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Signal transduction pathways relay extracellular stimuli from the plasma membrane to targets in the cytoplasm and nucleus, initiating diverse responses involving cell growth, mitogenesis, differentiation and stress
responses in mammalian cells. The mitogen-activated protein kinase (MAPK) cascades are ubiquitous in eukaryotic signal transduction, and these pathways are conserved in cells from yeast to mammals. Metabolic
engineering of mammalian cells requires the redesign of the steady-sate and the dynamic responses of signal transduction pathways. Therefore, understanding the design principles of these pathways is a key to success of
metabolic engineering for cell culture development and drug target discovery.
In recent years, much effort has been devoted in the development of detailed kinetic models of MAPK network as tools for the rational design of metabolic engineering strategies. These models are mostly large systems of
differential-algebraic equations (DAEs) and they link molecular (protein-protein, protein-DNA, and protein-RNA) interactions, gene expression and chemical reactions to cellular behavior. In this DAE description of
signaling pathways, the differential equations express the mass-action kinetics, whereas the algebraic equations enforce conservation relations among the constituents. Moreover, these models typically involve a relatively
large number of parameters, such as the rate constants and strength of protein-protein interactions, the values of which are not directly accessible in vivo and are subject to large uncertainty.

In this work, we investigate the application of dynamic optimization techniques to study the relationships between the biophysical and biochemical parameters and the functions of the MAPK cascades.

Mociciin g
Signaling Cascades

Simple biochemical networks consisting of the enzyme catalyzed
chemical modification of a protein molecule and the reverse reaction
catalyzed by a different enzyme (monocyclic cascades) are studied.
This basic unit is found repeatedly in multiple configurations,
throughout a wide variety of biological pathways, including
phosphorylation-dephosphorylation of MAP  kinase signaling
cascades.
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Monocgclic Cascade

Optimal Hill coefficient ny and Michaelis-Menten constants
K, K%, for various values of p5/X pX/Y:

pS/X — Px/X — 01 pS/X

100

Px/X _ o1 S/X Px /X _ 1

=p

p7l "t =p

25 10 12

10

K

i
,

AR
g E

0.1
0.1

0.01 0.01

0.01 0.1 1 10 100 0.01 0.1 1 10

I X,_\' ["’X

10 40 10

Px /X
P x/

0.01 ~ 0.01 0 0.01

0.01 0.1 1 10 0.01 0.1 1 10
S/X

p

v Ultrasensitivit9 can aiwags be achieved for small values of
concentration ratios

v The maximal Hill coefficient values is aiwags obtained for the least

Possible values of the Michaelis-Menten constants

100

\_

Steady-state Model

Using mass-conservation principles and mass-action kinetic models,
the steady-state concentrations of the foregoing species are described
by differential-algebraic equations (DAEs):
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09/ Xand pPX/*denote the ratios of input signaling enzyme and of
phosphatase to substrate concentration, respectively;

e Kx and K% are dimensionless Michaelis-Menten constants:

A I + 1 . dx +k
Ky = X~*+ Kx = X~+ =,
a 5 ax
e ax is the activity coefficient of the signaling cascade:
S/ X
ox = kx L
X ‘= RXx P /X
Bicgciic Cascade

Optimal Hill coefficient and Michaelis-Menten kinase constants Ky, Ky,
for values p5/X  pX/Y ¢ [0.01, 100]; the Michaelis-Menten phosphatase
constants are K% = K} =0.01 and px/X = /Y =0.01
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v'Much iarger Hill coefficients are obtained than for monocgciic
cascacies, with the corresponding sets of Parameters

v The maximal Hill coefficient increases when the concentration ratio
betweon tne ﬁrst anoi soconcl ieveis IS increaseci

v The maximal Hill coefficient is attained when the first kinase is
saturateci, but not the second kinase

v An oPtimal bicyciic cascade does not corresponcl to a series of
oPtimai monocgclic cascades !

Dcsign Objcctivc: Ultrascnsitivtg

The variation of activated substrate with respect to input signal, at
steady state, is an important response property of signaling cycles. A
signaling cycle is said to exhibit ultrasensitivity when the response is
significantly more sensitive to changes in input signal activity than
enzymes that follow hyperbolic kinetics.
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Tricyclic Cascade

Optimal Hill coefficient and Michaelis-Menten kinase constants Kx, Ky,
Ky forvalues of p5/X =0.1 pX/Y pY/Z c[0.01,100]; the Michaelis-
Menten phosphatase constants are K% = K} = K}, = 0.1 and

pPX/X — ,OPY/Y — pPZ/Z — 0.01
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Optimal Hill coefficient for various Michaelis-Menten kinase constants:
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v OPtimai ultrasensitivitg is achieved if the first kinase is saturated

J ]:)3 its target |<inase, but not the subsequent two kinases.
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