
Can Software Routers Scale?

Katerina Argyraki1, Salman Baset2, Byung-Gon Chun3, Kevin Fall4, Gianluca Iannaccone4,
Allan Knies4, Eddie Kohler5, Maziar Manesh4, Sergiu Nedveschi6, Sylvia Ratnasamy4

1 EPFL, 2 Columbia University, 3 ICSI, 4 Intel Research, 5 UCLA, 6 UC Berkeley

ABSTRACT
Software routers can lead us from a network of special-purpose
hardware routers to one of general-purpose extensible infrastructure—
if, that is, they can scale to high speeds. We identify the challenges
in achieving this scalability and propose a solution: a cluster-based
router architecture that uses an interconnect of commodity server
platforms to build software routers that are both incrementally scal-
able and fully programmable.

1. INTRODUCTION
A major factor in the Internet’s supposed architectural ossifica-

tion [12, 18] is the inflexibility of routers near the core of the net-
work: it is simply too difficult to deploy any change that might im-
pact core-router behavior. Some of this difficulty is due to providers’
natural conservatism, but much of it is because hundreds of millions
of dollars of deployed hardware would require an upgrade on any
change. Software routers, in contrast, perform all significant pro-
cessing steps (i.e., per-packet protocol processing, route loookup,
forwarding) in software running on commodity servers. Commod-
ity PCs are attractive for several reasons, including low cost due to
large-volume manufacturing, familiar programming environment
and operating systems, and widespread supply and support chains.
Programmable architectures built around custom network proces-
sors and switch fabrics lose many of these advantages.

Unfortunately, today’s software routers do not scale beyond the
1-3 Gbps range, while currently available carrier-grade equipment
starts at 40 Gbps and scales as high as 92 Tbps [3]. As a result, soft-
ware routers are reflexively written off as irrelevant for anything
larger than a small enterprise network. But is this performance cap
fundamental or just a consequence of current software-router ar-
chitectures? Motivated by recent advances in the I/O capabilities of
general-purpose platforms [2, 4], we revisit this question, i.e., we
ask whether it is feasible to aim for a general-purpose network in-
frastructure that is easily extensible and yet capable of scaling to
high speeds.

A basic limitation of today’s software routers comes from the
fact that they adopt a “single server as router” architecture: given
the evolution of general-purpose platforms, a single-server archi-
tecture is unlikely to ever reach carrier speeds and, hence, the ex-
tensibility enabled by software routers is unlikely to impact the In-
ternet’s vast provider infrastructure. All is not lost, however. In this
paper, we propose a clustered software-router architecture that uses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-181-1/08/08 ...$5.00.

an interconnect of multiple servers to achieve greater scalability.
Consider a router with N ports, each with line rate R bps. As N

and R increase, router per-packet processing such as lookups and
classification must scale with O(R), while internal switching from
input to output ports must scale with O(NR). Current carrier-grade
equipment typically uses special-purpose hardware (network pro-
cessors and switch fabrics) for these tasks.

Instead, we aim to build such an N-port router using a cluster
of server-class PCs. Each server handles one incoming line, and
the N servers are interconnected to switch packets from input to
output lines. Scaling this architecture to high N and R thus faces
two challenges:

• the per-packet processing capability of each server must scale
with O(R)

• the aggregate switching capability of the server cluster must
scale with O(NR)

In this paper, we present preliminary work that explores the fea-
sibility of meeting these two scaling challenges: in Section 2, we
measure and analyze the per-packet processing performance of cur-
rent and future commodity-PC platforms; in Section 3, we examine
the switching problem and propose server-cluster topologies and
routing algorithms drawn from the parallel-computing literature.
As a first step, we consider forwarding and route lookup and post-
pone considering more advanced router features (multicast, ACLs,
QoS, and advanced buffer management) to future work.

Our preliminary results are encouraging: back-of-the-envelope
analysis combined with experiments on an unoptimized PC plat-
form show that cluster-based software routers could indeed offer
the scalability required of carrier-grade equipment; however, care-
ful software engineering (of network drivers and the OS network
stack) will be required to actually achieve this scalability. More-
over, important issues like power usage, form factor, and reliability
remain to be studied before we can draw conclusions about the via-
bility of our proposal. These are all non-trivial issues, often ignored
in the context of research proposals; yet we believe they are worth
studying, as their successful resolution could enable a network in-
frastructure that is programmable and extensible in much the same
sense as desktops and servers are today.

