We present a CMOS imager with built-in capability to perform Compressed Sensing. The adopted sensing strategy is the random Convolution due to J. Romberg. It is achieved by a shift register set in a pseudo-random configuration. It acts as a convolutive filter on the imager focal plane, the current issued from each CMOS pixel undergoing a pseudo-random redirection controlled by each component of the filter sequence. A pseudo-random triggering of the ADC reading is finally applied to complete the acquisition model. The feasibility of the imager and its robustness under noise and non- linearities have been confirmed by computer simulations, as well as the reconstruction tools supporting the Compressed Sensing theory.