
A modular bio-inspired architecture for movement generation

for the infant-like robot iCub

Sarah Degallier, Ludovic Righetti, Lorenzo Natale, Francesco Nori, Giorgio Metta and Auke Ijspeert

Abstract—Movement generation in humans appears to be
processed through a three-layered architecture, where each
layer corresponds to a different level of abstraction in the rep-
resentation of the movement. In this article, we will present an
architecture reflecting this organization and based on a modular
approach to human movement generation. We will show that
our architecture is well suited for the online generation and
modulation of motor behaviors, but also for switching between
motor behaviors. This will be illustrated respectively through
an interactive drumming task and through switching between
reaching and crawling.

I. INTRODUCTION

In the framework of the European project RobotCub [1],

which aims at developing a infant-like robot, iCub, with

the motor and cognitive abilities of a 2 years-old child, we

are currently developing a functional model of the human

motor system, that is an architecture reflecting the different

processes involved in low-level movement generation. Our

motor architecture will be integrated in a larger cognitive

architecture developed in the RobotCub consortium [2].

We define a three-layered architecture whose layers are

referred to as the planner, the manager and the generator.

Functionally, the planner (i.e the motor cortex in humans)

builds the mental representation of the task. The manager

(the brain stem, the basal ganglia and the cerebellum) is

involved in the selection, timing and coordination of the

appropriate behaviors. Finally, the generator (the spinal

cord) generates trajectories through central pattern generators

(CPGs), that we see as networks of neurons involved in the

production of movement primitives (for a review on CPGs,

see [3] or [4]).

Note that as our particular interest is movement generation

here, we do not focus on the high cognitive abilities needed

to define and choose the action; in terms of the architecture,

we do not focus on the implementation of the planner. Such

questions are treated by other laboratories in the framework

of the RobotCub project1.

In order to develop an efficient model reflecting those prin-

ciples, we make the assumption that movement generation

is highly modular, both in terms of motor primitives (i.e.

This work was supported by the European Commission’s Cognition Unit,
project no. IST-2004-004370: RobotCub and by the Swiss National Science
Foundation

S. Degallier, L. Righetti and A. Ijspeert are with the School of Computer
and Communication Science, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, sarah.degallier@epfl.ch

L. Natale, F. Nori and G. Metta are with the Italian Institute of Technol-
ogy, Genova, Italy

1See www.robotcub.org/misc/review3/index.html for a
complete list of publications

units of movement) and in terms of motor programs (i.e.

behaviors), as will be discussed more in details in Section

II. Indeed, modularity has proven to be a successful approach

for generating fast, complex movements as it reduces dras-

tically the dimensionality of the control problem (see for

instance [5], [6], [7]).

We assume the existence of two basic types of motor

primitives, i.e. discrete (aperiodic and finite) and rhythmic

(periodic) movements; the motor primitives are modeled as

solutions of respectively a dynamical system with a globally

attractive fixed point and an oscillator. Successful results

have been achieved by the dynamical systems approach (see

for instance [8],[9],[5], [10]); indeed in this approach desired

trajectories are not pre-computed, but generated on line and

in real-time relatively to the (possibly time-varying) goal of

the movement and environment.

In this article, we present our current implementation of

this functional architecture; as it will be shown, it allows

for fast online modulation of trajectories as well as the

possibility of easily switching between behaviors according

to sensory information; this will be illustrated through two

applications, namely interactive drumming (Section IV) and

the switching between crawling, reaching on the fours and

reaching while crawling (Section V). Interactive drumming

has been tested on the real robot while switching between

behaviors has been tested using the physics based simulator

WebotsTM [11].

For the generator, we use a system similar to the one

that we had previously developed [12], [13] which allows

the generation of discrete (i.e. short-term) and rhythmic

movements and the combination of both. We have modified

the discrete system so to obtain a bell-shaped velocity profile.

For the drumming, compared to our previous implementation

[12], we have added several features as online modification

of the rhythm and of the coordination between the limbs, as

well as an acoustic feedback to control the beating of the

drums. In addition to the two arms, we now also control the

legs and the head. For the switching between crawling and

reaching, compared to [13], we have integrated a feedback

control developed by Righetti and Ijspeert in [14]. In addition

to crawling and reaching while crawling, switching between

pure crawling and pure reaching is considered.

