From online experiments to smart devices

Dr Ch. Salzmann and Dr D.Gillet

École Polytechnique Fédérale de Lausanne, Switzerland

http://lawww.epfl.ch

Outline

Remote experimentation timeline Physical device constraints From online devices to ..

.. smart devices

Concluding remarks

Remote experimentation

Motivation

- flexibility, asynchronous access, access on demand, collaborative learning
- lack of resource
- sharing of expensive resource
- live demonstration during an ex-cathedra class

Learning material

- control theory, system identification, synthesis, validation
- concepts illustrated with the help of an electrical drive

Same theoretical concepts for the last 20 years

~ 1980 - Early days

Analog signal generator

Analog controller

Signal visualization via oscilloscope

Data saving by taking pictures of the oscilloscope screen or via a plotter

1992 - Computer-based control

Replaces

the analog signal generator, the analog controller and the oscilloscope

with a

computer and a DAQ board

LabVIEW and associated DAQ drivers drastically speed up the controller development

1996 - LAN access

Add a webcam + streaming software

Add a communication layer + deported GUI

Ex-cathedra demonstration

1997 - Internet access

Many clients
Online reservation and allocation
system
Synchronized information streams
(data + video)

2002 - Deployment

First batch of students to access the remote lab 24/7

Outside lab activities > 50 %

Integration to specific closed environments

Client moved LabVIEW -> Java

2005 - Other environments

Integration to open environments/clients Mashed-up environments

Integration with other tools shared space, analysis tools, video chat

Drastic student increase (40 -> 180)

the whole class connected remotely every other week

Specific device

Full control Full diagnostic

3 + 3 sensors

2 + 3 actuators

Integrated video camera

Specific device

Full control Full diagnostic

3 + 3 sensors

2 + 3 actuators

Integrated video camera

Specific device

Full control

Full diagnostic

3 + 3 sensors

2 + 3 actuators

Integrated video camera

Turnkey solutions

Screen sharing *
Controlab/WebLab (Simulink)
Remote panel (LabVIEW)
Dynamic web page (LabVIEW)

Pros: instantaneous

Cons: lots of bandwidth

no video

*too much rights granted

Custom solution (client-server)

Modify the local control add a communication layer add video capture

-> server

Create the client applications

- Only GUI + Communication
- Java, Flash, ActiveX, LabVIEW, etc.

Global supervision

- Dynamic allocation
- Usage statistics

Integration to other environments

Client and server applications need to be adapted to get the most of collaborative environments

Client & server may require

- additional data format
- additional protocols
- authentication

Integration to other environments

Client and server applications need to be adapted to get the most of collaborative environments

Client & server may require

- additional data format
- additional protocols
- authentication

Integration to other environments

Client and server applications need to be adapted to get the most of collaborative environments

Client & server may require

- additional data format
- additional protocols
- authentication

Implemented as proxy

From online to smart devices

Integration to new open environments

Forest of proxies

Pool information

Able to handle

Multi protocols

Multi data formats

Etc.

Clients and server complexity increase

From online to smart devices

Integration to new open environments

Forest of proxies

Pool information

Able to handle

Multi protocols

Multi data formats

Etc.

Clients and server complexity increase

From online to smart devices

Integration to new open environments

Forest of proxies

Pool information

Able to handle

Multi protocols

Multi data formats

Etc.

Clients and server complexity increase

Keep the same hardware, enhance the software

Smart device

- A way of implementing functionalities (paradigm shift)
- Transfer client functionalities to smart device (server)
- Can initiate information exchange (push)
- Is seen as an agent in collaborative environments
- Ideally supports all formats/protocols or is ready to

Thomson's1 definition:

A smart device has communication capabilities

A smart device has sensors and actuators

A smart device is capable of "reasoning" and "learning"

A smart device has identity and kind

A smart device has memory and status tracking

¹Thompson, C. W. Smart devices and soft controllers, IEEE Internet Computing, 2005 vol. 9-1

Smart device example

Same hardware Enhanced software

SMS: initiate tasks

RSS feed: self diagnostic

eMail: multiple formats

Internet of things

The internet of things is the interconnection of smart devices and other intelligent objects

"Where are my Pals?"

"I'm busy at the moment,

I'll redirect your request to the next free device"

"3230 3435 3038 3030 3109 332E 3435 0932 2E38 3409 332E 30"

"<mailto:rev2008@rev-conference.org- status OK, 3 connections>"

Concluding remarks

Smart device is

- The natural evolution of online device
- A new paradigm for implementing functionalities

Smart device has

- Sensors and actuators
- Some "intelligence"
- Identity, kind, memory, status
- Communication capabilities
- Support for "any" protocols/formats

Smart device can

- Initiate information exchange
- Work as an agent on the user's behalf

http://lawww.epfl.ch http://emersion.epfl.ch http://elogbook.epfl.ch

christophe.salzmann@epfl.ch