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Abstract 

 

The development of in vitro culture systems, comparable to the in vivo microenvironment 

in terms of effect on the oocyte growth and development could provide a valuable 

experimental tool for studying the mechanisms governing folliculogenesis. This tool might 

serve as well for practical clinical, agricultural, zoological, or biotechnological applications.  

This thesis reports on the importance of the microenvironment for the ovarian 

folliculogenesis process. The complexity of such a microenvironment was approached with 

a strategy based on functionalized PEG-hydrogels. The PEG matrix not only served as a 

scaffold, but it was also used a “reservoir” of immobilized cues. Tethered integrin-binding 

peptides in combination with other signaling factors aimed at better understanding the 

interactions of the oocyte and its surrounding granulosa cells that, most probably, 

determine the efficiency of the actual and the future in vitro mature oocyte production 

strategies. This work led also to investigating the lymph angiogenesis and the lymphatic 

transport in the context of oocyte maturation and their impact on mice fertility.  

In a first step, the mechanical properties of PEG-hydrogel were optimized for culturing 

secondary follicles. This report shows that the growth of the follicles was highly dependent 

on the mechanical properties of the surrounding environment. The optimal elastic modulus 

was found to be close to 900 Pa. In a second step, the effect of Arg-Gly-Asp (RGD) peptide, 

the minimal integrin-binding sequence, was studied. RGD presence did not influence the 

follicle growth rate but it significantly improved the quality of the produced oocytes. These 
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findings demonstrated that approaching, biochemically and mechanically, the complexity 

of the ovarian extracellular matrix could be a winning strategy.  

The effect of key soluble factors was also investigated in order 1- to confirm their 

compatibility with the established 3-D culture system and 2- to further improve 

qualitatively and quantitatively the produced mature oocytes. Various combinations of 

gonadotropins such as the follicle-stimulating hormone (FSH) or the luteinizing hormone 

(LH) were tested. Interestingly, the effects of the gonadotropins in the 3-D PEG system 

were close to their known effects in vivo. Here the aberrant effects of these hormones in the 

used 2-D systems appeared clearly. 

c-Kit ligand (KL) is suspected to be one of the most important factors for the activation of 

primordial follicles and thus for controlling the exit from the resting pool. Previously, 

studying the effects of the two forms of KL (soluble and membrane-attached) had to cope 

with the lack of biologically-relevant immobilization strategies. For overcoming this 

problem, KL constructs were designed to include a substrate sequence for Factor XIIIa 

(NQEQVSPL or NQEQVSPLRCG). Thus the produced recombinant KL proteins could be 

enzymatically crosslinked to the PEG matrix. The different constructs of KL, including a 

wild type extracellular domain, were successfully cloned and produced from mammalian 

HEK-293 cells. The identity and the activity of the produced proteins were confirmed. 

Ovarian tissues from four days-old mice were cultured in PEG-hydrogels functionalized 

with KL. The results showed that the primordial follicles grew and were activated in the 

PEG-hydrogels where KL was immobilized but not when the soluble form of KL was 

preset in the medium. This experiment showed that the membrane-attached and the soluble 

form of KL play a different role in the rodent folliculogenesis.  
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In parallel it was observed that blocking vascular endothelial growth factor receptor-3 

(VEGFR-3) signaling had a critical but still unsuspected role in reproduction. This study 

demonstrates that variation in lymphangiogenesis is a regular, non-pathological event 

during folliculogenesis in the ovary; blocking lymphangiogenesis, might have an effect on 

hormone transport and thus on pregnancy. The reported results demonstrates that the 

blockade of lymphangiogenesis decreases the progesterone and estradioal levels during 

pregnancy and in fine results in failed fetal development. 

In conclusion, this study demonstrates the efficiency and the flexibility of a novel 3-D 

culture system. Circumventing problems inherent to the “on-plastic” standard culture, such 

as the loss of the granulosa-oocyte interactions, allowed the emergence of a culture system 

tailored for investigating fundamental folliculogenesis-related questions. Furthermore, the 

reported culture system might serve as a platform for developing clinical and biotechnology 

applications.   

 

 

 

 

 

Keywords: folliculogenesis, follicle, primordial follicle, PEG-hydrogel, FactorXIIIa 

substrate, extracellular matrix, c-Kit, c-Kit ligand, lymphangiogenesis, VEGFR-3 
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Résumé 

Le développement d’un système de culture in vitro dans lequel le développement des 

oocytes s’approcherait de ce qui est observable in vivo constituerait un outil expérimental 

décisif  pour la compréhension des mécanismes gouvernants à la folliculogenèse. Il est 

aussi envisageable qu’un tel outil puisse, tout aussi bien, être employé au profit 

d’applications cliniques, zoologiques ou encore biotechnologiques. Le présent document 

apporte une nouvelle preuve de l’importance du microenvironnement ovarien pour la 

folliculogenèse. La complexité d’un tel microenvironnement a été abordée en utilisant un 

système de culture en hydrogels à base de PEG. Ce substrat artificiel n’a pas seulement 

servi en temps que structure de maintiens tridimensionnelle mais aussi en temps que 

« réservoir à signaux ». En effet l’immobilisation de peptides contenants la séquence 

minimale d’attachement aux integrines (RGD), ainsi que d’autres signaux, a permis 

d’étudier les interactions oocytes-granulosa qui déterminent certainement la quantité et la 

qualité des oocytes matures produits par les systèmes de culture in vitro actuels et à venir. 

Par ailleurs, ce travail a aussi abordé les transports lymphatiques et la lymphangiogénese 

ainsi que leurs influences sur la fertilité.  

Dans un premier temps, les propriétés mécaniques des hydrogels employés ont été 

optimisées pour la culture de follicules secondaires. Ce travail établis que le développement 

des follicules secondaires dépend largement des propriétés mécaniques du milieu 

environnent et que l’élasticité optimale semble être située autour de 900 Pa. De même, ce 

travail démontre que la présence de RGD à des concentrations variables ne semble pas 

influer sur la croissance des follicules secondaires mais que par ailleurs, la présence de ce 

peptide améliore significativement la qualité des oocytes produits.  Ces résultats 



9 
 

démontrent que mimer biochimiquement et mécaniquement le microenvironnement ovarien 

peut constituer une stratégie efficace. 

Dan un deuxième temps, l’effet de certain éléments solubles a aussi été étudié 1- pour 

confirmer leur activité dans le système hydrogel  et 2- pour améliorer qualitativement et 

quantitativement les oocytes matures produits. Diverses combinaisons de gonadotrophines 

(FSH et LH) ont été testées. Les effets observés de ces hormones dans le système hydrogel 

sont relativement proches des effets observés in vivo. Ceci souligne ici l’effet aberrant que 

ces hormones peuvent avoir dans les systèmes de culture bidimensionnels. 

Les ligands des récepteurs c-Kit (KL) semblent jouer un rôle important dans l’activation 

des follicules primordiaux et donc de leur sortie de la phase de dormance. Les études 

précédentes voulant étudier l’effet des deux formes de KL (soluble ou encrée à la 

membrane) on dues composer avec l’absence de stratégies d’immobilisation biocompatible. 

Pour résoudre ce problème, des protéines fusionnées à une séquence-substrat du facteur 

XIIIa (coagulation) ont été produites. Ces dernières on put ainsi être immobilisées 

enzymatiquement sur hydrogel. Les différentes protéines recombinantes on put être 

produites par des cellules HEK-293 (mammifère). La conformité de leurs séquences ainsi 

que leur bioactivité ont été confirmé. Des tissue ovarien récoltés sur des animaux âgés de 

quatre jours on été mis en culture dans des hydrogels où différentes formes et 

concentrations de KL furent préalablement immobilisées. Il a ainsi put être démontré que 

les oocytes primordiaux ont été activés où seule la forme ancrée de KL était présente.   

Parallèlement, il a été observé que le blocage de la voie de signalisation passant par 

VEGFR-3 a un effet drastique mais encore non documenté sur la reproduction. Ce travail 

démontre que la régulation de la lymphangiogenèse dans l’ovaire est un phénomène naturel 

non pathologique et qui est concomitant à la folliculogenèse. Le blocage de la formation de 
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vaisseaux lymphatiques peut avoir un effet sur le transport des hormones et donc sur la 

fertilité. Les résultats présentés démontrent qu’en absence de lymphangiogenèse les taux de 

progestérone et d’œstradiol décroissent pendant la grossesse aboutissant in fine à 

l’avortement.   

Les résultats de ce travail démontrent l’efficacité et la flexibilité du système de culture en 

hydrogel établis. Le contournement des problèmes inhérents à la culture standard  en boite 

de Petri, tel que la perte du contact oocyte-granulosa, a permit l’émergence d’un système de 

culture à même de servir à l’étude des mécanismes sous-tendant  la folliculogenèse. De plus 

ce nouveau système de culture pourrait servir d’ébauche pour le développement de 

plateformes à usage clinique ou biotechnologique. 

Mots-clés: folliculogénèse, follicule, follicule primordial, PEG-hydrogel, FactorXIIIa, 

matrice  extracellulaire, c-Kit, ligand c-Kit, Lymphangiogénèse, VEGFR-3 
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Abbreviations 
 

cAMP Cyclic adenosin monophosphate  

BMP-15 Bone morphogenetic protein-15  

ECM Extra cellular matrix 

EGF Epidermal growth factor human  

FBS Fetal bovine serum  

FSH Follicle-stimulating hormone 

GDF-9 Growth differentiation factor 9  

GV Germinal vesicle  

GVBD Germinal vesicle breaks down  

HBSS Hank’s buffered salt solution 

HCG Human chorionic gonadatropin  

ITS The mixuture of 5 µg/mL insulin, 5 µg/mL transferrin, and 5 ng/mL selenite 

KL c-Kit ligand  

LECs Lymphatic endothelial cells  

LH Luteinizing hormone 

LHR Luteinizing hormone receptor 
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LIF Leukemia inhibitory factor 

L15 Leibovitz medium 

α-MEM α-Minimal essential medium  

MII Methaphase II  

MGF Mast cell growth factor 

MMPs Matrix metalloproteinases   

PEG Polyethylene glycol 

PEG-VS PEG vinyl sulfone  

P/S 100 IU/mL penicillin and 100 µg/mL streptomycin  

RGD Arg-Gly-Asp 

SAMS Swiss academy of medical science 

SCF Stem cells factor   

SCNAT Swiss academy of sciences  

SF Steel factor  

VEGF Vascular endothelial growth factor  

VEGFR-3 Vascular endothelial growth factor receptor-3  

VS Vinyl sulfone 
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Chapter I:  

 

Overview and general introduction 
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1.1. Overview  

Primordial follicles are the earliest form of ovarian follicle and consist of primary oocytes 

surrounded by a single layer of flattened pre-granulosa cells. There are thousands of 

primordial follicles present in the neonatal mammal’s ovaries [1, 2]. Primordial follicles 

can be considered as the storage form of the ovarian follicles and constitute a potentially 

valuable source of oocytes that could be used for clinical, agricultural, and zoological 

purposes [3-5]. To be fully functional, an oocyte has to accomplish the following: A 

nuclear maturation, including completion of the meiotic division. A cytoplasmic maturation 

must be accomplished for the accumulation of maternal factor gene products essential for 

supporting fertilization and early embryogenesis. An epigenetic maturation must be 

accomplished, including genomic imprinting [5].  Thus, it is a considerable challenge to 

achieve full oocyte development in vitro. 

During last decade, several culture systems have been developed allowing the growth of 

rodent oocytes in vitro from secondary follicle [6-9]. Oocytes recovered from these culture 

systems can be fertilized, and live young can be obtained [8]. However, approaches for 

recovery and reproducible in vitro development of primordial follicles to maturity, in which 

oocytes acquire complete competence to undergo maturation, fertilization, and embryonic 

development, are still needed. More recently, two groups reported the possibility to produce 

a maturated mouse oocyte from a primordial follicle [3-5]. These achievements used a 

complex and poorly characterized two-step procedure involving organ culture in vitro [5] 

or in vivo grafting [3, 4] for primordial follicles to begin growing, followed by isolation of 

the growing follicles.  

The medical needs of methods for follicular maturation are substantial. Ovaries are 

especially sensitive to cytotoxic treatments, alkylating agents and ionizing radiation, 

generally resulting in loss of both endocrine and reproductive function [10]. While not all 
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chemotherapy causes women patients to become infertile, the effects vary with drugs, doses, 

and individual sensitivities; many regimens do result in loss of fertility. Fertilized eggs 

survive freezing and thawing better than unfertilized ones, consequently the best chances of 

success come from in vitro fertilization (IVF). Generally, a woman undergoing this 

procedure before having chemotherapy is treated with hormones in order to superovulate. 

The oocytes are subsequently fertilized with sperm from the partner or a donor and 

conserved frozen. In many cases, eggs cannot be harvested because the patient might be too 

young, the type of cancer might exclude a hormonal treatment causing superovulation, or 

the patient might need to start treatment immediately because of the aggressiveness of the 

cancer [5, 10]. For patients under those circumstances, cryopreservation of ovarian tissue 

might be a possible alternative. Transplantation of ovarian tissue is a possibility, but rises 

the question of re-transferring the cancer cells to the patient [5, 10]. A single report 

appeared in 2004 [10] describing a cancer survivor (32-year-old) who became infertile after 

chemotherapy and gave birth after ovarian tissue removal, freezing and reimplantation. 

This report mentioned that the loss of primordial follicles in cryopreserved ovarian tissue 

after transplantation is estimated to be more than 50 % due to hypoxia. Moreover, it is 

difficult to say that only primordial follicle of the grafted tissue contributed for giving a 

birth, because the biopsy samples indicated not only survival of primordial follicles in 

grafted tissue but also follicular maturation [10].  

The development of an efficient cell culture system could also have a profound effect on 

the treatment options of infertile couples by avoiding the need for intensive drug treatment 

and repeated egg collection, as several hundred follicles at early stages could potentially be 

recovered in a small ovarian biopsy, even from young ovaries. Additionally, in vitro growth 

of follicles together with in vitro maturation of fully-grown oocytes could be used to 

generate sufficient oocytes for the needs of patients and provide spare oocytes for donation 
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or research purposes. The combined technologies of ovarian tissue cryopreservation as well 

as growth and maturation of oocytes in vitro could also help young cancer patients to 

preserve their fertility through the storage of their own germ cells before aggressive chemo-

or radio-therapy [11].  

In the last decade, the studies of in vitro maturation of oocytes aimed at better 

understanding the underlying mechanisms of oocyte growth and maturation [1, 2, 8, 9, 12]. 

One of the difficulties in the in vitro cultivation of these very early follicles is the 

prevention of pre-granulosa cells from migrating away from the oocyte and in so doing 

breaking the metabolic link between the two cellular compartments causing apoptosis of 

the oocytes [6]. In nature, when follicles leave the resting pool they undergo a primordial-

to-primary follicle transition and the surrounding squamous pre-granulosa cells become 

cubical granulosa cells and begin to proliferate. Several growth factors have been identified 

to act locally within the ovary and to be involved in the regulation of primordial-to-primary 

follicle transition such as bone morphogenetic protein-15 (BMP-15, produced by the oocyte 

and stimulating the granulosa cells) [13, 14], leukemia inhibitory factor (LIF) [15], and c-

Kit ligand (KL, produced by the granulosa cells and stimulating the oocyte) [14-17]. KL 

was shown to participate in a feed-back loop, where it enhances the expression of KL by 

BMP-15, which as consequence stimulates granulosa cells proliferation [14]. As follicles 

continue to develop through the primary, secondary and pre-antral stages they gain 

successive layers of granulosa cells, the oocyte increases in size and theca cells surround 

the follicle.   
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1.2. Objectives 

Our overall objective it so develop a culture system that is more robust and that takes over 

some of the figures of the regulatory cycle described above.  Our aim is to explore the 

effect of a three-dimensional and functionalized hydrogel network (made of polyethylene 

glycol) on the in vitro follicle development.  

The study will aim at answering the following questions: 

1- Can we mimic the biomechanical effects of the ovarian tissues and maturate oocytes in 

an artificial 3-D environment?  

2- Can we elucidate the gonadotrpoin-mediated (FSH and LH) regulation during follicle 

growth in an artificial microenvironment (hydrogel)? 

3- Is KL sufficient or are more signals necessary for activating primordial follicles (in the 

PEG-hydrogel culture system)? 

4- Can we bring more insights into the lymphatic transports-fertility relation? 

The current in vitro culture systems are now using pre-antral follicles for initiating cultures 

[3-5]. These isolated secondary follicles are maturated in a drop culture system. This 2D 

culture system obliges the follicle to attach on the bottom of the culture dish. This 

attachment induces the remodeling of the original follicle structure [9]. This remodeling 

leads to confuse hormonal or growth factor effects due to the lost of cell-cell interactions. 

The microenvironment system that we intend to develop will help to better understand 

maturation process by mimicking the ovarian extra cellular matrix (ECM). The used 

crosslinked hydrogel network is composed of hydrophilic polymer chains and as the extra 

cellular matrix (ECM) it is sensitive to proteolitic degradation [18, 19]. The molecular 

structure and composition of the hydrogel allow the transport of macromolecules, which 

may enhance the three dimensional organization of the oocyte. In addition to that, it is 



known that KL plays an important role in the “critical” transition from the primordial to the 

primary stage of the follicle [8, 14, 15, 17, 20]. In this regard, the production and binding to 

the hydrogel of recombinant KL will allow the recapitulation of a microenvironment 

combining the advantages of 3-D culture and KL signaling.  

1.3. Folliculogenesis 

The follicle structure is important to sustain oocyte growth and maturation as a 

morphological and functional unit in the ovary of mammalian species. The follicle is 

basically composed of an oocyte in the center surrounded by granulosa cells and/or theca 

cells. 

 

 
 

 
Fig. 1.1. Small fractions of the original stockpile of primordial follciles are recruited 
throughout the reproductive life, whereas most of primordial follicles remian arrested 
at the initial stage of development. This figure is adapted from Kapia A. & Hsueh 
AJW, Annu. Rev. Phzsiol. 59: 349-363, 1997 
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The initial primordial follicles populate the ovarian cortex and serve as a pool of oocytes 

during the entire reproductive life span [21]. They are quiescent or non-growing or resting 

until their growth is actively initiated. It was observed that the flatten granulosa cells of 
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primordial follicles can occasionally enter the cell cycle [22].  The follicles that entered the 

growth phase do not always continue to grow and the majority will undergo apoptotic 

demise (Fig.1.1) [23].  

Folliculogenesis is the growth process that brings the primordial follicle to a fully-grown 

matured secondary oocyte that is able to be fertilized (Fig.1.2). A large number of 

primordial follicles exist in the ovary, but only few follicles enter the developing phase 

(Table. 1.1). The binging of the growth phase is marked by changes in morphology of the 

granulosa cells that become cuboidal. Follicle with more than two layers of granulosa cells, 

complete zona pellucia and theca cells are called preantral or secondary follicle. When 

these follicles reach 200 µm in the size, fluids are accumulated between the granulosa cells 

layers and form a small single antral cavity. This stage is called antral follicle and is 

characterized by the expression of luteinizing hormone (LH)-receptors in the theca cells.  

The last stage is the preovulatory or graffian follicle which has a big antrum and that is 

ready to ovulate a fully mature oocyte [2, 21]. The different steps of folliculogenesis are 

regulated by various endocrine and paracrine factors such as cytokines, growth factors and 

neuropeptidergic substances. 



 
 
Fig. 1.2. Schematical folliculogenesis of mouse and human. The growth process necessary 
to bring the enclosed small immature primary oocyte to a fully-grown mature secondary 
oocyte, ready to be fertilized, is dependent on the growth and development of the follicular 
structure. This process is called folliculogenesis. 
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Table 1.1. Number of ovarian follicles in mammals. The ovary contains a huge number 
f primordial follicles at the birth, however only few of them reach to developing 
ollicle. 

o
f
 

  * Mean number of pair of ovaries. Miyano,  Reprod. Dev., 51: 169-176, 2005  
 



1.4. Oocyte maturation 

Oocyte maturation is essential for fertilization and support of the early embryo 

development. Maturation can be nuclear or cytoplasmic. Nuclear maturation is referred to 

as the reinitiation of the first meiotic division and the progression to methaphase II (MII) 

[24]. Fig. 1.3 represents the progression of the nuclear maturation. Germinal vesicle (GV) 

characterizes oocytes arrested at prophase I and having a nucleus visible in light 

microscopy. Once the meiosis is resumed, the nuclear envelope is dislocated; it is the 

germinal vesicle breaks down stage (GVBD). The dispersion of nuclear contents in the 

cytoplasm is followed by the chromatin condensation into discrete bivalents that align on 

the meiotic spindle at metha phase I (MI). The bivanlents separation during anaphase and 

telophase I is followed by the methaphase II (MII). MII is recognized by the emission of 

polar bodies. The MII stage is arrested until fertilization happens [25]. Cytoplasmic 

maturation is concomitant to nuclear maturation. This maturation is referred to as the 

processes modifying the oocyte cytoplasm and it involves the production and the presence 

of specific factors, the relocation of cytoplasmic organelles and the post-transcriptional 

modification of mRNAs that have accumulated during oogenesis [24]. Both nuclear and 

cytoplasmic regulations are important to support the entire oocyte maturation process.  

21 
 

 
Fig. 1.3. Schematic diagram representing the progression of  
nuclear maturation. The figure is from Smith, G.D., Current  
Women’s Health Reports, 1:143-151, 2001  
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1.5. In vitro follicle culture systems 

During last few decades, in vitro follicle culture was intensively studied in different 

animals and Human. The mouse is the most studied animal and serves as a model. This is 

mainly due to their short life cycle. Within the first 2-3 weeks after birth, the mice oocytes 

grow from a diameter of 15-20 µm to a final size of 70-75 µm [26].   

Generally the secondary follicles already in the growth phase are chosen for research. The 

secondary follicles can be retrieved from the two week-old mice by enzymatic digestion or 

by mechanical dissection. It has been demonstrated that the proteolytic digestion of the 

interstitial matrix destroys the extracellular matrix between the follicle and the surrounding 

cell layer [27, 28]. Thus, the mechanical isolation method is preferred for the follicle 

culture. In this method, the ovary is dissected with a thin gage syringe and the secondary 

follicles (100-130 µm size) are retrieved without destroying the extracellular matrix. The 

standard follicle culture system consists of single droplets culture. Single follicle are seeded 

in each droplet of medium and covered with mineral oil for preventing evaporation [29]. 

Although, this system gives satisfying results including birth of offspring [30-32], it is 

difficult to study the ovarian physiology in this in vitro system because of the induced 

remodeling and because of the loss of oocyte-granulosa contact. This situation produced 

discrepancies in the literature addressing the in vitro follicular physiology. There were 

efforts to preserve the spherical organization of the follicle by culturing them on collagen 

treated/hydrophobic membranes or in individual V-shape 96-well plates. Here, attachment 

was avoided by daily transferring the follicle to a new well [33-35]. Recently, Pangas, et al. 

[36] demonstrated that the three dimensional (3-D) culture of follicle using alginate bead 

allowed the follicles to grow and developed and to maintain its original structure [37]. 

However, this method was limited by the limited control over the follicle number per bead. 
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Daily microscopic observation and growth factor immobilization were also found 

challenging in this system.  

1.6. Synthetic PEG-based ECM analogs 

The reported synthetic hydrogel system is based on PEG. This system combines self-

selective cross-linking chemistry and rapid gelation in aqueous solution at physiological pH 

and temperature [38, 39]. It is perfectly suitable for maturating oocytes in contrast with 

other synthetic hydrogels that need cross-linking by large doses of γ-radiation, ultraviolet 

light, or high temperatures that may lead to damage the contained material [38]. This 

system exploits novel synthetic schemes, based on Michael-type conjugate addition 

reaction, for the preparation of the tailored interactive network architecture based on PEG 

[18, 19, 38-40]. The PEG-hydrogel forms after the reaction of the end-functionalized PEG 

vinyl sulfone (PEG-SV) with bis-cystine peptides containing protease-sensitive sequences 

under physiological conditions [18, 39, 40]. Due to the used Michael-type addition, the 

reaction is based on thiol structure-reactivity relationship. This system allows to easily 

functionalizing the network with adhesion sites or with receptor or ligand signal site by 

their thiols.  

