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Abstract: We experimentally demonstrate that Brillouin slow light with an arbitrary large
bandwidth can be readily obtained in conventional optical fibers using a simple and inexpensive
pump spectral broadening technique.
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1. Introduction

Recent experiments have demonstrated the possibility to achieve a wide group delay control in optical fibers by
use of the stimulated Brillouin scattering (SBS) effect [1,2]. This technique is already thought to offer a vast
potential for performing all-optical packet routing and random access memories [3]. In [4], it was experimentally
demonstrated that arbitrarily large optically-controlled delays could be obtained by preventing pump depletion and
amplified spontaneous Brillouin scattering. This simply requires the insertion of unidirectional broadband
attenuators in the signal path, leaving the pump path lossless. In [5] an extremely wide group velocity control in the
fiber was achieved using the same Brillouin principle. Group velocities as small as 71000 km/s, superluminal and
even negative group velocities were observed. Up to now, however, the main limitation of this all-optical delaying
technique has been its bandwidth, the natural Brillouin bandwidth being restricted to approximately 35 MHz in
conventional single-mode fibers. Thus, the temporal width of the optical pulses that can be delayed with this
technique has so far been restricted to about 20 ns. In this paper we demonstrate experimentally a method to
overcome this limitation, thus opening the possibility to exploit slow light for the development of high-speed all-
optical routers. This is the first demonstration of the control of both the delay and the bandwidth of slow-light. Our
procedure is simple, inexpensive, uses off-the-shelf materials, and ensures that the bandwidth of the slow light can
be matched to that of the signal. We believe that these results offer a basis for a technological application of this
effect.

2. Theory

The process of SBS is usually described as the interaction of two counterpropagating waves, a strong pump wave and
a weak probe wave. If a particular phase matching condition is satisfied (namely fpum"p=prohe+ VB, VB being the
Brillouin shift), an acoustic wave is generated which scatters photons from the pump to the probe wave, stimulating
the process. SBS can be regarded as a narrowband amplification process, in which a strong pump wave produces a
narrowband gain in a spectral region around fpump- vB and a loss around fpump+ vB. According to the Kramers-Kronig
relations, a refractive index change is associated with the Brillouin gain/loss process and a substantial change of the
group index ng=n+±o dnldco follows as a result of the sharp index transition. When a perfectly coherent pump is used
in the stimulated Brillouin interaction, the gain window appearing in the fiber transmission spectrum has a
Lorentzian shape whose characteristic spectral width is around 35 MHz in conventional single-mode fibers pumped
at 1.55 ptm. However, when the pump is modulated the gain bandwidth is given by the convolution of the pump
spectrum and the Brillouin gain curve. Hence the effective Brillouin gain spectrum g('A v) is given by [6]:

g(Av) = P(Av)® gB (Av) (1)

where 0 denotes convolution, P('A v) is the normalized pump power spectral density (so that its integral is unity) and
gB(zA v) is the characteristic Lorentzian gain of the Brillouin amplification process:

1
gB(Av)=gB 1-21(iAv1/AvB) (2)
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for which gB is the linear Brillouin gain coefficient and AVB is the characteristic Brillouin width. Hence an adequate
pump modulation can be used to broaden at will the Brillouin interaction. A particularly useful case arises if the
pump spectrum can also be approximated by a Lorentzian. In such conditions, the effective Brillouin gain shape
remains Lorentzian, but shows a width equal to the sum of the characteristic Brillouin gain width and the pump
spectral width. In this particular case, the delay obtained is given by AmTGl(zAVB+±AVp), where G is the logarithmic
gain suffered by the signal and zlvp is the pump spectral width. With no pump broadening (zlvp=O) the delay
obtained amounts to 1 ns per dB gain [1]. Thus, for the same amount of signal gain, a tenfold increase of the
bandwidth of the interaction comes at the expense of a tenfold reduction of the achieved delay. Since
G=gBIpLeffA vBY(iAVB+AVp), achieving the same absolute delay with a tenfold increase in the bandwidth of the
interaction requires a 100-fold increase in the power of the pump or the effective length. More importantly,
however, in terms of fractional delay (i.e. the delay divided by the pulse length) the same fractional delay with a
tenfold increase in the bandwidth only requires a tenfold increase of the pump power.

