-fraction gradient for this test. The analysis is performed
on a rectangular container of height h = 1 and width d = 0.15. At time t = 0 the volume
is filled with a homogeneous mixture with a solid volume fraction of Cs = 0.2. The
maximum volume fraction is limited to Cmax

s = 0.5, which represents the void ratio of a
granular material after sedimentation is completed. In order to stop the sedimentation
process when Cmax

s is reached we simply increase the viscosities of both phases by a
factor of 106.

Remark 3.7.3 Increasing the viscosities when Cmax
s is reached can be considered a simple form

of a non-Newtonian constitutive model. In this case the constitutive relations (Equations 3.2.27
and 3.2.28 are modified as

τ(vs) = 2μsK(Cs)

(
ε̇(vs) − 1

3
(∇ · vs)I

)

τ(vf ) = 2μfK(Cs)

(
ε̇(vf) − 1

3
(∇ · vf)I

)

where K(Cs) is a penalty coefficient defined as

K(Cs) =

{
1 if Cs ≤ Cmax

s − r

λ if Cs > Cmax
s − r

The penalty value λ is applied as the volume fraction Cs is approaching Cmax
s by less than a

value r. Alternatively the penalty can be increased linearly between Cmax
s − r and Cmax

s .

The minimum solid volume fraction is limited to Cmin
s = 0.01. The following definition

of the drag force coefficient is used

K ′
drag = F ′Csρs (3.7.5)

Analogously to Soo, F ′ = 10 is set. In Figure 3.7 we show a comparison of the an-
alytical results by Soo with our results, along with the mesh used in the computation.
The figure shows the solid volume fraction along the vertical axis, versus time. The re-
sults match very well. The time for complete separation of phases is reproduced almost
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Figure 3.7: Contours of solid volume fraction as a function of vertical coordinate and
time for the sedimentation problem, using the formulation by Soo. The thick line indi-
cates the delimitation of three separate zones given by the analytical solution: Zone A:
Cs = 0.2, Zone B: Cs = 0, Zone C: Cs = 0.5.
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exactly. In the numerical results the separation between the zones A, B and C, where
the analytical solution assumes constant volume fractions, is more diffuse due to the
physical diffusion, but also due to some numerical diffusion. Still three areas of almost
constant volume fraction can clearly been identified. For comparison we also show the
same result using the original formulation, including the p∇Cs-term (Figure 3.8). The
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Figure 3.8: Contours of solid volume fraction as a function of vertical coordinate and
time for the sedimentation problem, using the original formulation with the p∇Cs-term.
The thick line indicates the delimitation of three separate zones given by the analytical
solution: Zone A: Cs = 0.2, Zone B: Cs = 0, Zone C: Cs = 0.5.

main difference between the two results is in the separation between zones A and C,
where the formulation omitting the p∇Cs-term has a much sharper interface. We also
note that including the p∇Cs-term yields slightly smoother results.

In order to show that the separation between the two phases becomes sharper as the
mesh is refined we plot the vertical profile of solid volume fractions in Figure 3.9. We
use six different meshes with 17 nodes in the coarsest mesh and 859 in the finest. The
spacing of nodes in vertical direction was 0.1, 0.05, 0.0333, 0.025, 0.0147 and 0.01 for the
finest mesh. The time steps were also adapted to the mesh size in such a way that the
maximum differential displacement per time step, divided by the vertical mesh spacing,
|vs − vf |Δt/Δh, doesn’t exceed a value of 0.9. From the coarsest to the finest mesh, Δt

was chosen to be 0.08, 0.04, 0.025, 0.02, 0.0125 and 0.008. The profile is given at t = 0.7

and t = 2. Figure 3.9 shows that on sufficiently fine meshes very steep gradients can
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be reproduced. The corresponding result, this time including the p∇Cs-term shows in
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Figure 3.9: Vertical profiles of solid volume fraction at t = 0.7 and t = 2. Formulation
without volume-fraction-gradient term.

Figure 3.10 again slightly smoother results. The presence of strong gradients of volume
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Figure 3.10: Vertical profiles of solid volume fraction at t = 0.7 and t = 2. Formulation
with p∇Cs-term.

fraction can in this formulation however lead to instabilities, as can be seen in the plot
for t = 2. Weather or not the term has to be included depends on the nature of the
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problem to be analyzed. Calibration with experiments are required, as it is customary
for parameters of a constitutive model.

3.7.3 Flow over a backward-facing step with free surface

In this analysis we look at the free-surface flow of a two-phase mixture over a backward-
facing step. The flow is driven by the velocity prescribed at the inflow boundary vs =

vf = [5 0]T , and a body force acting at an angle: b = [1 − 10]T . On the other fixed
boundaries the velocities are set to zero. No pressure Dirichlet condition is applied.
The mixture entering at the inflow boundary has a constant solid volume fraction of
Cs = 0.6. The maximum solid volume fraction is set to Cmax

s = 0.8. The same definition
of the drag force as in the sedimentation test (Section 3.7.2) with F ′ = 10 is used. The
parameters of the model are summarized in Table 3.6 and a typical mesh with the model
dimensions is shown in Figure 3.11.

phase ρ μ F ′ Δt Nnodes

solid 2000 1000
10 0.02 275-424

fluid 1000 1

Table 3.6: Parameters used in two-phase flow over backward-facing step.

1

1

1 6

Figure 3.11: Two-phase flow over a backward-facing step: Unstructured mesh at t = 20.

In Figure 3.12 the solid phase velocity vectors are plotted. The fluid is colored ac-
cording to the solid volume fraction. The results show a very smooth free surface. The
volume fraction of the solid phase tends to increase at the bottom of the flow. Behind
the step the fluid phase accumulates. This can be attributed to the low pressure, caused
by the sudden enlargement. While the high-viscosity solid phase flows past the sharp
corner the fluid phase gets sucked into that zone. The volume fractions are smooth
throughout the domain, with the exception of some nodes on the fixed boundary.
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Figure 3.12: Two-phase flow over a backward-facing step: Solid volume fractions and
velocity vectors of the solid phase are shown at t = 20.

