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SUMMARY

This paper presents a data-driven controller tuning method that includes a set of constraints for
ensuring closed-loop stability. The approach requires a single experiment and can also be applied to
nonminimum-phase and unstable systems. The tuning scheme generates an estimate of the closed-
loop output error that is used to minimize an approximation of the model reference control problem.
The correlation approach is used to deal with the influence of measurement noise. For linearly
parameterized controllers, this leads to a convex optimization problem. A sufficient condition for
closed-loop stability is introduced, which can be included in the optimization problem for control
design. As the data length tends to infinity, closed-loop stability is guaranteed. The quality of the
estimated controller is analyzed for finite data length. The effectiveness of the proposed method
is demonstrated in simulation as well as experimentally on a laboratory-scale mechanical setup.
Copyright c© 200 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider the control problem with the performance specifications given in terms of a reference
model. The objective is to design a controller such that the closed-loop system resembles the
reference model. The standard model-based solution to this problem requires identification of a
plant model, which is then used to compute the controller that minimizes the error between the
closed-loop system and the reference model. This approach thus uses two optimizations, one in
the identification step and a second one in the controller design. Furthermore, a controller-order
reduction step might be needed before implementation.
In recent years, several data-driven techniques have been proposed as an alternative to these

model-based approaches [1, 2, 3, 4]. In a data-driven approach, the aforementioned steps of
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controller design are lumped together, resulting in a direct “data-to-controller” algorithm that
uses a single optimization. Compared to a model-based approach, the optimization in the
plant identification step is omitted and the problem of undermodeling of the plant is avoided.
Furthermore, the designed controller does not depend on the structure of the model. The order
of the resulting controller can be fixed, in contrast to some model-based methods, where the
controller order is related to the model order.
A data-driven approach to the model reference problem leads in general to a non-convex

optimization problem. In Iterative Feedback Tuning (IFT) [1] and Iterative Correlation-based
Tuning (ICbT) [3], a gradient approach is used to find a (local) optimum of the control
objective. At each iteration, an experiment is used to evaluate the criterion or estimate
the gradient, thus leading to an iterative scheme. The unfalsified control concept [5] allows
evaluation of a closed-loop error with a single experiment. However, this error corresponds to
a virtual reference signal, whose spectrum depends on the controller and the unknown plant.
Consequently, this approach cannot be used to minimize a general 2-norm control criterion.
The concept of virtual reference controller design as introduced in [6] can be used to minimize

an approximation of the model reference criterion, for which the global minimum can be
found using a non-iterative scheme. An extension to this original method with an appropriate
weighting for fixed-order controllers is named Virtual Reference Feedback Tuning (VRFT) [4].
The method is developed for noise-free measurements. When the data is corrupted with noise,
this scheme leads to a specific identification problem, for which the well-known prediction-error
methods are not consistent [7]. For noisy measurements, the use of a second experiment has
been proposed, which is statistically inefficient. Note that VRFT has also been extended to 2
degree-of-freedom controllers [8] and to nonlinear plants [9]. This paper presents a non-iterative
controller-tuning scheme that uses the correlation approach to deal with the measurement
noise.
One of the main difficulties of data-driven approaches regards the stability of the closed-loop

plant. In model-based approaches, the model of the plant can be used to analyze whether the
controller is suitable, before actual implementation. In a data-driven method, since no model is
available, stability is typically not guaranteed before implementation of the controller. Several
a posteriori tests to verify closed-loop stability have been proposed, e.g. [10, 11, 12], where
stability is verified after controller computation and before actual implementation. This paper
presents the first known attempt to incorporate a stability condition in data-driven controller
design. The stability condition is implemented as a set of convex constraints that can be added
to any data-driven controller tuning scheme for linearly parametrized controllers. In this paper
the stability condition is added to a non-iterative scheme based on the correlation approach,
labeled Correlation-based Tuning with Guaranteed Stability, CbT-GS.
The stability condition is formulated in terms of the H∞-norm of a particular error function.

The constraint is implemented using the discrete Fourier transform (DFT) of auto- and cross-
correlation functions. This leads to a convex optimization problem whose solution is consistent.
Furthermore, the computational load with this DFT estimate is small, compared to methods
that use Toeplitz matrices to estimate the H∞-norm [13, 14, 2]. Consequently, problems with
much larger data size can be handled [15].
The proposed data-driven controller tuning method is applicable to stable, unstable as well

as nonminimum-phase plants. It guarantees a stabilizing solution as the number of data tends
to infinity. In practice, only a finite number of data can be used, and the results depend
strongly on the quality of the estimates, which is determined by the excitation signal used in
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the experiment. The method is developed for non-periodic signals and the implementation for
periodic data is summarized. Indications on how to choose the design parameters follow from
analysis of the estimates based on a finite number of data.
The paper is organized as follows. In Section 2, a constrained approximate model reference

problem is presented, that guarantees a stabilizing solution. Section 3 describes a data-driven
solution to this problem. For stable systems, an open-loop tuning scheme is presented; for
unstable or nonminimum-phase systems, a closed-loop scheme is proposed. In Section 4,
implementation using the correlation approach is developed. The simulation example in Section
5 shows the performance of CbT-GS. Using the same example, the effectiveness of adding
the stability constraints is demonstrated with regard to VRFT. Section 5 also illustrates
the application of CbT-GS to a laboratory-scale torsional plant. Conclusions are provided
in Section 6.

2. MODEL REFERENCE CONTROL WITH GUARANTEED STABILITY

2.1. Model reference control problem

Consider the unknown linear SISO plant G(q−1), where q−1 denotes the backward shift
operator. Specifications for the controlled plant are given as a stable strictly proper reference
model M(q−1). The objective is to design a linear, fixed-order controller K(q−1, ρ), with
parameters ρ, for which the controlled plant resembles the reference model M(q−1).
This can be achieved by minimizing the two-norm of the difference between the reference

model and the achieved closed-loop system:

Jmr(ρ) =

∥

∥

∥

∥

F

[

M − K(ρ)G

1 +K(ρ)G

]∥

∥

∥

∥

2

2

(1)

with F a user defined weighting filter. Note that the objective is to design a fixed-order
controller and that Jmr(ρ) = 0 can in general not be achieved.
The model reference criterion (1) is non-convex with respect to the controller parameters ρ.