1.7. c-Kit ligand 

Mutation in the murine locus for c-kit ligand (KL) and its receptor c-Kit induce defects in 

gametogenesis, melanogenesis, or hematopoiesis [41]. KL is referred to as the mast cell 

growth factor (MGF), stem cells factor (SCF) or steel factor (SF). KL signaling is triggered 

upon recognition of the ligand and after activating the type III tryrosine kinase receptor: c-

Kit (Fig.1.4) [42].  



 
 
F
 

ig. 1.4. Binding of KL on c-Kit and consecutive activation. 

 

The ovarian expression pattern of KL and c-Kit mRNA and protein was established in 

primates and humans [43-45], sheep [46], and rodents [47, 48]. KL is expressed in the 

granulosa cells and in the ovarian epithelial cells while c-Kit is expressed in primordial 

germ cells, theca cells and oocytes [49]. The interaction of KL and c-Kit was reported to be 

important for primordial follicle activation, thus inducing the exit from the resting pool and 

the entrance in the growth phase [50, 51]. It was confirmed that KL could promote 

granulosa cell mitogenesis. However, another unknown signals from the oocyte are 

necessary to mediate the proliferation [14]. Growth differentiation factor 9 (GDF-9) [52] 

and bone morphogenetic factor 15 (BMP-15) [13] were suggested as candidates. KL was 

suggested to be involved in promoting the survival of both primordial [53] and secondary 

follicle [50]. Often contradictory results are published regarding the effect of KL on 

primordial follicle survival.  

1.8. Lymphangiogenesis 
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Lymphangiogenesis is the growth of new lymphatic vessels. It is modulated by many of the 

lymphatic molecules. The molecules involved in developmental lymphangiogenesis are 

different from those considered in lymphangiogenesis in the adult associated or those 

associated with wound healing or tumor growth and metastasis [54]. The most widely 
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studied growth factors driving lymphangiogenesis are members of the vascular endothelial 

growth factor (VEGF) family. VEGF-C and –D were identified and characterized by 

investigating the lymphatics in tumor progression and by the search for potential 

lymphangiogenic therapies in lymphedema [55]. Growth factors are essential for the 

proliferation and migration of lymphatic endothelial cells (LECs) [56]. When the primary 

receptor, VEGFR-3 is blocked it inhibits lymphangiogenesis in healing wounds [56, 57], 

inflammation [58, 59], and prevents tumor metastasis [60].  

1.9. Guiding thread  

Along the four chapters of this thesis we tried to establish a new 3-D in vitro culture system 

for maturing oocytes. The developed system was based on PEG-hydrogel. The main idea 

was to approach and reconstruct a part of the complexity of the natural microenvironment 

in which maturation of the oocyte occurs: the ovarian tissue and its ECM. This 

microenvironment was assumed to have four major type of influence on folliculogenesis: I. 

biomechanical, II. soluble compounds and hormonal signalling, III. tethered signalling 

proteins and IV. lymphatic related. Each chapter of the thesis tried to go deeper in the 

understanding of these mechanisms. 

In vivo, the first role of the ECM is purely mechanical. It determines the tissue rigidly 

and/or elastically. Moreover, ECM components such as fibronectin are not only playing a 

structural role; they can trigger biological responses such as cell attachment [61]. In this 

regard we tried, in the first chapter, to find the most relevant rheological properties of the 

culture system. The biochemical roles of ECM were investigated by studying the effects of 

the minimal peptide that mediates cell attachment (RGD).  

The ECM can also be seen as a filter that interacts with different compounds in solution 

within the ovarian tissue. It was reported as playing a major role for the hormonal balance 
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in vivo. However when it comes to 2-D culture systems, an abundant and controversial 

literature exists. This controversy is often linked to the lack of ECM in these studies. This 

aspect of the ECM was investigated in chapter II. There we tried to investigate the complex 

relation hormones-ECM. There, the effects of two soluble factors (FSH & LH) on 

secondary follicles development and oocyte maturation were studied.  

In the third chapter the efforts to reconstruct the ovarian tissue environment continued with 

investigating the effect a tethered signaling factor that is important for folliculogenesis: c-

Kit ligand (KL). KL was a very good model system as its bioactivity (for folliculogenesis) 

is closely linked to its immobilization. There, recombinant KL with different 

immobilization strategies (compatible with our hydrogel system) was produced. 

Immobilization of rKL was achieved and preliminary experiments were processed with 

mice ovarian tissue. 

Chapter four investigated lymphangiogensis in the ovary as, ultimately, the reconstruction 

of an efficient artificial ovarian tissue needs to embed the features of a vascular system. 

Numerous studies dealt with angiogenesis and reproduction. However, little is known about 

lymphangiogenesis in the ovarian tissue. In this chapter we were the first to describe the 

abundant lymphatic vasculatures in the ovary and the importance of lymphangiogenesis 

during follicles growth. This work demonstrated that the success of future artificial ovarian 

tissues will largely depend on their ability to include complex transport mechanisms such 

as lymphangiogenesis. 
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Chapter II 

 

Optimization of the biophysical properties of 

PEG-hydrogels for murine ovarian follicle culture  
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2.1. Introduction 

The extracellular matrix (ECM) has many different functions; 1-Mechanically, it gives the 

tissues rigidly and/or elastically. 2-Chemically, it contains many cues that modulate the 

cellular activities. These properties are essential to the basic cellular activities that are, 

differentiation, migration, proliferation, apoptosis, attachment, etc [62, 63]. ECM is also 

playing an important role in the regulation of the interstitial flow by generating osmotic 

forces, or by filtering materials from solutions [62]. From the ECM point of view, the 

mammalian ovary is a special organ because it undergoes cyclical ECM remodeling. This 

remodeling is caused by the follicular development, atresia, and the breakdown of the 

follicle wall at the time of ovulation, the luteal formation and subsequent regression [64].  

For the ovulation of a matured oocyte to occur, primordial follicles as an initial stage must 

develop into large antral follicle (called graffian follicle), which is ready to ovulate. During 

this process, the size of the oocyte increases about 100-folds [26]. The ovarian ECM 

supports the follicle structure and generates osmotic forces for follicular fluid formation 

and filtering soluble materials through the follicular basal lamina, transfers the hormone 

and nutrients, and cyclic remodeling [63]. It has been reported that the remodeling of the 

ovarian ECM is related to matrix metalloproteinases (MMPs) activity [64-66] and to 

integrin-binding activity of adhesive factors, such as fibronectin, (or synthetic peptide 

containing Arg-Gly-Asp sequences). This remodeling has been shown to favor both 

proliferation and differentiation of granulosa cell [67].  

Two-dimensional culture systems routinely used for follicle culture induce remodeling of 

the follicles structure as the granulosa cells are migrating away from oocyte. This 

remodeling is necessary for getting better oxygenation, nutrients, and access of hormone 



29 
 

support to the inner most follicle cells [68]. An abundant literature dealing with in vitro 

follicle culture has been produced. The effects of the most important growth factors and 

hormones on the development of ovarian follicles were described for in vitro systems. 

However, the underlying mechanisms by which the ovarian ECM controls of the follicular 

growth and development remains poorly understood.  

So it is necessary to develop in vitro culture systems to mimic the in vivo follicle 

environment. The development of biomimetic follicle’s microenvironments will be useful 

for understanding the ovarian ECM, identifying the mechanical mechanisms underlying 

ovarian disorders such as polycystic ovary syndrome, and preservation reproductive 

potential for infertility couple and cancer patients.  

Mimicking the ovarian ECM requires several conditions; first, maintaining the three-

dimensional structure of the follicles is essential. Second, the matrix should be cell 

responsive, as it has to be remodeled for allowing the follicles to grow. Third, the artificial 

ECM must be easily functionalized with signaling elements such as integrin binding 

proteins or growth factors. Finally, artificial ECM must allow single follicle culture and 

must be compatible with daily microscopical observation during follicle growth.  

The 3D culture system was first introduced to follicle culture by using alginate gel [36]. In 

this system, the follicles grew and developed without losing the typical morphology of in 

vivo grown-follicles. However, this system was limited by the difficulty to control single 

cell culture and to observe the growth process because of the beads shape. Immobilizing 

signaling factors was also limited in the alginate bead culture system.  

The goal of this study is to demonstrate the importance of the interactions between the 

ECM and the follicle in the maturation process of the oocyte. The used PEG based 

hydrogel system was chosen for several reasons:  
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1- It adds the 3rd dimension that is missing to the culture on plastic systems. 2- It has 

comparable rheological properties (elastic modulus) when compared to ovarian tissues. 3- 

It is cell-responsive, as it allows the cells to remodel their 3-D environment by MMP 

secretion 4- Key signaling factors can be efficiently tethered to activate specific pathways 

and thus mediate the desired biological function [40]. 

2.2. Materials and Methods 

2.2.1. Animals  

Female F1 hybrid (C57BL/6 x CBA/caj) mice bred and housed in temperature-, lighting-, 

and humidity-controlled room and given food and water ad libidum. All animal 

experimental procedures were approved by the veterinary authorities of the canton de Vaud 

in accordance with the Swiss Academy of Medical Science (SAMS) and the Swiss 

Academy of Sciences (SCNAT) guidelines.  

2.2.2. Synthesis of PEG-VS and peptide precursors  

PEG vinyl sulfone (PEG-VS) was synthesized by adapting a previously published protocol 

[18]. Briefly, 15 g of 4-arm PEG-OH (Mw = 20 kDa, Shearwater polymer, Huntsville, AL) 

was dried by azeotropic distillation in toluene (VWR, Nyon, Switzerland) for 4 hr using a 

Dean-Stark. The dried PEG-OH was dissolved in 500 mL of dichloromethane (Fisher 

Scientific, Wohlen, Switzerland) and sodium hydride (Sigma-Aldrich, Buchs, Switzerland) 

was added at 20-fold molar excess over OH-group of PEG. Then, divinyl sulfone (Fluka, 

Buchs, Switzerland) was added at a 50-fold molar excess over the OH groups. This reaction 

was carried out at room temperature under argon with constant stirring. After 3 days, the 

excess sodium hydride was neutralized by acetic acid (Fluka, Buchs, Switzerland). The 

mixture was filtered over a filter cell cake and concentrated by rotary evaporation. The 

concentrated polymer was precipitated in ice-cold diethylether (Brunschwig, Basel, 
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Switzerland) and filtered. This precipitation was repeated 3 times. Finally, the product was 

dried under vacuum at room temperature for three days and the yield was 82 %. 1H NMR 

showed characteristic vinyl sulfone peaks at 6.1, 6.4, and 6.8 ppm. The degree of end-group 

conversion was found to be 95 %. The polymer was stored under argon at -20 °C until used. 

The procedure was reviewed in detailed by Kraehenbuehl et al. (2008) [69].   

RGDSP peptide (Ac-GCGWGRGDSPG-NH2) was synthesized by solid phase peptide 

synthesis using an automated peptide synthesizer (Chemspeed, Augst, Switzerland). 

NovaSyn TGR resin (Merck Biosciences, Laeufelfingen, Switzerland) with a standard 

Fmoc chemistry was used. Purification was performed by mass-directed reverse phase-C18 

HPLC using a Water Autopurification System. Separation and collection of the samples 

were performed upon UV with broad wavelength detection (210-400 nm) (Water PDA 996 

UV photodiode array) and mass directed software (Waters Masslynx software). Peptide 

sequences were confirmed by MALDI-TOF in the proteomics core facility of EPFL.  

The cross-linking peptide that contains a sequence sensitive to MMP cleavage (Ac-

GCREGPQG↓IWGQERCG-NH2) was obtained from Neosystm S.A. (Strasboug, France).  

2.2.3. Formation and characterization of the PEG-hydrogels 

The PEG-hydrogels were formed by Michael-type addition of thiol-containing peptides 

onto VS-functionalized PEG. First, the PEG-VS necessary for forming hydrogels was 

functionalized with arginine-glycine-aspartic acid (RGD) peptides (also by Michael-type 

addition). Thirty-nine µL of 10 % PEG hydrogel (in TBS pH 8) solution were mixed with 

6 µL of a 400 µM RGDSP peptide solution (in H2O). The addition proceeded at room 

temperature for 30 min. Second, 15 µL of medium containing or not cells, was added into 

the RGD reacted with PEG-VS solution. Finally the gel polymerization was initiated by 

adding 1.24 mg of the cross-linker peptide dissolved in 24 µL of triethanolamine buffer 
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(TEOA, 0.3 M, pH8.0; Fluka, Buchs, Switzerland). Before curing, drops of 28 µL of 

hydrogel solution were placed between two hydrophobic glass slides separated by a 1 mm 

spacer and pretreated with SigmaCote (Sigma-Aldrich, Buchs, Switzerland). The slides 

were fixed with clamps and the whole system was put in an incubator (37°C, 5% CO2) for 

18 min to polymerize. For characterization, the prepared gels were incubated overnight at 

37 °C in bidistilled water. The swelling of the hydrogels was investigated by weighing the 

gels after the overnight incubation in water. The swelling ratio Q was determined as the 

swollen gel mass divided by the gel’s dry mass. 

The swollen gels were also used to measure storage and loss moduli (G' and G" 

respectively) by small-strain oscillatory shear rheometry using a Bohlin CVO 120 high-

resolution rheometer (Marvern Instruments, Worcestershire, UK). Measurements were 

performed at 25 °C. Storage and loss moduli, as wheel as phase angle, were measured as a 

function of frequency (from 0.1 to 10 Hz) in a constant stain mode (0.05 Hz). The swollen 

hydrogel disks of 1-1.4 mm thickness were placed between the two plates of the rheometer. 

Compression of 70 to 75 % was applied to avoid slippage. 

2. 2.4. Follicle isolation, seeding and culture 

Ovaries were collected from two-week old F1 female mice (C57BL/6 x CBA) after 

euthanasia by cervical dislocation. The collected ovaries were washed with HBSS (Hank’s 

buffered salt solution, Gibco-Invitrogen, Switzerland) and placed in L15 (Leibovitz 

medium, Gibco-Invitrogen, Switzerland) supplemented with 10 % heat-inactivated FBS 

(fetal bovine serum, Hyclone), 100 IU/mL penicillin and 100 µg/mL streptomycin (P/S). 

The ovaries were mechanically dissected using insulin syringe.  Only follicles with two 

layers of granulosa cells (100-120 µm) were collected using a mouth-operated micropipette 
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[70]. The follicles were washed and kept in L15 washing droplets covered by paraffin oil 

(Vitrolife, Sweden).   

The follicle were seeded in the above described hydrogel system. Six µL hydrogel drops, 

containing a unique follicle were formed. After curing, each of these gels was placed in a 

well of a 96 wells-plate, 150 µL of culture medium was added.  

The culture medium consisted of α-minimal essential medium (α-MEM  with glutamax, 

Gibco) supplemented with 5 % FBS, ITS (5 µg/mL insulin, 5 µg/mL transferrin, 5 ng/mL 

selenite, Sigma, Buchs, Switzerland), 1 % of P/S, 100 mIU/mL of recombinant follicle 

stimulating hormone (rFSH, Organon, Switzerland). Next day, the medium was changed 

completely with fresh medium. Every second day, half of the medium was replaced with 

fresh one.  

2.2.5. Oocyte maturation and quality assessment  

The oocytes meiotic competences were assessed by induced maturation after 11 days of 

culture. The grown follicles were retrieved from gels by incubating the gels in a 5 mg/mL 

collagenase I solution (Sigma, Buchs, Switzerland). The follicles were moved to culture 

medium with 5 ng/mL of human epidermal growth factor (EGF, Roche, Basel, Switzerland) 

and 2.5 IU/mL of human chorionic gonadatropin (HCG, Organon, Switzerland) without 

rFSH and incubated at 37 °C for 18-20 hrs to induce the ovulation. After the induction of 

the ovulation, oocytes were removed from the cumulus oocyte complex or the follicle by 

using a mouth-operated micropipette. The collected oocytes were washed in M2 medium 

(Sigma, Buchs, Switzerland) droplets and their state was assessed under stereomicroscope 

and characterized as DG (degenerated), GV (intact germinal vesicle), or GVBD (germinal 

vesicle breakdown) based on the presence or the absence of a germinal vesicle and MII 

(metaphase II) due to the presence of polar body.  
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Parthenogenesis was induced by 10 mM strontiumchloride in Ca2+ free KOSM medium 

with 1 µg/mL of cytochalasin D. After 4 hr, the oocytes were moved to M16 medium and 

two-cell embryos were observed one or two days later. 

2.2.6. Statistic analysis 

The statistical analysis of the data was performed with the program OriginPro 8.0 

(Originlab corporation, MA, USA). Significances at p< 0.001, p<0.01 and p<0.05 (***, ** 

and * respectively) of the differences were assessed with a T test.  

2.3. Results and discussion 

2.3.1. PEG-hydrogel physical properties 

A wide variability in term of mechanical properties can be measured across the different 

mammalian tissues. For example, the softest tissue: the brain has an elastic modulus (G’) of 

200-400 Pa [71]. G’ of the bones (the hardest tissue) is more than 17 GPa [72]. The first 

step of this study was to investigate the effect of different stiffness on the follicle 

development. Thus, the mechanical properties and the swelling ratios of the PEG-hydrogel 

were modulated by controlling the crosslinks density. The hydrogel networks were formed 

with 4-arm-PEG-VS, (20 kDa) and bis-Cys crosslinking peptide with an MMP cleavage 

site. The effect on G’ of four different stoichiometric ratios (r equals the molar ratio of SH 

and VS groups) were investigated (Fig. 2.1). A large variation in stiffness was obtained and 

a linear relatio between r and G’ was observed. At the lowest stoichiometric ration the 

hydrogels had a mean G’ of 291±87.64 Pa and at the highest, G’ was 2.277 ± 0.47 kPa. 

Swelling was also influenced by the stoichiometric ratios. The highest swelling ratios (Q = 

75.57 ± 7.02) was obtained for the lowest r = 0.8. A clear negative correlation between 

swelling and elastic modulus was observed. These measured mechanical and swelling 



properties are in accordance with previous reports [18, 19] that characterized the PEG-

Hydrogel systems.  

 

 
Fig. 2.1. Elastic modulus and swelling properties of the PEG-
hydrogel as a function of the stoichiometric ratio. The density of the 
crosslink was modulated by four different stoichiometric ratios 
(SH/VS). Elastic modulus G’ (left axis) and Swelling ratio Q (right 
axis) were measured. Mean ± SD is shown. The swelling ratio and 
elastic modulus were negatively correlated. 

 

2.3.2. Follicle growth in PEG-hydrogels and oocytes quality 
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Two-layered secondary follicles at 100-120 µm sizes were collected and seeded 

individually into each PEG-hydrogel functionalized with RGD peptides. Overall, more than 

400 secondary follicles were cultured for 11 days in all the different PEG-hydrogel systems. 

Fig. 2.2 shows that the size of the follicles was greatly increased in the gel with less than 1 

kPa of elastic modulus (r = 0.8 and 0.9) after 11 days of culture. In the stiffest gels (r=1.5) 

follicle growth was limited to 200 µm.  Surprisingly, at identical swelling ratios but 

different G’ (r = 0.9 or 1) the follicle size was significantly different. It appeared that above 

a barrier of approximately 1 kPa, the follicle growth was greatly inhibited. Fig. 2.3 shows 

the follicle morphology at the end of the culture period in gels with different stiffness. The 



follicles in the soft gels (r=0.8 and 0.9) had similar morphologies to in vivo graffian 

follicles; A big antrum cavity was observable. In the stiffer gels (r=1.0 and 1.2), no antrum 

formation but only granulosa cell layers was detectable. These results are in agreement with 

previous studies that demonstrated that the stiffness of the matrix effects the antrum 

formation during follicle growth [37, 73]. In vivo, when the size of the follicle reaches 200 

μm, fluid accumulates between the granulosa cell layers and starts to form the antrum 

cavity [61]. The follicle size is then multiplied by 3 to 5 when compared to two-layered 

secondary follicle [68]. Our observations are fitting with this model where flexibility of the 

microenvironment is required for the follicle to undergo fluid accumulation and antrum 

formation. A limit of 1 kPa can be proposed as the maximal elastic modulus that allows 

antrum formation.  

 

 
 

Fig. 2.2. The comparison of follicle size (bar) and 
swelling ratio (dash line) by changing stoichiometric 
ratio. The secondary follicles (100-120µm) were 
cultured in the PEG-hydrogel with different 
mechanical properties for 11 days. Average ± SD is 
shown. (***P <0.001 and *P<0.05). The size of 
follicles were significantly different between r= 0.9 
and 1 with identical swelling ratios.  
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Whether the limited growth in stiff gels is due to smaller mesh size (thus to lower nutrient 

and signaling factor transport [72, 74] or to the mechanical constraints is still in question. 

However the different follicle sizes observed in gels with identical swelling but different G’ 

(r = 0.9 and r =1) tend to prove that the limitation is due to the mechanical constraints.  

The quality of the oocytes was assessed by the ability to resume meiosis. The gels were 

digested by collagenase I for retrieving the follicles. After, the induction of the ovulation, 

cumulus-oocyte complexes were observed as it can be observed in vivo. The cumulus cells 

are made of granulosa cells adjacent to the oocyte following it after ovulation. This process 

is called cumulus expansion or mucification [68].  
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Fig. 2.3. Morphological differences between the follicles cultured in the 
PEG-hydrogel of different stochiometric ratios after 11 days.  
The r ratios are (a) 0.8 , (b) 0.9, (c) 1.0, and (d) 1.5(Scale bar, 100 µm) 



 
When follicles with diameters higher than 250 μm were ovulated, the collected oocytes had 

well expended cumulus cells (Data not shown). Their survival rate was assessed as well as 

their maturation quality. The retrieved oocytes from r = 0.9 hydrogels showed the highest 

rate of maturated oocyte (MII = 56 %). In stiff gels (G’ > 1 kPa), no MII oocyte (r = 1) or 

only 10 % (r = 1.5) MII oocytes were found (Fig. 2.4). The few oocytes collected from stiff 

gels had a squashed shape. The softest gel (r=0.8) produced only 20 % of MII oocytes even 

though the follicle size were large enough and formed antrum. There, the softest matrix 

seemed to allow the follicle to grow faster producing already degenerated oocyte after 11 

days of culture. When survival rates were compared, only 50 % of the oocytes from the 

very soft gels survived where the survival in the other condition was between 85 to 95%. 

The MMP degradation of the already very soft gels played probably a role in the reduced 

quality of the produced oocytes as well.  
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Fig. 2.4. Mature oocytes grown in the follicle 
cultured in different stiffness PEG-hydrogel. The 
significant different (*P <0.05) was demonstrated 
in MII oocytes in the PEG-hydrogel at 0.9 of r 
ratio. Average ± SD is shown. Elastic modulus 
influences the nuclear maturation. 
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In this study, the stiffness and swelling ratios of the used microenvironments had a 

measurable affect on the follicle growth and on the subsequent oocyte quality. Around 900 

Pa gels (r = 0.9) seemed to be the most relevant for follicle culture. These results confirm 

that the physical characteristics of the follicle microenvironment are potent regulators of 

the granulosa cells proliferation and thus of the oocyte maturation.  

2.3.3. RGD effects on the follicle development 

For studying the effect of RGD, the secondary follicles were cultured in PEG-hydrogel 

with or without RGD. Optimal elastic moduli for the PEG-hydrogel were used (r = 0.9). 

The stoichiometric ratios were adjusted to compensate for the RGD presence or absence. 