3.7.4 Sharp gradients of volume fractions

Next we look at how well two initially separated phases remain separated in the case
of a very high drag force coefficient Kdrag, acting as a penalty on the velocity difference
between the two phases. The velocity difference between both fluids is thereby forced
to be zero throughout the domain. The deviation of volume fractions from their initial
values C1

s = 0.01 and C2
s = 0.99 is a measure for the performance of the numerical

method.
In the results shown subsequently both phases are present throughout the domain.

This means that in areas filled with mainly one phase the other phase is still present with
a volume fraction close but not equal to zero. The volume fraction of one phase cannot
become zero for numerical reasons, the stiffness matrix would become ill defined.

3.7.4.1 Vertical separation

A dense and a lighter fluid are separated by a vertical line running through the center
of a rectangular container. The dense fluid eventually displaces the less dense fluid at
the bottom of the container and the volume fraction gradients are oriented in vertical
direction. The computation is performed using a fixed mesh onto which all variables are
mapped after the nodes have been moved at the end of each time step. The two-phase
fluid is characterized by the following properties: Densities ρ1 = 2000 and ρ2 = 1000,
viscosity μ1 = μ2 = 100 and the drag coefficient Kdrag = 107. The model consisting of
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about 2900 nodes was analyzed in 500 time steps of length Δt = 0.02 each. Figure 3.13
shows contour lines of constant volume fraction of the denser phase. We can clearly
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Figure 3.13: Contour lines of constant volume fraction of the denser phase for two ini-
tially vertically separated fluids.

see the diffusion of the initially sharp gradient over about 4 elements during the first
few time steps. Later in the analysis this diffusion appears to stabilize as the overall
motion in the container slows down. This diffusion is mainly artificial and is caused by
the smoothing effect of the method employed to compute volume fractions. However
its extent is not dramatic.

Another undesired effect manifests itself where the phase separation touches the
boundary. Since in this problem we used no-slip boundary conditions on all boundaries
the volume fractions at boundary nodes cannot migrate by convection, but only by the
movement of adjacent interior nodes. Thus the phase that is being moved tends to ’stick’
to the boundary, especially near corners. However this effect is contained within a thin
boundary layer whose thickness can be reduced by mesh refinement.
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3.7.4.2 Sinking drop

A circular drop of a heavy fluid is released inside a lighter fluid. The simulation is
carried out on a square domain with a free surface at the top. The following material
properties were used in this analysis: densities ρ1 = 2000 and ρ2 = 1000, viscosities
μ1 = μ2 = 1 and the drag coefficient Kdrag = 105. The fluid is discretized using roughly
3000 nodes and 200 time steps of 0.01s were computed. In Figure 3.14 contours of vol-
ume fractions of the denser phase are displayed. Here we also observe diffusion of
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Figure 3.14: Contour lines of constant solid volume fraction for sinking drop of heavy
fluid.

the gradient of volume fraction at the separation between phases, an effect which is
mostly due to the method for computing volume fractions. Compared to the previous
simulation the diffusion of the gradient continues until, in the end, the maximum vol-
ume fraction of the denser phase has decreased to about 0.2. This simulation points out
a weakness of the present numerical method for problems where strong variations of
volume fractions have to be represented. We can however point out that this numer-
ical diffusion can be reduced by refining the mesh in regions of high volume fraction
gradients.
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3.7.5 Dam break

The dam-break test problem with a two-phase material represents one further step to-
wards simulating a mudflow event. On the same simple geometry as in the single-phase
test we analyze the behavior of a two-phase mixture as it moves forward, pushing the
free surface along a free-slip boundary. Two simulations using different drag force co-
efficients Kdrag illustrate the ability of the method to follow the flow of a mixture of two
materials with varying volume fractions. The material properties used in these simu-
lations are: Densities ρs = 1000 and ρf = 500, viscosities μs = 100 and μf = 0.1 and
Kdrag = 100 in the first simulation and Kdrag = 10′000 in the second. 150 time steps
of length Δt = 0.005 are computed using a mesh of approximately 650 nodes. In Fig-
ure 3.15 we show solid volume fractions on the deformed fluid masses at different time
steps. While the solid phase rapidly accumulates at the bottom due to gravity the fluid

Figure 3.15: Dam-break simulation: Solid volume fractions are shown for two different
drag coefficients. Top: Kdrag = 100, bottom: Kdrag = 10′000.

accumulates at the front and at the top free surface. We note that the variation of the
volume fraction is much larger in the case of a low drag force coefficient. However the
shape of the flowing mass is very similar in both cases.

3.7.6 Mudflow impacting an obstacle

After having verified all the major components of the mudflow model it is time to see if
the method is capable of solving the original problem: The simulation of the downhill
propagation of a two-phase mixture and its impact on an obstacle. The obstacle, rep-
resenting a protection dam, is modeled as a solid block which is placed at the bottom
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of a slope. The geometry, together with the mesh at time t = 0 is given in Figure 3.16.
The flow is initiated by the sudden release of a homogeneous two-phase mixture. Ma-

Figure 3.16: Geometry and initial mesh used in the simulation of a mudflow impacting
on an obstacle.

terial parameters together with details of the discretization are given in Table 3.7. For
comparison the same problem is simulated with a single-phase fluid, using the average
material properties of the two-phase mixture.

ρs ρf μs μf Kdrag Cinit
s Δt No. of

nodes
Two-phase
model

1000 500 100 2 10′000 0.5 0.002 ≈ 1550

Single-phase
model

750 51 - - 0.002 ≈ 1550

Table 3.7: Parameters of the simulation of a mudflow impacting on an obstacle.

The shape of the two-phase fluid during the event is shown in Figure 3.17. Colors
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indicate solid volume fractions. The solid phase initially accumulates at the base, while

Figure 3.17: Solid volume fractions on a mudflow impacting on obstacle.

the fluid phase stays on the surface and accumulates at the front of the flow. After the
flow tip reaches the obstacle the solid phase quickly catches up with the faster flowing
fluid phase, filling the space behind the barrier. The tip of the mixture shooting over
the barrier is essentially fluid, due to lower viscosity and density. At the end of the
simulation, that is after 1000 time steps, the total volume of the mixture has increased
by 2.3%. We consider this error very small, considering the relatively simple contact
algorithm used in the model.