An approximation that is convex for linearly parameterized controllers can be defined using
the reference model M as illustrated next. M can be represented as:

M =
K∗G

1 +K∗G
. (2)

The backward shift operator is omitted here and will be omitted in the sequel. K∗ is the ideal
controller, which is defined indirectly by G and M :

K∗ =
M

G(1−M)
. (3)

This controller K∗ exists since M is strictly proper, i.e. M 6= 1. K∗ might be of very high
order since it depends on the unknown and possibly high-order plant G. Furthermore, it might
not stabilize the plant internally and it might be non-causal. Note, however, that the unknown
ideal controller will only be used for analysis and the results will be valid also for a non-
causal K∗. Furthermore, since M is strictly proper, K∗G = M(1−M)−1 is causal. The ideal
sensitivity function is then given by

1

1 +K∗G
= 1−M. (4)
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Using (2), the model reference criterion (1) can be expressed as:

Jmr(ρ) =

∥

∥

∥

∥

F

[

K∗G−K(ρ)G

(1 +K∗G)(1 +K(ρ)G)

]∥

∥

∥

∥

2

2

(5)

Approximation of 1
1+K(ρ)G by the ideal sensitivity function (4) leads to the following

approximation of the model reference criterion:

J(ρ) =

∥

∥

∥

∥

F

[

K∗G−K(ρ)G

(1 +K∗G)2

]∥

∥

∥

∥

2

2

=
∥

∥

∥
F (1 −M)[M −K(ρ)(1−M)G]

∥

∥

∥

2

2
. (6)

For a linearly parameterized K(ρ), this approximation is convex with respect to ρ. The
approximation is good if the difference between K(ρ) and the ideal controller K∗ can be
made small. This approximation has been used in model reduction and controller reduction,
see [16] for an overview. A similar approximation in the H∞ framework is for example used in
[17], an H2 example can be found in [18]. The approximation has also been used in data-driven
controller tuning [4]. The quality of the approximation is discussed in [4].
The controller that minimizes J(ρ) is denoted byK(ρ0) and will be referred to as the optimal

controller. Note that, if the ideal controller K∗ is in the set of controllers given by K(ρ), the
optimal K(ρ0) is given by K(ρ∗) = K∗, i.e. ρ0 = ρ∗. In this case, the frequency weighting does
not affect the result since K(ρ∗)G(1−M) = M and therefore both J(ρ∗) = 0 and Jmr(ρ

∗) = 0;
the approximate model reference criterion J(ρ) and Jmr(ρ) have the same optimum, ρ∗.

2.2. Stability constraint

There is no guarantee that a controller determined by minimizing J(ρ) actually stabilizes
the plant. Instability can occur if the reference model is chosen inappropriately or if the
measurements are strongly affected by noise. The ideal controller K∗ is defined indirectly from
G and M as shown in (3). Whether K∗ stabilizes the plant depends on both the plant G and
the choice of reference model M . If the plant is nonminimum phase, internal stability can only
be guaranteed when M contains the unstable zeros of G. This clearly makes the choice of an
appropriate M difficult in a data-driven approach.
Even if the ideal controller K∗ stabilizes the plant, this is not necessarily the case for the

optimal controller K(ρ0) (see [19] for an example where K∗ was not in the controller set).
Furthermore, if the optimal controller K(ρ0) stabilizes the plant, an estimate of K(ρ0) based
on noisy data might not be stabilizing. In the following, a sufficient condition that guarantees
stability of the resulting closed-loop system is proposed. It will be shown in Section 4 that
an estimate of this condition leads to a set of convex constraints that can be added to any
data-driven controller tuning scheme for linearly parametrized controllers.
Consider a stabilizing controller Ks. The closed-loop plant for this controller is given by:

Ms =
KsG

1 +KsG
. (7)

The closed-loop system with controller K(ρ) can be represented as illustrated in Fig. 1. In
the following, stability is defined as having all poles within the open unit circle. Define

∆(ρ) :=Ms −K(ρ)G (1−Ms)

δ(ρ) :=‖∆(ρ)‖∞.
(8)
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Figure 1. Closed-loop system with controller K(ρ) and explicit representation of the controller error
K(ρ)−Ks

Theorem 1. The controller K(ρ) stabilizes the plant G if

1. ∆(ρ) is stable
2. ∃δN ∈ ]0, 1[ such that δ(ρ) 6 δN

Proof: If Condition 1 is satisfied, all transfer functions of the loop opened at q are stable, since
Ks stabilizes the plant, i.e. the transfer functions from r(t), v(t) and q(t) to e(t), y(t), u(t)
and q(t) are stable (see Fig. 1.). The sufficient condition for stability of the closed-loop
interconnection follows from the small-gain theorem [20] : the interconnection is stable if

∥

∥

∥

∥

−(K(ρ)−Ks)G

1 +KsG

∥

∥

∥

∥

∞

< 1. (9)

This is the H∞-norm of the transfer function from q back to q. Replacing KsG
1+KsG

by Ms and
1

1+KsG
by 1−Ms gives

∥

∥

∥

∥

−(K(ρ)−Ks)G

1 +KsG

∥

∥

∥

∥

∞

= δ(ρ).

�

Theorem 1 thus follows from the small-gain theorem. Similar conditions for stability have
been used for controller reduction (see for example [21], p. 491). If Condition 1 is satisfied,
Condition 2 is sufficient for closed-loop stability of the feedback system of K(ρ) and G.
Condition 1 can easily be enforced for different controllers. A few examples are given next:

• If K(ρ) is stable, Condition 1 is satisfied since Ks stabilizes the plant. Consequently
∆(ρ) is stable.

• If K(ρ) contains an integrator, Condition 1 is satisfied if G(1 −Ms) contains a zero at
1. This is for example satisfied if Ks contains an integrator.

If Condition 1 is satisfied, the sufficient Condition 2 can be used to guarantee a stabilizing
solution to the model reference problem of Section 2.1. This leads to the following optimization
problem:

ρs = arg min
ρ∈DK

J(ρ)

subject to δ(ρ) 6 δN
(10)
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The optimal solution ρs defines a stabilizing controller and will be referred to as the stabilizing
optimum. In the following, a data-driven approach for solving (10) is presented.
Remark: In practice, only an estimate of δ(ρ) will be available. Regardless of whether this

estimate is based on a model of the plant G or estimated directly from data as proposed in this
paper, it will be uncertain. In order to guarantee stability in practice, the estimation errors
will have to be taken into account through the choice of δN .

3. DATA-DRIVEN CONTROLLER TUNING SCHEME

Let the controller be linearly parametrized

K(q−1, ρ) = βT (q−1)ρ, ρ ∈ DK (11)

where the set DK is compact and β(q−1) is a vector of stable linear discrete-time transfer
operators:

β(q−1) = [β1(q
−1), β2(q

−1), . . . , βnρ
(q−1)]T . (12)

With this structure of K(ρ), the approximate model reference criterion J(ρ) is convex in the
controller parameters ρ. Using a data-driven controller tuning scheme, the global optimum
of this criterion can be found using only one set of measured data. For stable minimum-
phase systems, one open-loop experiment is sufficient (Section 3.1). For nonminimum-phase
or unstable systems, one closed-loop experiment is needed (Section 3.2).