No significant differences in size of the follicles were observed between the studied groups 

indicating that the elastic moduli were not influenced by the presence of RGD (Data not 

shown). Fig. 2.5 shows the morphologies of the follicles during growth. At day 1, follicles 

cultured with RGD showed theca cells attached to the artificial ECM. At day 3, theca cells 

proliferated and surrounded the base membrane. The group without RGD did not show 

attachment however; the theca cells proliferated and grew normally. The final 

morphologies were not different between the two groups. Ovulation was induced and the 

retrieved oocytes were assessed for their ability to resume meiosis. Follicles from the 

hydrogel with RGD produced 53.2 % maturated oocytes in average where the follicles 

cultured without RGD produced only 39.5 % (Fig. 2.6.a). The impact on quality of RGD 

was monitored by inducing parthenogenesis and measuring the rate of the obtained two-cell 

embryos. Fig. 2.6.b shows the development rate of the obtained two-cell embryos from the 

follicles culture with or without RGD. The oocytes collected from the hydrogel with RGD 

reached the 2-cellembryo stage with higher frequency than the oocytes from non-RGD 

hydrogel (31 % vs 8.5 %, the difference is significant at p < 0.01). These results 

demonstrated that RGD-mediated cell attachment had a positive effect on oocyte quality.  



Fig. 2.5. Morphological details of follicles cultured in PEG-hydrogels with or without RGD. 
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Fig. 2.6. Maturation rates of oocytes (a) and 2 cell 
embryos development (b) from the follicle cultured in 
PEG-hydrogel with or without RGD (**P<0.01). 
Average ± SD is shown. The RGD effect on 
development of the oocytes to 2 cell embryos stages. 
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Ovarian follicles are surrounded by basal lamina. Recent studies reported that this basal 

lamina regulates granulosa cell functions [75-77]. Laminine, type IV collagen, fibronectin, 

heparin sulphate proteoglycans is contained in the ECM components of basal lamina [62]. 

Huet et al. (2001) [77] demonstrated that the presence of an RGD peptide increased the 

proliferation and attachment of granulosa cells and mimicked the effect of fibronectin and 

laminin when only granulosa cells were cultured on plates. Previous studies demonstrated 

that peptide containing RGD sequences improved the expression of LH receptors in porcine 

granulosa cells stimulated by FSH [78] and increased progesterone and estradiol secretions 

of murine granulosa cells [79]. In this study, the follicles cultured in the PEG-hydrogel with 

or without RGD were not different in terms of morphology and size. However, the oocytes 

maturation and quality showed interesting differences highlighting the beneficial effects of 

the RGD presence. When the granulosa cells cultured on the RGD coated plastic, they first 

attachment and then secreted their own ECM attachment proteins [67]. The no difference in 

follicle growth could be partially explained by the endogenous production of ECM protein. 

However, the differences in quality could be explained by the stimulating effect of RGD on 

estrogen and progesterone secretion of the granulosa cells as well as the LH receptors 

production. These results demonstrated that mimicking physically and chemically the 

ovarian ECM improved the quality and the quantity of the produced mature oocytes.  

2.4. Conclusion 

In this study, the PEG-hydrogel system was efficiently tailored to mimic the ovarian ECM 

for follicle culture. The development of the follicles was largely influenced by the stiffness 

of the microenvironment. Less than 1 kPa gels were identified as optimal. The RGD 

presence in the system was also associated with improved quality and higher two-cell 

embryos rates obtained form the cultured follicles.     



42 
 

 

Chapter III 

 

Effects of FSH and LH on 3‐D cultured murine 

ovarian follicles   
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3.1. Introduction 

The development of in vitro ovarian follicle culture systems provides not only the 

knowledge of ovarian physiology but also benefits to clinical applications such as infertility 

treatments and fertility preservation in cases such as oocyte-devastating cancer treatments.  

The follicle as a morphological and functional unit in the mammalian ovary is composed of 

the oocyte and its surrounding somatic cells (granulosa and theca cells). The oocyte growth 

and maturation is depended on the growth and development of follicle structure. The 

process of follicle development is called folliculogenesis. The earliest stage of the follicle is 

called primordial follicle. It has the oocyte in the center surrounded by a single layer of 

flattened granulosa cells. Once the follicle enters the growth phase, the granulosa cells 

shape change to cuboidal, at the stage called primary follicle. The follicles with granulosa 

cells more than two layers are called secondary follicle or preantral follicle. The theca cells 

differentiate and the zona pellucida is completely formed at this stage. When the follicles 

reach 200 µm in size, a fluid-filled space is formed between the granulosa cells layers. This 

stage is known as the early antral follicle. Then the antrum increases in size by the 

ovulation and is finally called a graffian follicle or a late antral follicle [2, 21, 26]. The 

granulosa cells proliferate and differentiate by maintaining cellular communication with the 

oocyte during the folliculogenesis. It is demonstrated that metabolic coupling occurs 

between the oocyte and the granulosa cells. The transfer of small molecules into the oocyte 

through gap junctions during the in vitro growth period is as a key factor for the support of 

the oocyte’s activities [80, 81]. Heterologous gap junctions are present between oocytes 

and granulosa cells before forming the zona pellucida [82]. After the zona pellucida 

formation, the contact between the oocyte and the granulosa cells is maintained though the 

emission of cytoplasmic processes that penetrate the zona pellucida and reach the oocyte 

[2]. Thus, the maintenance of communication paths is essential for the follicle development.  
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Another important factor for the follicle development is the presence of physiological 

concentration of gonadotropins [83]. The main gonadotropins are the follicle-stimulating 

hormone (FSH) and the luteinizing hormone (LH). FSH stimulates the antral follicle for 

further growth and differentiation [84]. It promotes the granulosa cell proliferation in 

secondary follicles and prevents atresia. FSH is also essential for steroid hormones 

production as it stimulates the aromatase enzyme activity (P450 aromatase) and promotes 

the synthesis of luteinizing hormone receptors (LHR) leading to the follicle antrum 

formation [85-87].  LH plays an essential role in the stimulation of the enzyme cascade 

responsible for androgen biosynthesis in the theca-interstitial cells. Thus LH is determinant 

for achieving the final differentiation of the granulosa cell that leads to the resumption of 

the meiotic maturation and to the ovulation [88].  

In the established in vitro follicle culture, the use of these two gonadotropins is still 

controversial. FSH plays an important role for the acquisition of the oocyte’s 

developmental competences. FSH is usually added to the secondary follicle culture medium 

in mice and in large mammals [5, 33, 89]. It has been demonstrated that FSH is required at 

the minimal concentration of 10 mIU/mL [90] or 100 mIU/mL [33]. Mitchell et al., [91] 

reported that the populations of ovulation were significantly decreased at 1000 mIU/mL 

when compared to conditions using 100 mIU/mL for secondary follicle in vitro culture. The 

LH is not an essential factor for the oocyte growth and maturation in vivo [92]. Thus, the 

usage of LH in vitro remains controversial. Cortvrindt et al., [93] demonstrated that a low 

amount of LH enhances the percentage of healthy follicle and impacts positively the oocyte 

production while Lee and colleagues (2007) [94] reported no effect of LH on follicle 

growth and oocyte maturation.  

These contradictory results could be explained by the used culture system which is different 

from the in vivo situation. Follicles attached on plastic dishes loose their three-dimensional 
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(3-D) structure during the culture. The cell-cell interactions between the oocyte and the 

granulosa cells or between the granulosa cells and other the granulosa cells (or theca cells) 

are highly disturbed in 2-D systems. This “disconnection” may lead to the different results 

observed in the literature because these interactions can interfere with the hormone balance 

or the steroid production[93]. This justifies the necessity of studying the effects of hormone 

or growth factor in 3-D culture systems, which are closer to the in vivo ovarian 

microenvironment.  

3.2. Materials and Method 

3.2.1. Animals  

Female F1 hybrid (C57BL/6 x CBA/caj) mice bred and housed in temperature-, lighting-, 

and humidity-controlled room and given food and water ad libidum. All animal 

experimental procedures were approved by the veterinary authorities of the canton de 

Vaud in accordance with the Swiss Academy of Medical Science (SAMS) and the Swiss 

Academy of Sciences (SCNAT) guidelines.  

3.2.2. Synthesis of PEG-VS and peptide precursors  

PEG vinyl sulfone (PEG-VS) was synthesized by adapting the previously published 

protocol [18]. Briefly, 15 g of 4-arm PEG-OH (Mw = 20 kDa, Shearwater polymer, 

Huntsville, AL) was dried by azeotropic distillation in toluene (VWR, Nyon, Switzerland) 

for 4 hr using a Dean-Stark. The dried PEG-OH was dissolved in 500 mL of 

dichloromethane (Fisher Scientific, Wohlen, Switzerland) and sodium hydride (Sigma-

Aldrich, Buchs, Switzerland) was added at 20-fold molar excess over OH-group of PEG. 

Then, divinyl sulfone (Fluka, Buchs, Switzerland) was added at a 50-fold molar excess 

over the OH groups. This reaction was carried out at room temperature under argon with 

constant stirring. After 3 days, the excess sodium hydride was neutralized by acetic acid 
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(Fluka, Buchs, Switzerland). The mixture was filtered over a filter cell cake and 

concentrated by rotary evaporation. The concentrated polymer was precipitated in ice-cold 

diethylether (Brunschwig, Basel, Switzerland) and filtered. This precipitation was repeated 

3 times. Finally, the product was dried under vacuum at room temperature for 3 days and 

the yield was 82 %. 1H NMR showed characteristic vinyl sulfone peaks at 6.1, 6.4, and 6.8 

ppm. The degree of end-group conversion was found to be 95 %. The polymer was stored 

under argon at -20 °C until used. The procedure was reviewed in detailed by Kraehenbuehl 

et al. [69].   

RGDSP peptide (Ac-GCGWGRGDSPG-NH2) was synthesized by solid phase peptide 

synthesis using an automated peptide synthesizer (Chemspeed, Augst, Switzerland). 

NovaSyn TGR resin (Merck Biosciences, Laeufelfingen, Switzerland) with a standard 

Fmoc chemistry were used. Purification was performed by mass-directed reverse phase-

C18 HPLC using a Water Autopurification System. Separation and collection of the 

samples were performed upon UV with broad wavelength detection (210-400 nm) (Water 

PDA 996 UV photodiode array) and mass directed software (Waters Masslynx software). 

Peptide sequences were confirmed by MALDI-TOF in the proteomics core facility of 

EPFL.  

The cross-linking peptide that contains a sequence sensitive to for MMP cleavage (Ac-

GCREGPQG ↓IWGQERCG-NH2) was obtained from Neosystm S.A. (Strasboug, France).  

3.2.3. Preparation the aliquots of PEG-hydrogel 

The PEG hydrogels were formed by Michael-type addition of thiol-containing peptides 

onto VS-functionalized PEG. First, the PEG-VS necessary for forming hydrogels was 

functionalized with arginine-glycine-aspartic acid (RGD) peptides (also by Michael-type 

addition). Thirty-nine µL of 10 % PEG hydrogel (in TBS pH 8) solution were mixed with 



47 
 

6 µL of a 400 µM RGDSP peptide solution (in H2O). The addition proceeded at room 

temperature for 30 min. The PEG functionalized with RGD solutions were stored in 

aliquots of 22.5 µL at -20 °C.  

3.2.4. Follicle isolation, seeding and culture 

Ovaries were collected from two-week old F1 female mice (C57BL/6 x CBA) after 

euthanasia by cervical dislocation. The collected ovaries were washed with HBSS (Hank’s 

buffered salt solution, Gibco-Invitrogen, Switzerland) and placed in L15 (Leibovitz 

medium, Gibco-Invitrogen, Switzerland) supplemented with 10 % heat-inactivated FBS 

(fetal bovine serum, Hyclone), 100 IU/mL penicillin and 100 µg/mL streptomycin (P/S). 

The ovaries were mechanically dissected using insulin syringe.  Only follicles with two 

layers of granulosa cells (100-120 µm) were collected using a mouth-operated 

micropipette [70]. The follicles were washed and kept in L15 washing droplets covered by 

paraffin oil (Vitrolife, Sweden).   

For the PEG-hydrogel culture system, 7.5 µl of culture medium was added to the PEG 

solution and then mixed with 12 µL of crosslinker. The crosslinker was diluted in 0.3 M of 

TEOA and the amounts were adjusted to meet a 0.9 stoichiometric ratio that produces an 

elastic modulus of 967.67 ± 202.74 Pa and a swelling value of 40.25 ± 2.72. The follicle 

were seeded in the above described hydrogel system. Six µL hydrogel drops, containing a 

unique follicle were formed. After curing, each of these gels was placed in a well of a 96 

wells-plate, 150 µL of culture medium was added. The follicles were cultured for 11 days. 

The culture medium consisted of α-minimal essential medium (α-MEM  with glutamax, 

Gibco) supplemented with 5 % FBS, ITS (5 µg/mL insulin, 5 µg/mL transferrin, 5 ng/mL 

selenite, Sigma, Buchs, Switzerland), 1 % of P/S, 100 mIU/mL of recombinant follicle 

stimulating hormone (rFSH, Organon, Switzerland). Next day, the medium was changed 
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completely with fresh medium. Every second day, half of the medium was replaced with 

fresh one.  

In the drop culture 2-D system, droplets of 10 µL of culture medium were placed on a 60 

mm culture dish and covered with 7 mL of paraffin oil (Vitrolife, Sweden). The retrieved 

secondary follicles were seeded into each droplet and the next day, 10 µL of medium was 

added into the each droplet. Every 2 days, the half of the medium was changed. The 

follicles were cultured for 9 days as found ideal by Lee et al. (2007) [28].  

3.2.5. The effect of FSH and LH 

Two main gonadotropins were studied for follicle culture in PEG-hydrogel. Generally, 

murine follicles in 2-D culture systems are cultured in droplets of medium as single cells. 

In this drop culture system, the droplets were covered with mineral oil for maintaining a 

spherical shape and preventing evaporation. The concentration of FSH is usually set to100 

mIU/mL [95]. However, as the follicle cultured in the presented PEG-hydrogel system 

could require different concentration of FSH, several concentrations were tested (1, 10, 100 

mIU/mL) and compared with the drop culture system.  

The follicles grown in the PEG-hydrogel system were cultured in three different conditions 

in terms of LH supply; (medium A) no addition of LH in the medium: no LH, (medium B) 

LH was added at the first day and till day 3. LH was added again only at day 8 and till the 

end of the culture. LH concentration was 10 mIU/mL, (medium C) LH (10 mIU/mL) was 

used during the entire culture period. All the conditions used the optimized follicle culture 

medium containing 100 mIU/mL of FSH.  
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3.2.6. Oocyte maturation and quality assessment  

For the PEG-hydrogel system, the oocytes meiotic competences were assessed by induced 

maturation after 11 days of culture. The grown follicles were retrieved from gels by 

incubating the gels in a 5 mg/mL collagenase I solution (Sigma, Buchs, Switzerland). The 

maturation medium were prepared with the half of the obtained culture medium from last 

day of follicle culture and the half of fresh culture medium not containing FSH but 5 

ng/mL of human epidermal growth factor (EGF, Roche, Basel, Switzerland) and 2.5 

IU/mL of human chorionic gonadatropin (HCG, Organon, Switzerland). The retrieved 

grown follicles from the gel were incubated at 37 °C for 18-20 hrs to induce the ovulation. 

For the drop culture, 10 µL of cultured medium were removed and added to 10 µL of 

maturation medium (10 ng/mL of EGF and  5 IU/mL of hCG in culture medium absent 

FSH). The follicles were incubated for 16-18 hr. After the induction of the ovulation, 

oocytes were removed from the cumulus oocyte complex or from the follicle by using a 

mouth-operated micropipette. The collected oocytes were washed in M2 medium (Sigma, 

Buchs, Switzerland) droplets and their state was assessed under stereomicroscope and 

characterized as DG (degenerated), GV (intact germinal vesicle), or GVBD (germinal 

vesicle breakdown) based on the presence or the absence of a germinal vesicle and MII 

(metaphase II, maturated oocyte) due to the presence of polar body.  

3.2.7. Statistic analysis 

The statistical analysis of the data was performed with the program OriginPro 8.0 

(Originlab corporation, MA, USA). Significances at p< 0.001, p<0.01 and p<0.05 (***, ** 

and * respectively) of the differences were tested with a T test.  

 



3.3. Results and discussion 

3.3.1. Optimization of FSH concentration for PEG-hydrogel based culture systems  

Two layered secondary follicles (100-120 µm) were cultured with different concentrations 

of FSH (1, 10, and 100 mIU/mL) either in PEG-hydrogel functionalized with RGD or in the 

droplet covered with mineral oil as a single cells culture. The survival rate of the follicles 

cultured in PEG-hydrogel was slightly decreased at 1 mIU/mL of FSH when compared to 

higher concentrations (Fig. 3.1a). 

 

   
 
Fig.3.1. Effect of FSH concentration on (a) the survival rate and (b) on the size of the 
follicles cultured in PEG-hydrogel (***P<0.001). Average ± SD is shown. Follicle size 
was increased by increasing the concentration of FSH.  
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 The size of the follicles cultured in PEG-hydrogel was measured after 11 days in culture. 

This trait seemed to be a linear function of the concentration of FSH in the studied 

conditions. Interestingly, follicles cultured in the lower concentration of FSH (1 mIU/mL) 

could not reach 200 µm of diameter (Fig. 3.1b). The retrieved oocytes from the follicle 

cultured in PEG-hydrogel or from the droplets with the different FSH concentration were 

assessed for the resumption of meiosis (Fig. 3.2).  



   
 

Fig.3.2. Effect of FSH concentration on the maturation of the oocytes and on the 
percentage of produced MII. (a) Follicle grown in PEG-hydrogel. (b) Follicle cultured 
in the 2-D drop culture system. Average ± SD is shown. Average ± SD is shown. The 
nuclear maturation is increased by increasing the concentration FSH.  
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Increasing the concentration of FSH increased the rate of MII oocytes in both of the culture 

systems. However, the oocytes from the drop culture with 1 mIU/mL of FSH did not have 

any matured oocyte and most of them were flatten and had squashed shapes. For some of 

the oocytes, the zona pellucida was also missing. Fig. 3.3 shows the morphological 

differences between the follicles grown PEG-hydrogels and in the drop culture system at 

different concentration of FSH. In the PEG-hydrogel system, the follicles cultured with the 

highest concentration of FSH (100 mI/mL) formed large antrum cavities while the follicle 

grown with only 1 mIU/mL of FSH remained small in size and their granulosa cells started 

to migrate away and to degenerate. In the drop culture, it was observed that increasing the 

concentration of FSH increased the proliferation of the granulosa cells. In vivo, granulosa 

cells proliferate during the follicle diameter increase. These cells differentiate then under 

the control of FSH [67]. FSH plays a key role in proliferation and differentiation of 

granulosa cells and thus in antral follicle formation [33, 90]. The FSH receptors (FSH-R) 

are mediating the FSH physiological effect on the folliculogenesis. They are only expressed 

in granulosa cells of the secondary follicle, not in the granulosa cells of the primary follicle 

[96, 97]. The production of cyclic adenosin monophosphate (cAMP), lactate or estradiol 



52 
 

was found dependent on FSH-R synthesis and playing an important role in the development 

of the follicle [34]. The results demonstrated that decreasing the concentration of FSH is 

more dramatic for follicles grown in drop culture for follicles that developed in the PEG-

hydrogel system. The granulosa cells in the drop culture system were significantly less 

proliferating and they migrated away from the oocytes. The lack of communication 

between the granulosa cells and the oocyte at lower amount of FSH (1mIU/ml) may 

prevent the oocyte maturation. Moreover, the oocytes grown in these conditions attached 

on the bottom and grew flat and had squashed shape because not enough granulosa cells 

were present for supporting them. The follicles in PEG-hydrogel showed a delay in the 

proliferation of granulosa cells when the FSH amount was low. It has been demonstrated 

that the FSH was involved in the production of the LH receptors [98]. FSH is also playing a 

role in the activity of aromatase, an enzyme of the P450 superfamily that aromatizes 

androgens, produces estrogens and thus prevents atresia [99]. The follicles cultured in 

PEG-hydrogels at the lowest concentration of FSH (1 mIU/mL) showed migration and 

degeneration of the granulosa cells. This phenomenon was probably related to the atresia 

due to the lack of FSH. During folliculogenesis, several follicles start to grow together and 

only one or few of them are ovulated. The non-ovulated follicles undergo atresia: a 

hormonally controlled apoptosis [23]. The atresia is caused by signaling cascade 

downstream of FSH during the follicle selection process [99]. It is suggested that sufficient 

FSH help the antral follicle to escape from atresia and reach the preovulatory follicle stage 

[23]. The presented results show that the lack of FSH induced the suppression of the 

proliferation of the granulosa cells and the follicular degeneration in the PEG-hydrogel 

culture system while in the 2-D culture system only the proliferation of the granulosa cells 

was impaired. However, in both systems, the optimal concentration of FSH for the follicle 

culture was found to be 100 mIU/mL. 



 
Fig.3.3. Morphological differences induced by the FSH concentration in both Hydrogel at 
11 days of culture, ( a) 1 mIU/ml b) 10 mIU/mL c) 100 mIU/mL of FSH) and drop culture 
at 9 days of culture ( d) 1 mIU/ml e) 10 mIU/mL f) 100 mIU/mL of FSH). The scale bar is 
00 μm. FSH induced granulosa cells proliferation and atresia due to low level of FSH was 
bserved only in hydrogel.  

1
o
 
  

3.3.2. Effect of LH on the follicle culture in PEG-hydrogels 

During extraction from the ovaries around 20 % of all retrieved follicles lost most of their 

associated theca cells. Fig. 3.4 shows the morphological differences induced by the addition 

of LH. The follicles with theca cells showed that these cells grew more in presence of LH 

than without LH at day 3. The growth of the follicles was not different between the group 

without LH (medium A) and the group with partial supply of LH (medium B). However, 

when the LH was added in the medium continuously, the size of the follicles was 

significantly decreased. A key role of LH is the stimulation of the enzyme responsible for 

androgen production and the initiation of the terminal differentiation of the granulosa cells 

[88, 93].  
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Fig.3.4. Morphological differences induced by LH supply strategies. Medium A was LH 
free. Medium B was supplemented with LH at day 1 to 3 and 8 to 11. Medium C had LH all 
along the culture period. The used concentration of LH was 10 mIU/ mL.  The scale bar is 
100 μm. LH terminated differentiation of granulosa cells in PEG-hydrogel culture system.  
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The results from the follicles grown in medium C support the above-described role of LH. 

It showed that the follicles stopped their growth and subsequently decreased the granulosa 

cells layers. The maturation rate was measured for all the oocytes grown in media A, B and 

C. The highest rate of MII oocytes was observed in the group cultured without LH. No MII 

oocytes were retrieved from the group where LH was added continuously (Fig. 3.5). When 

the follicles were cultured in the medium B, the percentage of maturated oocytes (MII) was 

decreased as the concentration of LH was increased (Fig. 3.6). The group treated with low 

concentration of LH produced the highest MII oocytes ratio (52. 7 %). This low 

concentration of LH did not induce a significant difference in terms of MII rates when 



compared with the group from which LH was absent. These results are different from the 

results of previous studies using 2-D in vitro systems. The necessity of LH during 

secondary follicle culture was always controversial. Cotvrindt, et al (1998) [93] 

demonstrated that the addition of low concentration of LH enhances the antral like-cavity 

formation and improves the oocyte’s meiotic maturation during secondary follicle in vitro 

culture. On the other hand, Lee et al. (2007) [94] reported that there were no significant 

effects of LH in in vitro follicle culture systems. Our results support the latest; in the 

presented conditions LH supply did not have any beneficial effect on the rate of MII of 

oocytes cultured in PEG-hydrogels. Moreover, when LH was continuously supplied during 

the culture, the differentiation of the granulosa cells was terminated. The main difference 

between the studies is due to the loss of the follicle 3-D structure after six days of culture 

and to the absence of most intra-ovarian and ‘extra-follicular’ cues.  This disconnection 

could potentially prevent the negative impact of LH. Conversely, the follicle culture in 

PEG-hydrogel (as a 3-D system) could maintain the follicle structure, thus the LH could be 

negatively effective on the follicle growth and the oocyte meiosis.  
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Fig.3.5. Comparison of the effects of LH supply on the 
oocyte maturation rate. Medium A was LH free. Medium 
B was supplemented with LH at day 1 to 3 and 8 to 11. 
Medium C had LH all along the culture period. The used 
concentration of LH was 10 mIU/ mL. Average ± SD is 
shown. LH has negative effects for nuclear maturation. 