From the simulation the resultant force acting on an obstacle that obstructs the flow
path is extracted. In Figure 3.18 the resultant force of the single-phase and the two-
phase model are compared. The force is computed by integrating the pressure along
the front side of the obstacle. Right after the impact the force attains its peak, before it
slowly decays to the hydrostatic level. The peak force right after the impact is higher
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Figure 3.18: Resultant force acting on obstacle.

in the case of a single-phase material. This can be explained with the lower density of
the fluid phase, which reaches the obstacle first in the two-phase simulation. After a
while however the difference vanishes. The fluid phase acts as a buffer, attenuating the
impact of the denser solid phase.

In an attempt to estimate the momentum delivered to the obstacle we consider con-
servation of momentum of the part of the fluid that remains behind the obstacle. The
balance equation is written along an axis perpendicular to the obstacle.

F = Fhs + Fdyn (3.7.6)

where F is the force acting perpendicular to the wall (plotted in Figure 3.18), Fhs the
hydrostatic pressure integrated over the face of the obstacle and Fdyn the dynamic force
due to the slowing down of the fluid mixture. We assume that the force F reaches its
permanent value Fhs at t1 = 1.4s. All computations are performed for a slice of 1m

depth in the third dimension.
Assuming that the average of the solid volume fractions is close to 0.5 the hydrostatic

pressure acting on the obstacle can be evaluated as

Fhs =
p1 + p2

2
d =

1500 + 5250

2
(0.22 + 0.52)0.5 ≈ 1800kN (3.7.7)

The change of momentum of the fluid between t0 = 0.55s and t = 1.4s, I =
∫ t1

t0
Fdyn dt,

can be obtained by multiplying the change of velocity by the mass of the fluid, that
remains behind the obstacle:

I = Δvρ V (3.7.8)
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Figure 3.19: Illustration of the problem geometry with free surface at t = 1.4s.

Δv is the average velocity before the fluid reaches the obstacle. Assuming a parabolic
distribution in the direction perpendicular to the slope we can estimate that Δv ≈
2.3m/s. With the volume V = 0.5m3 and ρ = 750kg/m3 the change of momentum is
I ≈ 860kNs.

On the other hand, the momentum transferred to the obstacle is obtained by com-
puting the surface below the curve in Figure 3.18. For the two-phase mixture, and after
subtracting the hydrostatic force, this evaluates to∫ t1

t0

= (F − Fhs) dt ≈ 760kNs (3.7.9)

The result of the hand calculation overpredicts this value by about 13%. This represents
an additional verification of the numerical method.

In the hand calculation several approximations have been made. The average ve-
locity Δv and the hydrostatic force are difficult to estimate. However, it is possible for
mudflow events to obtain velocities that only depend on the material properties and on
the slope angle. This can be done by performing parametric studies varying the angle
of an infinite slope. Thus we can imagine to use the present two-phase model to obtain
rules of thumb for estimating loads acting on protection structures.

3.8 Conclusions

In this chapter we developed a framework for modeling two-phase flows that undergo
large motions. The governing equations of the two phases have been derived from the
equations of a single-phase Newtonian fluid by applying mixture theory. By smooth-
ing both phases over the computational domain we obtain a formulation where the
presence of a material is given by a volume fraction in each node. The method is imple-
mented in a finite element framework, where each node has 5 degrees of freedom (in
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two dimensions): The velocities of both phases and a pressure, which is common for
both phases. The Lagrangian update of a node is performed for both phases, resulting
in two updated positions for each node. A re-meshing step creates a new mesh of good
quality, on which the nodal values are interpolated from the previously updated nodal
positions.

The correct implementation of the two-phase Newtonian fluid is verified by com-
paring it to the single-phase solution. Being able to match the single-phase behavior as
a limit case is an important result. It shows that the algorithms and methods inherited
from the single-phase model, the stabilization most importantly, but also the time step-
ping algorithm and the mesh update procedure remain fully valid for the two-phase
formulation.

The method for computing volume fractions at the end of each iteration yields smooth
and accurate results. For sharp gradients of volume fractions test problems pointed out
to which extent numerical diffusion of the gradients occurs. A set of tests, where the
method has been de-coupled from the physics of two-phase flow, has, however, also
shown that mesh refinement is capable of effectively remediating this problem.

The sedimentation test allowed to show that the method can easily be adapted to
match the results of an analytical solution without any parameter calibration. Being
able to match the analytical result using a particular constitutive model on a simple test
set-up opens the door for the implementation of more complex constitutive models.

Further numerical tests investigated the behavior of the method with free surfaces
and showed that the method very accurately conserves the mass of the mixture. Fi-
nally we demonstrated that problems representing geophysical flows can be analyzed
using the numerical method. We conclude that the proposed algorithmic framework
is capable of following the motion of two-phase mixtures in a wide range of problem
types.
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4.1 Introduction

4.1.1 Object-oriented finite element programming

Object-oriented programming provides a way to organize a computer code, grouping
subroutines and variables into classes in order to facilitate the maintenance of large
projects and make it easier to extend the code with new functionality. Object-oriented
programming helps a developer to organize in a structured way the tasks he wants the
program to perform. Finite element methods are particularly well suited for being im-
plemented in an object-oriented framework. The modular aspect with a mesh, which
is composed of elements and nodes, as well as the ease of implementing slightly mod-
ified formulations by making use of the concept of inheritance have contributed to the
success of object-oriented programming in the field of finite element modeling. In the
present work the implementation is based on FEM_object, a finite element program for
static and dynamic nonlinear analysis in solid mechanics 1. An in-depth discussion of
concepts of object-oriented programming together with a detailed description of the
code is available in Commend et al. [13].

4.1.2 An object-oriented framework for finite element modeling on
moving domains

The global organization of the code corresponds to a semidiscrete implementation, us-
ing a time stepping algorithm to advance the solution in time. At each time step we
solve a nonlinear boundary-value problem iteratively. In the particular case of the two-
phase updated Lagrangian description, the mesh is regenerated after each iteration. The
key object of the implementation is the Domain, which sends messages to other classes
to build a linear system of equations and solve it at the current time step. The flow
chart in Figure 4.1 illustrates the interaction between the main objects in the solution
procedure for a general problem solved on a moving domain.