II. PRESENTATION OF THE ARCHITECTURE

We present here more in details the current (open loop)

implementation of the architecture, which is depicted on

Fig. 1. Illustration of possible feedback implementations will

be presented for drumming (Sec. IV) and crawling (Sec. V).



As said in the introduction, we mainly focus here on the

low-level movement generation.

Fig. 1. Schematic of the functional organization of the architecture. The
manager is responsible for launching motor programs (MPs) according to
the information received from the planner (voluntary movements) and to
sensory information (automatisms) subject to constraints such as balance
and timing. MPs consists in sets of time-varying parameters that are sent to
the generator; such parameters consist of the couplings between the dofs,
i.e. the topology of CPGs (two examples are shown on the figure), the
target position for discrete movements and the amplitude and frequency for
rhythmic movements.

A. Generator

The generator is responsible for the generation of the

trajectories, that is the integration of the dynamical systems

in our case, a task which requires low computational needs

and that can be implemented on the DSP controllers of the

robot with fast feedback loops. Such an approach ensures

that the generation of the trajectories is not perturbed by

highly demanding processes as optimization and planning at

higher levels (i.e. the planner in our case).

Using motor primitives as the great advantage of de-

creasing the dimensionality of the control problem: indeed,

instead of defining a whole, multidimensional trajectory, the

problem reduces to the specification of vectors of parameters

corresponding to the different open variables of the motor

primitives. The disadvantage being that the space of possible

final trajectories is reduced - however, by combining motor

primitives and by using time-varying set of parameters,

complex trajectories can be obtained.

In our model, motor primitives are generated by unit

generators modeled by dynamical systems; two types of

primitives are defined, namely discrete and rhythmic, that

correspond respectively to the solution of a globally attractive

fixed point system and of a limit cycle system. The two main

advantages of using such dynamical systems is that (i) the

trajectories can be modified smoothly on the fly, and (ii) the

solutions obtained are robust to perturbations. Moreover, the

integration process requires low computational needs.

All trajectories (for each joint) are generated through a

unique set of differential equations, which is designed to

produce complex movements modeled as a periodic move-

ments around a time-varying offset. More precisely, complex

movements are generated through the superimposition and

sequencing of simpler motor primitives generated by rhyth-

mic and discrete unit generators. The discrete primitive is

injected in the rhythmic primitive as an offset.

Discrete UG.The discrete UG, which is inspired from the

VITE model [15], is modeled by the following system of

equations

ḣi = d(p− hi) (1)

ẏi = h4

i vi (2)

v̇i = p4
−b2

4
(yi − gi)− b vi. (3)

The system is critically damped so that the output yi of Eqs 2

and 3 converges asymptotically and monotically to a goal gi

with a speed of convergence controlled by b, whereas the

speed vi converges to zero. p and d are chosen so to ensure

a bell-shaped velocity profile; hi converges to p and is reset

to zero at the end of each movement (see Fig.2(a)).

(a) Discrete system (b) Rhythmic system

(c) Combination of both systems

Fig. 2. 2(a) Left: Convergence. Trajectories with different initial condi-
tions (plain and dash lines) converge in the same time to the target point. The
velocity profile is bell-shaped whatever the target is (here the velocity curve
(dash-dot line) of the trajectory in plain line). Right: Perturbations. Normal
trajectory (dash line), and the same trajectory when a short-term perturbation
occurs (+5 in Eq. 2, plain line). When the perturbation disappears, it resumes
to the normal trajectory. 2(b) Left: Convergence. Trajectories with different
initial conditions have the same amplitude and frequency but can be phase
shifted. By coupling them, synchronized patterns can be obtained (here two
trajectories are in phase and one is in anti-phase). Right: Perturbations.

Normal trajectory (dash line) and the same trajectory with a short-term
perturbation (+10 in Eq. 4, plain line). When the perturbation disappears,
it resumes to the normal trajectory, possibly with a phase shift (this can be
avoided by using couplings). 2(c) Modulation. Using simple variations of
mi (dash line), gi (dotted line) and ωi (not represented on the figure), a
periodic trajectory around a time-varying offset can be generated (D+R).
Setting mi to a negative value turns off the oscillatory behavior thanks
to the Hopf bifurcation, leading to a purely discrete movement (D). Then
by keeping the target gi constant and by setting mi to a positive value, a
purely rhythmic movement is obtained (R). Note that without coupling and
without noise, there is some delay before the oscillations start again.

