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Résumé

Cette thèse est consacrée à la théorie ergodique des applications de l’intervalle dites mono-
tones continues par morceaux. Le codage est une méthode classique pour étudier ces ap-
plications. Grâce au codage, on obtient un système dynamique symbolique qui est presque
isomorphe au système dynamique initial. Le principe du codage est intimement lié à celui
du développement des nombres réels.

Nous commençons par définir le codage dans une optique proche de celle des dévelop-
pements des nombres réels; cette optique est celle adoptée par Rényi et Parry dans leurs
articles concernant les développements des nombres. Puis nous présentons les travaux
de Hofbauer qui abordent les liens entre les propriétés ergodiques d’une application de
l’intervalle monotone continue par morceaux et celles du système dynamique symbolique
correspondant. Nous montrons qu’il y a une bijection entre les ensembles de mesures
d’entropie maximale de ces deux systèmes dynamiques.

Nous appliquons ces résultats à l’étude de deux familles d’applications particulières:
d’une part les applications Tα,β(x) := βx + α mod 1, d’autre part celles que nous ap-
pellerons des β-transformations généralisées. Pour la famille d’applications Tα,β , nous
décrivons en détail la famille de systèmes dynamiques symboliques obtenus grâce au
codage. Puis nous abordons la question de la normalité des orbites pour les applica-
tions Tα,β . Finalement nous étudions les β-transformations généralisées: nous montrons
que la plupart d’entre elles ont une unique mesure d’entropie maximale, puis nous étudions
également la normalité des orbites pour ces applications.

Mots-clés: applications de l’intervalle, dynamique symbolique, développement des nom-
bres, entropie topologique, diagramme de Markov, nombres normaux.

Abstract

This thesis is devoted to the ergodic theory of the piecewise monotone continuous maps
of the interval. The coding is a classical approach for these maps. Thanks to the coding,
we get a symbolic dynamical system which is almost isomorphic to the initial dynamical
system. The principle of the coding is very similar to the one of expansion of real numbers.

We first define the coding in a perspective similar to the one of the expansions of
real numbers; this perspective was already adopted by Rényi and Parry in their papers
about the expansions of numbers. Then we present the theory of Hofbauer about the links
between the ergodic properties of a piecewise monotone continuous map of the interval
and the corresponding symbolic dynamical system. We prove that there is a bijection
between the sets of measures of maximal entropy of these two dynamical systems.

We apply these results to the study of two families of maps: first the maps Tα,β(x) :=
βx+α mod 1, then the maps we will call generalized β-transformations. For the family of
maps Tα,β , we describe in detail the family of symbolic dynamical systems obtained by the
coding. Then we turn to the question of normality of the orbits for the maps Tα,β . Finally
we study the generalized β-transformations: we prove that most of them have a a unique
measure of maximal entropy, then we also study the normality of the orbits for theses maps.

Key words: maps of the interval, symbolic dynamic, expansion of numbers, topological
entropy, Markov diagram, normal numbers.
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is strongly connected, if M |C ≡ {Mi,j}i,j∈C is irreducible. A communicating class is
a maximal subset of C ⊂ V, which is strongly connected. Given a non-irreducible matrix
M , we can decompose V into communicating classes. We get a family {Ci}i of disjoint
subsets of V. In general

⋃
i Ci 6= V, because if Mn

j,j = 0 for all n ≥ 1, then j does not
belong to any communicating class. The decomposition in communicating class is useful,
because by Lemma 3.1, any ergodic invariant measure µ ∈ M(ΣM , σ) is concentrated on
a communicating class. Thus the first step is to decompose V into communicating classes
{Ci}i. The number of communicating classes can be finite or countable.

Consider a communicating class Ci and denote by Mi := M |Ci
the corresponding

adjacency matrix. Notice that Ci can be finite or countable, thus we must use the theory
of countable Markov shifts. The following proposition is a compilation of results found in
[K], in particular see Proposition 7.2.13.

Proposition 5.14. Let M = {Mi,j}i,j∈V be an irreducible matrix and

ΣM = {w ∈ VZ : Mwi,wi+1
= 1 ∀i ∈ Z} .