 

3.4. Conclusion 

The effects of FSH and LH on the follicle cultured in PEG-hydrogel were closer to the 

effects observed in vivo when compared to the effects observed in the standard 2-D culture 

system. The granulosa cells could proliferate and atresia could be prevented the by 

increasing the concentration of FSH. The addition of LH along all the culture period led to 

the termination of granulosa cells differentiation. The present results show that the follicle 

culture in PEG-hydrogel is ideal for studying the effects of growth factors and hormone 

signaling on the ovarian microenvironment.  

            
 

Fig.3.6. Effect of LH concentration on the maturation rate 
of the cultures oocytes. The follicles were cultured in 
PEG-hydrogel with different concentration of LH. The LH 
was added only at day 1 and then next day, the medium 
was refreshed with a half volume of culture medium free 
of LH till the end of culture period.   
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Chapter IV 

 

Production of recombinant KL proteins and 

their effects on ovarian tissue culture. 
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4.1. Introduction 

c-Kit ligand (KL) is a pleiotropic growth factor also known as steel factor, mast cell growth 

factor or stem cell factor [20]. KL binds a tyrosine kinase receptor on its target cells to 

trigger a further signaling cascade. It has been demonstrated that mutations in the c-kit gene 

(the white spotting locus, W) or in the Kit ligand gene (the steel locus, SI) produced mice 

with defective fertility and hematopoiesis [41].  There are many studies that suggest that the 

c-kit/KL interaction plays a role in primordial germ cells (PGC) survival, migration and 

proliferation and in follicle development [49, 100, 101]. The mRNA and the protein of both 

the soluble (KL-1) and the membrane-bound (KL-2) forms of KL were found expressed in 

mouse ovaries. Their expressions were detected in the granulosa cells of follicles at all 

stages of development and in the cumulus cells of antral follicle [48, 102]. The KL-1 and 

KL-2 forms are known to be differentially regulated. They are reported to play a role within 

the ovary, in the germ cells or in the follicle development [49]. Thomas et al. (2005) [103] 

demonstrated that the KL-1/KL-2 mRNA ratio is important for controlling oocyte growth. 

They reported that, under FSH-stimulating condition, a low KL-1/KL-2 mRNA ratio 

favored the growth of the oocyte. The presence of the soluble form of KL (KL-1) was 

demonstrated to favor the proteolysis and the down regulation of the membrane receptor (c-

Kit) whereas the presence of the membrane-bound form (KL-2) favored a more sustained c-

Kit signaling in myeloid cell lines [104]. 

The development of the cryopreservation of ovarian tissue aroused the interest in 

primordial follicles as a source material. Efficient use of primordial follicle could help the 

assisted reproduction of domestic animals and endangered species. It could also help 

women exposed to radiotherapy or chemotherapy to recover their fertility [101]. Thus it is 

important to better understand what are the mechanisms underlying the exit of the follicle 

from the resting pool and the following folliculogenesis. KL is considered as one of few 
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known factors to be involved in this process [49] even though its precise role remains 

unclear. It has been reported that the activation of the primordial follicles is prompted by 

KL during ovarian organ culture [51]. Yoshida et al. (1997) [50] demonstrated that the 

KL/c-Kit interaction is important for primordial follicle activation.  

However, little is known about the KL role in the activation of primordial follicles in in 

vitro culture system. This is partially due to the need of developing a new in vitro culture 

system where KL-2 (the membrane-bound form of KL) is tethered to physiologically 

compatible substrate to mediate a relevant biological answer. It is here required to create a 

microenvironment that allows the c-Kit signaling, as it was the case for other immobilized 

signaling factors such as notch [40]. Tailored PEG-hydrogel systems allowing the covalent 

immobilization of proteins by Michel type addition [19] or by enzymatic reaction [105] 

could be of good use for this purpose.  

In this study, three different constructs coding for recombinant extracellular domains of the 

KL were prepared: 1) extracellular domain only (KLs), 2) extracellular domain plus a 

substrate sequence for Factor XIIIa, (KLstg) and 3) extracellular domain plus a substrate 

sequence for Factor XIIIa plus an RCG tag for Michel type addition immobilization 

(KLstag). The purified proteins were immobilized onto PEG-hydrogels. This system served 

for culturing four days-old ovarian tissues. The activation of the primordial follicles was 

monitored across all the studied conditions. 

4.2. Materials and methods 

4.2.1. Animals  

Female F1 hybrid (C57BL/6 x CBA/caj) mice bred and housed in temperature-, lighting-, 

and humidity-controlled room and given food and water ad libidum. All animal 
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experimental procedures were approved by the veterinary authorities of the canton de 

Vaud in accordance with the Swiss Academy of Medical Science (SAMS) and the Swiss 

Academy of Sciences (SCNAT) guidelines.  

4.2.2. Polymerase chain reaction amplification (PCR) and sequence determination 

Total RNA form adult mouse ovaries were extracted by using the total RNA extraction kit 

(Invitrogen, Switzerland). The purity and the quality of the extracted totRNA were 

assessed with a Bio-nano chip (Bioanalyzer 2000, Agilent Technologies, Switzerland). The 

concentration of the totRNA was determined with Nano-drop (ND-1000, Witec AG, 

Switzerland) by reading the absorbance at 260 and 280 nm. The synthesis of cDNA was 

performed by using the Superscript™III First-strand reverse transcriptase. Briefly, 3 µg of 

total totRNA, 50 µM oligo(dT)20, 10 mM dNTP mix, 0.8 µl of DEPC-treated water in 10 

µL of total volume were denaturated at 65 °C for 5 min and then placed on ice. The first 

cDNA strand was obtained by adding 2 µL of a 10X RT buffer, 4 µl of 25 mM MgCl2, 2 

µL of 0.1 M DTT, 1 µL of RNaseOUT (40U/µL) and 1 µL of Superscript™III. The mix 

was incubated at 50 °C for 50 min. The reaction was stopped by rising the temperature to 

85 °C for 5 min. The reaction was then chilled on ice and 1 µL of RNase H was added. 

The degradation of the totRNA was performed at 37 °C for 20 min. A double brand cDNA 

was obtained by performing a PCR with 10 µM of both sense and antisense primers (Table 

4.1), 1/10 volume of 10 x PCR buffer, 20 mM of dNTPmix and 1 unit of pfx 50 DNA 

polymerase (Invitogen, Switzerland). After a denaturation phase of 5 min at 95°C, the 

amplification proceeded for 30 cycles with an elongation time of 1 min 30 sec. The PCR 

products for pKL (only the full length extracellular domain) and pKLs (full length 

extracellular domain including the signaling peptide sequence) were cloned into a pDrive 

cloning vector (Qiagen, Switzerland) according to the manufacturer recommendations. E. 

coli (strain DH5α) competent cells were transfected with the obtained plasmids. Positive 



clones were identified by PCR on single colonies. The PCR parameters for identifying the 

positive clones were identical to the parameters used for producing the cDNA. Positive 

colonies were cultured overnight in LB liquid medium. The plasmids containing the 

sequences were obtained with a miniprep extraction kit (Promega, city,Switzerland).  

Table 4.1. PCR primers used for generating the various KL constructs.  
 

 
 

To introduce the sequence corresponding to the tags NQEQVSPL+ RCG, synthetic and 

complementary single strand DNA fragments coding for the needed sequence were 

ordered from Mircrosynth (Geneva, Switzerland). Care was taken to ensure that the ends 

were compatible with BbsI and HincIII digested fragments. 
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Both strands were mixed (200 pmol/µL each), denaturated at 95 °C for 10 min and 

annealed at room temperature for 2 h. One µg of plasmid containing KL was digested with 

BbsI (5 U/ul) and HincIII (10 U/ul) in NEB buffer 2 (New England Biolabs, Ipswich, MA, 



USA). The digestion reaction was stopped by incubation 20 min at 65°C. The digestion 

products were separated on 1% w/v agarose gel in TEA. The band corresponding to the 

plasmid (~4 kb) was excised and purified with a gel extraction kit (Qiagen, Switzerland). 

The linerized plasmid and the synthetic DNA sequence were mixed (mole to mole) in 10 x 

ligase buffer. T4 ligase (1 ug /uL) was added to the mix and incubation at 4 °C proceeded 

overnight. The mix was used for transforming DH5α competent E. coli cells. Positive 

clones were identified as mentioned above. This procedure is described in Fig. 4.1.  

 
 

Fig.4.1. Cloning of the tag sequence into pKL vectors 
 
 

To sub-clone pKL and pKLs into pEF1mycHis mammalian expression vector (Invitorogen, 

Switzerland) special primers embedding KpnI or NotI cleavage sites at the 5’ ends and 

spanning over the desired sequence were designed. PCR products for pEFKLs, pEFKLstag, 

and pEFKLstg (Fig. 4.2) were generated and digested with KpnI and NotI to produce 

compatible ends with the expression vector. The linearized (KpnI and NotI) expression 
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plasmid and the digested PCR products were mixed (mole to mole) and ligated with T4 

DNA ligase (Promega, Switzerland). The plasmids were amplified in E. coli and 

maxipreps (Qiangen, Switzerland) were made to produce large quantities of the three KL 

expression vectors. 

 
 
Fig.4.2. Cloning of KL variant constructs: (a) wild type extracellular domain of KL, 
pEFKLs, (b) pEFKLstg, and (c) pEFKLstag.  
 

All the DNA quantifications were made with an ND-1000 spectrophotometer (Nanodrop, 

Witec AG, Switzerland). The sequence of all the obtained plasmids were controlled by 

sequencing (Microsynth, Geneva, Switzerland) and aligned versus the correct theoretical 

sequence using the Multalign software [106].  

4.2.4. Production of recombinant KL fusion proteins  

Suspension-adapted HEK-293 cells were routinely maintained in serum-free Ex-Cell 293 

medium (SAFC Biosciences, St. Louis, MO) with 4 mM glutamine as described [107].  On 

the day before transfection, cells were inoculated into fresh medium at a density of 1 x 106 

cells/ml.  The next day, the cells were harvested by centrifugation at 1,200 rpm for 5 min 

and resuspended at a density of 20 x 106 cells/ml in 200 ml of Ex-Cell 293 medium with 4 

mM glutamine in a 500-ml glass bottle [108].  Plasmid DNA and linear 25 kDa 

polyethylenimine (1 mg/ml in H2O; Polysciences, Eppenheim, Germany) were 
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sequentially added to concentrations of 25 μg/ml and 75 μg/ml, respectively.  The culture 

was agitated by orbital shaking at 110 rpm in an ISF-4-W incubator (Kühner AG, 

Birsfelden, Switzerland) at 37°C in the presence of 5% CO2.  The bottle cap remained 

open about one-quarter of a turn.  After 3 h the culture, the transfected cells were divided 

equally into two 5-liter glass bottles (Schott Glass, Mainz, Germany) each containing 1.9 l 

of prewarmed Pro293s medium (Lonza, Verviers, Belgium) with 4 mM glutamine. 

Valproic acid (500 mM in H2O) (SAFC Biosciences) was added to a final concentration of 

4 mM [109]. The two cultures were incubated with agitation as before.  At 7 d post-

transfection, the cell culture medium was recovered by centrifugation at 1,500 rpm for 10 

min. 

4.2.5. Purification and quantification of the expressed proteins 

Purification of the expressed protein was carried out by his-tag 

affinity chromatography on a Biorad Profinia (Biorad, Hercules, CA, 

USA) system with the Bio-Scale Mini Profinity IMAC cartridge with 5 mL 

column volume. The medium was filtered prior to purification with a 

low-binding 0.25 µm filter. 200 mL of the medium was injected into the 

column and the flow-through collected. Buffers of the native IMAC 

purification kit (Biorad, Switzerland) were used for all subsequent steps. After 

injecting, a washing step with two column volumes with 25 mM imidazole 

was performed of a 50 mM sodium phosphate buffer with 100 mM NaCl. 

Fractions were buffer exchanged sodium phosphate buffer on a Bio-Scale 

Mini Bio-Gel P-6 desalting cartridge. The first two fractions 

contained the protein according to the chromatogram. The flow-through, 

wash and elution fractions were analyzed by SDS-PAGE and the protein 

identity confirmed by LC-MS/MS and MALDI-TOF 
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The expressed proteins were quantified with a BCA protein assay by using a BCA protein 

assay kit (Perbio, Switzerland). ELISA was performed with an SCF Elisa kit (R & D 

system, UK).  

4.2.6. Immunodetection of the expressed and purified recombinant proteins 

The expressed proteins were analyzed by Western blot under both reducing and non-

reducing conditions. The samples were separated by SDS-PAGE and electrochemically 

transferred onto nitrocellulose membrane. Immuoblot analysis was carried out according to 

the protocol recommended by Bio-Rad. Rabbit polyclonal antibodies against mouse SCF 

(Abcam, Switzerland) were used as the primary antibody and horseradish peroxidase 

conjugated anti-rabbit IgG antibiody as the detecting reagent.  

4.2.7. Mass spectrometry analysis 

Samples were reduced-alkylated (DTE/Iodoacetamide) in order to maintain the disulfide 

bounds in the reduced form. Trypsin digestion was then performed for at least 12 hours at 

37 °C. Finally, resulting peptides were concentrated by Speed-Vac evaporation.  

Samples were resuspended in LC-MS starting solvent (2%ACN, 0.1%FA) for LC-MS 

measurement. Around 500 femtomoles were captured on a precolumn, desalted and 

separated on a C18 100μm x 10mm capillary column. MS measurements were performed 

on a LTQ linear ion trap (Thermo). A sub-database containing edited sequences of KL was 

used for the search (Fig. 4.3).  

4.2.8. Preparation of PEG-hydrogels functionalized with rKL proteins 

PEG vinyl-sulfone (PEG-VS) was synthesized by adapting previously published protocol 

[18]. The PEG hydrogels were formed by Michael-type addition of thiol-containing 

peptides onto VS-functionalized PEG. TG-lys peptide (Ac-FKGERCG-NH2) was 

synthesized by solid phase peptide synthesis using an automated peptide synthesizer 



(Chemspeed, Augst, Switzerland). NovaSyn TGR resin (Merck Biosciences, Laeufelfingen, 

Switzerland) with a standard Fmoc chemistry was used. Purification was performed by 

mass-directed reverse phase-C18 HPLC using a Water Autopurification System. Separation 

and collection of the samples were performed upon UV with broad wavelength detection 

(210-400 nm) (Water PDA 996 UV photodiode array) and mass directed software (Waters 

Masslynx software). Peptide sequences were confirmed by MALDI-TOF in the proteomics 

core facility of EPFL. The cross-linking peptide that contains a sequence sensitive to for 

MMP cleavage (Ac-GCREGPQG ↓IWGQERCG-NH2) was obtained from Neosystm S.A. 

(Strasboug, France).  

 
Fig.4.3. Alignment of KL sequences quality assessment in LC-MS 
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First, the PEG-VS necessary for forming hydrogels was functionalized with a substrate 

peptide for Factor XIIIa, Ac-FKGERCG-NH2 (named TG-lys, mol wt 837.4 g/mol) via 

Michael-type addition as well. Thirty-nine µL of 10 % PEG hydrogel (in Tris buffered 

saline, TBS pH 8) solution were mixed with 6 µL of TG-lys peptide solution (in H2O). 

The addition proceeded at room temperature for 30 min. The solutions of PEG 

functionalized with TG-lys were stored in aliquots of 22.5 µL at -20 °C. In a second time, 

the KLstg which had the factor XIIIa substrate sequence NQEQVSPL (TG-Gln), was 
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reacted with TG-lys bound to the PEG in the presence of the activated factor XIIIa [105]. 

For example, 100 µM of KLstg was mixed with 1 µL of TBS containing 100 µM of 

calcium chloride and 0.5 µL of activated factor XIIIa. The mixture was added to the 

prepared PEG aliquot and reacted for 30 min at room temperature.  Briefly, the activated 

factor XIIIa was prepared such that a 100 µL of the factor XIII (273 U/mL, a generous gift 

of Baxter Biosurgery, Vienna Austria) was activated with 10 µL of thrombin (200 U/mL, 

GEHealthcare, Switzerand) for 30 min at 37 °C. Small aliquots of activated factor XIIIa 

were stored at -80 °C.   

4.2.9. Immobilization assay of KLstg onto PEG hydrogel 

The binding assay was carried out with different concentration of KLstg recombinant 

protein. The functionalized with KLstg PEG-VS was cross-linked with the MMP sensitive 

peptide (0.3 M TEOA, pH 8.0) at 37 °C for 18 min. The obtained PEG hydrogels were 

placed into 150 µL of distilled water in a 96-well plate. After, the gels were incubated at 

37 °C for 3 days. The amount of KL protein that diffused out of the gels was quantified by 

performing an SCF ELISA kit assay (R&D system, UK) to detect the presence of the 

recombinant protein in the water.  

4.2.10. Mouse ovarian tissue culture in PEG-hydrogel 

The mouse ovaries were obtained from four-day old mice after scarifying by cervical 

displacement. The ovaries were moved in L-15 medium (Gibco, Switzerland) and tore, 

under a stereomicroscope, in100-200 µm size pieces with an insulin syringe. The prepared 

ovarian tissues were seeded into the mixture of the PEG solution containing diverse 

concentrations of KLstg protein or crosslinker. Hydrogel precursors were mixed and 

incubated at 37 °C for 18 min to gel. The formed PEG-hydrogel with embedded ovarian 

tissue were placed into 150 µL of MEM-α medium (Gibco, Switzerland) containing 100 x 



68 
 

ITS (Sigma, Switzerland), 1% P/S, 5 % FBS (Hyclone, Switzerland), and 100 mU/mL 

FSH (Organon, Switzerland). The medium was completely changed with fresh medium 

next day. Every two days, the half of medium was refreshed for 10 or 20 days.  

After 10 days, PEG-hydrogels were harvested by digesting the gels with collagenase I 

(Sigma, Swizerland). The obtained ovarian tissues were embedded in paraffin, sectioned (5 

µm sections), and stained with hematoxylin and eosin. The number of viable follicles was 

counted with an Olympus AX 70 upright monitored microscope (20X magnification).  

 

4.3. Results and discussion 

4.3.1. Cloning of rKL variant constructs 

Human KL is a protein that contains 273 amino acids divided into a signal sequence, an 

extracellular, a transmebrane and an intracellular domain. Murine and Human KL share 83% 

of sequence homology. It was demonstrated that murine KL efficiently replaces the Human 

one in activity tests performed on Human cells [100] (the opposite remaining not true). 

Thus the produced recombinant proteins could be used for future experiments with Human 

oocytes. The different constructs of KL contained the signal sequence (to allow the 

production in mammalian cells) and the extracellular domain. However they were different 

for the type of tags added to allow their immobilization onto PEG-hydrogels (Fig. 4.2). It is 

of interest to note that all of the recombinant KL included a thrombin cleavage site to allow 

the cleavage of the His tag used for the purification step. Two different KL constructs were 

designed to allow different strategies of immobilization onto PEG-hydrogel. One had only 

a substrate sequence for factor XIIIa, (NQEQVSPL), the other had both NQEQVSPL and 

RCG to allow a direct reaction with the vinylsulfone groups of the PEG via Michel type 
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addition. Transglutaminase (TG) is a family of enzyme that forms ε-(α-grutamyl) lysine 

isopeptide side-chain bridges by catalyzing an acyl-transfer reactions between the α-

carboxamide group of protein-bound glutaminyl (Gln, or Q) residues and the ε-amino 

group of lysyl (Lys, or K) residues [110].  An activated TG cross-linking enzyme; Factor 

XIIIa, plays a role in fibrin clot formation in damaged tissues [111]. We employed the 

Factor XIIIa substrate, the heptapeptide NQEQVSP named TG-Gln, for mobilizing KL 

onto the PEG-hydrogel. This sequence is derived from the N-terminus of the regulatory 

protein α2-plasmin inhibitor (α2PI). The full-length α2PI proteins are incorporated into 

fibrin networks during fibrinogen polymerization [112, 113]. Fig. 4.4 shows the scheme of 

PEG-hydrogel functionalized with KL by using the TG enzymatic cross-linking.  

The cDNA of KL was produced from the totRNA of adult mouse ovaries. The obtained 

RNA qualities and quantities are shown in Fig. 4.5. The peaks in the electropherogram 

show 18S and 28S RNA without noise and the gel represented both 18S and 28S. The 

rRNA ratio of the extracted RNA was 2.67. The RNA quality is assessed by the 28S to18S 

ribosomal RNA (rRNA) ratio.  Ratios higher than 2 indicates that the quality is satisfying 

[114]. Table 4.1 shows the primers used for the cloning of the different constructions of KL. 

Fig. 4.6 shows the amplification bands corresponding to pKL and β-actin as a control.  

4.3.2. Expressions and purification of rKL variants 

The structure of the extracellular domain of KL was proven to be stabilized with disulfide 

bonds [115]. Thus a reduction step was not possible during the purification process in order 

for the recombinant protein to retain its bioactivity. This consideration made the expression 

of the third KL (NQEQVSP+RCG) construct difficult as it adds an extra free cysteine to 

the sequence. Dimerization and loss of activity were then anticipated for that construct.  



The two other KL constructs were transfected on the HEK-293. Three and 0.6 mg of 

purified rKLs and rKLstg were respectively obtained.   

 
 
Fig.4.4. Scheme of PEG-hydrogel functionalization with KLtg. (a) Transglutaminase cross-
linking reaction. (b) PEG-hydrogel functionalized with TG-lys reacted with KLstg by TG 
reaction.  
 
 

4.3.3. Characterization of KL proteins 

The produced proteins, KL wild type extracellular domain (KLs) and KL with the TG-Gln 

sequence (KLstg) were found at the concentrations of 315.30 µg/mL and 60.08 µg/mL 

respectively in the culture media. SDS-PAGE and western blotting analysis showed that the 
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molecular weight of KLs and KLstg were of ~33 kDa under reducing and non-reducing 

conditions (Fig. 4.7). This indicates that both recombinant proteins were produced as 

monomers. KLs and KLstg were expected at 20856.7 and 21896.8 Da respectively. The 

observed higher molecular weight is certainly due to glycosylation. This post-translational 

modification was reported as critical for the biological activity of KL. Huang et al. 1992 

[116] reported the occurrence of four N-linked glycosylation site in KL. Natural and 

recombinant KL from chinese hamster was reported to be 30 % overweighed with 

carbohydrates [117, 118]. The glycosylated status did not block the binding of KL to c-Kit, 

even when the protein is heavily glycosylated [49]. The LC-MS analyzed peptides covered 

71 % of the sequence of both produced proteins (Fig. 4.8) confirming the efficiency of the 

production/purification method. 
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Fig. 4.5. The RNA extraction from mice ovaries. The quality and quantities were measured 
with Bio-nano chip. (a) ladder and (b) the extracted total RNA. The peaks in the 
electropherogram show 18S and 28S RNA without noise and the gel represented both 18S 
and 28S. The ribosomal RNA ratio is the extracted RNA was 2.67. 