2. SCALING PER-PACKET PROCESSING
The feasibility of our cluster-based architecture depends on

whether the packet-processing capability of a single PC can scale
with line rate. Surprisingly, there appears to be no conclusive in-
vestigation of this question in the literature. Most prior research
within the systems community has tended towards a “run it and see
approach,” reporting performance in the context of a specific plat-
form [15, 22]. While detailed performance modeling is common
within the computer-architecture community, these studies have
not typically focused on router-like workloads [7]. Standard bench-
marks such as TPC-C are not relevant since they differ significantly
in characteristics like I/O load and cache locality.

Figure 1: Traditional shared bus architecture Figure 2: Point-to-point architecture

A long-term goal of this work is to close this gap by developing
a model of packet-processing workloads that, given a certain PC
architecture, predicts packet-processing performance. A key chal-
lenge is identifying the right modeling granularity—one that re-
quires the minimum number of parameters, yet leads to accurate
predictions (e.g., within a factor of 2 of reality).

As a first step towards addressing this challenge, this paper ex-
plores two extreme approaches: first, we construct a highly simpli-
fied model using back-of-the-envelope analysis over a high-level
view of PC architectures; second, we experimentally measure the
packet-processing rate achievable on a current PC platform. To-
gether, these approaches provide achievable-performance bounds:
the back-of-the-envelope analysis is wildly optimistic and provides
an upper bound that indicates whether line-rate scaling is at all
plausible; by contrast, the experimental analysis relies on a cur-
rently available, unoptimized platform and, hence, provides a lower
per-packet performance bound.

2.1 A Strawman High-level Model
Figures 1 and 2 depict at a high level two different PC archi-

tectures: (1) a shared-bus architecture, e.g., [1], and (2) a recent
multi-processor mesh architecture, e.g., [4].

We start with the shared-bus architecture of Figure 1. A front-
side bus (FSB) is used for communication between the CPU(s),1
memory controller, and primary I/O bus controller—PCI Express
(PCIe) hub. This high-level view ignores many details such as the
cache hierarchy, the discrete buses that form the FSB (i.e., address
and data bus), the presence of multiple memory channels, and the
actual memory layout (i.e., ranks and banks); we use it as an exam-
ple of a coarse-grained model of the hardware architecture.

To estimate this architecture’s packet-processing capability, we
consider the following minimum set of high-level operations, typi-
cally required to forward an incoming packet:

1. The packet is DMA-ed from NIC to main memory (incurring
one transaction on the PCIe and memory bus).

2. The CPU reads the packet header (one transaction on the FSB
and memory bus).

3. The CPU performs additional packet processing including
route lookup (CPU-only, assuming no bus transactions—we
return to this assumption later).

4. The CPU writes the modified packet to memory (one trans-
action on the memory bus and FSB).

5. The packet is DMA-ed from memory to NIC (one transaction
on the memory bus and PCIe bus).

Based on this model, forwarding a single packet results in 4
transactions on the memory bus and 2 on each of the FSB and PCIe
1We use the terms CPU, socket, and processor interchangeably, to
refer to a multi-core processor.

buses; thus, a line rate of R bps leads to a load of 4R, 2R, and 2R
on each of the memory, FSB, and PCIe buses.2 Currently available
technology advertises memory, FSB, and PCIe bandwidths of ap-
proximately 100Gbps, 85Gbps, and 64Gbps respectively (assuming
DDR2 SDRAM at 800MHz, a 64-bit wide 1.33GHz FSB, and 32-
lane PCIe1.1); in the context of our model, these numbers suggest
that a current shared-bus architecture should sustain line rates up
to R = 10 Gbps, and that the packet-processing bottleneck is the
memory bus.