Rhythmic UG. The rhythmic UG is modeled as a modi-

fied Hopf oscillator:

ẋi = a
(

mi − r2

i

)

(xi − yi)− ωizi (4)

żi = a
(

mi − r2

i

)

zi + ωi (xi − yi) +
∑

kijzj + ui(5)

ωi =
ωdown

e−fzi + 1
+

ωup

efzi + 1
(6)

where ri =
√

(xi − yi)
2

+ z2

i . When mi > 0, Eqs. 4 and 5



describe an Hopf oscillator whose solution xi is a periodic

signal of amplitude
√

mi and frequency ωi with an offset

given by gi. A Hopf bifurcation occurs when mi < 0 leading

to a system with a globally attractive fixed point at (gi,0). The

term
∑

kijzj controls the couplings with the other rhythmic

UGs j; the kij ’s denote the gain of the coupling between the

rhythmic UGs i and j (see Fig.2(b)). The expression used

for ωi allows for an independent control of the speed of

the ascending and descending phases of the periodic signal,

which is useful for adjusting the swing and stance duration

in crawling for instance [16]. Finally the term ui is a control

term generated by feedback information (see Section IV

and V .

Thanks to the use of limit cycle systems, the different

unit generators of each joints can be coupled in a network

to obtain a more complex, synchronized behaviors. Such

networks, that we call central pattern generators (CPGs),

are well suited to ensure fixed time relationships between

the different rhythmic outputs (see [17] for the construction

of networks of coupled oscillator that exhibit specific phase

relationships between oscillators), a feature which is particu-

larly convenient for generating different gaits for locomotion

for instance [16]. A reference limit cycle system can be

added in the system to serve as a clock (as we did in

drumming for instance).

Qualitatively, by simply modifying on the fly the parame-

ters gi and mi, the system can switch between purely discrete

movements (mi < 0, gi 6= cst), purely rhythmic movements

(mi > 0, gi = cst), and combinations of both (mi > 0, gi 6=
cst) as illustrated on Fig. 2(c). Different values for the kij ’s

lead to different phase relationship between the limb, i.e.

different gaits for instance.

B. Manager

The task of the manager is to ensure the coherence of

the movement, i.e. to define parameters for the generator

that fullfill the task defined by the planner (or by sensory

information in the case of automatisms) subject to constraints

such as balance, collision avoidance or timing constraints.

The manager is built upon the concept of motor program,

which is defined as "a set of muscle commands which

are structured before a movement begins and which can

be sent to the muscle with the correct timing so that the

entire sequence is carried out in the absence of peripheral

feedback" by Marsden et al. [18]. This concept is a nice way

of explaining the rapidity with which we react to stimuli and

the stereotypy present in human movements. Moreover, the

notion of generalized motor program (MP), that is motor

programs with open parameters, allows the generation of

movements adapted to the environment.

Functionally speaking, the manager is mainly responsible

for sending the right parameters (in joint space) to the

generator, at the right timing. We define a (generalized)

motor program (MP) as a sequence of parameters sent to

the generator to produce the desired trajectories, that is

in our case the target positions ~g(t), the amplitudes ~m(t),
the frequencies ~ω(t) and the couplings kij between the

oscillators (i.e. the topology of the network). Some of the

parameters are fixed (the coupling between the limbs for

crawling for instance), others are open and need to be

defined relatively to the environment and the task (the desired

angles in reaching). An inverse kinematics is also needed to

transform task space goals into target joint angles. We are

currently working on adding balance control and collision

avoidance into the manager.

Every time a MP is launched by the manager, the first

command sent corresponds to a predefined initial position.

The parameters are then sent at regular time intervals to

the generator. At the end of the sequence, a command

corresponding to a final target position is sent. This makes

the switching between tasks easier, as will be illustrated with

crawling and reaching. A MP can be elicited either by the

planner (voluntary movements) or by the contextual sensory

information (automatisms).

C. Planner

We do not focus on the planner, i.e. on the “voluntary”

choice of action. However, thanks to the use of motor

programs, the initiation of a movement can be simply done

by specifying the MP to be launched and to define its

open parameters (otherwise default parameters will be used),

for instance through a GUI as we did for the drumming

(Sec. IV).

III. PRESENTATION OF iCub

The iCub is the humanoid robot developed as part of the

RobotCub project [1]. It has been designed to mimic the size

of a three and a half years old child (approximately 1m tall).