3.1. Tuning scheme for stable minimum-phase plants

Theorem 1 is based on the small-gain theorem and requires the closed-loop system Ms to be
internally stable. For stable minimum-phase plants, any stable reference model M defines an
ideal controller K∗ (3) that internally stabilizes the system. The reference model can therefore
be used to define sufficient conditions for stability.

Lemma 1. Let Ms be given by M . The controller K(ρ) stabilizes the stable minimum-phase
plant G if ∆(ρ) = Ms−K(ρ)G(1−Ms) = M −K(ρ)G(1−M) is stable and ∃δN ∈ ]0, 1[ such
that

δ(ρ) = ‖Ms −K(ρ)(1−Ms)G‖∞ = ‖M −K(ρ)(1−M)G‖∞ 6 δN (13)

Proof: Follows from Theorem 1 upon replacing Ks by the stabilizing ideal controller K∗. �

Remark: K∗ given in (3) might be non-causal, but K∗G is always causal. The small-
gain theorem requires causality because algebraic loops will occur for non-causal functions.
However, since K∗G is always causal, no algebraic loop occurs in the interconnection of Fig.
1 and Theorem 1 remains valid.
Condition (13) leads to the following optimization problem:

ρs = arg min
ρ∈DK

J(ρ)

subject to

‖M −K(ρ)(1 −M)G‖∞ 6 δN

(14)

Remark: Condition (13) is sufficient but not necessary and therefore conservative. The
optimal controllerK(ρ0) that minimizes J(ρ) might stabilize the system but not meet condition
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K(ρ)G 1−M

open-loop experiment

f

f- -- - 6

M-

?-

?

r(t) ε(t, ρ)

y(t)

v(t)
+

-
+

Figure 2. Tuning scheme for the model reference control problem using a single open-loop experiment

(13). However, this indicates that the distance between K(ρ) and K∗ cannot be made small.
In this case, the approximate model reference criterion (6) is not a good approximation of (1).

If K(ρ) is stable, ∆(ρ) is stable by definition and K(ρs) is guaranteed to stabilize the plant.
If the plant G or the controller K(ρ) contains one or several integrators, the above scheme
remains applicable provided the reference model is chosen with care. Let ni be the number of
integrators in the loop function KG. It is then easily verified that K∗ stabilizes G, and ∆(ρ)
is stable if 1 − M has nz > ni zeros at 1. The reference model M needs to be chosen such
that this condition is satisfied. Note that, if ni = 1, all reference models with unity static gain
satisfy this condition.
In a data-driven approach, the error ε(t, ρ) given by the tuning scheme of Fig. 2 can be used

to compute the optimal controller. ε(t, ρ) can be expressed in terms of the exogenous signals
r(t) and v(t) as follows:

ε(t, ρ) = Mr(t) −K(ρ)(1−M)y(t) =
[

M −K(ρ)(1 −M)G
]

r(t) −K(ρ)(1−M)v(t) (15)

In the resulting parameter estimation problem, the input to the function to be identified,
K(ρ), is affected by noise, in contrast to classical identification problems where its output
is affected by noise. For this particular identification problem, prediction-error methods are
inconsistent. The correlation approach will be used to reduce the effect of noise on the estimated
controller parameters. This approach is applicable to deterministic as well as stochastic
reference signals, both non-periodic and periodic.
Note that the transfer function between r(t) and ε(t, ρ) is equal to the transfer function

defining δ(ρ) in (13). Hence, the available signals r(t) and ε(t, ρ) can also be used to estimate
δ(ρ). It will be shown that a spectral estimate leads to a set of convex constraints on the
controller parameters ρ.

3.2. Tuning scheme for nonminimum-phase or unstable plants

For nonminimum-phase or unstable plants, an arbitrary reference model M does not define a
stabilizing ideal controllerK∗. For such plants, Lemma 1 is not applicable, and the optimization
problem (10) needs to be used instead of (14). In (10), the control criterion J(ρ) is defined
using the (arbitrary) reference model M , whereas the constraint for stability uses Ms. If a
stabilizing controller Ks is available, the closed-loop interconnection of G and Ks represents
Ms given in (7). In order to estimate δ(ρ), a set of input-output data of the transfer function
Ms −K(ρ)(1 −Ms)G is sufficient.
Data from an experiment on the plant controlled by a stabilizing controller Ks is assumed

available. Note that Ks and Ms might be unknown. Consider the tuning scheme shown in Fig.
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Figure 3. Tuning scheme for model reference control problem using one closed-loop experiment

3. The excitation signal is applied directly to the input of the plant. The data set consists of
the exogenous excitation signal r(t), the output of the controller u1(t), the resulting input to
the plant u2(t) = u1(t) + r(t), and the output of the controlled plant y(t). The error ε(t, ρ),
which reads

ε(t, ρ) = Mu2(t)−K(ρ)(1 −M)y(t), (16)

can be used to compute the optimal controller. Again, prediction-error methods are
inconsistent. As for the open-loop scheme, the correlation approach will be used to reduce
the effect of noise on the estimated controller parameters.
A second error signal εs(t, ρ), which will be used in the stability constraint, is defined as:

εs(t, ρ) = −u1(t)−K(ρ)y(t) =
(

Ms −K(ρ)(1 −Ms)G
)

r(t) + (Ks −K(ρ))(1−Ms)v(t) (17)

The transfer function between r(t) and εs(t, ρ) is equal to the transfer function defining δ(ρ)
in (8). Hence, the signals available from the scheme of Fig. 3 can be used to estimate δ(ρ).
Remarks:

• In the case of stable minimum-phase plants, violation of condition (13) indicates that the
model reference criterion was inappropriate. This is no longer the case for the closed-loop
scheme of Fig. 3, where violation of Condition 2 of Theorem 1 simply implies that closed-
loop stability cannot be guaranteed, because the distance between the controller K(ρ)
and the stabilizing controller Ks is not small. This result agrees with ideas from iterative
identification and control, e.g. [22, 23]. In [23], the term “safe controller changes” is used
to denote an acceptable controller change that ensures a stability margin. The idea is
that, by limiting the change in the controller, one can also limit the degradation that
can occur in the actual closed-loop system.

• A test that uses experimental closed-loop data to verify whether a controller stabilizes the
plant is proposed in [10]. The method uses coprime factorization and can handle unstable
systems as well as unstable controllers. In the specific case of a stable controller, the
experiment proposed in [10] corresponds to the scheme of Fig. 3. The transfer function
considered in our stability criterion is the same as the transfer function considered in
the stability test in [10]. However, the stability tests are different. In [10], both phase
and amplitude are taken into account. The Nyquist stability criterion then leads to a
non-conservative test, which corresponds to verifying whether Ms − K(ρ)(1 − Ms)G
does not encircle the point −1 in the complex plane. A frequency-domain model of
Ms −K(ρ)(1 − Ms)G is identified and used for verification. In this work, the stability
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criterion uses the small-gain theorem, which leads to a conservative result. However,
the resulting H∞-norm constraint is convex and can be added to a convex controller
optimization. The non-conservative test using both amplitude and phase information
would lead to non-convex constraints.