We now consider the multi-processor mesh architecture from
Figure 2. This architecture replaces the FSB by a mesh of dedicated
point-to-point links, removing the bottleneck for inter-processor
communications and allowing higher operating frequencies than
the traditional multi-load FSB. Moreover, the point-to-point archi-
tecture replaces the single external memory controller shared across
sockets with a memory controller integrated within each CPU; this
leads to a dramatic increase in aggregate memory bandwidth, since
each CPU now has a dedicated link to a portion of the overall mem-
ory space. On a 4-socket system as shown, the incoming packet
stream is spread across the 4 memory controllers integrated in the
CPUs. Hence, each packet contributes 4 memory-bus transactions,
4 transactions on the inter-socket point-to-point links, and 2 PCIe
transactions; since we have 4 memory buses, 6 inter-socket links
and 4 PCIe links, a line rate of R bps yields loads of R, 2R/3, and
R/2 on each of the memory, inter-socket, and PCIe buses respec-
tively. If we (conservatively) assume similar technology constants
as before (memory, inter-socket, and PCIe bandwidths at 100Gbps,
85Gbps, and 64Gbps respectively), according to our model, emerg-
ing server architectures should scale to carrier-grade line rates of
40Gbps and higher.

CPU resources. In addition to bus loads we need to consider
whether the available CPU resources suffice to handle packet pro-
cessing at line rates. We first consider the number of cycles avail-
able for packet processing based on the offered line rate and server
architecture. Assuming 40-byte packets, packet interarrival time is
32ns and 8ns for R =10Gbps and R =40Gbps respectively. Cur-
rent shared-bus architectures offer up to 8 cores running at speeds
up to 3 GHz, i.e., a budget of 3072 and 768 cycles/pkt respec-
tively. Assuming a cycles-per-instruction (CPI) ratio of 1, this sug-
gests a budget of 3072 (768) instructions per packet for line rates
of 10Gbps (40Gbps). Similarly, multi-processor mesh architectures
are projected to offer up to 32 cores at similar speeds, i.e., a budget
of 12288 and 3072 instructions/pkt for 10Gbps and 40Gbps respec-
tively. Hence, current shared-bus architectures may have sufficient
CPU resources to scale to 10Gbps but not 40Gbps, while emerging
servers may scale even to 40Gbps.

Given the above cycle budgets, IP route lookup cannot afford
multiple cache misses while accessing the forwarding table. For-
tunately, increasing cache sizes should help here—existing server
caches are already at 8MB/socket, and emerging servers are pro-

2This estimate assumes that the entire packet is read to/from the
memory and CPU for processing.

jected to have as much as 16 or 24MB/socket [4]. Caching can be
exploited in two ways: (1) to store the entire forwarding table as
described by Gupta et al. [11] or (2) simply to store the routing en-
tries for popular prefixes. Multiple studies [10,20] have shown that
the vast majority of traffic is destined to a small fraction of prefixes
and, hence, we expect that caching popular prefixes should allow
most route lookups to be resolved from the cache.

Clearly, our analysis is overly optimistic: it assumes 100% effi-
ciency in bus usage, the ability to exploit multicore to its fullest,
and no interference from the operating system during packet pro-
cessing. In the following section, we use experiments to estimate
the extent to which these assumptions lead us to overestimate per-
formance.

As a final note, we address a possible source of confusion caused
by the difference between traditional router platforms and PCs.
Scaling analyses for router performance have traditionally been
concerned with memory access times (as opposed to memory band-
width), as these improve at a significantly slower rate than link
speeds [5]. Memory latency refers to the time it takes a CPU to read
or write a given memory location; current latencies are in the order
of 100ns, leading to a maximum bandwidth (for the same location)
that is two orders of magnitude slower than the maximum mem-
ory bandwidth. Access time, however, is not a major concern on
general-purpose processors that pipeline memory operations: CPUs
can maintain a large number of in-flight memory requests to hide
access delays, while memory request queues are sized to allow full
use of the available FSB bandwidth.

2.2 Using experimentation
We now turn to experimental evaluation to bound the inaccuracy

due to our simplified model from the previous section. For our ex-
periments, we use a mid-level server machine running Click [15].
Our server is a dual-socket 1.6GHz quad-core CPU with an L2
cache of 4MB and two 1.066GHz FSBs. With the exception of the
CPU speeds, these ratings are similar to the shared-bus architecture
from Section 2.1 and, hence, our results should be comparable. The
machine has a total of 16 1GigE NICs. We generate (and termi-
nate) traffic using similar servers with 8 GigE NICs. In the results
that follow, where the input rate to the system is under 8Gbps, we
use one of our traffic generation servers as the source and the other
as sink; for tests that require higher traffic rates each server acts
as both source and sink allowing us to generate input traffic up to
16Gbps.