It has 53 degrees of freedom. A good number of them are

allocated to the upper torso, especially to the hands (18 in

total) to allow manipulation of objects. The iCub is strong

enough to crawl on all fours and sit to free the hands for

manipulating objects.

A. Hardware specifications

The iCub is based on electric motors for actuation. The

major joints are actuated by brushless DC motors cou-

pled with frameless Harmonic Drive gears. This guarantees

torques up to 40Nm at the shoulders, spine and hips. The

head and hands are actuated by smaller brushed-DC motors.

The robot is equipped with cameras, microphones, gyro-

scopes & linear accelerometers, force/torque sensors, posi-

tion and temperature sensors. A fully sensorized skin and

fingertips is under development.

The electronics of the iCub has been developed specifi-

cally to fit the limited space available. Each controller card

runs a local position or velocity control loop on a special

purpose DSP at 1kHz. Several cards are connected to a main

relay CPU via a set of four CAN bus lines. These lines end

into a multi-purpose I/O card which communicates to the

relay CPU (a Pentium) which is also located inside the robot.

More demanding computation can happen outside the robot.

In a typical configuration sensory processing (e.g. vision) is



performed on a cluster of PCs connected via Gbit Ethernet

to the iCub.

Additional electronics has been designed to sample and

digitize the iCub sensors. Also in this case, everything

converges on the main relay CPU by means of various

additional connections (e.g. serial, firewire, etc.).

B. Software architecture

The iCub software architecture uses YARP, an open source

library written to support software development and integra-

tion in robotics [19]. The core of YARP is an inter-process

communication layer which allows processes on different

machines to exchange data across an Ethernet network.

Communication in YARP is transport independent; details

about the underlying network and protocol are hidden to the

user. Similarly, YARP offers device driver wrappers, which

help separating user-level code from vendor-dependent code

related to sensors and actuators. Overall this contributes to

achieve loose coupling between algorithms and hardware,

and, in turn, favors modularity. In short, communication in

YARP takes place through connections, called ports. Ports

are named entities which move data from one process to

another (or several others).

iCub capabilities are implemented as a set of modules,

interconnected through YARP ports. Each module is an exe-

cutable which implements a given functionality, and creates

a set of ports to receive and send data. Some modules pro-

vide access to the hardware. For example the iCubInterface

module exports a set of ports to give access to the motors

and broadcast the encoder feedback from all joints. Other

modules in the architecture control the robot by sending

messages to these ports. Commands can be specified as joint

space position or velocity.

For drumming, the YARP implementation consists of four

different types of modules2: (i) five Generator modules (on

for each controlled part, i.e. left and right arms, left and right

legs, head) (ii) one Clock module (i.e. an absolute reference

of time), (iii) a Manager module and (iv) a GUI module

that opens a user interface to interactively control the robot.

Crawling and reaching are implemented in the same way,

except that there is no Clock nor GUI modules and that all

the Generator modules communicate with each others.

IV. APPLICATION TO INTERACTIVE DRUMMING

As a first test of the architecture, we have chosen in-

teractive drumming, as it is an interesting task combining

discrete and rhythmic movements. It requires the usage of all

of the four limbs, precise timing, coordination between limbs

and also the online modulation of the trajectories subject to

constraints. Our focus in this article is not on the agent-

object interaction, as done for instance by Williamson [20],

but rather to study the robustness of the architecture against

online modulations of parameters under time constraints.

2See eris.liralab.it/iCub/dox/html/group__icub_
_drummingEPFL.html for a complete description of the implementation.
Note that, as for all iCub capabilities, the source code is open and available
on RobotCub website (www.robotcub.org)

Note however that the architecture is suitable for taking

interaction with the environment into account; for instance,

we have added a simple acoustic feedback that stops the

movement when a drum has been hit to improve the beats

and avoid high strains in the wrist joints. Ijspeert and

al. [8] have developed a learning method for drumming

based on dynamical systems; they did not address the issue

of drumming through the superimposition of discrete and

rhythmic motor primitives as we do here.

Fig. 3. Snapshots of the iCub drumming (movie available at [21]).

The set up for drumming is depicted on Fig. 3: the robot

is fixed to a metallic structure by the hips and plays on an

electronic drum set. The four limbs together with the head

are controlled. We control actively four joints for each limb

and three for the head. The sticks are grasped by the hands

which remain fixed afterwards.