The solution procedure starts with the creation of a Domain. The Domain reads
the problem definition from an input file. On one problem definition several types of
analyses can be performed, for example an eigenvalue analysis, an initial state analysis
or a safety factor analysis. We focus on a transient analysis. The main steps of a transient
analysis are explained in the following. The numbers refer to a specific task in Figure
4.1.

1. The Domain creates an Analysis-object of type TransientAnalysis and sends
a message to execute the analysis.

1http://www.zace.com/femobj_nl/femobj_nl.htm
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Figure 4.1: Simplified illustration of interaction between classes of object-oriented com-
puter program.

2. The TransientAnalysis then sends a message to the NLSolver to solve the
problem at time tn+1.

3. The NLSolver creates a LinearSystem and send a message to a
TimeIntegrationScheme to compute the right-hand-side and the left-hand-
side of the LinearSystem at iteration i+ 1.

4. The TimeIntegrationScheme loops over all elements in order to assemble the
LinearSystem. In order to do this a message is sent to the Discretization to
create a mesh containing Elements and Nodes. The specific type of Elements

and the form of the elemental matrices and arrays is given by the Formulation.

5. After the LinearSystem has been assembled it is solved and the solution vector
is returned to the NLSolver.

6. The NLSolver sends a message to the Discretization to update the mesh
according to the solution vector.

7. If the convergence criteria of the NLSolver have been met the solution is returned
to the TransientAnalysis, where the results for the time step tn+1 are written
to the output files.
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4.2 Organization of the research code

The development of the code has been guided by the requirement that all problems
in this work are to be solved by the same computer program. The input data is read
from a text file, which specifies all the aspects of the analysis. This approach simplifies
version management of the code and verification of all the parts of the implementation
is improved since the same methods are used for a wide variety of problems.

New functionality was built into the code by using existing classes as much as pos-
sible. Some parts of the structure of the original FEM_object however had to be sub-
stantially modified in order to accommodate for instance moving meshes, unstructured
meshes, meshless methods and different formulations. The main points that required
modification are listed below.

Moving meshes: Meshes that evolve with time require a lot of geometry-related tasks
to be performed on the elements and nodes. This led to the separation of nu-
merical model-related data, contained in the nodes and elements, from geometry-
related data, contained in points and triangles. A new class Mesh was introduced
that stores the geometric information of a mesh at a specific iteration (see Section
4.2.3). Operations such as applying a displacement field or re-creating a new tri-
angulation can be performed on a Mesh-object. Mapping of field variables can be
performed between two Mesh-objects. The possibility to include both fixed (Eule-
rian) and moving (Lagrangian) meshes in the same code prompted the creation of
the Discretization-class.

Formulations: In this work we implemented a two-phase formulation where both
phases share the same pressure. In order for the code to be able to accommodate
other formulations, for instance with an additional solid, grain-to-grain pressure,
a new structure defining the field variables had to be created. The idea, presented
in Eyheramendy [20], consists in creating a class Formulation, in which the def-
inition of the Element specific to that formulation is given as an embedded in-
ner class. The combination of the classes Formulation and Element define the
complete behavior of the underlying governing equations. In order to re-use the
same elemental arrays and matrices for several different formulations, a new class
ElementMatrices has been created. The hierarchy of classes involved in the
computation of elemental matrices and arrays is given in detail below.

Automatic meshing: In the original FEM_object, every Element and Node has to be
specified as a line in the input file. This equivalence had to be abandoned due
to automatic mesh generation. Now only a prototype of the Element or Node is
specified in the input file, the nodal coordinates as well as element connectivities
are provided by the mesh generator.
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Use of third-party libraries: While the original FEM_object code is completely
autonomous, the present research code makes heavy use of third-party libraries.
The availability of standardized libraries for linear algebra, computational geome-
try and data types makes the FEM_object-classes Dictionary, List,
FloatArray, IntArray and Matrix as well as their subclasses obsolete. The
class Dictionary is replaced by the map-structure of the Standard Template
Library (STL) in C++, while List is replaced by STL’s list. For all linear al-
gebra tasks the BLAS implementation in the boost::numeric library2 is used.
The sparse linear solver PARDISO3, included in the Intel MKL library4, increases
speed while reducing memory requirements substantially compared to the skyline
solver implemented in the original code. Finally, for all geometry-related tasks, the
CGAL-package [9] is used. In order to access the library’s functions an interface
class CGALInterface is created.

The new class hierarchy is shown in Figure 4.2. The main changes with respect to
the original FEM_object code are briefly discussed in the following.

4.2.1 Analysis class

The introduction of such a class is motivated by the separation of model data from the
analysis. Such a subdivision is advocated in McKenna [37]. It provides a base class
for different types of analyses, such as transient, static, eigenvalue, stability or others.
The most important member function of the Analysis-class is solveYourself(), a
method previously contained in the Domain.

4.2.2 Discretization class

The Discretization-class is introduced in order to accommodate different types
of meshes. It contains a lot of the data that was previously in the Domain-class, in
particular all the lists holding pointers to FEMComponent-objects. Two direct sub-
classes of the class Discretization are available: EulerianDiscretization and
LagrangianDiscretization. While the coordinates of elements, nodes and Gauss
points don’t change in the EulerianDiscretization they need to be updated af-
ter each iteration in the LagrangianDiscretization. The most important members
of this class are Mesh-objects, which contain the geometric information corresponding
to a specific state of deformation. The Discretization-class has member functions
which operate on Mesh-objects:

2www.boost.org
3www.pardiso-project.org
4www.intel.com
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CGALInterface
Discretization

EulerianDiscretization
LagrangianDiscretization

LagrangianTwoPhaseDiscretization
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Domain
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NLSolver
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ShapeFunction

ShapeFnFEM
ShapeFnSibson

TimeIntegrationScheme
Static
Trapezoidal
Newmark

TimeStep
Fields
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PressureGradientStabilization
ConsistentStabilization

Figure 4.2: Class hierarchy. Additions to the original FEM_object are printed in bold
letters. Classes that have not been implemented are printed in italics.
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• giveNode(int), giveElement(int),giveBoundarySegment(int) etc.: Re-
turn existing FEMComponent or creates new one.

