

Laboratoire de Production de Microtechnique (LPM)

Email: thomas.maeder@epfl.ch URL: http://lpm.epfl.ch/tf

Formulation and processing of screen-printing vehicles for sacrificial layers on thick-film and LTCC substrates

Th. Maeder, C. Jacq, Y. Fournier, P. Ryser Ecole Polytechnique Fédérale de Lausanne (EPFL)

Sacrificial layers = new possibilities for thick-film & LTCC devices... but involve processing issues!

LTCC channels + membranes (carbon):

- Fluidics + microchemistry
- Pressure sensors
- Viscosity sensors
- (also for classical thick-film)

LTCC gas viscosity sensor [3] & SEM of membrane

Thick-film cantilevers & bridges (mineral):

- Hot-filament thermal sensors
- Sensors for very low forces
- Piezoelectric & electrostatic actuators
- (also for LTCC)

Capacitive microforce sensors (dielectric cantilever) [1,2]

Use of standard vehicles for carbon layers:

- · OK with thick LTCC tapes only
- Destruction of thin (50 μm) tapes
- Incompatibility due to dissolution / softening of LTCC binder in vehicle solvent

Printing cantilevers / bridges onto sacrificial layer:

- Onto fired layer: premature drying of paste
- Onto dried layer with classical vehicle : premature drying
- Onto dried layers + epoxy : OK, but poor process flow compatibility (cleaning, ...) with standard vehicles

PVA - glycol-based vehicle

- Polyvinyl alcohol (PVA) binder
- Propylene glycol (PG) glycerol (G) water (H₂O) solvent Negligible interaction with LTCC
- Non-toxic, low environmental impact

PVA-4-88 10% PVA (88% hydrolysis), 10% in 100% solvent = Soluble + OK Soluble

Binder (10% PVA) solubility map in PG-G-H₂O system

- → Classical vehicle with high "non-evaporable" content • Binder = ethylcellulose (EC, 48% ethoxyl, "4 cP" grade)
- Low molecular weight grade allows high concentrations
- Additional "non-evaporable" content by adding triethylene glycol bis 2-ethylhexanoate (TEG-EH) → plasticiser

Binder	Ethylcellulose (EC), "4 cp" grade	20%
Solvent	Terpineol	40%
	N-methyl-2-pyrrolidone (NMP)	30%
	Triethylene glycol bis 2- ethylhexanoate (TEG-EH)	30%

Optimised concentrations (approx.)

IMPORTANT: minimise water content!

- Avoid dissolution of PVA-based screen emulsion
- Keep evaporation low 2)

Conclusions

- Screen printing vehicles developed for two key
- Now in application & extensive testing
- Needs to be further refined
- Allows / facilitates novel thick-film & LTCC structuration techniques

edmer-S Maeder-T Ryser-P, "Capacitive micro force sensors manufactured with mineral sacrificial layers", Proceedings, 16th IMAPS European Microelectronics & Packaging Conference (EMPC), Oulu, Finnland, pp. 298-303, 2007. unier-Y Wiedmer-S Birol-H Jacq-C Ryser-P, "3D structuration of LTCC / thick-film sensors and fluidic devices", Proceedings, 3rd International Conference on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT), Denver, USA,