We instrument our servers with Intel EMON, a performance
monitoring tool similar to Intel VTune, as well as a proprietary
chipset-specific tool that allows us to monitor memory-bus usage.
As before, our goal for now is to understand the fundamental ca-
pability of the overall platform to move packets through without
considering more sophisticated packet processing. Hence, we re-
move the IP forwarding components from our Click configura-
tion and simply enforce a static route between source and desti-
nation NICs. We have 16 NICs and, hence, use 8 kernel threads,
each pinned to one core and each in charge of one input/output
NIC pair. We disable NIC interrupts and use interface polling. This
setup is admittedly artificial, but our goal is merely to take a first
step towards relating hardware specifications to achievable soft-
ware performance—we recognize that much additional work re-
mains for a comprehensive performance analysis.

Bottlenecks. The first question we explore is what forwarding rates
we can feasibly achieve with the existing software/hardware and
what are the likely bottlenecks. For this, we look at the loss-free
forwarding rate the server can sustain under increasing input packet
rates and for various packet sizes. We plot this sustained rate in
terms of both bits-per-second (bps) and packets-per-second (pps)
in Figures 3 and 4 respectively. We see that, in the case of larger
packet sizes (1024 bytes and higher), the server scales to 14.9 Gbps
and can keep up with the offered load up to the maximum traffic we
can generate. However, in the case of 64 byte packets, performance
saturates at around 3.4 Gbps, or 6.4 million pps.

Tracking down the bottleneck that limits forwarding perfor-
mance for 64 byte packets turns out to require a fairly involved
sleuthing process; we detail this process in [6] and only summa-
rize our key findings here. In [6], we look for the bottleneck by
examining the load on the four major system components—CPUs,
memory bus, FSB and I/O bus. Not unexpectedly, we found that the
immediate bottleneck to system performance occurs at the memory
system. Surprisingly, however, the bottleneck is not in the aggre-
gate memory bandwidth the memory system can sustain but instead
due to an unfortunate combination of packet layout and memory
chip organization. We were able to partially remedy this issue by
modifying the linux memory allocator and this allowed us to im-
prove performance by approximately 30%, for a forwarding rate
of 8.2Mpps. Once past this initial bottleneck, the next bottleneck
we hit appears to be due to the FSB. Under the covers, the FSB
comprises an address and data bus and our tests at 8.2Mpps re-
vealed that, while the utilization levels on the data bus are fairly
low, the address bus is 70.3% utilized. Prior work [24] and discus-
sions with architects reveal that, as an engineering rule of thumb, an
address bus is considered saturated at a utilization of approximately
75%.3 These results suggest that it is unlikely we could scale this
server platform to 10Gbps as-is. However, as we discuss in what
follows, this performance could be substantially improved through
fairly non-radical software and hardware architectural changes.

Loads. The second question we look to answer is: how far off is
the naive model from Section 2.1, and why? Again, a detailed eval-
uation of this question is presented in [6], and we only summa-
rize our key findings here. To understand the per-packet overheads,
we measure the load in bits/sec on the FSB and memory bus. The
load difference between these two buses give us an estimate for
the PCIe load; this is a reasonable approximation since our experi-
mental setup is such that we see little inter-socket communication.
Recall that our model from Section 2.1 was only considering the
load due to moving packets around. Not surprisingly, we found that
the loads we actually measure are significantly higher, indicating
that all three buses incur an extra per-packet overhead. We quan-
tify this overhead as the number of per-packet transactions (i.e.,
transactions that are not due to moving packets between NIC and
memory) performed on each bus. We compute it as follows:

measured load− estimated load
packet rate · transaction size

We find that the FSB and PCIe overheads start around 6, while the
memory-bus overhead starts around 12. All overheads drop slightly
as the packet rate increases due to the cache that optimizes the
transfer of up to four descriptors with each 64-byte transaction. As
explained in [6], this overhead is mostly due to the reading/writing
of packet descriptors that our naive model ignored; accounting for
the overheads due to descriptors brings the memory and FSB loads
close to the estimates of our naive model. Given the model’s numer-
ous simplifications, we find this an encouraging (and surprising!)
indication that relatively high-level predictive models of packet-
processing workloads may indeed be feasible. Moreover, as we
discuss shortly, these results also point to the potential to improve
performance through a more efficient descriptor architecture.