• printOutput(): Prints results to file(s).

• initializeMeshForStep() and terminateIteration(): Group all the op-
erations that have to be performed in order to update the Mesh according to the
new predictor or corrector displacement increment. These operations are:

– updateNodes() Changes the coordinates of the nodes according to the dis-
placement increment given by the Lagrangian update

– updateMesh() Updates the Mesh-object. Depending on whether
re-triangulation and/or re-zoning is needed, moves the existing
GeometryComponents or re-creates them.

– updateFEMComponents() Updates or creates FEMComponents based on
the updated Mesh.

– remapFields() Maps field variables from the old to the new Mesh.

4.2.3 Mesh class

Most of the problems in numerical modeling using Lagrangian meshes are related to
the temporally varying geometry. In order to be able to efficiently update the mesh and
map variables from one mesh to another we need a robust way to store all geometric
data such as nodal positions, element connectivities, fixed and free boundaries and so
on. Since most of these data structures as well as operations performed on them are
standard geometrical problems we chose to make use of the Computational Geometry
Algorithms Library (CGAL) [9].

The geometrical information related to one mesh at a given time is stored in a Mesh-
object. This object contains only information relevant to the geometry and is completely
dissociated from the physics of the problem. It contains no information such as nodal
velocities, material properties or elemental stiffness matrices. Mesh-objects constitute
the interface between the CGAL-library and the finite element code. In the following
we distinguish between the geometrical objects of type GeometryComponent, namely
points, triangles and line segments, which are contained in the Mesh, and the corre-
sponding finite element objects: Nodes, elements and boundary edges.

The Mesh is used to create the objects of the finite element method (nodes, elements
and boundary edges). The process of mesh movement, re-meshing and re-mapping
for the two-phase formulation is illustrated in Figure 4.3. At the end of each iteration
the coordinates of all points are updated according to the computed displacement in-
crements while all connectivities are retained. This update yields two deformed Mesh
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Figure 4.3: Flow chart illustrating the process of mesh movement, re-meshing and re-
mapping.
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objects, one for each phase. A new Mesh is then created based on the α-shape of all the
nodes of the deformed Meshes of the two phases. More specifically, the nodes of both
deformed Meshes are inserted into a new Delaunay triangulation and the boundary of
the α-shape, computed according to Appendix A.2, is stored. Subsequently the bound-
ary segments of this new Mesh are inserted as constraints into a constrained Delaunay
triangulation and new nodes are inserted such that the new triangular mesh satisfies
the mesh quality requirements. Finally, the variables of the finite element method are
mapped from the two deformed Meshes onto the new Mesh, following the procedure
outlined in Section 2.5.5.

4.2.4 Computation of elemental matrices and arrays

The computation of elemental arrays and matrices is re-organized substantially with re-
spect to the original code. A new class ShapeFunction, whose main task it is to com-
pute shape functions and return their values to a Gauss point, is created. Two subclasses
exist, FEMShapeFn and SibsonShapeFn. The hierarchy related to the computation of
elemental arrays and matrices is illustrated in Figure 4.4.

Figure 4.4: Hierarchy of classes related to the class Element. Subclasses are indicated
as bullet points below the superclass. Subclasses printed in grey are not applicable in
the given configuration.

The GeometryObject itself is not stored in the Element, only a pointer to the
corresponding object in the Mesh-class.
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4.2.5 Assembly of RHS and LHS

In the original FEM_object code the RHS and LHS (Right- and LeftHandSide) are assem-
bled in the Domain-object. We think that this task is better accomplished in the class
TimeIntegrationScheme. This way the same member functions of the Element-
class can be called for all time integration schemes, while no information about the
scheme is required in the element. The method for computing the left hand side for the
generalized trapezoidal algorithm is given in Figure 4.5.

void Trapezoidal : : ComputeLeftHandSide ( Solver ∗ l i n e a r So lv e r )
{

Element ∗element ;
double_matrix C,M;
in t _ve c t o r loc ;

D i s c r e t i z a t i on ∗ aD i s c r e t i z a t i on ;
aD i s c r e t i z a t i on = th i s −> giveDomain ( ) −> g iveD i s c r e t i z a t i on ( ) ;

double dt = th i s −> giveCurrentStep ( ) −> giveTimeIncrement ( ) ;
double gamma = th i s −> giveGamma ( ) ;
double f a c t o r = 1 . / ( dt∗gamma) ;

in t nElements = aD i s c r e t i z a t i on −> giveNumberOfElements ( ) ;
for ( in t i = 1 ; i <=nElements ; i ++){

element = aD i s c r e t i z a t i on −> giveElement ( i ) ;

C = element −> giveViscos i tyMatr ix ( ) ;
M = element −> giveMassMatrix ( ) ;
C += f a c t o r ∗ M;

loc = element −> giveLocationArray ( ) ;

l i n e a r So lv e r −> assembleLHS (C, loc ) ;
}

}

Figure 4.5: Method ComputeLeftHandSide as a member function of the class
Trapezoidal.

4.2.6 Other additions

Other classes that have been added to the original FEM_object are briefly summarized
below.
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BCLine: This class is required in order to impose boundary conditions on a moving
domain. After each Lagrangian update of the nodes we test if the node at its new
position is in contact with the boundary (see Section 2.5.6). The position of the
fixed boundary is specified by straight line segments, defined by objects of the
type BCLine.

BoundarySegment: In order to apply surface loads, such as surface tension, the bound-
ary of the computational domain has to be specified. The element edges, which
form the exterior boundary, are identified during re-meshing. Pointers to these
BoundarySegments are stocked in a list which is a member of the
Discretization.

Stabilization: The creation of a Stabilization-class facilitates the implementa-
tion of different variants of stabilization methods. Each Element has a member of
type Stabilization, whose main member functions are
ComputeStabilizationMatrix()and ComputeStabilizationForceVector.
In order to compute these matrices and arrays the Stabilization makes use of
the ElementMatrices of the Element.