At the manager level, there is a unique motor program for

each limb (MP) whose parameters are controlled through

a GUI (the “planner”). The parameters of the MPs are the

target position g and the amplitude m (on/off) for each dof,

the phase shift kij for each limb (relatively to the leg that

plays the bass drum) and the frequency ω (which is the same

for each joint). All those parameters can be modified online,

at any time, by the user trough the GUI. The manager is

then responsible to send those commands at the right timing

(i.e. in accordance with the rhythm) to the generator. The

target discrete postures for hitting each drum are currently

predefined; the integration of visual localization of the drums

together with an inverse kinematics algorithm is planned as

future works.

Concerning the generator, each dof is controlled by the

discrete and rhythmic pattern generators that we have pre-

sented in Section II. The dofs of each limb are unilaterally

coupled to a clock. Indeed, after a Hopf bifurcation, one can

observe a phase resetting of the oscillators; the clock can

be seen as a metronome that ensures that the limbs stay in

synchronization with the absolute tempo despite those phase

resettings.

Feedback integration. In order to couple the movements

of the robot to the environment, an acoustic feedback was

added. Each time a drum is hit, a message is sent to the

manager which identifies the corresponding limb and sends

a command to the generator to stop the movement in the

current position (see Fig.4(b)). Mathematically, an attractor

with a high gain is activated to stop the movement in its

current position (in Eq. 7) while the dynamics is slowed



(a) Amplitude/Target

0 1 2 3 4
0

5

10

15

20

25

30

35

Time [s] 

P
o
s
it
o
n
 [
d
e
g
]

(b) Feedback

120 130 140 150 160
−5

0

5

10

15

20

25

30

35

40

Time [s]

P
o
s
it
io

n
 [
D

e
g
]

(c) Frequency

0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

40

Time [s]

P
o
s
it
io

n
 [
D

e
g
]

(d) Phase

Fig. 4. Drumming trajectories. 4(a) Up: Generator. Trajectories generated
by the generator for one arm obtained with iCub when drumming. Plain
lines are desired trajectories and dotted lines are the actual trajectories.
Bottom: Manager. Corresponding parameters sent by the manager to the
generator: the amplitude (plain line), the frequency(dash-dot line) and the
target position in radians (dotted line). 4(b) Feedback. Typical trajectories
obtained with the feedback enabled; here the robot is tricked, i.e. it is
playing without touching any drums, but a user hits the drum at t≈1.3,
2.2 and 2.8 (vertical dash-dot lines) to stop the arm (see [21] for a movie).
4(c) Frequency. The left leg (plain line) and the right leg (dash line) are in
anti-phase. This phase shift remains constant even when frequency (ω) of
the system is modified (at 130s and 155s, vertical dash line). Moreover, the
convergence to the new frequency in less than a cycle.4(d) Phase. The left
and the right legs (resp. plain and dash lines) are in phase at the beginning of
the movement. Then at time 9s (vertical dash line) the phase shift (k

iclock,
i = 1, ...,4) of the dofs of the right leg relatively to the clock are set to π.
The trajectory converges in less than a cycle to the desired one.

down (in Eq. 8), i.e. we have the following equations

ẋ = a(mi − r2

i )(xi − yi)− ωsi + αx(x̂i − xi); (7)

ṡ =
a(mi − r2

i ))si + ω(xi − yi)

1 + αy(x̂i − xi)2
(8)

where x̂i is the current desired position of joint i when the

feedback is received.

Results. The implementation of the real iCub has success-

fully shown that the architecture was well-suited to allow

for the online modulation of trajectories subject to time

constraints as well as for the generation of synchronized

movements between the limbs (Fig. 4). See [21] for a movie

of the robot drumming.

On Fig. 4(a), it can be seen that the parameters are

modulated in real time and that those modulations end up in

a smooth adaptation of the generated trajectories. Moreover,

the modifications occurs at specific times corresponding to

the end of a beat thanks to the manager that deals with time

constraints.

On Fig. 4(d) and 4(c), trajectories from the two legs are

shown to illustrate coordination between limbs. It can be seen

that the limb stay synchronized even when the frequency

is changed (Fig. 4(c)). Moreover, when the coordination of

the legs is changed, the transition is fast and the trajectories

remain smooth (Fig. 4(d)).