4. IMPLEMENTATION USING THE CORRELATION APPROACH

Implementation of the tuning scheme for stable minimum-phase systems is discussed first. The
case of unstable or minimum-phase systems is similar and will be addressed briefly in Section
4.2.
The ideal controller K(ρ∗) achieves M = K(ρ∗)G(1−M). As a result, the error signal (15)

becomes filtered noise:

ε(t, ρ∗) = −K(ρ∗)(1 −M)v(t) (18)

Since v(t) is not correlated with the reference r(t), the ideal error ε(t, ρ∗) will not be correlated
with r(t) either. Hence, the objective is to tune the controller parameters ρ such that ε(t, ρ)
and r(t) become uncorrelated.

4.1. Implementation for stable minimum-phase plants

Let the plant G be excited by r(t) as illustrated in Fig. 2. The output of the plant is affected
by noise, y(t) = Gr(t) + v(t). The signals r(t) and y(t) of length N are available. We assume
the following:

A1 The reference signal is quasi-stationary, i.e.

Rr(τ) = lim
N→∞

1

N

N
∑

t=1

r(t− τ)r(t)

exists for all τ

A2 The spectrum of the reference signal r(t) satisfies Φr(ω) > 0, ∀ω, where

Φr(ω) =

∞
∑

τ=−∞

Rr(τ)e
−jτω

and the infinite sum exists.

A3 The noise v(t) can be represented as v(t) = H(q−1)e(t), where e(t) is a zero-mean white
noise signal with variance σ2 and bounded fourth moments. H(q−1) is stable.

A4 The noise is not correlated with the input, i.e.

Rrv(τ) = lim
N→∞

1

N

N
∑

t=1

E {r(t− τ)v(t)} = 0 (19)

for all τ .
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Assumption A1 includes deterministic as well as stochastic signals, i.e. r(t) can be a
realization of a stochastic process. r(t) is non-periodic under assumption A2.
The error ε(t, ρ) is calculated according to the tuning scheme of Fig. 2 and is given by (15).

The vector of instrumental variables ζ(t), correlated with r(t) and uncorrelated with v(t), is
defined as:

ζ(t) = [rW (t+ l1), rW (t+ l1 − 1), . . . rW (t), rW (t− 1), . . . , rW (t− l1)]
T (20)

where l1 is a sufficiently large integer and rW (t) is the filtered reference signal rW (t) =
W (q−1)r(t). The correlation function is defined as

fN,l1(ρ) =
1

N

N
∑

t=1

ζ(t)ε(t, ρ) (21)

and the correlation criterion JN,l1(ρ) as

JN,l1(ρ) = fT
N,l1(ρ)fN,l1(ρ). (22)

The H∞-norm δ(ρ) can be estimated using spectral estimates. The power spectrum of the
reference signal r(t) can be estimated for ωk = 2πk/(2l2 + 1), where k = 0, . . . , l2 + 1:

Φ̂r(ωk) =

l2
∑

τ=−l2

R̂r(τ)e
−jτωk ,

and R̂r(τ) is an estimate of the auto-correlation Rr(τ) of r(t):

R̂r(τ) =
1

N

N
∑

t=1

r(t− τ)r(t), for τ = −l2, . . . , l2, (23)

where l2 defines the length of the rectangular window. The cross-spectrum between r(t) and
ε(t, ρ) can be estimated as

Φ̂rε(ωk, ρ) =

l2
∑

τ=−l2

R̂rε(τ, ρ)e
−jτωk ,

using an estimate of the cross-correlation Rrε(τ, ρ):

R̂rε(τ, ρ) =
1

N

N
∑

t=1

r(t − τ)ε(t, ρ), τ = −l2, . . . , l2.

An estimate of δ(ρ) based on these cross-spectra is given by:

δ̂(ρ) = max
ωk

∣

∣

∣

∣

∣

Φ̂rε(ωk, ρ)

Φ̂r(ωk)

∣

∣

∣

∣

∣

(24)

Note that a rectangular window is applied here, other windows can be used. Using the controller
parameterization (11), Φ̂rε(ωk, ρ) can be expressed as a linear combination of the controller
parameters:

Φ̂rε(ωk, ρ) =
1

N

l2
∑

τ=−l2

N
∑

t=1

[

r(t− τ)Mr(t)e−jτωk − r(t− τ)βT (1−M)y(t)e−jτωkρ
]

(25)
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10 K. VAN HEUSDEN, A. KARIMI, D. BONVIN.

The estimate (24) can be used to define a set of convex constraints such that δ̂(ρ) 6 δN . With
these constraints (14) gives the following convex optimization problem:

ρ̂ = arg min
ρ∈DK

JN,l1(ρ)

subject to
∣

∣

∣

∣

l2
∑

τ=−l2

R̂rε(τ, ρ)e
−jτωk

∣

∣

∣

∣

6 δN

∣

∣

∣

∣

l2
∑

τ=−l2

R̂r(τ)e
−jτωk

∣

∣

∣

∣

,

ωk =2πk/(2l2 + 1), k = 0, . . . , l2 + 1

(26)

This problem can be solved for up to several thousand constraints and the solution is the
global optimum.

Theorem 2. Consider the controller structure defined in (11). Let the filter W be defined as:

W (e−jω) =
F (e−jω)(1−M(e−jω))

Φr(ω)
(27)

This filter might be non-causal. Assume that A1-A4 are satisfied, that W and (1−M)G have
no zero on the imaginary axis and that a strictly feasible solution exists for (26), for the series
of optimization problems as N, l1, l2 → ∞ as well as for (14). Then, as N, l1, l2 → ∞ and
l1/N, l2/N → 0, the optimizer ρ̂ in (26) converges w.p.1 to the stabilizing optimizer of J(ρ)
defined in (14):

lim
N,l1,l2→∞,l1/N,l2/N→0

ρ̂ = ρs, (28)

Proof: The proof is given in Appendix I. �

4.2. Implementation for nonminimum-phase or unstable systems

Let the unstable or minimum-phase plant G be excited by r(t) in closed loop according to the
scheme of Fig. 3. The output of the plant is affected by the noise v(t). The discrete signals
r(t), y(t), u1(t) and u2(t) of length N are available. The error ε(t, ρ) is given by (16). The
error signal εs(t, ρ) used in the stability constraints is given by (17). Optimization problem
(10) can be approximated by the following convex optimization problem:

ρ̂ = arg min
ρ∈DK

JN,l1(ρ)

subject to
∣

∣

∣

∣

l2
∑

τ=−l2

R̂rεs(τ, ρ)e
−jτωk

∣

∣

∣

∣

6 δN

∣

∣

∣

∣

l2
∑

τ=−l2

R̂r(τ)e
−jτωk

∣

∣

∣

∣

(29)

where R̂r(τ) is defined in (23) and R̂rεs(τ, ρ) is given by:

R̂rεs(τ, ρ) =
1

N

N
∑

t=1

r(t− τ)εs(t, ρ), τ = −l2, . . . , l2.
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Theorem 3. Consider the controller structure defined in (11). Let the filter W be defined as:

W (e−jω) =
F (e−jω)(1−M(e−jω))
(

1−Ms(e−jω)
)

Φr(ω)
(30)

Assume that A1-A4 are satisfied, that W and (1 − M)G/(1 + KsG) has no zero on the
imaginary axis and that a strictly feasible solution exists for (29), for the series of optimization
problems as N, l1, l2 → ∞ as well as for (10). Then, as N, l1, l2 → ∞ and l1/N, l2/N → 0, the
optimizer ρ̂ in (29) converges w.p.1 to the stabilizing optimizer J(ρ) as defined in (10):

lim
N,l1,l2→∞,l1/N,l2/N→0

ρ̂ = ρs (31)

Proof: The proof is given in Appendix II �

Remark: The filter W depends on the unknown plant G and thus cannot be implemented.
However,

(

1−Ms(e
−jω)

)

Φr(ω) =
1

1 +Ks(e−jω)G(e−jω)
Φr(ω) = Φru2

(ω), (32)

where Φru2
(ω) is the cross-spectrum between r(t) and u2(t), which can be estimated using the

measured data. The weighting filter is then given by:

W (e−jω) =
F (e−jω)(1 −M(e−jω))

Φru2
(ω)

. (33)

4.3. Using a finite number of data

The following analysis is detailed for the scheme for stable minimum-phase plants.
Asymptotically, the data-driven method proposed in Section 4.1 leads to a stabilizing

controller which, according to Theorem 2, solves (14). In practice, only a finite number of
data is available and an approximation of (14) is used. The quality of the approximation of
the control criterion is analyzed next. The quality of the estimate of the stability constraint is
discussed at the end of this section.

Approximating the control criterion

Using assumption A3, the error ε(t, ρ) can be written as:

ε(t, ρ) =
[

M −K(ρ)(1 −M)G
]

r(t) −K(ρ)(1−M)He(t)

= Dr(t) − Le(t) = rD(t)− eL(t) (34)

with obvious definitions for the filters D and L. rD(t) represents the part of the error stemming
from the reference signal r(t), and eL(t) results from the stochastic noise v(t) = He(t). The
correlation function fN,l1(ρ) can be expressed as:

fN,l1(ρ) =
1

N

N
∑

t=1

ζ(t)
[

rD(t)− eL(t)
]

(35)

In the absence of noise, the correlation criterion is given by:

J̃N,l1(ρ) =
1

N2

N
∑

t=1

ζT (t)rD(t)

N
∑

t=1

ζ(t)rD(t) =

l1
∑

τ=−l1

R̂2
rW rD (τ) (36)
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12 K. VAN HEUSDEN, A. KARIMI, D. BONVIN.

where R̂2
rW rD (τ) is an estimate of the cross-correlation between rW (t) and rD(t). The length of

ζ(t) defines the size of the rectangular window. The expected value of the correlation criterion
JN,l1(ρ) based on a finite number of data can then be expressed as:

E {JN,l1(ρ)} ≈ J̃N,l1(ρ) +
σ2(2l1 + 1)

2πN

∫ π

−π

|1−M |4|K(ρ)|2|H |2|F |2
Φr(ω)

dω, (37)

where the expected value is taken with respect to the noise e(t). Consequently, the minimizer
ρ̂ of JN,l1(ρ) based on a finite number of data is biased. In Appendix III it is shown how (37)
is derived.
Asymptotically, J̃N,l1(ρ) converges to J(ρ) and the second term becomes zero, thus

corresponding to the result of Theorem 2. However, for a finite number of data, the
deterministic J̃N,l1(ρ) leads to a windowed estimate of J(ρ) and the second term adds a bias
to the minimizer of this estimate.
Remarks:

• The controller that minimizes the biased criterion JN,l1(ρ) will have a low gain wherever
|1 − M |2|H ||F | is large. (1 −M) is the sensitivity function of the reference model and
H represents the frequency contents of the noise. Hence, the controller gain is reduced
at frequencies where both the sensitivity and the noise are high. This will in general
increase the robustness of the closed-loop system.

• The controller gain is reduced in the frequency ranges where the input spectrum is weak.
This is an interesting characteristic in the sense that, if the data is not informative in
a frequency region, the controller gain in this region is decreased, which again increases
the robustness of the closed-loop system.

• The bias in JN,l1(ρ) decreases as the number of data N increases. It increases as the
number of lags l1 used in the instrumental variable vector ζ(t) increases.

Practical issues

The choice of l1 determines the quality of the estimate J̃N,l1(ρ). Assume that RrW rD (τ) ≈ 0
for |τ | > τ0, where τ0 is an integer that depends on the length of the impulse response of
W (q−1)D(q) and the length of Rr(τ). In order to find a good estimate of J(ρ), the length l1 of
ζ(t) should be chosen as l1 > τ0. However, (37) states that the bias increases as l1 increases.
With the choice of l1 a trade-off is made between accuracy and bias.

Estimating the stability constraint

According to Theorem 1, δ(ρ) < 1 is sufficient for closed-loop stability. In practice, only

the estimate δ̂(ρ) of δ(ρ) is available and the stability constraint is no longer sufficient. The
reliability of the stability constraint depends on the quality of the estimate. If additional
information regarding the plant and measurement noise is available, bounds on the estimation
error can be used to define an appropriate δN . If no additional assumptions are made, a
decrease of δN will increase the reliability of the stability constraint, but also increase the
conservatism. The reliability of the approach is thus comparable to a model-based approach,
where modeling errors need to be taken into account in order to guarantee stability.

4.4. Implementation using periodic data

It is well known that the quality of spectral estimates can be improved when periodic data
are used. For periodic data, the estimate does not contain leakage errors and has a decreasing
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DATA-DRIVEN CONTROL WITH GUARANTEED STABILITY 13

variance with increasing number of periods [24]. Periodic excitation should therefore be used
whenever possible. The use of periodic data also improves the quality of the correlation
criterion. The trade-off for this improved quality is a limited frequency resolution. Only the
case of stable, minimum-phase systems is summarized here. For periodic data, Assumptions
A1-A2 need to be replaced by:

A5 The reference signal is periodic with period T , i.e. r(t+nT ) = r(t) for any integer n. The
auto-correlation of r(t) is given by

Rr(τ) =
1

T

T
∑

t=1

r(t − τ)r(t), (38)

for τ = 0, . . . , T −1. The signal r(t) includes an integer number of periods, i.e. N = npT ,
with np the number of periods. The corresponding output of the plant is also periodic,
i.e. there are no transients present in the response of the system.