4.3 Spatial searching

Efficient spatial search algorithms have been crucial for the development of the com-
puter code used in this work. Since the spatial coordinates of nodes change continu-
ously the information on spatial proximity has to be redefined after each Lagrangian
update. Proximity information is needed for the following operations:

• Re-mapping of variables from one mesh to another by linear interpolation requires
for each point of the new mesh the containing triangle of the previous mesh to be
found.

• After re-creating a new mesh within the boundary of the previous mesh using
a conforming Delaunay mesher the triangulation covers the entire convex hull
of the set of nodes. The detection whether a triangle lies inside or outside the
domain boundary results in a point-in-polygon problem, a well-known problem
in computer graphics. We chose the ray-casting algorithm, described for example
in Sutherland et al. [51]. This algorithm consists in computing the number of times
that a ray, starting from the center of a triangle and going to infinity, intersects
with the boundary of the polygon. If the number of intersections is odd, then the
triangle is outside the computational domain, if it’s even, then the triangle is inside
the domain. This search for intersections can be greatly accelerated if we limit the



108 Chapter 4 – Implementation

search to boundary segments that lie inside a slice of finite size surrounding the
ray.

• Contact detection of nodes with the fixed boundary involves the search of nodes
that are located within a certain distance of a boundary segment. This search
can become expensive if the fixed boundary is discretized with a large number of
segments.

The spatial search algorithm by Munjiza et al. [38] is very simple and easy to imple-
ment. The algorithm divides the domain into an evenly spaced grid ordered along the
coordinate axes. In a first step, a loop over all container objects, for example triangles
for the point-in-triangle search, is performed and a list of all objects that touch a grid cell
is created. Once this structure is generated the search for a container object of a point
can be narrowed down to all container objects that touch the grid cell in which the point
is located.

Time complexity of the algorithm is of order O(n) with respect to the number of
points to be located. Memory requirement is dependent on the size of the grid cells.
Therefore the best choice of grid cell size is a trade off between memory requirements
and speedup. For the point-in-triangle search a grid cell size that leads to an average of
about 5 triangles per cell has been found to be optimal.

4.4 CPU-time

Figure 4.6 shows CPU-times versus number of nodes for a series of computations of the
two-phase dam break problem (see Section 3.7.5). In the range up to about 2000 nodes
CPU-time scales about linearly, whereas above 2000 nodes we notice a sudden increase
of the slope in the log-log-plot. This is due to the size of the cache memory. Above
a certain number of triangles the spatial search data structure becomes too large to fit
into the fast memory of the CPU and memory access slows down the total time of the
computation.
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Figure 4.6: CPU-times as a function of nodes for the two-phase dam break problem.
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5.1 Conclusions

Specific conclusions regarding the single-phase formulation can be found in Section 2.7,
and for the two-phase formulation in Section 3.8.

A new and innovative numerical method for simulating two-phase free-surface flows
has been developed in this work. The method is capable of simulating a wide range of
problem types from sedimentation of solid material in a fluid to gravity-driven free-
surface flows. The key feature of the method is an algorithm that allows the motion of
two different constituents of a mixture to be followed in a Lagrangian reference frame.

In contrast to existing debris- or mudflow models the method implements a contin-
uum approach, which allows to obtain detailed time histories and profiles of stresses,
velocities or volume fractions. The algorithmic framework is kept general in order to
allow any kind of constitutive model to be included. We expect the method to find a
wide range of applications not only in the field of geophysical flows, but in any kind
of problem involving the motion of two phases where interaction between the phases
cannot be neglected.

In the following we outline some possible directions of future research that are ex-
pected to either improve the performance of the current method or extend its range of
applications.

5.2 Further research

5.2.1 Constitutive modeling

The first step towards a more realistic debris- or mudflow model has to go in the di-
rection of constitutive modeling. Particularly assumptions B and C in Table 3.1 have to
be investigated more closely. In more heterogeneous mixtures with a large fraction of
coarse-grained material grain-to-grain contact is playing an important role. We suggest
further development to be directed towards the implementation of models similar to
the one presented by Hutter et al. in [30].

5.2.2 Pseudo three-phase formulation

In this work we assumed the two-phase fluid to be fully saturated at all times (Assump-
tion D in Table 3.1). This assumption is probably reasonable for mixtures of uniform
grain-size distribution. When the volume fraction of relatively coarse-grained material
such as gravel and rocks is high, then some parts of the mixture are likely to become
partially saturated. Especially at the free surface the fluid can seep through the granu-
lar material, and air can fill up the inter-granular voids. In this case Equation 3.1.2 has
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to be modified in order to consider the volume fraction occupied by air, Ca.

Cs + Cf + Ca = 1 (5.2.1)

The solid volume fraction Cs cannot exceed a maximum value which is given by the
inter granular voids. For gravel this value is typically around Cmax

s = 0.6 − 0.8.
We assume that the air can take the place of the fluid, but not the solid. The air and

the fluid are assumed to move with the same velocity, thus the term ’Pseudo three-phase
formulation’.

Taking the derivative with respect to time of Equation 5.2.1 on a fixed reference frame
gives

∂Cs

∂t
+
∂Cf + Ca

∂t
= 0 (5.2.2)

This leads to a modified equation of conservation of the volume of the mixture:

∇ · (Csvs) + ∇ · ((Cf + Ca)vf) = 0 (5.2.3)

At the boundary the Lagrangian update has to consider the new mixture velocity

vm = Csvs + (Cf + Ca)vf (5.2.4)

The material properties of the fluid phase also need to be modified:

ρ′f = Cfρf + Caρa (5.2.5)

μ′
f = Cfμf + Caμa (5.2.6)

ρ′f and μ′
f are the averaged fluid phase properties used in the computation of the body

force, the mass and the stiffness matrices. ρa and μa can be assumed to be zero.
The computation of volume fractions after each iteration would in this formulation

remain essentially the same. The volume of air would be considered part of the volume
of fluid. The correction of the volume fractions, point 3 in Table 3.4, would be replaced
by the computation of the new volume fraction of air:

Ca = max (0, 1 − Cs + Cf) (5.2.7)

5.2.3 Fluid-structure interaction

As we mentioned in the introduction, the method developed in this work is expected to
find its application in the design of retaining structures for mud- and debris flows. Sec-
tion 3.7.6 gives an example where forces acting on a rigid structure have been computed.
In order to go one step further, the interaction between flexible protection barriers and a
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flow mass has to be analyzed. The inclusion of fluid-structure interaction capabilities in
the current formulation requires several extensions. The time stepping algorithm has to
be adapted for the inclusion of stiffness terms, the structure undergoing large deforma-
tion needs to be modeled and an appropriate contact algorithm at the interface between
the fluid and the structure has to be implemented.