 

4.3.4. Immobilization of rKL onto the PEG-hydrogel 

Different concentrations of KLstg were bound onto the PEG-hydrogel as showed in the 

schemes of PEG-hydrogel formation (Fig. 4.4). The released KLstg from the hydrogels 

after 3 days of incubation were measured (Table 4.2). In all the conditions about 15 % of 

the immobilized KLstg was released. The results indicate that the amount of TG-lysin 

peptide bound on PEG was enough even for the high concentrations of KLstg. The non-

bound KLstg could be due to the short reaction time with the activated factor XIIIa or to the 

calcium concentration 

Fig. 4.6. Gel electrophoresis of PCR 
products. (a) Ladder, (b) β-actin, (C) 
pKL. The PCR products were loaded 
into a 1 % agarose gel in TEA.   
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Table 4.2. Immobilization assay of the KLstg. The releasing KLstg from the 
hydrogels after 3 days of incubation were measured by SCF Elisa kit. In all of the 
conditions about 15 % of KLstg were released from the hydrogel. 

  
 
 

Fig. 4.7.  The expressed rKL proteins were analyzed by (a) SDS-
PAGE and (b) western blotting. The 1 and 3 in western blotting are 
the non-reducing condition and 2 and 4 are the reducing condition. 
SDS-PAGE and western blotting analysis showed that the molecular 
weight of KLs and KLstag were of ∼ 33 kDa under reducing and 
non-reducing conditions.  

 
 

 

4.3.5. Ovarian tissue culture in the PEG-hydrogel system 
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Ovarian tissues from four days old mice were embedded in PEG-hydrogels functionalized 

with different concentration of KLstg and cultured for 10 days. The cultured ovarian tissues 

were compared to the condition supplied with 150 ng/mL of free KL in the medium. Fig. 



4.9 shows that visible primordial and primary follicles were seen in the fresh ovary 

collected from four days old mice. More primordial follicles were present on the cortical 

side of the ovary and only some of the primary follicles were in the center of the ovary. 

Thus, the best effort was made to tear the ovaries in homogeneous parts; all including the 

middle part of the ovary. After 10 days in culture, the follicle growth was assessed from the 

cultured ovarian tissues (Fig. 4.10). Secondary follicles were observed only in the 

conditions: “without KLstg” and “100 µM KLstg” and the number of secondary follicle 

was slightly higher in the “100 µM KLstg” condition (Table 4.3).  

 

Fig. 4.8. Mass spectrum of the generated KL peptides in LC-MS. The sequence coverage 
was 71% in the both produced proteins. It confirmed the efficiency of the 
production/purification method.  
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When the ovarian tissue was cultured with higher concentration of KLstg (300 µM), 

primary follicles were more present when compared with the other conditions. The 



75 
 

primordial follicles were present in the condition were soluble KL (KLs) was added to the 

medium. This result suggests that transmembrane form of KL can induce primordial 

development in 4 day-old mouse ovarian tissue. The observations suggest also that an 

optimal amount of the transmembrane form of KL is needed to activate the primordial 

follicles and allow the transition to the primary follicle state. However, due to the unknown 

initial number of primordial or primary follicle, it is difficult to comment on the rate of the 

primordial follicle activation induced by KL. Moreover, the sum of the visible number of 

oocytes in the dissected ovary was much smaller when compared to the number of oocytes 

found in a histological section of a four-day old mouse ovary. The activation of primordial 

follicle induces granulosa cell proliferation, morphogenesis and oocyte growth [49]. The 

granulosa cells in murine primordial follicle express only minimal amounts of KL mRNA 

and protein while the oocytes of primordial follicles express high amounts of c-Kit mRNA 

and proteins [20, 47]. This consideration rises the question of whether all of the oocytes in 

primordial follicle can be activated and resume growth by a KL stimulation? In vivo, 

primordial follicles are activated and exit the resting pool in a gradual manner [119]. 

However, it was observed in vitro that primordial follicles of species including cattle [120], 

primate [121], rat [51] and mouse [49] were spontaneously activated. Wandji et al. (1996) 

[120] proposed that this spontaneous activation was due to the absence of an inhibitor. 

Even though enough data are produced to assume that KL may have a role in primordial 

follicles activation and/or in promoting oocyte growth, it is still interesting to 1- elucidate 

how primordial follicles respond when over exposed to KL and to 2- define the respective 

roles of the soluble and membrane-bound in order to better understand KL signaling in the 

context of reproduction.   

 

 



Table 4.3. Number of visible in ovarian tissue cultured in PEG-hydrogel 
functionalized with KLstg. High concentration of KL in the hydrogel and soluble KL 
did not have any visible secondary follicles. 

 

4.4. Conclusion 

The three different constructions of KL (KLs, KLstg, and KLstag) were successfully cloned. 

KLs and KLstg were expressed in HEK-293 cells, purified and tested. Ovarian tissues from 

four-day old mice were cultured in PEG-hydrogels functionalized with KLstg and 

compared with the condition were soluble KLs was added to the medium.  The primordial 

follicles were activated and grew when they were cultured in the presence of immobilized 

KLstg but not when KL was suplyed under a soluble form. Further investigations using this 

platform will certainly be of help to better understand the respective roles of the membrane-

bound and the soluble form of KL during folliculogenesis. Further more, the established 

systems would be easily transferable for exploring the in vitro development of human 

ovarian follicles once the ethical clearance obtained. 
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Fig. 4.9. Histology section of the whole ovary 
from four-day old mice. 
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Fig. 10. Histology section of cultured ovarian tissues for 10 days in PEG-hydrogel 
functionalized with the different concentrations of KLstg. (a) no KLstg, (b) 100 μm 
of KLstg, (c) 300 μm of KLstg, and (d) 150 ng/mL of KLs was added in the 
medium.  
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Abstract 

Lymphatic vessels surround ovarian follicles, but the roles of lymphatics and 

lymphangiogenesis in folliculogenesis and pregnancy are undefined. Here we 

demonstrate a critical role for ovarian lymphatics in murine reproduction by blocking 

lymphangiogenesis with mF4-31C1, a specific antagonist antibody to vascular 

endothelial growth factor receptor (VEGFR)-3. VEGFR-3 neutralization for two weeks 

prior to mating blocked ovarian lymphangiogenesis throughout folliculogenesis 

without limiting blood angiogenesis. While the number of oocytes ovulated and 

fertilized and uterine implantations were normal, all pregnancies were unsuccessful 

due to fetal defects and miscarriage. Preantral follicles isolated from treated ovaries 

grew and matured normally in vitro. When embryos from mF4-31C1 treated mice were 

transferred to untreated surrogate mothers, pregnancies were normal and came to term. 

Conversely, normal embryos transferred to treated surrogate mothers led to the same 

fetal deficiencies as previously observed in situ, suggesting that lymphatic capillaries 

maintain an ovarian hormonal environment necessary for fetal development and 

pregnancy maintenance. Indeed, pregnant mice with blocked follicular 

lymphangiogenesis also exhibited significantly reduced progesterone and estradiol, 

hormones sourced from the ovarian corpora lutea during pregnancy. In total, these 

results demonstrate that lymphangiogenesis is a necessary process for ovarian 

lymphatic capillaries that transport hormones and thereby critical for successful 

reproduction. 

Keywords: corpus luteum, folliculogenesis, lymphatic, VEGF-C, VEGFR-3, blastocyst 
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5.1. Introduction 

Lymphatic vessels are present within the ovary and surround follicles during maturation 

[122, 123], but the importance of the lymphatic vasculature and lymphangiogenesis in the 

ovary is unclear. Consequently, the potential roles of lymphatic vessels in follicle 

maturation and pregnancy, and the extent or even necessity of lymphangiogenesis in 

reproduction, are undefined. This contrasts with ovarian blood angiogenesis, whose critical 

roles in follicular nourishment and maturation as well as the formation and maintenance of 

the corpus luteum is well appreciated; indeed, oocyte fertilization, embryonic implantation, 

and pregnancy all require blood angiogenesis [124-126]. Lymphangiogenesis, which is 

often concurrent with blood angiogenesis [127], may play an equally important role in 

these processes.  

Adult blood angiogenesis requires signaling via vascular endothelial growth factor (VEGF) 

receptor -2 (VEGFR-2), most potently by VEGF ligation [128, 129]. In murine ovaries, 

VEGF expression increases during angiogenic growth phases [130], and blockade of 

VEGFR-2 signaling effectively prevents angiogenesis, resulting in a marked decrease in 

ovarian weight, blood vessel density, number of corpora lutea, and infertility [131-133]. 

Since gonadatropin treatment apparently does not correct these deficiencies [134], it is 

likely that follicle maturation and successful pregnancy are highly dependent on VEGFR-2-

mediated neovascularization [124, 135]. 

VEGFR-3 is expressed primarily on lymphatic endothelial cells (LECs) in adult tissue [54, 

136], and its signaling, via ligation by VEGF-C or VEGF-D, is necessary for 

lymphangiogenesis by inducing LEC proliferation and migration [56, 57, 136, 137]. 

Blockade of VEGFR-3 signaling, using a function blocking antibody such as mF4-31C1 

(ImClone Systems), completely blocks the initiation of new lymphatic vessels in adult mice 
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without affecting pre-existing lymphatic morphology or function and without apparently 

affecting blood angiogenesis [56, 138]. Here we investigate the roles of lymphatic vessels 

and lymphangiogenesis in reproductive functions of the ovary. Specifically, we hypothesize 

that lymphangiogenesis within the ovary parallels blood angiogenesis during reproductive 

cycles [139-141] and that these new lymphatic capillaries may serve to balance hormones 

produced within the ovary, transport hormones from the ovary and corpus luteum, and aid 

in hormonal communication between the uterus and ovaries during pregnancy [142-144]. 

Using combined in vivo, ex vivo, and in vitro methods, we examined which aspects of 

fertility are influenced by inhibited lymphangiogenesis, including oocyte and follicular 

development and maturation, embryonic implantation in the uterus, and embryonic 

development. We show that blocking ovarian lymphangiogenesis prevents viable, full-term 

pregnancies due to decreased systemic hormone levels, thereby demonstrating a critical 

role for the ovarian lymphatic vasculature in reproduction. 

5.2. Materials and Methods 

5.2.1. Animal procedures 

All protocols were approved by the Veterinary Authorities of the Canton Vaud according to 

Swiss law (protocols 1687, 1988, and 1988.1). The function-blocking antibody against 

murine VEGFR-3, mF4-31C1, was kindly provided by ImClone Systems [57]. For two 

weeks prior to mating, 0.25 mL of 2.5 mg/mL mF4-31C1 was injected intraperitoneally 

every two days. 0.25 mL saline was similarly injected for some control groups with no 

adverse effects on reproductive potential. 

For studies without fertilization, 3 week old female F1 hybrid mice (C57Bl/6JxCBA/caj, 

Charles River Laboratories, France) were treated for two weeks and then sacrificed. 
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Follicles and ovaries were collected for subsequent in vitro culture and histological 

examination, respectively. 

In studies requiring fertilization, 4-6 week old female F1 hybrid (C57Bl/6JxCBA/caj) mice 

were treated for two weeks before mating (to ensure spanning two full menstrual cycles). 

At approximately 6-8 weeks of age, mice in estrus were mated and coitus was evaluated by 

the presence of a vaginal plug 16 hours post-mating. For embryo retrieval, ex vivo culture, 

and transplantation, mice were sacrificed 42 hours post-mating and two-cell embryos 

collected by oviduct flushing with M2 medium (Sigma-Aldrich, St. Louis, MO). 

Embryos were implanted into pseudo-pregnant recipient NMRI mice (Charles River) 

following standard implantation protocols. Embryos from mF4-31C1 treated and untreated 

F1 hybrid donors were implanted into treated and untreated recipients. Recipient mice were 

anesthetized using an intraperitoneal injection of ketamine (100mg/kg) and xylazine 

(10mg/kg). A small midsagittal incision, over each oviduct, was made and the donor 

embryos were deposited into each oviduct by mouth pipetting under a stereomicroscope. 

The incision was then sutured and pregnancies were permitted to continue through day 17. 

Implantation success was consistently >90%.  

For examination of fetal development and uterine implantation, mice were sacrificed at 

pregnancy day 17 or after birth. Implantation spots were counted in the uterus and fetuses 

were graded as either (a) normal, (b) grade i – normal sized but abnormal coloration, (c) 

grade ii –under-developed fetus (in size or limb development), and (d) grade iii – implanted 

cell mass or necrotic fetus (refer to Figure 5.2B for examples). 

5.2.2. In vitro follicle culture and maturation 

To determine the direct effects of in vivo mF4-31C1 treatment on normal follicle 

maturation potential, ovaries were isolated from 5-week-old mice following two weeks of 
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antibody treatment. In vitro maturation of preantral follicles was performed as previously 

described [3, 145]. Briefly, whole ovaries were placed in 3 mL of L-15 Leibovitz-glutamax 

medium (Gibco, Carlsbad, CA) with 10% FBS (HyClone Laboratories, Logan, UT) and 1% 

penicillin-streptomycin (Gibco) solution. Preantral follicles with diameters of 100-130 μm 

were mechanically separated from the ovaries, washed, transferred to individual 10 µL 

droplets of MEM-alpha-glutamax medium containing 5% FBS, 1% ITS (5 µg/mL, insulin, 

5 µg/mL, transferrin, and 5 µg/mL selenium mixture solution; all Gibco), 1% penicillin-

streptomycin, and 100 MIU/mL recombinant human follicle stimulating hormone (hFSH) 

(Organon, Switzerland).  

On day 12 of in vitro culture, follicle maturation was induced by exposing to medium 

lacking hFSH, but supplemented with 2.5 IU/mL hCG-Pregnyl (Organon) and 5 ng/mL 

murine epidermal growth factor (Sigma). After 16 hours, oocytes were retrieved by 

removing the follicular cumulus cells using 200 IU/mL of hyaluronidase (Sigma). Oocytes 

were classified by the following maturation states: germinal vesicle (GV), germinal vesicle 

breakdown (GVBD) and metaphase II (MII).  

In groups were VEGFR-3 was neutralized directly on normal follicles, follicles were 

cultured using the above reagents in a method modified from West, et al. [73]. 10 µg/mL 

mF4-31C1 was added to the culture medium of the test group. 

5.2.3 Ex vivo development of 2-cell embryos 

To determine the direct effects of VEGFR-3 inhibition on preimplantation embryonic 

development, two-cell embryos were retrieved from the oviducts and cultured in 4-well 

dishes containing 400 uL of M16 medium (Sigma). The number of embryos that developed 

into the 8-cell, morula, and blastocyst stages were quantified and imaged under a Nikon 
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SMZ1000 stereomicroscope with a Nikon DS-5M monochrome camera at 66, 90 and 114 

hours after mating, respectively. 

5.2.4 Immunofluorescence, immunohistochemistry, and histology 

To visualize lymphatic vessels, 6-μm-thick ovary and uterus cryosections were labeled with 

a primary antibody to the lymphatic-specific marker LYVE-1 (1:500; 07-538; Upstate, 

Charlottesville, VA). For blood vessels, ovaries were labeled with a FITC-conjugated 

primary antibody to CD31/PECAM-1 (1:200; 550274; BD Pharmingen, San Jose, CA). 

Vessels were also co-labeled for VEGFR-3 (1:100; AF743; R&D Systems, Minneapolis, 

MN). Sections were also labeled for the macrophage-specific surface marker F4/80 (1:50; 

MCA497; AbD Serotec, Oxford, UK) and collagen IV (1:1000, 10760; MP Biomedicals, 

Irvine, CA). These antibodies were detected with Alexafluor 488 or 594-conjugated donkey, 

rabbit, or goat IgG secondary antibodies (1:200, Molecular Probes) and nuclei were labeled 

with DAPI mounting medium (Vector Labs, Burlingame, CA). Fluorescent labeling was 

observed and imaged using a Zeiss Axiovert 200M microscope with a Zeiss MRm camera. 

Slides were then rinsed and counterstained with hematoxylin and eosin, dehydrated, 

mounted with Eukitt (Fluka Chemie, AG, Buchs, Switzerland), and imaged again using a 

color Zeiss MRc camera. The corresponding fluorescence and chromogenic images were 

then compared for identification, and subsequent quantification, of follicular development.  

To label apoptotic cells, a fluorescence TUNEL kit was used according to manufacturer’s 

instructions (Roche Diagnositics, Rotkreuz, Switzerland). Oil red O (Sigma-Aldrich, Buchs, 

Switzerland) was used to stain lipids in ovarian frozen sections. Sections were 

counterstained with hematoxylin and immediately mounted with Möwiol-based mounting 

medium for imaging. 
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5.2.5 Serum Analysis 

Serum was collected from all mice when sacrificed and analyzed using ELISA kits for 

estradiol (Calbiotech, Spring Valley, CA) and progesterone (BioSource, Carlsbad, CA) 

levels according to manufacturer’s instructions. Absorbance was measured using a Tecan 

Safire2 plate reader (Tecan, Männedorf, Swtizerland). 

5.2.6 Image analysis and quantification 

To quantify macrophages, Oil red O, and TUNEL labeled slides, images of entire ovaries 

were assembled, the ovary body was outlined, and the percentage of positive area measured 

using Metamorph 6.3 (Molecular Devices Corp., Sunnyvale, CA). For lymphatic and blood 

vessel quantification, we considered each follicular maturation state. Each follicle was 

outlined using a Wacom CintiQ freehand graphic monitor (Wacom Co., Ltd., Saitama, 

Japan) for accuracy. Vessel labeling was defined by fluorescence threshold and the number 

of positive pixels for each follicle was measured. The average vessel area for each 

maturation state is reported. Follicle maturation states were scored as follows: (i) preantral 

follicle (secondary follicle), (ii) antral follicle (small follicle with formed atrium), (iii) 

Graffian follicle (large follicle with significant atrium), and (iv) corpora lutea 

(Supplemental Figure 1). These divisions were consistently identified across multiple 

examiners. 

5.2.7 Statistical Methods 

For determining statistical significance between treatments in follicle vascularization over 

the stages of maturation, follicle survival and maturation, and embryo development, 

ANOVA followed by DUNCAN was used. Students’t-tests were used to compare other 

factors in treated vs. untreated plasma or in ovaries as a whole.  
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5.3. Results  

5.3.1 VEGFR-3 neutralization prevents successful murine pregnancy 

Female mice were mated at 6-8 weeks of age following 2 weeks of treatment with either (i) 

anti-VEGFR-3 neutralizing antibody (mF4-31C1), (ii) saline, or (iii) no injection (normal). 

All treatments were ceased before mating. Mice receiving saline or no injection were 

equally successful in giving birth to normal and healthy pups. Mice treated with mF4-31C1, 

however, failed to produce a single live birth in the animals tested. This unexpected 

response to VEGFR-3 blockade prior to mating led to the hypothesis that 

lymphangiogenesis within the ovary helps mediate reproductive ability. 

5.3.2 Ovarian lymphangiogenesis but not blood angiogenesis is inhibited by VEGFR-3 

blockade 

First, we examined blood and lymphatic vessels in the ovaries of saline-treated mice using 

CD31 and LYVE-1 co-labeling, and examined their relative expression of VEGFR-3. 

While all lymphatic (LYVE-1+) vessels expressed VEGFR-3 (Fig. 5.1A), limited VEGFR-3 

expression was found on follicular blood vessels (Fig. 5.1B). Lymphatic vessels were 

observed surrounding nearly every follicle at all maturation states and did not penetrate into 

the follicular body or thecal layers (Fig. 5.1A, C). The extent of lymphatic vascularization 

was dependent on the maturation stage of the follicles, with preantral follicles displaying 

only a few sparse lymphatics and corpora lutea displaying a significantly higher degree of 

peripheral lymphatic vessels. In ovaries from mice treated with mF4-31C1, the extent of 

lymphatic vascularization was greatly reduced at all stages of follicular maturation, as 

measured by vessel density (Fig. 5.1D). There was not, however, a complete lack of 

lymphatic vessels. This was consistent with our previous studies where VEGFR-3 
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neutralization prevented lymphangiogenesis but had no morphological effects on pre-

existing lymphatic vessels [56, 57].  

While mature blood vessels do not express VEGFR-3, angiogenic blood vessels have been 

observed to express VEGFR-3 during normal development as well as in tumors and healing 

wounds [146-148], and there is evidence that VEGFR-3 inhibition may limit tumor 

angiogenesis [60, 149]. Since blood angiogenesis in the ovary is necessary for pregnancy 

[124-126, 134, 150], we examined the blood vessels to assess whether mF4-31C1 had any 

effects on ovarian blood angiogenesis. We found VEGFR-3 expression primarily limited to 

lymphatic vessels, with the exception of the blood vasculature within the corpora lutea (Fig. 

5.1B). More importantly, the extent of blood vascularization, as quantified by vessel 

density, was not significantly affected by VEGFR-3 blockade (Fig. 5.1E). Therefore, 

ovarian blood angiogenesis appeared to be unaffected by VEGFR-3 neutralization, 

consistent with our findings in dermal wound healing and regeneration [56, 57].  

5.3.3 VEGFR-3 neutralization pre-fertilization leads to retarded embryonic development 

Since pregnancies were not successful in VEGFR-3 neutralized mice, we sought to 

determine at what stage post-fertilization observable differences could be seen in 

embryonic and fetal development. Mice were treated for two weeks and then mated, and 

the uteri examined at pregnancy day 17. We observed no differences in the number of 

implantation sites in the uteri of treated vs. control mice, but fewer fetuses remained in 

mF4-31C1-treated mice at pregnancy day 17 (Fig. 5.2A). More strikingly, those fetuses 

remaining were dramatically smaller and underdeveloped (Figs. 5.2A,B), threatening future 

miscarriage. Combined, these results indicate that multiple abortions had already occurred 

by day 17, and that the remaining fetuses were likely not viable. 
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To determine whether the numbers of ovulated oocytes were normal and to examine 

blastocyst development from VEGFR-3-blocked mice, mice were sacrificed 42 hr after 

mating and 2-cell embryos were flushed from the oviduct. The numbers of harvested 2-cell 

embryos per mouse were the same in normal vs treated mice, with an average of 7.1±2.5 

and 8.3±1.5 taken from normal and treated mice, respectively. Additionally, all 2-cell 

embryos were cultured in vitro to blastocysts with 100% success, regardless of treatment 

(Fig. 5.2C). Thus, although VEGFR-3 neutralization pre-maing dramatically affected 

embryonic development, it did not appear to reduce ovulation quantity or fertilization 

potential of ovulated oocytes.  

5.3.4 VEGFR-3 neutralization decreases number of healthy follicles but has no direct effect 

on their quality 

To explore the possible effects of VEGFR-3 signaling and lack of lymphatic vasculature on 

follicular maturation potential in virgin mice, preantral follicles (100-130 μm in size) were 

retrieved after 2 weeks of treatment. The numbers of healthy preantral follicles successfully 

retrieved was lower (P<0.01)  from  mF4‐31C1‐treated  mice  than  from  saline‐treated 

mice  (Fig.  5.3A).  This  was  due  to  a  noted  fragile  contact  between  the  oocyte  and 

granulosa  cells  in  mF4‐31C1  treated  mice  (noting  that  preantral  follicles  require 

interactions  between  surrounding  granulosa  and  theca  cell  layers  and  the  oocyte 

[145]). These contacts were apparently not, however, due to any loss of integrity of the 

basal lamina as examined by collagen IV staining (Fig. 5.3B), since no differences were 

observed in the granulosa-thecal boundary. While these discrepancies may impact the local 

hormonal environment in vivo, once separated and cultured in vitro, both groups of 

preantral follicles exhibited similar survival rates (P=0.763, Fig. 5.3C). Surviving follicles 

were able to mature normally, as defined by the method [3], through the GVBD and MII 

phase with equal success (Fig. 5.3C).  
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Finally, to determine whether VEGFR-3 blocking had any direct effects on folliculogenesis, 

we isolated preantral follicles from untreated mice and cultured them in the presence of 10 

μg/mL mF4-31C1 in vitro. All follicles survived (Fig. 5.3D) and grew to similar sizes 

(P=0.299, Fig. 5.3E). Thus, VEGFR-3 blocking had no direct effect on in vitro growth and 

maturation of secondary follicles. 