A6 The spectrum of the periodic reference signal r(t) satisfies

Φr(ωk) =

T−1
∑

τ=0

Rr(τ)e
−jτωk 6= 0, ωk = 2πk/T, k = 0, . . . , T − 1 (39)

For the periodic reference signal r(t), the vector of instrumental variables defined in (20) is
also periodic and its length should satisfy l1 6 T/2. The optimization problem (14) can then
be approximated by:

ρ̂ = arg min
ρ∈DK

JN,l1(ρ)

subject to
∣

∣

∣

∣

T−1
∑

τ=0

R̂rε(τ, ρ)e
−jτωk

∣

∣

∣

∣

6 δN

∣

∣

∣

∣

T−1
∑

τ=0

Rr(τ)e
−jτωk

∣

∣

∣

∣

,

ωk = 2πk/T, k = 0, . . . , ⌊(T − 1)/2⌋

(40)

Let the weighting filter W be chosen as

W (e−jωk) =
F (e−jωk)(1 −M(e−jωk))

Φr(ωk)
. (41)

Note that, in the periodic case, W is defined only for the frequencies ωk where the spectrum
Φr(ωk) is nonzero. It then follows from Theorem 2, with assumptions A1-A2 replaced by
A5-A6, that the optimizer of (40) converges to the stabilizing optimizer of J(ρ) defined in
(14):

lim
N,T→∞,T/N→0

ρ̂ = ρs,w.p.1. (42)

Remark: If a parametric representation of Φr(ωk) is available, the filterW can be implemented
in the time domain since F (q−1) and M(q−1) are known. If such a representation is
not available, the exact filter (41) can be applied in the frequency domain. The periodic
instrumental variables ζ(t) can therefore be found without any approximation, which is not
the case for non-periodic reference signals. A bias expression similar to (37) can be found for
the periodic case.
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5. ILLUSTRATIVE EXAMPLES

5.1. Numerical example

Consider the plant given by the discrete-time model G(q−1):

G(q−1) =
0.7893q−3

1− 1.418q−1 + 1.59q−2 − 1.316q−3 + 0.886q−4
,

which corresponds to a stable minimum-phase model of the flexible transmission system
proposed as a benchmark for digital control design in [25]. The control objective is defined by
the reference model

M(q−1) =
q−3(1− α)2

(1 − αq−1)2
,

with α = 0.606. The integral controller

K(ρ) =
ρ0 + ρ1q

−1 + ρ2q
−2 + ρ3q

−3 + ρ4q
−4 + ρ5q

−5

1− q−1

is chosen, with the unknown parameters ρ0, . . . , ρ5. The reference model M has unity static
gain, thus ensuring that 1−M has a zero at 1, which makes Lemma 1 applicable.

CbT-GS

A PRBS signal of 255 samples with unity amplitude is used as input to the system. Four
periods of this signal are used for controller design, N = npT = 1020. The periodic output is
disturbed by a zero-mean white noise such that the signal-to-noise ratio is about 10 in terms
of variance. The instrumental variables are defined according to (20), with l1 = 20 in order to
limit the bias due to the finite number of data. For the same reason, the bound in the stability
condition is fixed to δN = 0.95. Since the spectrum of the PRBS reference signal is known,
Φr(ωk) = 1, the weighting filter is implemented in the time domain; F = 1 and W = 1 −M .
The constraints are implemented as in (40). A Monte Carlo simulation with 100 experiments
is performed, using a different noise realization for each experiment.
Bode plots of the resulting closed-loop system for all 100 controllers are shown in Fig. 4.

All 100 controllers stabilize the system and achieve acceptable performance. The stability
constraint is active for 4 controllers; however, the difference between the unconstrained and
the constrained solution is small. A small bias at high frequencies can be observed as expected
from (37). Since the reference model is chosen appropriately, the optimal controller minimizing
J(ρ) stabilizes the system. Furthermore, because the quality of the estimate found using the
correlation approach is good, the addition of the stability constraints does not affect the results.

Guaranteeing stability for VRFT

To show the effectiveness of the stability constraints, the same data are used to calculate
controllers using the VRFT approach [4]. The goal is to show that, when the unconstrained
problem has a destabilizing solution, addition of the stability constraints leads to stabilizing
controllers. The VRFT approach that uses a second experiment to define the instrumental
variables is used specifically to find these destabilizing controllers. This approach leads to an
unbiased estimate, but it is well known that the use of noise-corrupted instrumental variables
increases the variance of the estimate [26]. This variance might lead to instability even in the
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Figure 4. Magnitude Bode plots of M (thick line), achieved closed-loop performance in Monte Carlo
simulation for CbT-GS (blue lines), and in the noise-free case (dashed line).
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Figure 5. Magnitude Bode plots of M (thick line), achieved closed-loop performance without stability
constraints for the 96 stabilizing VRFT controllers (red lines), with stability constraints for 100

stabilizing controllers (blue lines), and the noise-free case (dashed line).

case of an appropriate reference model. It should be noted that this variance results from the
choice of instrumental variables and is not inherent to VRFT. Other methods to deal with
measurement noise are suggested in [4].

For each of the 100 simulations, a second experiment is simulated with a different noise
realization. Hence, the VRFT controllers are calculated using 2040 samples. Two controllers
are calculated for each set of data. The first controller is calculated using the VRFT approach
as proposed in [4]. For the second controller, the stability constraints are added to the VRFT
problem. The samples available from both experiments are used in the constraints that are
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16 K. VAN HEUSDEN, A. KARIMI, D. BONVIN.

Figure 6. Torsional setup, ECP Model 205

implemented as in (40).

Four of the controllers calculated using the unconstrained VRFT approach destabilize the
system. All controllers calculated with the stability constraints stabilize the system. Note that,
due to the conservatism in the stability criterion, 7 of the 96 stabilizing VRFT controllers would
not satisfy the stability constraints. The optimum of the constrained optimization problem
is therefore different than the VRFT solution. For these stabilizing controllers, the active
constraints indicate poor closed-loop performance and the conservatism in the constraints
actually leads to better performance. This can be seen in Fig. 5, which shows the magnitude
Bode plots of all stabilizing controllers (96 for the unconstrained problem and 100 for the
constrained problem).