5.2.4 Remarks for extension to three spatial dimensions

Although the method for updated Lagrangian simulation of two-phase free-surface
flows presented herein is developed in two dimensions the extension to three dimen-
sions is mostly straightforward. In question are the following components of the method:
The governing equations, the finite element approximation, the creation of the mesh, the
boundary contact detection and the re-mapping of variables. In the following we give
some insight into the extension to 3D of each of these components, giving references for
further reading, but without going into too much details.

Governing equations: The governing equations given previously remain fully valid in
3D.

Finite element approximation: Instead of using linear triangular finite elements with
equal order interpolation for velocities and pressure linear tetrahedra can be used
with the same stabilization method remaining valid.

Mesh creation: Algorithms for the construction of 3D Delaunay triangulations as well
as 3D α-shapes are available in the CGAL package. Free tetrahedral mesh genera-
tors can be found on the internet.

Boundary contact detection: In order to allow the use of topographical data for the
definition of the fixed boundary of the computational domain the boundary is
best modeled as a triangular surface mesh. Contact detection between nodes of
the fluid mixture and the boundary then consists of finding the position of a point
with respect to polyhedral surface. For this search of proximity the same spatial
search method as outlined in Section 4.3 using a three-dimensional grid can be
used.

Re-mapping of variables: Linear interpolation in 3D also requires finding of the tetra-
hedra containing the point at which interpolated values have to be computed.
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A.1 Elemental matrices and arrays of the discrete weak
form for single-phase flow

The elemental matrices for an element e that are assembled into Equation 2.5.19 are
given by:

Me =

∫
Ωe

ρNTNdΩ (A.1.1)

Ke =

∫
Ωe

BTDBdΩ (A.1.2)

Ge =

∫
Ωe

BT

⎡
⎣1

1

0

⎤
⎦NpdΩ (A.1.3)

Se = −τe
∫

Ωe

∇NpT∇NpdΩ (A.1.4)

fe =

∫
Ωe

NTρbdΩ +

∫
Γh

NThdΓ (A.1.5)

fe
s = −τe

∫
Ωe

∇NpTρbdΩ (A.1.6)

The elemental matrix operators and elemental arrays are defined in terms of shape func-
tions φ:

N =

[
φ1 0 ... φn 0

0 φ1 ... 0 φn

]
Np =

[
φ1 ... φn

]
(A.1.7)

B =

⎡
⎣φ1

,x 0 ... φn
,x 0

0 φ1
,y ... 0 φn

,y

φ1
,y φ1

,x ... φn
,y φn

,x

⎤
⎦ D =

⎡
⎣ 4

3
μ −2

3
μ 0

−2
3
μ 4

3
μ 0

0 0 μ

⎤
⎦ (A.1.8)

∇Np =

[
φ1

,x 0 ... φn
,x 0

0 φ1
,y ... 0 φn

,x

]
(A.1.9)

b =
[
bx by

]T
h =

[
hx hy

]T
(A.1.10)

The superscripts identify the nodes of the corresponding shape functions.

A.2 Delaunay triangulation and α-shapes

A triangulation of a set of points is the decomposition of the surface into triangles. The
triangulation is called Delaunay if for each triangle, the circumscribed circle contains no
points in its interior. The concept of α-shapes is based on a Delaunay triangulation. It is



Figure A.1: Construction of α-shape

widely used in computational geometry to transform a set of nodes into a shape consist-
ing of surface and volume elements. The concept found its way into the computational
mechanics community through Cueto et al. [14]. González et al. [21] use it for defining
the free surface in updated Lagrangian fluid dynamics.

On the basis of the Delaunay triangulation only triangles (or tetrahedra in 3D) whose
circumscribed circle (or sphere) have a radius not exceeding a user-defined value α are
included in the α-shape. The basic idea is illustrated in Figure A.1. The computational
domain is then set equal to the α-shape. The value α has to be chosen by the user in such
a way that the important features on the free surface are most accurately represented by
the α-shape.

A drawback of this method is the fact that the mass of a material modeled using
α-shapes is not conserved. Lets imagine two adjacent finite element nodes on the free
surface moving away from each other. At one point the circumcircle of the Delaunay
triangle having both nodes as vertices will be too large and will therefore not belong
to the α-shape anymore. Mass will be lost in this case. The opposite can occur as non-
adjacent nodes on a concave surface move closer together, thus resulting in an increase
of mass. These fluctuations in mass throughout the analysis can however be reduced
by refining the nodal spacing.

A.2.1 Constrained Delaunay triangulation and Delaunay mesher

In order to use an automatic Delaunay mesher we have to provide a closed loop of
boundary segments. Within these boundaries points are inserted such that triangles that
satisfy a maximum sidelength criterion and a minimum angle criterion are generated by
the Delaunay mesher. The triangulation is forced to include constrained edges. Thus the



triangulation is not necessarily Delaunay anymore, unless we allow additional points
to be added on the constrained edges.