5.3.5 Loss of lymphatic capillaries does not alter macrophage recruitment, lipid 

accumulation, or apoptosis within the ovary 

Our combined in vivo and in vitro results suggest that failed pregnancies derive from 

alterations in the follicular environment due to the lack of lymphatic vessels. Since immune 

function may be important in mediating the balance between hormone accumulation [151] 

and follicle maturation and ovulation within the ovary [152, 153], and since lymphatic 

capillaries may be important in ovarian immune cell trafficking [139, 140], we examined 

macrophage populations in the ovaries (Fig. 5.4A). We found no significant differences in 

macrophage numbers within the ovaries (P=0.362; Fig. 5.4B). Therefore, the lack of 

lymphatic capillaries did not visibly alter overall macrophage recruitment in the ovary.  

Furthermore, lymphatic insufficiencies have been linked to excessive tissue lipid 

accumulation in skin [154, 155]. Since lipids are necessary for hormone synthesis by 

granulosa and luteal cells in the ovary [156, 157], we examined gross lipid content in the 

ovaries via oil red O staining (Fig. 5.4C), but no differences were observed between mF4-

31C1-treated and control animals (P=0.532; Fig. 5.4D). 

Finally, we sought to determine whether blocking VEGFR-3 would affect cellular 

apoptosis, which normally occurs within certain bodies of the ovary throughout the 

menstrual cycle [158]. Analysis of apoptotic cells revealed a similar distribution and 

number of TUNEL-positive cells within the ovary (Fig. 5.4F) in both groups. Consistent 
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with earlier findings [158, 159], apoptotic cells were confined primarily to the interior layer 

granulosum of regressing antral follicles, regressing corpora lutea, and post-ovulatory cells 

at the ovarian wall in both groups (Fig. 5.4E). Thus, neither the direct blockade of VEGFR-

3 nor the resultant lack of a significant lymphatic vasculature led to abnormal cell apoptosis 

in the ovary. 

5.3.6 Loss of ovarian lymphatics results in significantly reduced hormone levels during 

pregnancy 

With few other differences between ovaries from treated and untreated mice noted, we 

sought to determine whether the lack of ovarian lymphatics altered hormone levels during 

pregnancy. Serum collected from systemic circulation 42 hours after mating revealed no 

change in progesterone levels (Fig. 5.5A), but a significant decrease in estradiol levels (Fig. 

5.5B). As estradiol is sourced from the granulosa/luteal cells in the corpus luteum during 

pregnancy, and since mF4-31C1 treatment had the greatest effect on decreasing follicle-

associated lymphatic capillaries around the corpora lutea (Fig. 5.1D), these data suggest 

that ovarian lymphangiogenesis is critical for hormone transport and that decreased 

follicular lymphatics lead to decreased progesterone and estrogen transport, critical for 

maintaining pregnancy, from the ovary. These findings also support the hypothesis that 

intraovarian lymphatic capillaries are the entry point of ovarian sourced hormones to the 

systemic circulation [144]. 

As hormone secretion by the murine corpora lutea has also been linked to proper blood 

angiogenesis, we verified the blood vasculature of pregnant mouse ovaries at day 17. In 

both untreated and treated mice, the blood vasculature of the corpora lutea appeared normal 

(Fig. 5.5C) while the lymphatic vasculature surrounding these bodies in mF4-31C1 treated 

ovaries was notably deficient. 
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5.3.7 Reduced ovarian hormone production by recipient mothers results in poor fetal 

development and miscarriage of transplanted normal embryos 

Finally, to demonstrate an ovarian, and not uterine, cause to pregnancy failures, we isolated 

two-cell embryos from normal and treated mothers and implanted them into normal and 

treated pseudo-pregnant recipient mothers. Regardless of the treatment of the donor mother, 

transplantation of embryos into normal mothers resulted in normal implantation and fetal 

development with only normal, viable fetuses found in the uterus at day 17 (Fig. 5.6A). 

Conversely, the deficient ovarian hormone signaling demonstrated in treated recipient 

mothers led to retarded fetal development of implanted embryos (Fig. 6A). In fact, the 

developmental deficiencies observed (Fig. 5.6B) were nearly identical to those found 

during in situ pregnancies (Fig. 5.2A,B). This supports the hypothesis of early ovarian 

lymphangiogenesis being necessary for subsequent pregnancy success. 

Further verification of an ovarian source to failed pregnancies was found upon examination 

of the uterine blood and lymphatic vasculature from normal and treated mothers. No 

changes in the blood or lymphatic vessel network of the ovarian wall were noted in early 

pregnancy (Fig. 5.6D). This lack of differences in the uterine vasculature supported the 

findings of normal implantation rates, and reinforced that ovarian lymphangiogenesis is the 

likely process affecting hormone maintenance. 

 

5.4. Discussion 

Taken in total, these results demonstrate that ovarian lymphatics, particularly those that 

develop during folliculogenesis, are necessary for maintaining pregnancy by providing a 

conduit for hormone transport. We saw that blockade of VEGFR-3 effectively halted 
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lymphangiogenesis of maturing follicles within the ovary while not visibly affecting blood 

angiogenesis, macrophage recruitment, lipid accumulation, or overall cell apoptosis. In the 

absence of lymphangiogenesis, there were fewer patent secondary follicles, but those that 

were patent could mature normally, were ovulated, and could be fertilized. Embryonic 

masses naturally implanted in the uterus and partially developed, but all eventually 

miscarried; there were no successful births despite a normal number of uterine implantation 

spots. The absence of new lymphatics in the ovary appears mainly to disturb progesterone 

and estradiol levels during pregnancy. As these hormones are sourced from the copora lutea, 

it is likely the follicular lymphatic capillaries are necessary in regulating a hormonal 

environment conducive to normal pregnancy maintenance.  

The ovarian microvasculature is critical in regulating hormonal transport during pregnancy. 

Normally, as follicles mature, the theca layers become vascularized by blood vessels [160] 

and support follicles by synthesizing estrogen [161]; abnormalities in the theca cell layers 

can result in infertility [162]. Post-implantation, proper blood vascularization is necessary 

for successful pregnancy [124] and blocking blood vessel formation in the corpus luteum 

leads to pregnancy failures [126]. The developing blood vasculature of the corpus luteum 

permits this pseudo-organ to function properly, supplying increased progesterone and 

estrogen to the uterus to maintain pregnancy [126, 150, 163]. New lymphatic capillaries 

must supply a route by which hormones produced within the ovary enter systemic 

circulation [144]. Additionally, it has also been suggested that retrograde transfer of 

prostaglandin E2 – involved in many crucial processes of pregnancy, including 

maintenance of the corpora lutea - from the uterus to the ovary may occur via lymphatic 

transport [143, 150]. Indeed, our data demonstrates that ovarian lymphatic vessels and 

lymphangiogenesis are essential for reproduction. The poorly connected granulose of 

isolated follicles and lower levels of progesterone and estradiol during pregnancy are likely 
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related [164]. The blocked growth of lymphatic capillaries during folliculogenesis disturbs 

the hormonal balance, as evidenced by reduced estardiol with VEGFR-3 neutralization. The 

lymphatic vasculature of these follicles is then insufficient to modulate the copora lutea and 

their hormone secretions during pregnancy. As VEGFR-3 signaling, and therefore, 

lymphangiogenesis, was only blocked prior to mating, oocytes are ovulated and fertilized 

and embryos implant normally in the uterus, we have isolated a developmental period in 

which lymphangiogenesis appears to most critically occur.  

Another important role of lymphatic vasculature is to maintain fluid balance and interstitial 

fluid pressure (IFP). Throughout the body, these roles are inherently tied to lymphatic 

function. In the ovary, follicles become increasingly vascularized as they grow and a fluid-

filled antrum is formed. The IFP in antra of developing follicles is approximately 15 mmHg 

regardless of size and drops rapidly to 5mm Hg immediately preceding ovulation [165]. 

Post-ovulation, the IFP in the highly vascularized corpus luteum has been reported at a very 

high 50 mmHg [165]. Ovarian lymphatics clearly must play a role in modulating fluid 

pressures. Furthermore, concurrent lymphangiogenesis is likely necessary to drain 

extravasated fluid from the newly formed blood capillaries [140] and may help to regulate 

morphogenetic processes and signaling on the luteal cells by controlling interstitial flow, an 

important morphoregulator for many cell types [166]. 

Lack of ovarian lymphatics have also been reported in ADAMTS-1 knockout mice [122] 

and Frizzled4 knockout mice exhibit low levels of ovarian VEGF-C, the primary ligand to 

VEGFR-3 [167]. Both of these strains are infertile, despite normal mating behavior; 

infertility in these mice was concluded to be the result of failed hormone transport, 

intrafollicular pressure modulation, or maintenance of the corpus luteum. Mice possessing 

mutations in VEGFR-3 such that their lymphatic capillaries are present but poorly 

functional can reproduce, albeit at a lower success rate than wildtype mice [168, 169].  
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In conclusion, our data demonstrate that VEGFR-3-mediated lymphangiogenesis in the 

ovary is necessary for pregnancy by modulating levels of progesterone and estrogen from 

the corpora lutea. With anti-lymphangiogenic therapies aimed at preventing tumor 

metastases proposed as a cancer therapy [60, 149, 170] and pro-lymphangiogenic therapies 

proposed for treating lymphedema [168, 171, 172], it is critical to understand the role of 

lymphangiogenesis in the ovary and the role of lymphatics in fertility. Moreover, an 

increased knowledge of the physiologic role of lymphangiogenesis in the ovaries may 

provide insight into causes of infertility (and potential therapeutic strategies) and permit a 

more careful examination of vasculogenesis and lymphangiogenesis inherent with ovarian 

cancers. 
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Fig. 1. Ovarian and follicular lymphangiogenesis, but not blood angiogenesis, was inhibited by VEGFR‐3 
blockade in the ovary, preventing successful pregnancy. A) Ovarian lymphatic vessels (green, LYVE‐1) 
are VEGFR‐3 (red) positive (arrowheads). Some non‐lymphatic associated VEGFR‐3 is found on the 
blood vessels within the copora lutea (arrows). B) Blood vessels (green, CD31) are mostly negative for 
VEGFR‐3 (red), with the exception of those within the corpora lutea (arrow). As lymphatic vessels also 
express CD31, the strong VEGFR‐3 colocalization marks lymphatics (arrowheads). Bar=200μm. C) The 
extent of lymphatic vasculature (green, LYVE‐1) normally developing within the ovary, left, was 
reduced in VEGFR‐3 blocked ovaries, right; the blood vasculature (red, CD31) appeared to be 
unaffected by the treatment. Bar=200μm. D) Quantification of lymphatic vessel coverage in (i) 
preantral follicles, (ii) small follicles with formed atrium, (iii) large follicles with significant atrium and 
(iv) corpora lutea demonstrated the significant reduction in lymphatic vessels at each maturation state 
with VEGFR‐3 blockade. E) Blood vessel coverage was not affected by VEGFR‐3 blockade, despite some 
blood vessels expressing VEGFR‐3. Notice the normal increase in vascularization of the follicles with 
maturation for both lymphatic and blood vessels. *P<0.05 between treatments.  
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Fig. 2. Pregnancies occurred after lymphangiogenesis was blocked, but embryonic development was 
severely impaired in the womb. A) In mice treated with mF4‐31C1 prior to fertilization, few bodies 
remained within the uterus at pregnancy day 17, and they were scored as normal, (i) normal sized but 
discolored, (ii) deficient size and underdeveloped, and (iii) identifiable cell masses. B) Fetuses 
extracted at pregnancy day 17 from treated animals displayed a marked deficiency from control 
animals. Grid=4mm x 4mm. C) 2‐cell embryos were extracted from fertilized VEGFR‐3 treated mice and 
culture in vitro. The appearance of both 2‐cell embryos (left) and blastocysts (right) appeared identical 
to those taken from control animals. Scale bar=100μm. 
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Fig. 3. Secondary follicles, after being retrieved from the ovaries of treated mice, matured normally in 
vitro. A) Fewer patent follicles could be successfully separated from collected ovaries in treated mice. B) 
Patency was not determined by basal lamina quality, as collagen IV staining (green) displayed intact 
basement membranes (arrows) in both control and treated follicles. Bar=100μm. C) Follicles and their 
oocytes separated from ovaries of VEGFR‐3 treated mice survived normally in vitro. Surviving germinal 
vesicle (GV) oocytes from treated and control mice mature to germinal vesicle breakdown (GVBD) and 
metaphase II (MII) stages using the in vitro drop culture technique at equal rates. D) Survival of 
secondary follicles directly treated with the VEGFR‐3 blocking antibody in vitro was unihibited. E) 
Maturation potential, as determined by follicle size, was also unaffected by direct VEGFR‐3 treatment 
on the follicles. 
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Fig. 4. Macrophage recruitment, lipid accumulation, and cell apoptosis in the ovary appeared to be 
unaffected by VEGFR‐3 blockade. A) Macrophages (red, F4/80) present in the ovary was limited to 
follicular peripheries in both control and treated ovaries. Bar=100μm. B) The total number quantified 
within the ovary was unchanged. C) The ovaries contain large amount of lipids (red, Oil Red O), 
particularly in the copora lutea (arrowheads). Bar=300μm. D) Lipid accumulation in the ovary was not 
significantly different without lymphatics. E) Apoptotic cells (green, TUNEL) were limited to interior 
granulosa cells (arrows) of regressing follicles and regular apoptosis of regressing corpora lutea and 
corpus hemorrhagicum (arrowheads) in both treatments. Bar=100μm. F) No difference was measured 
in the number of apoptotic cells within the ovary with mF4‐31C1 treatment. 



 

 

Fig. 5. Blockade of lymphangiogenesis led to reduced systemic estradiol levels in mice following 
fertilization and decreases in both eastradiol and progesterone during pregnancy. A) Serum 
progesterone levels in control and mF4‐31C1 treated mice were normal at pregnancy day 2, but 
significantly reduced at pregnancy day 17. Since treatment was halted before mating, and since no 
difference was seen in serum levels at day 2, the mF4‐31C1 treatment did not directly affect these 
hormones. B) Estradiol levels were significantly reduced during pregnancy when ovarian 
lymphangiogenesis was blocked. *P<0.05 between treatments. C) The blood vasculature (red, CD31) 
corpora lutea in the ovaries of pregnant mothers at day 17 appeared normal in mF4‐31C1 treated mice. 
In control mothers, lymphatic vessels (arrows) (green, LYVE‐1) surround the corpus luteum and other 
follicles. Bar=200μm. 
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Fig. 6. All embryos – from both control and mF4‐31C1 treated mothers – implanted into treated 
recipient mothers were insufficiently developed despite normal uterine vasculature. A) 2‐cell embryos 
from saline and mF4‐31C1 treated mothers implanted into normal, pseudo‐pregnant recipient mothers 
developed into normal, viable fetuses by day 17. In pseudo‐pregnant mothers pre‐treated with mF4‐
31C1, embryos from control mothers failed to develop into normal fetuses, despite normal 
implantations. Grid=4mm. B) The distribution of fetal quality at day 17 following normal embryo 
transfer to mF4‐31C1 treated recipients closely replicated that of in situ fetal development, as reported 
in Figure 2. C) Blood (red, CD31) and lymphatic (green, LYVE‐1) capillaries in the uterine wall appeared 
normal in both mF4‐31C1 treated and untreated mothers, further supporting an ovarian cause. 
Bar=200μm. 
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Supplemental Figure 1. Follicular vasculature was calculated for four stages of 
follicle maturation. A) Follicles exist in various maturation states within the murine 
follicle with increasing vasculature with maturation. Follicles that had reached 
preantral status were identified for quantifying their surrounding vasculature. B) 
Each follicle was first identified and numbered on hematoxylin labeled sections, 
where follicular structure was easier to recognize. C) On the corresponding 
fluorescence image, each follicle was then outlined in Metamorph software (white 
lines indicate the concept) and the percent area of lymphatic and blood vessel 
coverage within each region of interest was quantified. Bars=200μm. 
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Chapter 6: Retrospective and outlooks 

 

The need for efficient follicles culture systems becomes obvious when the actual lack of a 

reliable source of mature oocytes is considered. The culture systems constitute also a key 

tool for the understanding of mechanisms such as oogenesis, folliculogenesis, and 

embryogenesis. Last two decades, a substantial effort was made to establish an efficient 

culture system and to acquire fundamental knowledge about the oocyte and follicle growth. 

The in vitro production of mature oocyte from primordial follicles was reported once in 

mouse [30]. The primordial follicles were fully maturated though a two-step culture, first 

neonatal ovarian organ culture and after preantral follicle culture. The produced oocytes 

could be fertilized and gave offspring. However, this technique was limited by a low yield 

and offspring plagued with multiple disorders such as premature aging. Although, the 

experiment could not be repeated, it brought the hope of an achievable growth and 

maturation of the oocyte in vitro.  

Most in vitro follicle culture systems are conventional 2-D culture system as extensively 

used in biology. The follicles in 2-D culture system remodel their structure in order to 

readapt to the hindrances caused by such an environment. This remodeling leads to 

disconnections between the oocyte and the granulosa cells or between the granulosa cells 

themselves. Despite a relative success in terms of secondary oocyte growth and maturation, 

the studies investigating the role of hormones or growth could hardly cope with such a bias 

and thus often reported contradictory results. The first introduced 3-D culture system used 

alginate bead and demonstrated that the structure of the follicles was maintained and that 

the oocyte maturation was possible. However, in this system it was difficult to observe the 
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morphology of the follicle during the culture because of the bead shape. This system was 

also limited by the possibility to load a unique follicle per bead. Moreover, functionalizing 

alginate with interesting growth factors was not straightforward. For overcoming these 

problems, a culture system based on tailored PEG-hydrogels is herein reported.  

In a first step, the mechanical properties of PEG-hydrogels could be tuned by varying the 

ratio of SV/TH thus modulating the crosslinks density of the hydrogel. The goal was to 

approach the mechanical properties of the ovarian tissue. The PEG-hydrogel systems was 

also functionalized with an integrin binding peptide (RGD) to mediate cell attachment as it 

could happen in environment where the ECM is present. Optimal conditions for oocyte 

growth, maturation and quality where established and compared with results obtained from 

2-D culture systems. Once these “basal” optimal conditions defined, the PEG-hydrogels 

culture system was used to study the effects of the most relevant gonadotropins for oocyte 

maturation (FSH and LH). This experiment intended to address the contradictory results 

published until now. The measured effects of LH and FSH in the PEG-hydrogels system 

were found to be relatively close to what is observer in vivo and drastically different from 

what is observed in the 2-D systems.  

This study highlights the importance of putting the studied material in a situation close to 

the in vivo microenvironment for investigating the effects of growth factor, hormones, 

drugs, etc.    

Better characterizing the function of the membrane-bound form of KL can potentially bring 

new insights in folliculogenesis and/or hemetopoiesis understandings. Here, the ease of 

signal immobilization onto the PEG-hydrogel can provide a valuable tool for studying such 

processes. In this context, various recombinant forms of KL (soluble and attached) were 

expressed in the mammalian cells. The tetherable form (KLstg) of KL was successfully 
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purified, tested and immobilized onto PEG-hydrogel. This system was used to culture 

ovarian tissues. After 10 days of culture, the results demonstrated that secondary follicles 

were only visible when a low amounts (100 µM) of KL was bond to the PEG matrix. Most 

primordial follicles did not develop when KL was present in a soluble form. The 

engineered forms of KL in combination with the PEG-hydrogel systems will certainly be of 

use to gain further knowledge in folliculogenesis and might serve to better understand 

hemetopoiesis as well. In addition, because of the cross-bioactivity of KL between mice 

and Humans, the reported platform could be of use for future clinical applications.  

In parallel, a new role for the lymphatic circulation in the modulation of hormone levels 

during pregnancy was identified. First, we have demonstrated that lymphangiogenesis 

occurs within the ovary during folliculogenesis and is essential for pregnancy. This is likely 

to modulate the systemic estrogen during pregnancy. Herein we proposed that the 

lymphatic circulation could influence the complex processes of folliculogenesis, ovulation, 

and pregnancy. Lymphatic vessels are critical in inflammation and fluid balance. The 

ovulation is considered to be a massive inflammatory event with the modulation of the 

pressure within the antrum of developed follicles, the massive secretion of hormones, and 

the eventual rupture of the ovarian capsule should present an almost unsustainable 

inflammatory environment. Lymphatic vessels should have the potential to modulate these 

factors as would occur in other tissues. However, further investigations are needed to assess 

the role of ovarian lymphatic capillaries in the views of examination of intrafollicular 

pressures, granulosa cell molecular expression, hormone secretion and hormonal rescue 

therapy. 

In this thesis, we demonstrate the potential of a tailored PEG-hydrogel system to study 

complex processes such as folliculogenesis. Breaking down the complexity of the 

microenvironment and reconstructing it in a combinatorial assay will certainly allow better 
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understanding of the key events governing events such as, activation, maturation and 

ovulation of the oocyte. In this context the PEG-hydrogels constitute an attractive platform 

because it combines advantages such dimensionality and relevant mechanical properties, 

cell responsiveness, ease of functionalization, compatibility with microscopic observation 

and single follicle analysis. Thus, it is safe to assume that that the efficiency of the PEG-

hydrogel system will be fully exploited when used in high throughput assays. This will 

certainly be of great use to the scientific community in its effort to bring innovative 

solutions to fertility-related questions.  

In a closer future it will be interesting to continue optimizing the system till embryonic 

development is obtained. In this context, continuing the investigations on the role of KL 

has the potential to yield valuable information. Other strategies such as genomic studies on 

cultured follicle can also be considered for identifying the remaining “bottlenecks”.   

  

 



107 
 

Bibliographic references 

1.  McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles. Endocr 
Rev 2000 Apr;21(2):200‐214. 

2.  Senbon S, Hirao Y, Miyano T. Interactions between the oocyte and surrounding 
somatic  cells  in  follicular  development:  Lessons  from  in  vitro  culture.  J  Reprod 
Develop 2003 Aug;49(4):259‐269. 

3.  Liu J, Van Der Elst J, Van Den Broecke R, Dumortier F, Dhont M. Maturation of 
mouse primordial follicles by combination of grafting and in vitro culture. Biol Reprod 
2000 May;62(5):1218‐1223. 

4.  Liu  J,  Van  der  Elst  J,  Van  den Broecke R,  Dhont M.  Live  offspring  by  in  vitro 
fertilization of oocytes from cryopreserved primordial mouse follicles after sequential 
in vivo transplantation and in vitro maturation. Biol Reprod 2001 Jan;64(1):171‐178. 

5.  O'Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of 
mouse  oocytes  from primordial  follicles  dramatically  improves  their  developmental 
competence. Biology of Reproduction 2003 May;68(5):1682‐1686. 

6.  Telfer EE, Binnie JP,  Jordan LB. Effect of  follicle size on the onset of apoptotic 
cell death in cultured bovine ovarian follicles. Theriogenology 1998 Jan 1;49(1):357‐
357. 

7.  Roy SK, Greenwald GS. Methods of separation and in‐vitro culture of pre‐antral 
follicles from mammalian ovaries. Hum Reprod Update 1996 May‐Jun;2(3):236‐245. 

8.  Smitz  JEJ,  Cortvrindt  RG.  The  earliest  stages  of  folliculogenesis  in  vitro. 
Reproduction 2002 Feb;123(2):185‐202. 

9.  Lenie S, Cortvrindt R, Adriaenssens T, Smitz J. A reproducible two‐step culture 
system  for  isolated  primary  mouse  ovarian  follicles  as  single  functional  units.  Biol 
Reprod 2004 Nov;71(5):1730‐1738. 

10.  Donnez  J,  Dolmans  MM.  Livebirth  after  cryopreserved  ovarian  tissue 
autotransplantation ‐ Reply. Lancet 2004 Dec 11;364(9451):2092‐2093. 



108 
 

11.  Picton  HM,  Danfour  MA,  Harris  SE,  Chambers  EL,  Huntriss  J.  Growth  and 
maturation of oocytes in vitro. Reprod Suppl 2003;61:445‐462. 