3. Experimental results

Figure l(a) depicts the experimental setup. Two conventional temperature and current-controlled distributed feed-
back (DFB) lasers are used to generate the pump and the probe, respectively. The frequency difference between the
pump and probe lasers is set to the Brillouin shift of the fiber by adjusting the temperature and current settings of the
lasers. To broaden the pump, a strongly attenuated pseudorandom binary sequence (PRBS) with a bit rate of
38 Mbit/sec is used to directly modulate the pump laser, yielding a smooth bell-shaped broadening of the pump
spectrum. The broadened pump is amplified with an erbium-doped fiber amplifier (EDFA) and its intensity is
controlled with a variable optical attenuator (VOA). The spectrum of the pump is monitored by the use of a fast
detector connected to an electrical spectrum analyzer (ESA). The probe laser is modulated with an external electro-
optic modulator to produce a 40-MHz train of smooth 2.7-ns wide pulses. A 6.7-km-long dispersion-shifted fiber
with a Brillouin gain bandwidth of approximately 50 MHz is used as the gain medium, in which the pump and probe
are launched in opposite directions. The probe pulse train at the fiber output is amplified to a comfortable level using
another EDFA, filtered and amplitude-controlled before being measured by another fast detector and a sampling
oscilloscope. We tested our detection scheme for several probe powers with the pump turned off so as to ensure that
there was no amplitude-dependent delaying measured by the detection scheme.
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Fig. 1: (a) Experimental setup (b) pump-probe beating as recorded by the electrical spectrum analyzer.

Figure 1(b), shows the pump-probe beating as seen in a fast detector. We observe that the broadening is smooth and
it can be well approximated by a Gaussian distribution. The pump broadening produced by this method is mainly
due to phase modulation of the laser emission, the amplitude changes being nearly negligible. The relatively high bit
rate of the PRBS generator ensures that the effective gain seen by the signal after propagation over the entire fiber
length is effectively the convolution of the Brillouin gain of the fiber and the pump spectrum depicted in fig 1(b).
The pump spectrum fits to a gaussian with a width of approximately 325 MHz. We evaluate the convolution of this
gaussian with the lorentzian Brillouin gain and estimate that in this case the delay introduced per logarithmic gain
corresponds to approximately 0.092 ns/dB, in good agreement with the analytical prediction made in the previous



OTuA2.pdf

section. Figure 2(a) shows the delaying results of 2.7-ns pulses for several gain values, and figure 2(b) shows the
achieved delay values as a function of the gain. We observe a linear dependence of the delay with the logarithmic
gain with a slope of approximately 0.092 ns/dB, as expected from the theory. By tuning the probe frequency
appropriately, we also performed measurements in the Brillouin loss region, obtaining pulse advancement with the
same delay dependence. The achievable gain is limited to 30 dB due to the onset of spontaneous Brillouin scattering
(the maximum achievable pump power in the fiber is approximately 30 mW). Note that the threshold for amplified
spontaneous Brillouin emission appears in this case for a power value that is roughly ten times bigger than in the
non-broadened pump case. Although in this configuration the delay is limited to the tenth of the delay achieved in
the non-broadened pump configuration, it must be pointed out that the maximum achievable fractional delay (i.e. the
delay divided by the pulse length), which is the parameter of interest for real applications, is fully maintained ( 1.1)
and can be arbitrarily extended using the method described in [4]. A small residual broadening of the pulse is also
observed for large gain values (;25%), as expected from the linear theory [4].
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Fig. 2: (a) delaying results for three gain values (b) experimental and theoretical dependence of the delay as a function of
the gain achieved in the fiber.

4. Conclusion

We have demonstrated experimentally a method for performing all-optical delaying and advancement of optical
pulses of arbitrary bandwidth using stimulated Brillouin scattering that is based on the broadening of the pump
spectrum. We have demonstrated a tenfold increase in the available bandwidth of the interaction, and we see no
restriction to push this limit beyond to match telecommunication data rates. Furthermore, we see no theoretical
drawback to extend this idea to other slow light setups, like those based on population oscillations [7].
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