Improvements, Estimates. Our experimental results suggest a few
approaches to improving performance:
Improved packet descriptor handling: We saw above that han-
dling packet descriptors imposes an inordinate per-packet overhead
particularly for small packet sizes; a simple remedy might be to
have a single descriptor summarize multiple—up to a parameter
k—packets. Moreover, handling packets and descriptors separately
poses significant additional stress on the memory bus; a possible so-
lution here would be to rearchitect NIC firmware to integrate pack-

3Note that this might point to the need to extend our naive model
to consider the load on the FSB address and data bus independently
(rather than as a single FSB load estimate).

0 2 4 6 8 10 12 14 16
0

5

10

15

offered load (Gbps)

su
st

ai
ne

d
lo

ad
 (

G
bp

s)

64 bytes
128 bytes
256 bytes
512 bytes
1024 bytes

Figure 3: Forwarding rate under increasing load for different
packet sizes.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

offered load (Mpps)

su
st

ai
ne

d
lo

ad
 (

M
pp

s)

64 bytes
128 bytes
256 bytes
512 bytes
1024 bytes

Figure 4: Forwarding rate under increasing load for different
packet sizes – in pps.

ets and their descriptors.
Direct I/O: A second technology, this one on the hardware front,
that could further reduce bus overheads is Direct Cache Access
(DCA) [13] and similar I/O acceleration technologies. In DCA, in-
coming packets from the NICs are directly placed into the processor
caches by snooping the DMA transfer from NIC to memory.
Multi-processor mesh architectures: Perhaps the most promising
avenue for improvement—and one that comes “for free”—is to use
emerging servers based on multi-processor mesh architectures [4].
Because the mesh architecture replaces the FSB (our current bottle-
neck) with multiple inter-CPU links, we expect a significant perfor-
mance improvement by just transitioning to this newer architecture.
Specifically, our analysis in [6] shows that we can expect at least a
4x improvement in performance relative to current servers, and this
without the above optimizations to packet descriptors.

In summary, current shared-bus servers scale to min-sized packet
forwarding rates of 4.4Gbps and we estimate that future mesh-
based architectures will scale to over 10Gbps. Moreover, as rea-
soned in [6], modifying NIC firmware to allow amortized packet
descriptors stand to improve these rates to 10Gbps for shared-
bus servers and over 40Gbps for mesh-based servers. This sug-
gests that—particularly with a little care—modern server platforms
might in fact scale to the higher rates typically associated with spe-
cialized network equipment. Admittedly, however, these estimates
rely on significant extrapolation and much work remains to experi-
mentally validate our reasoning.

3. SCALING SWITCHING
The switching problem arises because multiple input ports may

simultaneously receive packets for the same output port at a rate
that exceeds its capacity. Switching, thus, involves selecting which
input sends packets to which output port at each point in time and,
consequently, which packets are dropped. This must be achieved
in a manner that is capable of attaining 100% throughput, services
input ports fairly, and does not reorder packets.

High-speed routers meet these goals by using a switch fabric
configured by a centralized scheduler, typically implemented in
ASICs. As we cannot hope to scale a PC to the speeds of cen-
tralized schedulers, we look for alternative switching architectures.
Borrowing from the literature on parallel interconnects, we con-
sider interconnecting PCs to form a switching or sorting network,
where scheduling is implicit in the routing through the network.
Effectively, this transforms the problem of devising scheduling al-
gorithms to one of designing an interconnect topology and routing
algorithm to meet the above throughput and fairness requirements.
In this paper, we focus on formulating the switching problem as it
applies to our cluster-based router architecture and identifying so-
lution options, but defer an in-depth exploration of the design space
to future work.

3.1 Switching Problem
A sorting network is typically characterized by:

• a topology T defined by a set of nodes N′ connected by a set
of links L. Traffic originates/departs at a set of input/output
nodes N where N ⊆ N′.