12.  Murray  A,  Spears  N.  Follicular  development  in  vitro.  Semin  Reprod  Med 
2000;18(2):109‐122. 

13.  Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein‐
15  inhibits  follicle‐stimulating  hormone  (FSH)  action  by  suppressing  FSH  receptor 
expression. J Biol Chem 2001 Apr 6;276(14):11387‐11392. 

14.  Otsuka  F,  Shimasaki  S.  A  negative  feedback  system  between  oocyte  bone 
morphogenetic  protein  15  and  granulosa  cell  kit  ligand:  Its  role  in  regulating 
granulosa cell mitosis. P Natl Acad Sci USA 2002 Jun 11;99(12):8060‐8065. 

15.  Nilsson EE, Kezele P,  Skinner MK. Leukemia  inhibitory  factor  (LIF) promotes 
the primordial  to primary  follicle  transition  in rat ovaries. Mol Cell Endocrinol 2002 
Feb 25;188(1‐2):65‐73. 

16.  Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND 
in ovarian function. Rev Reprod 2000 Sep;5(3):143‐152. 

17.  Nilsson  E,  Parrott  JA,  Skinner  MK.  Basic  fibroblast  growth  factor  induces 
primordial  follicle  development  and  initiates  folliculogenesis.  Mol  Cell  Endocrinol 
2001 Apr 25;175(1‐2):123‐130. 

18.  Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end‐
linked  poly(ethylene  glycol)‐co‐peptide  hydrogels  formed  by Michael‐type  addition. 
Biomacromolecules 2003 May‐Jun;4(3):713‐722. 

19.  Lutolf MP, Lauer‐Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, et 
al. Synthetic matrix metalloproteinase‐sensitive hydrogels for the conduction of tissue 
regeneration:  Engineering  cell‐invasion  characteristics.  Proceedings  of  the  National 
Academy of Sciences of the United States of America 2003 Apr 29;100(9):5413‐5418. 

20.  Doneda L, Klinger FG,  Larizza L, De Felici M. KL/KIT  co‐expression  in mouse 
fetal oocytes. Int J Dev Biol 2002 Dec;46(8):1015‐1021. 

21.  Cortvrindt  R,  Smitz  J.  In  vitro  follicle  growth:  Achievements  in  mammalian 
species. Reproduction in Domestic Animals 2001 Feb;36(1):3‐9. 



109 
 

22.  Braw‐Tal R. The  initiation of  follicle  growth:  the oocyte or  the  somatic  cells? 
Mol Cell Endocrinol 2002 Feb 22;187(1‐2):11‐18. 

23.  Kaipia A, Hsueh AJW. Regulation of ovarian  follicle atresia. Annual Review of 
Physiology 1997;59:349‐363. 

24.  Smith  GD.  In  vitro  maturation  of  oocyte.  Current  women's  health  reports 
2001;1:143‐151. 

25.  Gosden  RG,  Mullan  J,  Picton  HM,  Yin  H,  Tan  SL.  Current  perspective  on 
primordial  follicle  cryopreservation  and  culture  for  reproductive  medicine.  Hum 
Reprod Update 2002 Mar‐Apr;8(2):105‐110. 

26.  Miyano T. In vitro growth of mammalian oocytes. Journal of Reproduction and 
Development 2005 Apr;51(2):169‐176. 

27.  Carroll  J,  Whittingham  DG,  Wood  MJ.  Effect  of  Dibutyryl  Cyclic  Adenosine‐
Monophosphate  on  Granulosa‐Cell  Proliferation,  Oocyte  Growth  and  Meiotic 
Maturation  in  Isolated Mouse  Primary Ovarian  Follicles  Cultured  in  Collagen Gels.  J 
Reprod Fertil 1991 May;92(1):197‐207. 

28.  Lee ST, Choi MH, Gong SP, Han JY, Lim JM. Establishment of a basic method for 
manipulating  preantral  follicles:  effects  of  retrieval  method  on  in  vitro  growth  of 
preantral follicles and intrafollicular oocytes. Zygote 2007 May;15(2):109‐116. 

29.  Cortvrindt R, Smitz J, VanSteirteghem AC. In‐vitro maturation, fertilization and 
embryo  development  of  immature  oocytes  from  early  preantral  follicles  from 
prepuberal mice in a simplified culture system. Hum Reprod 1996 Dec;11(12):2656‐
2666. 

30.  Eppig  JJ, Schroeder AC. Capacity of Mouse Oocytes  from Preantral Follicles  to 
Undergo  Embryogenesis  and  Development  to  Live  Young  after  Growth, Maturation, 
and Fertilization Invitro. Biol Reprod 1989 Aug;41(2):268‐276. 

31.  Spears N, Boland NI, Murray AA, Gosden RG. Mouse Oocytes Derived from in‐
Vitro Grown Primary Ovarian Follicles Are Fertile. Hum Reprod 1994 Mar;9(3):527‐
532. 

32.  Cortvrindt RG, Hu YX, Liu J, Smitz JEJ. Timed analysis of the nuclear maturation 
of oocytes  in early preantral mouse  follicle  culture  supplemented with  recombinant 
gonadotropin. Fertil Steril 1998 Dec;70(6):1114‐1125. 



110 
 

33.  Nayudu  PL,  Osborn  SM.  Factors  Influencing  the  Rate  of  Preantral  and Antral 
Growth of Mouse Ovarian Follicles Invitro. Journal of Reproduction and Fertility 1992 
Jul;95(2):349‐362. 

34.  Boland NI, Humpherson PG, Leese HJ, Gosden RG. Pattern of Lactate Production 
and Steroidogenesis during Growth and Maturation of Mouse Ovarian Follicles Invitro. 
Biology of Reproduction 1993 Apr;48(4):798‐806. 

35.  Hartshorne GM, Sargent  IL, Barlow DH. Growth‐Rates and Antrum Formation 
of  Mouse  Ovarian  Follicles  in‐Vitro  in  Response  to  Follicle‐Stimulating‐Hormone, 
Relaxin, Cyclic‐Amp and Hypoxanthine. Hum Reprod 1994 Jun;9(6):1003‐1012. 

36.  Pangas  SA,  Saudye  H,  Shea  LD, Woodruff  TK.  Novel  approach  for  the  three‐
dimensional  culture  of  granulosa  cell‐oocyte  complexes.  Tissue  Engineering  2003 
Oct;9(5):1013‐1021. 

37.  Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue‐engineered follicles produce 
live, fertile offspring. Tissue Eng 2006 Oct;12(10):2739‐2746. 

38.  Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA. Protein delivery from 
materials  formed  by  self‐selective  conjugate  addition  reactions.  J  Control  Release 
2001 Sep 11;76(1‐2):11‐25. 

39.  Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA. Systematic modulation of 
Michael‐type reactivity of thiols through the use of charged amino acids. Bioconjugate 
Chem 2001 Nov‐Dec;12(6):1051‐1056. 

40.  Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA. MMP‐2 sensitive, VEGF‐
bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical 
Materials Research Part A 2004 Mar 15;68A(4):704‐716. 

41.  Zsebo KM, Williams DA,  Geissler  EN,  Broudy VC, Martin  FH,  Atkins HL,  et  al. 
Stem‐Cell Factor Is Encoded at the Si‐Locus of the Mouse and Is the Ligand for the C‐
Kit Tyrosine Kinase Receptor. Cell 1990 Oct 5;63(1):213‐224. 

42.  Sattler M, Salgia R. Targeting c‐Kit mutations: basic science to novel therapies. 
Leukemia Res 2004 May;28:S11‐S20. 

43.  Gougeon A,  Busso D. Morphologic  and  functional  determinants  of  primordial 
and primary  follicles  in  the monkey ovary. Mol Cell Endocrinol 2000 May 25;163(1‐
2):33‐41. 



111 
 

44.  Hoyer  PE,  Byskov  AG,  Mollgard  K.  Stem  cell  factor  and  c‐Kit  in  human 
primordial germ cells and fetal ovaries. Mol Cell Endocrinol 2005 Apr 29;234(1‐2):1‐
10. 

45.  Stoop  H,  Honecker  F,  Cools  M,  de  Krijger  R,  Bokemeyer  C,  Looijenga  LHJ. 
Differentiation  and  development  of  human  female  germ  cells  during  prenatal 
gonadogenesis:  an  immunohistochemical  study.  Hum  Reprod  2005  Jun;20(6):1466‐
1476. 

46.  Clark DE, Tisdall DJ, Fidler AE, McNatty KP. Localization of mRNA encoding c‐
kit during the initiation of folliculogenesis in ovine fetal ovaries. J Reprod Fertil 1996 
Mar;106(2):329‐335. 

47.  Horie  K,  Takakura  K,  Taii  S,  Narimoto  K,  Noda  Y,  Nishikawa  S,  et  al.  The 
Expression of C‐Kit Protein during Oogenesis and Early Embryonic‐Development. Biol 
Reprod 1991 Oct;45(4):547‐552. 

48.  Manova K, Huang EJ, Angeles M, Deleon V, Sanchez S, Pronovost SM, et al. The 
Expression Pattern of the C‐Kit Ligand in Gonads of Mice Supports a Role for the C‐Kit 
Receptor  in  Oocyte  Growth  and  in  Proliferation  of  Spermatogonia.  Dev  Biol  1993 
May;157(1):85‐99. 

49.  Hutt  KJ, McLaughlin  EA,  Holland MK.  Kit  ligand  and  c‐Kit  have  diverse  roles 
during  mammalian  oogenesis  and  folliculogenesis.  Mol  Hum  Reprod  2006 
Feb;12(2):61‐69. 

50.  Yoshida  H,  Takakura  N,  Kataoka  H,  Kunisada  T,  Okamura  H,  Nishikawa  S. 
Stepwise requirement of c‐kit tyrosine kinase in mouse ovarian follicle development. 
Dev Biol 1997 Apr 1;184(1):122‐137. 

51.  Parrott  JA, Skinner MK. Kit‐ligand/stem cell  factor  induces primordial  follicle 
development  and  initiates  folliculogenesis.  Endocrinology  1999  Sep;140(9):4262‐
4271. 

52.  Gilchrist  RB,  Ritter  LJ,  Cranfield  M,  Jeffery  LA,  Amato  F,  Scott  SJ,  et  al. 
Immunoneutralization of growth differentiation factor 9 reveals  it partially accounts 
for mouse oocyte mitogenic activity. Biol Reprod 2004 Sep;71(3):732‐739. 

53.  Jin X, Han CS, Yu FQ, Wei P, Hu ZY, Liu YX. Anti‐apoptotic  action of  stem cell 
factor on oocytes  in primordial  follicles and  its signal  transduction. Mol Reprod Dev 
2005 Jan;70(1):82‐90. 



112 
 

54.  Adams  RH,  Alitalo  K.  Molecular  regulation  of  angiogenesis  and 
lymphangiogenesis. Nat Rev Mol Cell Bio 2007 Jun;8(6):464‐478. 

55.  Oliver G, Alitalo K. The lymphatic vasculature: Recent progress and paradigms. 
Annu Rev Cell Dev Bi 2005;21:457‐483. 

56.  Goldman  J, Rutkowski  JM, Shields  JD, Pasquier MC, Cui Y, Schmokel HG, et al. 
Cooperative  and  redundant  roles  of  VEGFR‐2  and  VEGFR‐3  signaling  in  adult 
lymphangiogenesis. Faseb J 2007 Apr;21(4):1003‐1012. 

57.  Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, et al. Complete and 
specific  inhibition  of  adult  lymphatic  regeneration  by  a  novel  VEGFR‐3  neutralizing 
antibody. J Natl Cancer I 2005 Jan 5;97(1):14‐21. 

58.  Baluk  P,  Tammela  T,  Ator  E,  Lyubynska  N,  Achen  MG,  Hicklin  DJ,  et  al. 
Pathogenesis  of  persistent  lymphatic  vessel  hyperplasia  in  chronic  airway 
inflammation. J Clin Invest 2005 Feb;115(2):247‐257. 

59.  Bock F, Onderka J, Dietrich T, Bachmann B, Pytowski B, Cursiefen C. Blockade 
of VEGFR3‐signalling specifically inhibits lymphangiogenesis in inflammatory corneal 
neovascularisation. Graef Arch Clin Exp 2008 Jan;246(1):115‐119. 

60.  Roberts  N,  Kloos  B,  Cassella  M,  Podgrabinska  S,  Persaud  K,  Wu  Y,  et  al. 
Inhibtion  of  VEGFR‐3  activation  with  the  antagonistic  antibody  more  potently 
suppresses lymph node and distant metastases than inactivation of VEGFR‐2. Cancer 
Res 2006 Mar 1;66(5):2650‐2657. 

61.  Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA, Luna‐Morris S, et al. 
Force‐induced unfolding of  fibronectin in the extracellular matrix of  living cells. Plos 
Biology 2007 Oct;5(10):2243‐2254. 

62.  Rodgers RJ,  Irving‐Rodgers HF,  van Wezel  IL.  Extracellular matrix  in  ovarian 
follicles. Molecular and Cellular Endocrinology 2000 May 25;163(1‐2):73‐79. 

63.  Irving‐Rodgers  HF,  Rodgers  RJ.  Extracellular  matrix  in  ovarian  follicular 
development and disease. Cell and Tissue Research 2005 Oct;322(1):89‐98. 

64.  Smith MF, Ricke WA, Bakke LJ, Dow MPD, Smith GW. Ovarian tissue remodeling: 
role  of  matrix  metalloprotemases  and  their  inhibitors.  Molecular  and  Cellular 
Endocrinology 2002 May 31;191(1):45‐56. 



113 
 

65.  Liu K, Wahlberg P, Leonardsson G, Hagglund AC, Ny A, Boden I, et al. Successful 
ovulation  in  plasminogen‐deficient  mice  treated  with  the  broad‐spectrum  matrix 
metalloproteinase inhibitor galardin. Developmental Biology 2006 Jul 15;295(2):615‐
622. 

66.  Hagglund AC, Ny A, Leonardsson G, Ny T. Regulation and localization of matrix 
metalloproteinases  and  tissue  inhibitors  of  metalloproteinases  in  the  mouse  ovary 
during gonadotropin‐induced ovulation. Endocrinology 1999 Sep;140(9):4351‐4358. 

67.  Goxe B,  Flechon  JE, Delasalle  S,  Salesse R. Rgd‐Mediated Adhesion of Porcine 
Granulosa‐Cells Modulates Their Differentiation Response  to Fsh  in‐Vitro. Biology of 
the Cell 1995;83(2‐3):169‐177. 

68.  Eppig  JJ,  OBrien  M,  Wigglesworth  K.  Mammalian  oocyte  growth,  and 
development in vitro. Molecular Reproduction and Development 1996 Jun;44(2):260‐
273. 

69.  Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, 
Jaconi  ME,  et  al.  Three‐dimensional  extracellular  matrix‐directed  cardioprogenitor 
differentiation:  systematic  modulation  of  a  synthetic  cell‐responsive  PEG‐hydrogel. 
Biomaterials 2008 Jun;29(18):2757‐2766. 

70.  Eichenlaubritter U, Betzendahl I. Chloral Hydrate Induced Spindle Aberrations, 
Metaphase‐I  Arrest  and  Aneuploidy  in  Mouse  Oocytes.  Mutagenesis  1995 
Nov;10(6):477‐486. 

71.  Assoian RK, Klein EA. Growth control by intracellular tension and extracellular 
stiffness. Trends in Cell Biology 2008 Jul;18(7):347‐352. 

72.  Brandl  F,  Sommer  F,  Goepferich  A.  Rational  design  of  hydrogels  for  tissue 
engineering:  Impact  of  physical  factors  on  cell  behavior.  Biomaterials  2007 
Jan;28(2):134‐146. 

73.  West  ER,  Xu  M,  Woodruff  TK,  Shea  LD.  Physical  properties  of  alginate 
hydrogels  and  their  effects  on  in  vitro  follicle  development.  Biomaterials  2007 
Oct;28(30):4439‐4448. 

74.  Drury  JL,  Mooney  DJ.  Hydrogels  for  tissue  engineering:  scaffold  design 
variables and applications. Biomaterials 2003 Nov;24(24):4337‐4351. 



114 
 

75.  Richardson MC, Davies DW, Watson RH, Dunsford ML, Inman CB, Masson GM. 
Cultured Human Granulosa‐Cells  as  a Model  for  Corpus‐Luteum  Function  ‐  Relative 
Roles  of  Gonadotropin  and  Low‐Density‐Lipoprotein  Studied  under Defined  Culture 
Conditions. Human Reproduction 1992 Jan;7(1):12‐18. 

76.  Luck MR. The gonadal extracellular matrix. Oxf Rev Reprod Biol 1994;16:33‐85. 

77.  Huet  C,  Pisselet  C,  Mandon‐Pepin  B,  Monget  P,  Monniaux  D.  Extracellular 
matrix  regulates  ovine  granulosa  cell  survival,  proliferation  and  steroidogenesis: 
relationships  between  cell  shape  and  function.  Journal  of  Endocrinology  2001 
May;169(2):347‐360. 

78.  Goxe B,  Salesse R, Remy  JJ, Genty N, Garnier  J.  Lh Receptor Rna and Protein‐
Levels  after  Hormonal  Treatment  of  Porcine  Granulosa‐Cells  in  Primary  Culture. 
Journal of Molecular Endocrinology 1992 Apr;8(2):119‐129. 

79.  Kreeger  PK,  Woodruff  TK,  Shea  LD.  Murine  granulosa  cell  morphology  and 
function  are  regulated  by  a  synthetic  Arg‐Gly‐Asp  matrix.  Molecular  and  Cellular 
Endocrinology 2003 Jul 31;205(1‐2):1‐10. 

80.  Eppig  JJ. Analysis of Mouse Oogenesis  Invitro Oocyte  Isolation and Utilization 
of  Exogenous Energy‐Sources  by Growing Oocytes.  Journal  of  Experimental  Zoology 
1976;198(3):375‐381. 

81.  Heller  DT,  Cahill  DM,  Schultz  RM.  Biochemical‐Studies  of  Mammalian 
Oogenesis  ‐  Metabolic  Cooperativity  between  Granulosa‐Cells  and  Growing‐Mouse 
Oocytes. Developmental Biology 1981;84(2):455‐464. 

82.  Anderson  E,  Albertini  DF.  Gap  Junctions  between  Oocyte  and  Companion 
Follicle Cells in Mammalian Ovary. Journal of Cell Biology 1976;71(2):680‐686. 

83.  Hsueh  AJW,  Billig  H,  Tsafriri  A.  Ovarian  Follicle  Atresia  ‐  a  Hormonally 
Controlled Apoptotic Process. Endocrine Reviews 1994 Dec;15(6):707‐724. 

84.  Abel MH, Wootton AN, Wilkins V, Huhtaniemi  I, Knight PG, Charlton HM. The 
effect of a null mutation in the follicle‐stimulating hormone receptor gene on mouse 
reproduction. Endocrinology 2000 May;141(5):1795‐1803. 

85.  Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle 
culture has marked effects on folliculogenesis and oocyte developmental competence. 
Human Reproduction 2004 Feb;19(2):398‐408. 



115

95.  Liu  J,  Rybouchkin  A,  Van  der  Elst  J,  Dhont M.  Fertilization  of mouse  oocytes 
from  in  vitro‐matured  preantral  follicles  using  classical  in  vitro  fertilization  or 
intracytoplasmic sperm injection. Biology of Reproduction 2002 Aug;67(2):575‐579. 

 
 

86.  Urban RJ,  Garmey  JC,  Shupnik MA, Veldhuis  JD.  Follicle‐Stimulating‐Hormone 
Increases Concentrations of Messenger‐Ribonucleic‐Acid Encoding Cytochrome‐P450 
Cholesterol  Side‐Chain  Cleavage  Enzyme  in  Primary  Cultures  of  Porcine  Granulosa‐
Cells. Endocrinology 1991 Apr;128(4):2000‐2007. 

87.  Silva  JM, Hamel M, Sahmil M, Price CA. Control of oestradiol  secretion and of 
cytochrome  P450  aromatase  messenger  ribonucleic  acid  accumulation  by  FSH 
involves different intracellular pathways in oestrogenic bovine granulosa cells in vitro. 
Reproduction 2006 Dec;132(6):909‐917. 

88.  Demeestere  I,  Centner  J,  Gervy  C,  Englert  Y,  Delbaere  A.  Impact  of  various 
endocrine  and paracrine  factors  on  in  vitro  culture  of  preantral  follicles  in  rodents. 
Reproduction 2005 Aug;130(2):147‐156. 

89.  Mao JD, Wu GM, Smith MF, McCauley TC, Cantley TC, Prather RS, et al. Effects of 
culture  medium,  serum  type,  and  various  concentrations  of  follicle‐stimulating 
hormone on porcine preantral follicular development and antrum formation in vitro. 
Biology of Reproduction 2002 Oct;67(4):1197‐1203. 

90.  Cortvrindt R,  Smitz  J,  VanSteirteghem AC. Assessment  of  the need  for  follicle 
stimulating  hormone  in  early  preantral  mouse  follicle  culture  in  vitro.  Human 
Reproduction 1997 Apr;12(4):759‐768. 

91.  Mitchell  LM,  Kennedy  CR,  Hartshorne  GM.  Effects  of  varying  gonadotrophin 
dose  and  timing  on  antrum  formation  and  ovulation  efficiency  of mouse  follicles  in 
vitro. Human Reproduction 2002 May;17(5):1181‐1188. 

92.  Galway AB, Lapolt PS, Tsafriri A, Dargan CM, Boime I, Hsueh AJW. Recombinant 
Follicle‐Stimulating‐Hormone  Induces  Ovulation  and  Tissue  Plasminogen‐Activator 
Expression in Hypophysectomized Rats. Endocrinology 1990 Dec;127(6):3023‐3028. 

93.  Cortvrindt R, Hu Y, Smitz J. Recombinant luteinizing hormone as a survival and 
differentiation factor increases oocyte maturation in recombinant follicle stimulating 
hormone‐supplemented mouse preantral  follicle culture. Human Reproduction 1998 
May;13(5):1292‐1302. 

94.  Lee  ST,  Choi  MH,  Lee  EJ,  Gong  SP,  Jang  M,  Park  SH,  et  al.  Establishment  of 
autologous  embryonic  stem  cells  derived  from  preantral  follicle  culture  and  oocyte 
parthenogenesis. Fertil Steril 2007;19(4S):1193‐1203. 



116 
 

96.  Tisdall DJ, Watanabe K, Hudson NL, Smith P, Mcnatty KP. Fsh Receptor Gene‐
Expression  during  Ovarian  Follicle  Development  in  Sheep.  Journal  of  Molecular 
Endocrinology 1995 Dec;15(3):273‐281. 

97.  Oktay  K,  Briggs  D,  Gosden  RG.  Ontogeny  of  follicle‐stimulating  hormone 
receptor  gene  expression  in  isolated  human  ovarian  follicles.  Journal  of  Clinical 
Endocrinology and Metabolism 1997 Nov;82(11):3748‐3751. 

98.  Hsueh  AJW,  Adashi  EY,  Jones  PBC,  Welsh  TH.  Hormonal‐Regulation  of  the 
Differentiation of Cultured Ovarian Granulosa‐Cells. Endocrine Reviews 1984;5(1):76‐
127. 

99.  Sirard MA, Desrosier S, Assidi A.  In vivo and in vitro effects of FSH on oocyte 
maturation and developmental competence. Theriogenology 2007 Sep 1;68:S71‐S76. 

100.  Sette  C,  Dolci  S,  Geremia  R,  Rossi  P.  The  role  of  stem  cell  factor  and  of 
alternative  c‐kit  gene  products  in  the  establishment,  maintenance  and  function  of 
germ cells. Int J Dev Biol 2000;44(6):599‐608. 

101.  Fortune JE. The early stages of follicular development: activation of primordial 
follicles and growth of preantral follicles. Anim Reprod Sci 2003 Oct 15;78(3‐4):135‐
163. 