A.3 Elemental matrices and arrays of the discrete weak
form for two-phase flow

The elemental matrices of an element e that are assembled into Equation 3.3.4 are given
by:

• Body load vector fe

∫
Ωe

NT

⎡
⎢⎢⎢⎢⎢⎣
Csρs 0 0 0 0

0 Csρs 0 0 0

0 0 Cfρf 0 0

0 0 0 Cfρf 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
bsx
bsy
bfx
bfy
0

⎤
⎥⎥⎥⎥⎥⎦ dΩ (A.3.1)

• Nodal load vector he

∫
Γe

NT

⎡
⎢⎢⎢⎢⎢⎣
tsx
tsy
tfx
tfy
0

⎤
⎥⎥⎥⎥⎥⎦ dΓ (A.3.2)

• Mass matrix Me

∫
Ωe

NT

⎡
⎢⎢⎢⎢⎢⎣
Csρs 0 0 0 0

0 Csρs 0 0 0

0 0 Cfρf 0 0

0 0 0 Cfρf 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦NdΩ (A.3.3)

• Gradient matrix Ge

∫
Ωe

BT

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cs

Cs

0

Cf

Cf

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

NpdΩ (A.3.4)



• Stiffness matrix Ke

∫
Ωe

BT

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cs 0 0 0 0 0

0 Cs 0 0 0 0

0 0 Cs 0 0 0

0 0 0 Cf 0 0

0 0 0 0 Cf 0

0 0 0 0 0 Cf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

DBdΩ (A.3.5)

• Momentum exchange matrix Ve

∫
Ωe

NTKdrag

⎡
⎢⎢⎢⎢⎢⎣

1 0 −1 0 0

0 1 0 −1 0

−1 0 1 0 0

0 −1 0 1 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦NdΩ (A.3.6)

• K∇Ce

∫
Ωe

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

NT

⎡
⎢⎢⎢⎣
Cs,x 0 Cs,y 0 0 0

0 Cs,x Cs,x 0 0 0

0 0 0 Cf,x 0 Cf,y

0 0 0 0 Cf,y Cf,x

⎤
⎥⎥⎥⎦DB + NT

⎡
⎢⎢⎢⎢⎢⎣
Cs,x

Cs,y

Cf,x

Cf,y

0

⎤
⎥⎥⎥⎥⎥⎦Np

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
dΩ (A.3.7)

• Stabilization matrix Se

τe

∫
Ωe

(∇Np)T

⎡
⎢⎢⎢⎢⎢⎣
Cs 0 0 0 0

0 Cs 0 0 0

0 0 Cf 0 0

0 0 0 Cf 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦∇NpdΩ (A.3.8)

• Stabilization vector fe
s

τe

∫
Ωe

(∇Np)T

⎡
⎢⎢⎢⎢⎢⎣
Cs 0 0 0 0

0 Cs 0 0 0

0 0 Cf 0 0

0 0 0 Cf 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
bsx
bsy
bfx
bfy
0

⎤
⎥⎥⎥⎥⎥⎦ dΩ (A.3.9)



• N-matrix

N =

⎡
⎢⎢⎢⎢⎢⎣
N I 0 0 0 0 ...

0 N I 0 0 0 ...

0 0 N I 0 0 ...

0 0 0 N I 0 ...

0 0 0 0 0 ...

⎤
⎥⎥⎥⎥⎥⎦ (A.3.10)

• Np-matrix

Np =
[
0 0 0 0 N I ...

]
(A.3.11)

• B-matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N I
,x 0 0 0 0 ...

0 N I
,y 0 0 0 ...

N I
,y N I

,x 0 0 0 ...

0 0 N I
,x 0 0 ...

0 0 0 N I
,y 0 ...

0 0 N I
,y N I

,x 0 ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.3.12)

• ∇Np-matrix

∇Np =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 N I
,x ...

0 0 0 0 N I
,y ...

0 0 0 0 N I
,x ...

0 0 0 0 N I
,y ...

0 0 0 0 0 ...

⎤
⎥⎥⎥⎥⎥⎦ (A.3.13)

• Constitutive matrix D⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4
3
μs −2

3
μs 0 0 0 0

−2
3
μs

4
3
μs 0 0 0 0

0 0 μs 0 0 0

0 0 0 4
3
μf −2

3
μf 0

0 0 0 −2
3
μf

4
3
μf 0

0 0 0 0 0 μf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.3.14)

A.4 Computing volume fractions using mass conservation
of each phase

Section 3.6 presents an overview of algorithmic approaches to compute volume frac-
tions based on the updated nodal coordinates of the solid and the fluid phase. Another



approach uses the equations of conservation of mass of the individual phases in their
original form (Equation 3.2.10), formulated with respect to the material frame of refer-
ence. For constant mass density ρp we can write

DCp

Dt
+ Cp∇ · vp = 0 (A.4.1)

Combining mass conservation on a fixed reference frame allowed to obtain an equation
of conservation of the volume of the mixture by eliminating the time derivatives of vol-
ume fractions. The idea is to introduce a time stepping algorithm to advance Equation
A.4.1 in time. After iteration i+ 1 of time step n+ 1 we write

DCn+1
p

Dt
+ Cn+1

p ∇ · vn+1
p,i+1 = 0 (A.4.2)

Since vn+1
p,i+1 is known the above equation is an ordinary differential equation, which

can be solved in each point of the domain separately. Using a generalized trapezoidal
algorithm we can write the following finite difference formula:

Ċn+1
p =

1

Δtγ
(Cn+1

p − C̃n+1
p ) (A.4.3)

C̃n+1
p = Cn

p + Δt(1 − γ)Ċn
p (A.4.4)

where Ċn+1
p =

DCn+1
p

Dt
. After iteration i + 1 the volume fraction of phase p can be com-

puted according to

Cn+1
p =

1

1 + Δtγ∇ · vn+1
p,i+1

C̃n+1
p (A.4.5)

We propose two different approaches:

• Strong form: Equation A.4.5 is solved at each Gauss point of the deformed mesh
of phase p. In this case the divergence of the velocity can easily be obtained using
the shape function derivatives.

• Weak form: A weak form of Equation A.4.5 can be obtained by multiplication
with a test function. This results in a system of equations of the form

ACn+1
p = F(vn+1

p,i+1, C̃
n+1
p ) (A.4.6)

where Cn+1
p is a vector of nodal values of volume fraction. A has the form of a

mass matrix. Using a lumped matrix A allows to compute the solution without
having to solve a system of equations.

In both approaches the values of Cn+1
p have to be mapped onto the new mesh. From

here on the procedure is the same as previously, correcting for mass conservation of
both phases according to point 3 in Table 3.4.
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