V. APPLICATION TO CRAWLING AND REACHING

In this application, we want to test the ability of the

architecture to switch between and combine behaviors. Con-

trarily to the drumming task, here behaviors are triggered

by sensory information provided to the manager, i.e. no

planner is involved. We define three tasks (motor programs):

reaching, crawling and reaching while crawling; each of

these tasks is triggered by color marks on the ground, i.e.

a red mark on the ground launches reaching, a blue mark

reaching while crawling and no mark crawling. No visual

processing is considered here; the position and color of the

mark are directly provided to the manager. The robot crawls

in an environment where it has to switch between those

three behaviors according to marks arbitrarily placed on the

ground. Combinations of crawling and reaching have been

tested in simulation using the ODE-based software WebotsTM.

Fig. 5. Snapshots of the three behaviors with feedback. Upper line: Only
crawling (Col.1-4); middle line: Reaching (Col.3) while crawling (Col.1-
4); bottom line: iCub crawls (Col.1), stops (Col.2) and reaches the mark
(Col.3). Then after having touched the mark for a second, it resumes to
crawling (Col.4).

Each behavior is simply triggered through the specification

of the amplitudes ~m and the offsets ~g by the manager (~ω is

fixed).

Feedback integration. A phase dependent sensory feed-

back is also included in the rhythmic PG to make the crawl-

ing locomotion more robust and adaptive to the environment.

Information from the load sensors located on the hands and

knees of the robot is used to modulate the onset of the swing

and stance phases, as mammals do [22]. Depending on the

values of the sensors and of the phase of the limb, the term

ui of Eq. 5 is defined as

ui =







−sign(yi)F fast transitions
−ωxi −

∑

kijyj stop transition
0 otherwise

(9)

where F controls the speed of the transition. The feedback

term modifies the phase plan of the oscillator according to

the following rule: the transition from stance to swing phases



is delayed as long as the other limbs cannot support the

body weight (using the feedback term for fast transition) and

is triggered sooner when the limb leaves unexpectedly the

ground (using the feedback term to stop the transition). An

analogous policy is used for the swing to stance transition.

More details can be found in [14].

Results. Results obtained in simulation have shown that

the architecture allows for smooth transitions between motor

behaviors; in both reaching while crawling and reaching, the

trajectory smoothly resumes to crawling after the mark has

been reached. Fig. 5 shows some snapshots of the three tasks;

for the corresponding movies, see [23].

0 2 4 6 8 10
70

80

90

100

110

120

130

P
o

s
it
io

n
 [

d
e

g
]

Time [s]

(a) Reaching

0 2 4 6 8 10
40

50

60

70

80

90

100

110
P

o
s
it
io

n
 [

d
e

g
]

Time [s]

(b) Reaching while Crawling

Fig. 6. Trajectories of the shoulder flexion/extension joint of the left arm
(plain line) and the corresponding parameter g (dashed line). 6(a) Reaching.
The crawling behavior is stopped (m is turned to a negative value) and
the robot reaches the mark (at t ≈ 3.5s). Then the trajectories resume
to crawling (m>0) after the mark has been touched for one second. 6(b)
Reaching while crawling. The robot reaches the mark while crawling (at
t ≈ 3s). The discrete UG modifies the offset so that the feet is on the mark
at the beginning of the stance.

For reaching only, the robot being stable enough on three

limbs, it always achieves to touch reachable marks without

falling and to resume to the final position of the motor

programs. However, constraints due to contacts with ground

of the reaching arm need to be taken in account in the future.

For reaching while crawling, it is difficult to make a

rigorous direct comparison between the performance with

and without feedback as the step length and thus the relative

position of the mark is different in the two situations. In both

situations, the robot falls for certain positions of the marks,

although it seems more successful with the feedback (see

[23]); we are currently working on adding control of balance

and posture at the manager level to avoid such situations.

VI. CONCLUSION

We have presented here a three-layer architecture suitable

for the generation of various motor tasks, as interactive

drumming, reaching and crawling for instance. It has been

shown that it allows for the online specification of a given

motor task as well as for the switch between motor tasks.

Moreover, the distributed nature of the architecture makes it

well suited for its integration on real robot, as shown with

the iCub.

Different improvements of the architecture are planned in

the future, among which the integration of several feedback

signals (both at the generator and at the manager level)

and the integration of constraints such as balance and self

collision avoidance in the manager, and joint limits in the

generator.