102.  Motro B, Bernstein A. Dynamic Changes in Ovarian C‐Kit and Steel Expression 
during the Estrous Reproductive‐Cycle. Dev Dynam 1993 May;197(1):69‐79. 

103.  Thomas  FH,  Ethier  JF,  Shimasaki  S,  Vanderhyden  BC.  Follicle‐stimulating 
hormone  regulates  oocyte  growth  by  modulation  of  expression  of  oocyte  and 
granulosa cell factors. Endocrinology 2005 Feb;146(2):941‐949. 

104.  Miyazawa  K,  Williams  DA,  Gotoh  A,  Nishimaki  J,  Broxmeyer  HE,  Toyama  K. 
Membrane‐Bound  Steel  Factor  Induces  More  Persistent  Tyrosine  Kinase  Activation 
and  Longer  Life‐Span  of  C‐Kit  Gene‐Encoded  Protein  Than  Its  Soluble  Form.  Blood 
1995 Feb 1;85(3):641‐649. 

105.  Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, et al. 
Biomolecular  hydrogels  formed  and  degraded  via  site‐specific  enzymatic  reactions. 
Biomacromolecules 2007 Oct;8(10):3000‐3007. 

106.  Corpet  F.  Multiple  sequence  alignment  with  hierarchical  clustering.  Nucleic 
Acids Res 1988 Nov 25;16(22):10881‐10890. 



117 
 

107.  Muller N, Girard P, Hacker DL, Jordan M, Wurm FM. Orbital shaker technology 
for  the  cultivation  of  mammalian  cells  in  suspension.  Biotechnol  Bioeng  2005  Feb 
20;89(4):400‐406. 

108.  Backliwal G, Hildinger M, Hasija V, Wurm FM. High‐density  transfection with 
HEK‐293 cells allows doubling of transient titers and removes need for a priori DNA 
complex formation with PEI. Biotechnol Bioeng 2008 Feb 15;99(3):721‐727. 

109.  Backliwal  G,  Hildinger  M,  Kuettel  i,  Delegrange  F,  Hacker  DL,  Wurm  FM. 
Valproic  acid  –  an  alternative  to  sodium  butyrate  for  enhancing  recombinant  gene 
expression in mammalian cultures. Biotechnol Bioeng 2008;submitted. 

110.  Lorand  L,  Graham  RM.  Transglutaminases:  Crosslinking  enzymes  with 
pleiotropic functions. Nat Rev Mol Cell Bio 2003 Feb;4(2):140‐156. 

111.  Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically‐cross‐
linked  poly(ethylene  glycol)  hydrogels.  Macromolecules  1997  Sep  8;30(18):5255‐
5264. 

112.  Schense  JC,  Hubbell  JA.  Cross‐linking  exogenous  bifunctional  peptides  into 
fibrin gels with factor XIIIa. Bioconjugate Chem 1999 Jan‐Feb;10(1):75‐81. 

113.  Schense  JC,  Bloch  J,  Aebischer  P,  Hubbell  JA.  Enzymatic  incorporation  of 
bioactive  peptides  into  fibrin  matrices  enhances  neurite  extension.  Nat  Biotechnol 
2000 Apr;18(4):415‐419. 

114.  Schroeder A, Mueller O,  Stocker  S,  Salowsky R,  Leiber M,  Gassmann M,  et  al. 
The  RIN:  an  RNA  integrity  number  for  assigning  integrity  values  to  RNA 
measurements. Bmc Mol Biol 2006 Jan 31;7:‐. 

115.  Jiang XL, Gurel O, Mendiaz EA, Stearns GW, Clogston CL, Lu HS, et al. Structure 
of the active core of human stem cell factor and analysis of binding to its receptor Kit. 
Embo J 2000 Jul 3;19(13):3192‐3203. 

116.  Huang EJ, Nocka KH, Buck J, Besmer P. Differential Expression and Processing 
of  2  Cell  Associated  Forms  of  the  Kit‐Ligand  ‐  Kl‐1  and  Kl‐2.  Mol  Biol  Cell  1992 
Mar;3(3):349‐362. 

117.  Arakawa  T,  Yphantis  DA,  Lary  JW,  Narhi  LO,  Lu  HS,  Prestrelski  SJ,  et  al. 
Glycosylated and Unglycosylated Recombinant‐Derived Human Stem‐Cell Factors Are 
Dimeric  and  Have  Extensive  Regular  Secondary  Structure.  J  Biol  Chem  1991  Oct 
5;266(28):18942‐18948. 



118 
 

118.  Lu  HS,  Clogston  CL,  Wypych  J,  Parker  VP,  Lee  TD,  Swiderek  K,  et  al. 
Posttranslational Processing of Membrane‐Associated Recombinant Human Stem‐Cell 
Factor  Expressed  in  Chinese‐Hamster  Ovary  Cells.  Archives  of  Biochemistry  and 
Biophysics 1992 Oct;298(1):150‐158. 

119.  Gougeon A. Regulation of ovarian follicular development in primates: Facts and 
hypotheses. Endocr Rev 1996 Apr;17(2):121‐155. 

120.  Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE. Initiation in vitro of growth of 
bovine primordial follicles. Biol Reprod 1996 Nov;55(5):942‐948. 

121.  Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE. Initiation in vitro of growth of 
bovine primordial follicles in serum‐free medium. Biol Reprod 1996;54:161‐161. 

122.  Brown HM, Dunning KR, Robker RL, Pritchard M, Russell DL. Requirement for 
ADAMTS‐1  in  extracellular  matrix  remodeling  during  ovarian  folliculogenesis  and 
lymphangiogenesis. Dev Biol 2006 Oct 14. 

123.  Gaytan  F,  Tarradas  E,  Bellido  C, Morales  C,  Sanchez‐Criado  JE.  Prostaglandin 
E(1) inhibits abnormal follicle rupture and restores ovulation in indomethacin‐treated 
rats. Biol Reprod 2002 Oct;67(4):1140‐1147. 

124.  Fraser  HM.  Regulation  of  the  ovarian  follicular  vasculature.  Reprod  Biol 
Endocrinol 2006;4:18. 

125.  Kaczmarek MM, Schams D, Ziecik AJ. Role of vascular endothelial growth factor 
in ovarian physiology ‐ an overview. Reprod Biol 2005 Jul;5(2):111‐136. 

126.  Pauli  SA, Tang H, Wang  J,  Bohlen P,  Posser R, Hartman T,  et  al.  The  vascular 
endothelial growth factor (VEGF)/VEGF receptor 2 pathway is critical for blood vessel 
survival  in  corpora  lutea  of  pregnancy  in  the  rodent.  Endocrinology  2005 
Mar;146(3):1301‐1311. 

127.  Skobe  M,  Hamberg  LM,  Hawighorst  T,  Schirner  M,  Wolf  GL,  Alitalo  K,  et  al. 
Concurrent  induction  of  lymphangiogenesis,  angiogenesis,  and  macrophage 
recruitment by vascular endothelial growth factor‐C in melanoma. Am J Pathol 2001 
Sep;159(3):893‐903. 

128.  Ferrara  N.  Vascular  endothelial  growth  factor:  basic  science  and  clinical 
progress. Endocr Rev 2004 Aug;25(4):581‐611. 



119 
 

129.  Shibuya M. Differential roles of vascular endothelial growth  factor receptor‐1 
and receptor‐2 in angiogenesis. J Biochem Mol Biol 2006 Sep 30;39(5):469‐478. 

130.  Iijima  K,  Jiang  JY,  Shimizu  T,  Sasada  H,  Sato  E.  Acceleration  of  follicular 
development by administration of vascular endothelial growth factor in cycling female 
rats. J Reprod Dev 2005 Feb;51(1):161‐168. 

131.  Gomez  R,  Simon  C,  Remohi  J,  Pellicer  A.  Vascular  endothelial  growth  factor 
receptor‐2 activation induces vascular permeability in hyperstimulated rats, and this 
effect  is  prevented  by  receptor  blockade.  Endocrinology  2002  Nov;143(11):4339‐
4348. 

132.  Hazzard  TM,  Rohan  RM, Molskness  TA,  Fanton  JW,  D'Amato  RJ,  Stouffer  RL. 
Injection of antiangiogenic agents  into  the macaque preovulatory  follicle: disruption 
of corpus luteum development and function. Endocrine 2002 Apr;17(3):199‐206. 

133.  Zimmermann RC, Hartman T,  Bohlen P,  Sauer MV, Kitajewski  J.  Preovulatory 
treatment  of  mice  with  anti‐VEGF  receptor  2  antibody  inhibits  angiogenesis  in 
corpora lutea. Microvasc Res 2001 Jul;62(1):15‐25. 

134.  Zimmermann  RC,  Hartman  T,  Kavic  S,  Pauli  SA,  Bohlen  P,  Sauer  MV,  et  al. 
Vascular endothelial growth factor receptor 2‐mediated angiogenesis  is essential  for 
gonadotropin‐dependent follicle development. J Clin Invest 2003 Sep;112(5):659‐669. 

135.  Stouffer RL, Xu F, Duffy DM. Molecular control of ovulation and luteinization in 
the primate follicle. Front Biosci 2007;12:297‐307. 

136.  Alitalo  K,  Tammela  T,  Petrova  TV.  Lymphangiogenesis  in  development  and 
human disease. Nature 2005 Dec 15;438(7070):946‐953. 

137.  Tammela  T,  Enholm  B,  Alitalo  K,  Paavonen  K.  The  biology  of  vascular 
endothelial growth factors. Cardiovasc Res 2005 Feb 15;65(3):550‐563. 

138.  Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, et al. Complete and 
specific  inhibition  of  adult  lymphatic  regeneration  by  a  novel  VEGFR‐3  neutralizing 
antibody. J Natl Cancer Inst 2005 Jan 5;97(1):14‐21. 

139.  Otsuki Y, Magari S, Sugimoto O. Lymphatic capillaries in rabbit ovaries during 
ovulation: an ultrastructural study. Lymphology 1986 Jun;19(2):55‐64. 



120 
 

140.  Otsuki Y, Magari  S,  Sugimoto O. Fine  structure and morphometric  analysis of 
lymphatic capillaries in the developing corpus luteum of the rabbit. Lymphology 1987 
Jun;20(2):64‐72. 

141.  Ichikawa S, Uchino S, Hirata Y. Lymphatic and blood vasculature of the forming 
corpus luteum. Lymphology 1987 Jun;20(2):73‐83. 

142.  Heap  RB,  Fleet  IR,  Davis  AJ,  Goode  JA,  Hamon  MH,  Walters  DE,  et  al. 
Neurotransmitters  and  lymphatic‐vascular  transfer  of  prostaglandin  F2  alpha 
stimulate ovarian oxytocin output in sheep. J Endocrinol 1989 Jul;122(1):147‐159. 

143.  Stefanczyk‐Krzymowska  S,  Chlopek  J,  Grzegorzewski  W,  Radomski  M.  Local 
transfer of prostaglandin E2 into the ovary and its retrograde transfer into the uterus 
in early pregnant sows. Exp Physiol 2005 Nov;90(6):807‐814. 

144.  Stefanczyk‐Krzymowska  S,  Krzymowski  T.  Local  adjustment  of  blood  and 
lymph  circulation  in  the  hormonal  regulation  of  reproduction  in  female  pigs‐‐facts, 
conclusions and suggestions for future research. Reprod Biol 2002 Jul;2(2):115‐132. 

145.  Demeestere  I,  Delbaere A,  Gervy  C,  Van  den Bergh M, Devreker  F,  Englert  Y. 
Effect  of  preantral  follicle  isolation  technique  on  in‐vitro  follicular  growth,  oocyte 
maturation  and  embryo  development  in  mice.  Human  Reproduction  2002 
Aug;17(8):2152‐2159. 

146.  Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition 
of  vascular  endothelial  growth  factor  (VEGF)  signaling  in  cancer  causes  loss  of 
endothelial  fenestrations,  regression  of  tumor  vessels,  and  appearance  of  basement 
membrane ghosts. Am J Pathol 2004 Jul;165(1):35‐52. 

147.  Partanen TA, Paavonen K. Lymphatic versus blood vascular endothelial growth 
factors and receptors in humans. Microsc Res Tech 2001 Oct 15;55(2):108‐121. 

148.  Witmer AN, van Blijswijk BC, Dai J, Hofman P, Partanen TA, Vrensen GF, et al. 
VEGFR‐3 in adult angiogenesis. J Pathol 2001 Nov;195(4):490‐497. 

149.  Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, et al. 
Vascular endothelial growth factor receptor 3 is  involved in tumor angiogenesis and 
growth. Cancer Res 2007 Jan 15;67(2):593‐599. 

150.  Reynolds LP, Grazul‐Bilska AT, Redmer DA. Angiogenesis in the corpus luteum. 
Endocrine 2000 Feb;12(1):1‐9. 



121 
 

151.  Pate  JL,  Landis Keyes P.  Immune  cells  in  the  corpus  luteum:  friends  or  foes? 
Reproduction 2001 Nov;122(5):665‐676. 

152.  Hedger MP, Qin  JX, Robertson DM, de Kretser DM.  Intragonadal  regulation of 
immune system functions. Reprod Fertil Dev 1990;2(3):263‐280. 

153.  Shakil  T,  Whitehead  SA.  Inhibitory  action  of  peritoneal  macrophages  on 
progesterone  secretion  from  co‐cultured  rat  granulosa  cells.  Biol  Reprod  1994 
May;50(5):1183‐1189. 

154.  Rockson SG. Lymphedema. Am J Med 2001 Mar;110(4):288‐295. 

155.  Rutkowski  JM,  Moya  M,  Johannes  J,  Goldman  J,  Swartz  MA.  Secondary 
lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF‐C upregulation, and the 
protective role of MMP‐9. Microvasc Res 2006 Jul 27. 

156.  Skarzynski D, Mlynarczuk J, Kotwica J. Involvement of high‐density lipoprotein 
in  stimulatory  effect  of  hormones  supporting  function  of  the  bovine  corpus  luteum. 
Acta Vet Hung 2003;51(1):111‐120. 

157.  Veldhuis  JD.  Follicle‐stimulating  hormone  regulates  low  density  lipoprotein 
metabolism by swine granulosa cells. Endocrinology 1988 Sep;123(3):1660‐1667. 

158.  Rolaki A, Drakakis P, Millingos S, Loutradis D, Makrigiannakis A. Novel trends 
in follicular development, atresia and corpus luteum regression: a role for apoptosis. 
Reprod Biomed Online 2005 Jul;11(1):93‐103. 

159.  Nourani  MR,  Owada  Y,  Kitanaka  N,  Sakagami  H,  Hoshi  H,  Iwasa  H,  et  al. 
Occurrence  of  immunoreactivity  for  adipocyte‐type  fatty  acid  binding  protein  in 
degenerating  granulosa  cells  in  atretic  antral  follicles  of  mouse  ovary.  J  Mol  Histol 
2005 Oct;36(8‐9):491‐497. 

160.  Vollmar  B,  Laschke  MW,  Rohan  R,  Koenig  J,  Menger  MD.  In  vivo  imaging  of 
physiological  angiogenesis  from  immature  to  preovulatory  ovarian  follicles.  Am  J 
Pathol 2001 Nov;159(5):1661‐1670. 

161.  Acosta TJ, Miyamoto A. Vascular control of ovarian function: ovulation, corpus 
luteum formation and regression. Anim Reprod Sci 2004 Jul;82‐83:127‐140. 

162.  Magoffin DA. Ovarian  theca  cell.  Int  J Biochem Cell Biol 2005  Jul;37(7):1344‐
1349. 



122 
 

163.  Jabbour  HN,  Kelly  RW,  Fraser  HM,  Critchley  HO.  Endocrine  regulation  of 
menstruation. Endocr Rev 2006 Feb;27(1):17‐46. 

164.  Drummond  AE,  Findlay  JK.  The  role  of  estrogen  in  folliculogenesis.  Mol  Cell 
Endocrinol 1999 May 25;151(1‐2):57‐64. 

165.  Espey LL,  Lipner H. Measurements Of  Intrafollicular Pressures  In The Rabbit 
Ovary. Am J Physiol 1963 Dec;205:1067‐1072. 

166.  Rutkowski  JM,  Swartz  MA.  A  driving  force  for  change:  interstitial  flow  as  a 
morphoregulator. Trends Cell Biol 2007 Jan;17(1):44‐50. 

167.  Hsieh M, Boerboom D,  Shimada M, Lo Y, Parlow AF, Luhmann UF,  et  al. Mice 
null for Frizzled4 (Fzd4‐/‐) are infertile and exhibit impaired corpora lutea formation 
and function. Biol Reprod 2005 Dec;73(6):1135‐1146. 

168.  Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, et al. A 
model  for gene  therapy of human hereditary  lymphedema. Proc Natl Acad Sci U S A 
2001 Oct 23;98(22):12677‐12682. 

169.  Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, et al. 
Inhibition  of  lymphangiogenesis  with  resulting  lymphedema  in  transgenic  mice 
expressing soluble VEGF receptor‐3. Nat Med 2001 Feb;7(2):199‐205. 

170.  Achen  MG,  Mann  GB,  Stacker  SA.  Targeting  lymphangiogenesis  to  prevent 
tumour metastasis. Br J Cancer 2006 May 22;94(10):1355‐1360. 

171.  Szuba  A,  Skobe  M,  Karkkainen  MJ,  Shin  WS,  Beynet  DP,  Rockson  NB,  et  al. 
Therapeutic  lymphangiogenesis  with  human  recombinant  VEGF‐C.  Faseb  J  2002 
Dec;16(14):1985‐1987. 

172.  Yoon  YS, Murayama  T,  Gravereaux  E,  Tkebuchava  T,  Silver M,  Curry  C,  et  al. 
VEGF‐C  gene  therapy  augments  postnatal  lymphangiogenesis  and  ameliorates 
secondary lymphedema. J Clin Invest 2003 Mar;111(5):717‐725. 



123 
 

 

Acknowledgments 
 

When I started to write this thesis, I felt like at the entrance of a deep tunnel that has no 

visible end. With much support and encouraging, I hope I found the way to walk through it. 

I often wondered for what is waiting for me… In this mingled feelings ocean, I appreciated 

the help of those that trusted and supported me and gave me the energy to finish well and to 

maybe discover new journey.  

I first want to thank my advisor, Professor Jeffrey Hubbell. He gave me the opportunity to 

perform this interesting work and to enter a new field for both of us. I had much pleasure to 

discover this new field even though it required a permanent endeavor. At a more personnel 

level I owe to Pr. Hubbell the discovery of Switzerland. A new world for me. Thank you 

very much for your consistent trust and advice. 

I would like also to acknowledge here the scientific advice of Professor Jeong Muk Lim. 

Thanks to Professor Yann Barrandon; when I was worried about the work and the future, 

he encouraged me to go further.  

During writing my thesis, I realized how many helps I got from everybody. I would like to 

first thank Dr. SeungTae Lee. We performed a good teamwork together and without his 

help, it would have been difficult to manage the workload. Thanks to Dominque for the 

purification of the proteins and Stephan for the purification of the peptides. Thanks also to 

Mayumi for her help with peptide synthesis and for always being a good friend. I also 



124 
 

appreciated Carol’s for help with all the administive stuff and for her kindness. Thanks a lot 

to all the LMRP members for their help and consideration.  

I would like to address a special thanks to the EPFL facilities support. First, I appreciated a 

lot Véronique’s help. She took care of the mice and shared with me information and 

discussions to make the work go easy.  Thanks to Dr. Marcel Gyger for his help with the 

administrative paperwork related to the management of the animals. Thanks to all the 

members of animal facility. 

Thanks to Dr. David Hacker for his help with protein expression. I appreciated a lot to 

work with Dr. Joanna Roberts on the FACS sorting. I will remember her kind advices for 

all my questions. Thanks to Jessica Dessimoz. I never met a person like her that offers so 

well-customized services. She always discussed with me and found the best solution for the 

work. Thanks also to all the members of the Bioimaging and optics facility. Without their 

training and help, it would have been difficult for me to produce high quality images.  

I would also like to thank all of my friends and family. Specially, my family for giving me 

all their love, support and praying. Thanks to my mom. Always and any moments, she 

trusted me. Thanks to my father, he pushed me to finish the work. Thanks my only one 

brother, JongHo, for his support. I appreciated also the help of my “belle-famille” : maman 

and papa. They give me love as if I was their daughter. Thanks a lot to Hedi and Khaled. 

I’m happy to have new brothers.  

I would like to thank also my future son for not interfering too much in the writing of this 

manuscript. I’am waiting so happily to see you. You were the energy that pushed me to do 

my best.  



125 
 

To my tree, Samy. I cannot find the words to express all my gratitude and love. If you were 

not with me, it would be difficult to stand and live in this exotic place. You are the person 

who makes my life shining ever. This sometime painful endeavor was easy because you 

were with me. I would like to dedicate this thesis to you. I love you so much. 



126 
 

에필로그 

11 월 3 일 나의 생애 마지막 시험이 끝났다. 휴… 참 오랫동안 학교라는 울타리에서 학생이라는 

이름으로 살아왔다. 그리고 그 마침표를 드디어 찍은 것이다. 그 많았던 스트레스도, 이리 쉽게 

날아 갈 수 있단 말인가? 2004 년 난 유난히 등에 날개가 나는 듯한 느낌이 들었다. 꼭 어디든 훨훨 

날아 가야 갈 듯 했다. 이리저리 뛰어 다니며 비행 준비를 했다. 그렇게 처음 떠나온 곳이 취리히다. 

2004 년 7 월 29 일, 그 날을 잊을 수 있을까? 공항에서 취리히의 나의 기숙사로 오는 동안 택시 밖 

풍경은 작은 예쁜 마을이었다. 그리고 처음으로 집을 떠나서 살게 된 나의 기숙사 방은 너무 좋았다. 

나와 취리히의 첫 만남은 너무도 화창했다. 매주 토요일마다 난 취리히 시내 여기 저기를 다니고 

킨더스피탈(기숙사이름) 친구들과 가끔 산에도 가고 매일 저녁 같이 해 먹으면 즐거운 여름을 

보냈다. 그리고 다시 로잔이라는 곳으로 옮겨오면서 본격적인 학위에 들어 갔다. 첫 관문인 

박사과정 시험은 나를 많이 긴장시켰다. 열심히 준비한 결과, 시험은 무사히 아주 잘 통과했다. 그 

희망차고 야심만만한 과제를 수행하기 위해 동분서주하면 열심히 했다. 물론 난 그 과제를 내 

희망데로 완벽하게 해 내진 못 했다. 안 되는 것도 있다는 것을 배웠다. 아직 여러면에서 

부족하다는 것도 배웠다. 그러나, 끝낼 때는 끝내야 한다는 것, 방향을 돌릴 때는 돌려야 한다는 것, 

그리고 시작전에 많이 준비하고 해야한다는 것을 배웠다. 한국과 다른 인간 관계에 때문에 

힘들었다. 그러나, 이젠 알겠다. 어떻게 해야 하는 것이 좋을지. 이젠 모두와 어떻게 예쁘게 지낼 수 

있는지 알 것 같다.  

지난 5 년은 나에게 많은 변화를 준 아주 소중한 시간들이다. 빈 손으로 이곳엔 온 내가 지금은 너무 

많은 것을 가졌다. 결혼을 해서 사랑하는 남편, 사미가 있고 새로운 가족인 시집 식구들도 있고 늘 

날 지지해주고 자랑스러워 해 주고 우리 식구들 있다. 그리고 이제 3 주후면 나의 아들도 태어난다. 

이렇게 행복한 사람도 있을까?  이 모든 것에 정말 모두에게 감사드린다.  

앞으로 어떤 세상이 나에게 펼쳐질지 나두 참 궁금하다. 이제 나에 인생의 새로운 장으로 들어서는 

거다. 초심을 잃고 않고 늘 모든일에 최선을 다 하는 사람이 되었으면 한다.  
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