• a routing algorithm R that selects paths through T

The literature on parallel interconnects offers a variety of topolo-
gies and routing algorithms that have been applied to hardware
switch fabrics, supercomputers, L2 switches [9], optical routers
[14] and even Distributed Hash Tables (DHTs). The key distinc-
tions for our cluster-based router architecture stem from our goal
of building a switching network with traditional throughput and
fairness guarantees in software running over commodity PCs. This
distinction introduces some non-trivial constraints on the intercon-
nect topology and routing:
Non-determinism: As our “switch fabric” is a collection of servers
that implement switching in software using general-purpose OSes,
we cannot assume all nodes in the fabric will operate in unison, nor
precisely predict the rate of operation at any given node.
Low degree: The per-node connectivity in our switching network
is limited by the number of interface slots on a typical server board.
Since this number of slots is unlikely to grow significantly, we
require interconnect topologies where the per-node degree is sub-
linear (e.g., constant, O(logN), O(

√
N)).4

Limited node and link speeds: We assume nodes can only pro-
cess packets at rates of upto O(R), the external line rate. Also, the
speed of the inter-server links that form the internals of the switch-
ing network is bounded by O(R). These constraints follow from our
discussion in Section 2 that even scaling to the external line rate is
challenging.

The switching problem is then defined as follows: given our re-
quirements (overall routing capacity, 100% throughput, fairness)
and constraints (on fan-out, link and processor speeds), find a solu-
tion that minimizes the capital costs of a topology T as determined
by the number and capacity of nodes N′ and the number and capac-
ity of internal links (i.e., network interfaces).

3.2 Switching Solutions
There are traditionally two broad classes of routing algorithms:

deterministic and load-balanced. With deterministic routing, all
traffic between a given input and output follow a single prede-
termined path through the fabric. This offers simple, shortest-
path routing and no packet reordering. However achieving 100%
throughput for non-uniform traffic patterns requires that intercon-
nect links run with significant speedups relative to the incoming
line rate, which violates our third constraint.
4Using additional L2 switches can alleviate this issue to some ex-
tent, but is expensive for higher N.

(a) (b)

Figure 5: (a) A Valiant load-balanced mesh, (b) Physical topol-
ogy of an 8-port Valiant mesh.

By contrast, load-balanced routing algorithms exploit a topol-
ogy’s path diversity by splitting traffic along multiple source-
destination paths. This more efficiently uses the interconnect’s
overall capacity and, thus, requires lower-capacity internal links.
One of the most promising load-balanced routing algorithms is due
to Valiant [8, 23]. In a nutshell, Valiant routing proceeds in two
phases: a packet from source s to destination d is first routed from
s to a randomly selected intermediate node r and then from r to d.
This simple strategy guarantees 100% throughput for a broad class
of input traffic. Intuitively, this is because, at each phase of Valiant’s
approach, traffic appears to be a uniform random workload and can
hence fully exploit the capacity of the interconnect at the cost of
doubling the traffic load.

Figure 5(a) shows a Valiant load-balanced mesh architecture us-
ing two fully connected meshes with internal links of capacity R/N.
Incoming packets at I1− IN are sent to intermediate nodes X1−XN
in a round-robin fashion, where packets are output-queued to the
appropriate output O1−ON based on their IP destination. In prac-
tice, this architecture could be implemented as a single mesh where
a single physical node implements the logical functionality of all
three stages and the internal mesh links run at 2R/N. Figure 5(b)
shows this single-mesh for an 8-port router.

There are two issues in directly applying Valiant’s approach to
our switching problem. The first is that load balancing introduces
the possibility of reordering packets within the fabric. In the con-
text of an optical router architecture, Keslassy et al. [14] present
a novel algorithm that avoids packet reordering by bounding the
difference in queue lengths at intermediate mesh nodes; unfortu-
nately, their algorithm relies on predictable, deterministic packet
processing by all nodes in the mesh which we cannot achieve in our
software environment. Instead, we are considering an approach that
exploits packet-flow diversity to achieve load-balance while avoid-
ing reordering. In Valiant’s scheme, selecting an intermediate node
randomly for every packet in the first phase is ideal for load balanc-
ing but can lead to reordered packets. On the other hand, selecting
an intermediate node based on the flow (i.e., source/destination IP
and port numbers) avoids reordering but can lead to load imbalance.
We want to explore an approach in which very short bursts of pack-
ets from the same flow that arrive within a time window ∆, which
we call a mini-flow, are sent to the same intermediate node. This
scheme allows us to tradeoff load balancing (and hence the “uni-
formization”) of traffic for bounded packet reordering. We plan to
analyze the properties of this mini-flow based scheme and evaluate
it using packet-level traces and prototype measurements.