REFERENCES

[1] N.G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A.J. Ijspeert, M.C. Carrozza, and D.G.
Caldwell. iCub - The Design and Realization of an Open Humanoid
Platform for Cognitive and Neuroscience Research. Journal of

Advanced Robotics, Special Issue on Robotic platforms for Research

in Neuroscience, 21(10):1151–1175, October 2007.
[2] Giulio Sandini, Giorgio Metta, and David Vernon. The cub cogni-

tive humanoid robot: An open-system research platform for enactive
cognition. In 50 Years of Artificial Intelligence, pages 358–369, 2006.

[3] S. Grillner. Biological pattern generation: The cellular and computa-
tional logic of networks in motion. Neuron, 52(5):751–766, December
2006.

[4] A. J. Ijspeert. Central pattern generators for locomotion control in
animals and robots: a review. Neural Networks, 21(4):642–653, 2008.

[5] S. Schaal, S. Kotosaka, and D. Sternad. Nonlinear dynamical systems
as movement primitives. In International Conference on Humanoid
Robotics (Humanoids00), pages 117–124. Springer, 2000.

[6] M. Kawato. Learning internal models of the motor apparatus. In
SP Wise JR Bloedel, TJ Ebner, editor, The Acquistion of Motor

Behavior in Vertebrates, pages 409–430. Cambridge MA: MIT Press,
1996.

[7] J. Tani, Y. Ito, and Y. Sugita. Self-organization of distributedly
represented multiple behavior schemata in a mirror system: reviews
of robot experiments using rnnpb. Neural Networks, 17:1273–1289,
2004.

[8] A.J. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic move-
ments by demonstration using nonlinear oscillators. In Proceedings
of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems

(IROS2002), pages 958–963, 2002.
[9] G. Schöner and M. Dose. A dynamical systems approach to task-

level system integration used to plan and control autonomous vehicle
motion. Robotics and Autonomous Systems, 10(4):253–267, 1992.

[10] M. Hersch and A. Billard. Reaching with Multi-Referential Dynamical
Systems. Autonomous Robots, 25(1-2):71–83, 2008.

[11] O. Michel. Webots tm: Professional mobile robot simulation. Inter-

national Journal of Advanced Robotic System, 1:39–42, 2004.
[12] S. Degallier, C. P. Santos, L. Righetti, and A. Ijspeert. Movement

generation using dynamical systems: a humanoid robot performing a
drumming task. In IEEE-RAS Inter. Conf. on Humanoid Robots, pages
512–517, 2006.

[13] S. Degallier, L. Righetti, and A. Ijspeert. Hand placement during
quadruped locomotion in a humanoid robot: A dynamical system
approach. In IEEE-RAS International Conference on Intelligent Robots
and Systems (IROS07), 2007.

[14] L. Righetti and A.J. Ijspeert. Pattern generators with sensory feedback
for the control of quadruped locomotion. In Proceedings of the 2008

IEEE International Conference on Robotics and Automation (ICRA

2008), pages 819–824, May 2008.
[15] D. Bullock and S. Grossberg. The VITE model: a neural command

circuit for generating arm and articulator trajectories. In J. Kelso,
A. Mandell, and M. Shlesinger, editors, Dynamic patterns in complex

systems, pages 206–305. Singapore: World Scientific, 1988.
[16] L. Righetti and A.J. Ijspeert. Design methodologies for central pattern

generators: an application to crawling humanoids. In Proceedings of

Robotics: Science and Systems, Philadelphia, USA, August 2006.
[17] M. Golubitsky, I. Stewart, and A. Torok. Patterns of synchrony in

coupled cell networks with multiple arrows. SIAM J. Appl. Dynam.

Sys., 4(1):78–100, 2005.
[18] C.D. Marsden, P.A. Merton, and H. Morton. The use of peripheral

feedback in the control of movements. Trends Neurosci., 7:253–258,
1984.

[19] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-
lived robot genes. Robot. Auton. Syst., 56(1):29–45, 2008.

[20] M. Williamson. Robot Arm Control Exploiting Natural Dynamics.
PhD thesis, MIT Department of Electrical Engineering and Computer
Science, 1999.

[21] Movie of Drumming. http://birg2.epfl.ch/users/
degallier/movies_BioRob/icubdrum.mpg.

[22] S. Frigon and S. Rossignol. Experiments and models of sensorimotor
interactions during locomotion. Biological Cybernetics, 95(6):607–
627, 2006.

[23] Movie of Crawling and Reaching. http://birg2.epfl.ch/
users/degallier/movies_BioRob/crawl.avi.