Since only an estimate of the stability constraint is used and the estimation error is not taken
into account, stability cannot be guaranteed theoretically. However, all of the 100 controllers
do stabilize the system. It is shown in [27] that the H∞-norm is in general overestimated if
the data is affected by noise. In this example, the DFT estimate does indeed overestimate the
H∞-norm for all of the 100 noise realizations. The norm is overestimated by at least 0.08 and
by at the most 0.73. The average overestimation is 0.39. Even though only an estimate of the
stability constraint is used, stability is guaranteed for each of the 100 controllers.

5.2. Control of an experimental torsional setup

The effectiveness of CbT-GS is demonstrated experimentally on the torsional setup shown in
Fig. 6. The setup consists of three discs connected by a torsionally flexible shaft. Two masses
are fixed to each disc. The shaft is driven by a brushless servo motor. The angular displacement
of the top disc is measured by an encoder and expressed in degrees. The plant is minimum
phase, contains an integrator and has two strong resonances. The sampling time is 60 ms.

A set of periodic open-loop data is collected using a zero-mean PRBS input of 255 samples.
Five periods of input and output measurements are used for controller design. The controller
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Figure 7. Magnitude Bode plot of the reference model M1 (black) and the estimated closed-loop plant
controlled by K1 (grey).

structure is fixed as a 7th-order FIR filter. The controllers are calculated using (40) with F = 1
and l1 = 127. The bound in the stability condition is fixed as δN = 0.8. The reference model
needs to have unity static gain since the plant contains an integrator. Two different reference
models are considered. The first one reads:

M1 =
0.0765q−1

(1− 0.7q−1)2(1− 0.15q−1)
.

The second reference model is chosen with similar bandwidth but a high-frequency roll-off of
only one:

M2 =
0.3q−1

1− 0.7q−1
.

The stability constraints in the optimization problem for M1 are not active, the resulting
controller is denoted K1. In contrast, the stability constraints are active in the optimization
problem for M2. Two controllers are calculated using M2: controller K2 is the unconstrained
optimum, controller K3 is the solution to the constrained problem.
When applied to the plant, controller K2 leads to instability. Stability is obtained with K1

and K3, for which the closed-loop frequency-response can be identified. Four periods of the
PRBS of 255 samples with amplitude 50 degrees are collected on the plant controlled by K1.
The frequency response estimated using DFT is shown in Fig. 7. The reference model M1 is
appropriate, and the achieved closed-loop system resembles the reference model. The steady-
state gain is smaller than one due to static friction. The plant controlled by K3 is excited
by a PRBS with a frequency divider of 2, 510 samples per period and amplitude 50 degrees.
Three periods are used for the DFT estimate. The result is shown in Fig. 8. The controller
does stabilize the plant but the required closed-loop performance is not achieved. Reference
model M2 is inappropriate and cannot be achieved. Since the stability constraints are active,
CbT-GS actually indicates this problem.
Remark: In the numerical example of Section 5.1, addition of the stability constraints

to VRFT improves the closed-loop performance. The reference model is appropriate and
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Figure 8. Magnitude Bode plot of the reference model M2 (black) and the estimated closed-loop plant
controlled by K3 (grey).

instability is the result of the variance of the estimated controller parameters. For the
experimental torsional setup, instability is due to an inappropriate reference model. Addition
of the stability constraints leads to a stabilizing solution, but the closed-loop performance
remains poor because it is not possible to achieve the required performance.

6. CONCLUSIONS

Possible instability of the closed-loop system is one of the main difficulties in data-driven
controller tuning. The stability constraints introduced in this paper guarantee a stabilizing
solution as the number of data tends to infinity. Other difficulties in data-driven controller
tuning include the necessity of many experiments, the effect of measurement noise on the
controller parameters, and the appropriateness of the control objective with respect to the
plant characteristics and the controller structure. CbT-GS as presented in this paper is an
attempt to solve these problems using convex optimization.

Only one experiment in open- or closed-loop operation is required to approximate the model
reference control criterion. The correlation criterion and the sufficient condition for closed-loop
stability can be represented by convex functions of linearly parameterized controllers. The
quality of the resulting controller can be assessed by looking at the correlation between the
residuals and the reference signal. Furthermore, if the constraints in the optimization problem
are active, this indicates that the control objective cannot be achieved by the chosen controller
structure. This suggests increasing the controller order or modifying the reference model by
an iterative procedure that can be performed off-line without additional experiments.

The proposed constrained model-reference control problem could also be solved using a
model-based approach. In this case, many well-known techniques for analysis and performance
evaluation can be used. Furthermore, the main results presented in this work are asymptotic
in the number of data, and asymptotically, the result is equivalent to a model-based approach.
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So why would one prefer the proposed data-driven approach over a model-based solution?
Firstly, model identification and controller design are combined in the proposed approach. The
asymptotic results of the model identification, which are hidden in a model-based controller
design approach, become apparent in such a data-to-controller procedure. Analogous to the
model-based approach, the results can be extended to finite data length if the modeling errors
are taken into account. Secondly, the advantages of a data-driven approach are apparent
in practice. In the data-driven approach, no plant model is identified and the problem of
undermodeling is avoided. Furthermore, since the controller parameters are a non-linear
function of the estimated model, the controller estimate will be biased with respect to noise
and a direct approach can achieve higher accuracy. Unfortunately, current tools for accuracy
analysis do not allow for a complete comparison of model-based and data-driven approaches.

APPENDIX

I. PROOF OF THEOREM 2

Firstly, stochastic convergence of the unconstrained problem is established. We have [24]:

lim
N→∞

fN,l1(ρ) = [RrW ε(−l1, ρ), . . . , RrW ε(l1, ρ)]
T , w.p. 1

The correlation criterion is a continuous function of this variable, which leads to ([28], p. 450):

lim
N→∞

JN,l1(ρ) =

l1
∑

τ=−l1

R2
rW ε(τ, ρ), w.p. 1. (43)

Note that this result holds for finite l1. In this case, the correlation criterion converges because
N → ∞ implies l1/N → 0.
Secondly, convergence of this deterministic variable to J(ρ) is established as l1 → ∞. Since

∆(ρ) is stable,
∑l1

τ=−l1
R2

rW ε(τ, ρ) and the limit
∑∞

τ=−∞
R2

rW ε(τ, ρ) are bounded on DK . The

sequence of deterministic convex functions
∑l1

τ=−l1
R2

rW ε(τ, ρ) then converges uniformly to
∑∞

τ=−∞
R2

rW ε(τ, ρ) on the compact set DK as l1 → ∞. This follows from Theorem 10.8 in
[29], which states that pointwise convergence of a series of convex functions to a convex limit
function implies uniform convergence on a compact set.
It then follows that, as N, l1 → ∞, l1/N → 0, the correlation criterion converges uniformly:

lim
N,l1→∞,l1/N→0

JN,l1(ρ) =

∞
∑

τ=−∞

R2
rW ε(τ, ρ), w.p. 1. (44)

Using Parseval’s theorem, this is equivalent to:

∞
∑

τ=−∞

R2
rW ε(τ, ρ) =

1

2π

∫ π

−π

|ΦrW ε(ω, ρ)|2dω =
1

2π

∫ π

−π

|W
(

M −K(ρ)(1−M)G
)

|2Φ2
r(ω)dω

With the expression of W given in (27), (44) becomes:

lim
N,l1→∞,l1/N→0

JN,l1(ρ) = J(ρ),w.p.1. (45)
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Convergence of the constraints is shown next. As N → ∞, l2/N → 0, the estimate R̂rε(τ, ρ)
converges w.p.1 to Rrε(τ, ρ) and R̂r(τ) converges w.p.1 to Rr(τ), for τ = [−l2, . . . , l2].