The second issue is that Valiant’s approach applied to a mesh
topology can be problematic at large N due to our constraints on
fan-out. However, one can apply the same load-balanced approach
to different topologies leading to different tradeoffs in the per-
node degree and link speeds. For example, one could implement
Valiant’s load-balanced routing over a constant-degree topology
such as a torus. For a d-dimension torus with N nodes, one can
show that Valiant load-balancing requires an internal node capac-

network N′ (total links/ link node
valiant- # nodes) node cap. cap.

mesh N N 2R
N 2R

compact(2) N=k2 2(k−1) 4R
2k−1 4R

compact(3) k(k +1) k 6R
k 6R

embed.
butterfly N log2 N R 2R log2 N

d-torus N 2d RN1/d

4
dRN1/d

2
debruijn N 2 R log2 N 2R log2 N
butterfly 2N log2 N 2 R

2 R

Table 1: Comparison of different switching networks. N is the
number of nodes and R is the external line rate.

ity of dN1/d R
2 to achieve 100% throughput.5 Table 1 summarizes the

properties of the different switching networks we have investigated.
They exhibit different options in the design space, e.g., trading off
node-processing capacity for fewer per-node links or the number of
nodes for lower node-processing capacity. These examples, whose
details we omit due to space constraints, serve to illustrate that mul-
tiple feasible solutions exist, each with different tradeoffs, and we
leave a rigorous characterization of the design space, costs, and
tradeoffs to future work.

4. RELATED WORK
Over the years, researchers have experimented with a variety of

router architectures. Partridge et al. [17] built a high-performance
software router using a combination of multiple line cards and for-
warding engine cards plugged into a high-speed switch in a custom
configuration. This was the first multigigabit router with scalabil-
ity to Gbps line rates using conventional CPUs. Similar architec-
tures were adopted by multiple follow-on efforts, with many using
network processors to scale to higher speeds [3, 19, 21]. In recent
work, Turner et al. describe a Supercharged Planetlab Platform [22]
for high-performance overlays that combines general-purpose pro-
cessors with network processors (for slow and fast path processing
respectively) interconnected by a 10Gb Ethernet switch that pro-
vides cheaper interconnection (compared to a schedulable cross-
bar) at the cost of sacrificing 100% throughput and fairness guaran-
tees; they achieve forwarding rates of up to 5Gbps for 130B pack-
ets. Mudigonda et al. present a novel malleable processor archi-
tecture that seeks high-performance and programmability through
processor-level support for the dynamic reconfiguration of cache
capacity and number of hardware threads [16].

Our effort differs primarily in our focus on using only con-
ventional PCs, general-purpose operating systems, and doing so
for both high-speed packet processing and switching. More gen-
erally though, there are multiple dimensions along which one
could compare router architectures—performance, programmabil-
ity, cost, power, etc.—with different architectures offering different
tradeoffs. The contribution of this paper is to suggest a new, purely
PC-based architecture to those above, but we leave a comprehen-
sive router-architecture comparison to future work. The results of
such a study would shed light on the necessity of special-purpose
architectures (such as NPs) for network-centric workloads or, alter-
natively, on the architectural modifications needed to improve the
packet-processing capability of PCs.

The Click and XORP routers offer modular software-router ar-
chitectures, but do not consider scaling beyond a single server plat-
form; through our cluster-based approach we hope to extend their
applicability to higher speeds. Finally, there is a large body of work
on benchmarking and optimizing network-centric applications on
PCs that we hope to leverage in our prototype.

5Using a torus gives rise to the question of “incomplete” tori; i.e.,
for N ports, there may be no integer d such that N1/d is inte-
gral. A possibility here is to allow non-uniform partitioning of a
d-dimensional torus akin to how DHTs handle a similar issue.