Consequently, Φ̂rε(ωk,ρ)

Φ̂r(ωk)
converges pointwise to ∆(ωk), w.p.1. ∆(ωk) and δ(ρ) are bounded on

DK since ∆ is stable. The series of convex functions maxωk
|∆(ωk)| then converges uniformly

to the convex function δ(ρ) as l2 → ∞ (Theorem 10.8 of [29]). It follows that, with probability

1, maxωk

∣

∣

∣

Φ̂rε(ωk,ρ)

Φ̂r(ωk)

∣

∣

∣
converges uniformly to δ(ρ) as N, l2 → ∞, l2/N → 0.

Convergence of the constrained optimization then follows from the dual problem (Theorem
1.44 [30]): Consider the function L(ρ) := J(ρ)+ν(δ(ρ)−δN), where ν is the Lagrange multiplier
and (ν0, ρ0) is a KKT point of L(ρ). Then ρ0 is the global optimizer of (14). Since JN,l1(ρ) and

maxωk

∣

∣

∣

Φ̂rε(ωk,ρ)

Φ̂r(ωk)

∣

∣

∣
converge uniformly to J(ρ) and δ(ρ), the dual of (26) converges uniformly

to L(ρ). Since the convergence is uniform, it follows that the optimizer of (26) converges to
the optimizer of (14).

II. PROOF OF THEOREM 3

The proof is similar to that of Theorem 2. Even though G might be unstable, the filter
(1−Ms)G is stable and consequently all filters involved are stable. AsN, l1 → ∞ and l1/N → 0,
the correlation function fN,l1(ρ) converges to the cross-correlation between rW (t) and ε(t, ρ);

RrW ε(τ, ρ) = lim
N→∞

1

N

N
∑

t=1

E {rW (t− τ)ε(t, ρ)}

= lim
N→∞

1

N

N
∑

t=1

rW (t− τ)(1 −Ms)
[

M −K(ρ)(1−M)G
]

r(t).

Using Parseval’s theorem, the correlation criterion converges to:

∞
∑

τ=−∞

R2
rW ε(τ, ρ) =

1

2π

∫ π

−π

|ΦrW ε(ω, ρ)|2dω

=
1

2π

∫ π

−π

|W (1 −Ms)
[

M −K(ρ)(1−M)G
]

|2Φ2
r(ω)dω

Using the expression of W in (30) leads to

lim
N,l1→∞,l1/N→0

JN,l1(ρ) = J(ρ) (46)

The rest of the proof follows that of Theorem 2.

III. PROOF OF (37)

eL(t) can be written as

eL(t) =

∞
∑

k=0

lke(t− k),
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with lk the impulse response of L. The vector of random variables:

XN =
1√
N

N
∑

t=1

ζ(t)eL(t)

converges in distribution to a normal distribution with zero mean and variance P [24]:

P = lim
N→∞

E
{

XNXT
N

}

= σ2 lim
N→∞

1

N

N
∑

t=1

E
{

ζ̃(t)ζ̃T (t)
}

,

where

ζ̃(t) =

∞
∑

k=0

lkζ(t+k) = L(q)W (q−1)[r(t+ l1), r(t+ l1− 1), . . . r(t), r(t− 1), . . . , r(t− l1)]
T (47)

The diagonal elements of P are equal to σ2RrLW
(0), where RrLW

(τ) is the auto-correlation
function of L(q)W (q−1)r(t). The expected value E {JN,l1(ρ)} can then be expressed as:

E {JN,l1(ρ)} = E

{

1

N2

N
∑

t=1

ζT (t)[rD(t)− eL(t)]

N
∑

s=1

ζ(s)[rD(s)− eL(s)]

}

= E

{

1

N2

N
∑

t=1

ζT (t)rD(t)

N
∑

s=1

ζ(s)rD(s)

}

− 2E

{

1

N2

N
∑

t=1

ζT (t)rD(t)

N
∑

s=1

ζ(s)eL(s)

}

+ E

{

1

N2

N
∑

t=1

ζT (t)eL(t)

N
∑

s=1

ζ(s)eL(s)

}

= J̃N,l1(ρ)− 0 +
1

N
E
{

XT
NXN

}

(48)

For large N , the distribution of XN is well approximated by P , and E {JN,l1(ρ)} can be
approximated using this asymptotic distribution:

E {JN,l1(ρ)} = J̃N,l1(ρ) +
1

N
E
{

XT
NXN

}

≈ J̃N,l1(ρ) +
1

N
trace(P )

= J̃N,l1(ρ) +
2l1 + 1

N
σ2RrLW

(0) (49)

Using Parseval’s theorem, this can be expressed as:

E {JN,l1(ρ)} ≈ J̃N,l1(ρ) +
2l1 + 1

N
σ2 1

2π

∫ π

−π

ΦrLW
(ω)dω

= J̃N,l1(ρ) +
σ2(2l1 + 1)

2πN

∫ π

−π

|L(e−jω)W (e−jω)|2Φr(ω)dω

Replacing L by (1 −M)K(ρ)H and W by F (1−M)/Φr gives (37).
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26. Söderström T. Errors-in-variables methods in system identification. 14th IFAC Symposium on System

Identification, Newcastle, Australia, 2006; 1–19.
27. van Heusden K, Karimi A, Bonvin D. Data-driven controller validation. Proceedings of the 15th IFAC

Symposium on System Identification, Saint-Malo, France, 2009; 1050–1055.
28. Pintelon R, Schoukens J. System Identification: A Frequency Domain Approach. IEEE Press: New York,

USA, 2001.
29. Rockafellar R. Convex Analysis. Princeton University Press: Princeton, N. J., USA, 1970.
30. Chachuat B. Nonlinear and Dynamic Optimization: From Theory to Practice. Lecture notes, url:

http://lawww.epfl.ch/page4234.html, 2007.

Copyright c© 200 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 200; 0:0–0
Prepared using acsauth.cls