5. CONCLUSION, FUTURE DIRECTIONS
We call for research on building high-speed software routers us-

ing low-cost, commodity hardware. We argue the feasibility of scal-
ing server-class PCs in a cluster-based architecture to achieve high-
speed packet processing and switching, provided software is de-
veloped carefully enough to exploit hardware capabilities. To put
our conjectures to the test, we are currently building a 40Gbps
prototype using a cluster of 4 servers interconnected by a Valiant
mesh (feasible due to the low port count) and interfaced to a control
server running XORP.

Our argument has focused on data-plane performance, yet any
serious proposal for a new high-speed router architecture would
require analysis of features such as power and cooling, footprint,
and configuration. Moreover, there is the bigger question of what
the new capabilities and resources of such an architecture would
enable—from shorter time to market and easily upgradable network
equipment to new network services and architectures.

6. REFERENCES
[1] Intel Xeon Processor 5000 Sequence. http://www.

intel.com/products/processor/xeon5000.
[2] Next-Generation Intel Microarchitecture.

http://www.intel.com/technology/
architecture-silicon/next-gen.

[3] The push of network processing to the top of the pyramid.
Will Eatherton, Keynote at ANCS 2005. Presentation
available on conference website.

[4] Intel Demonstrates Industry’s First 32nm Chip and
Next-Generation Nehalem Microprocessor Architecture.
Intel News Release., Sept. 2007.
http://www.intel.com/pressroom/archive/
releases/20070918corp_a.htm.

[5] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In Proc. of SIGCOMM, 2004.

[6] K. Argyraki, K. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy. Understanding the Packet Forwarding
Capability of General-Purpose Processors. Technical Report
IRB-TR-08-44, Intel Research Berkeley, May 2008.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The Landscape of
Parallel Computing Research: A View from Berkeley.
Technical Report UCB/EECS-2006-183, EECS Department,
Berkeley, CA, Dec. 2006.

[8] C.S.Chang, D.S.Lee, and Y. Jou. Load-balanced
Birkhoff-von Neumann switches, Part I: one-stage buffering.
Computer Communications, 25:611–622, 2002.

[9] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Switches. Morgan Kaufmann, 2004.

[10] W. Fang and L. Peterson. Inter-AS traffic patterns and their
implications. In Proc. of Global Internet, 1999.

[11] P. Gupta, S. Lin, and N. McKeown. Routing lookups in
hardware at memory access speeds. In Proc. of IEEE
Infocom, San Francisco, CA, Mar. 1998.

[12] M. Handley. Why the Internet only just works. BT
Technology Journal, 24, 2006.

[13] R. Huggahalli, R. Iyer, and S. Tetrick. Direct Cache Access
for High Bandwidth Network I/O. In Proc. of ISCA, 2005.

[14] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, and N. McKeown. Scaling Internet routers
using optics. In Proc. of SIGCOMM, 2003.

[15] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek.
The click modular router. ACM Transactions on Computer
Systems, 18(3):263–297, Aug. 2000.

[16] J. Mudigonda, H. Vin, and S. W. Keckler. Reconciling
performance and programmability in networking systems. In
Proc. of SIGCOMM, 2007.

[17] C. Partridge et al. A 50-Gb/s IP Router. IEEE/ACM
Transactions on Networking, 6(3), June 1998.

[18] L. Peterson, S. Shenker, and J. Turner. Overcoming the
Internet impasse through virtualization. In Third Workshop
on Hot Topics in Networks (HotNets-III), Nov. 2004.

[19] L. L. Peterson, S. Karlin, and K. Li. OS Support for
General-Purpose Routers. In Proc. of the IEEE Workshop on
Hot Topics in Operating Systems, 1999.

[20] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing
stability of popular destinations. In Proc. of IMC, 2002.

[21] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a
Robust Software-Based Router Using Network Processors.
In Proc. of the 18th ACM SOSP, 2001.

[22] J. Turner et al. Supercharging planetlab – a high
performance, multi-application, overlay network platform. In
Proc. of SIGCOMM, 2007.

[23] L. Valiant and G. Brebner. Universal schemes for parallel
communication. In Proc. of the ACM STOC, June 1981.

[24] B. Veal and A. Foong. Performance scalability of a
multi-core web server. In Proc. of ACM ANCS, Dec. 2007.