Suppose M is a finite matrix, then (ΣM , σ) has a unique maximal measure.
Suppose M is a countable matrix. If (ΣM , σ) has a maximal measure, then it is unique.
In both cases, the maximal measure (if it exists) is a Markov measure µ given by

pi = ℓiri Pi,j = Mi,j
ri
λℓj

,

µ(w) = pw0
Pw0,w1

Pw1,w2
. . . Pwn−2,wn−1

,

where λ is the spectral radius of M , ℓ and r are the unique left and right eigenvectors for
λ, they are normalized such that ℓ · r = 1. This measure has measure-theoretical entropy
log λ.

Theorem 5.15. Let T be a piecewise monotone continuous map such that the ϕ-expansion
is valid and the measurable dynamical system ([0, 1], T ) has positive topological entropy. Let
M denote the adjacency matrix of the corresponding Markov diagram (or a simplification
of this graph). Then ([0, 1], T ) has as many maximal measures as M has communicating
classes of maximal spectral radius.

Proof: By Theorem 5.13, we know that there is a one-to-one correspondence between the
maximal measures on ([0, 1], T ) and on (ΣM , σ). The ergodic measures are concentrated
on communicating classes. By Proposition 5.14, ([0, 1], T ) has at most as many maximal
measures as M has communicating classes of maximal spectral radius.
Take a communicating class C of maximal spectral radius and define

ΣC := {w ∈ ΣM : wi ∈ C ∀i ∈ Z} ,

and (recall that ψ : ΣT \N → ΣM is invertible)

Σ := ψ−1(ΣC) ⊂ ΣT .

In other words, Σ is the shift space formed by the labels of walks on the Markov diagram
remaining in C. This implies

Σ =
⋂

n≥0

(⋃
{n[w] : w ∈ L(Σ), |w| = 2n+ 1}

)
.
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Since the cylinders are closed sets and the union over words of length 2n + 1 is finite, Σ
is closed as an intersection of closed sets. Since ΣT is compact, Σ is compact. Finally
(Σ, σ) has at least one maximal measure, since it is an expansive homeomorphism and
the entropy map hT (µ) is upper semi-continuous (see Theorem 8.2 in [W]). But ψ is
an isomorphism modulo small sets between Σ and ΣC , thus ΣC has exactly one maximal
measure.
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Chapter 6

Two maps of constant slope

Here begins the part of this thesis which contains most of the original results. In this
chapter, we study in detail two particular families of piecewise monotone continuous maps.
The first one is Tα,β(x) := βx+α mod 1. This map was introduced by Parry in [P2] as a
generalization of the β-transformation studied by Rényi in [R] and Parry in [P1]. The shift
space Σα,β associated to this map is characterized by only two really important virtual
itineraries. Thus we introduce the corresponding family of shift spaces

Σ(u, v) := {x ∈ Σ+
k : u � σnx � v ∀n ≥ 0} ,

described by two virtual itineraries u and v. First we introduce an algorithm, based on
the ϕ-expansion, to compute the topological entropy of Σ(u, v). Then we study an inverse
problem: given two sequences u, v ∈ Σ+

k , we want to find α, β such that the map Tα,β

admits u and v as virtual itineraries. This question was entirely solved in [P1] when α = 0.
It is much more complicated in the general case α ∈ [0, 1).

The second part of this chapter is devoted to the generalized β-transformations studied
by Góra in [G]. These maps are generalization of β-transformations. They also have a
unique virtual itinerary, but they involve decreasing laps. Notice that the tent maps belong
to the generalized β-transformations. Góra has already constructed the unique invariant
measure absolutely continuous with respect to Lebesgue measure. In almost all cases, we
prove that this measure is the unique measure of maximal entropy.

6.1 The map βx+ α mod 1

We consider in detail the map of Example A, ie Tα,β(x) = βx + α mod 1 (see Sections
2.2 and 4.2). We recall some facts we have already presented. Every time we need the
validity of the coding, it is mentioned explicitly. Since all laps of Tα,β are increasing, � is
the lexicographic order; this is true in the whole Section 6.1. The number of symbols is
k = ⌈β + α⌉. Define

γ := β + α− k + 1 ∈ (0, 1] .

It is convenient to define this parameter, because α and γ play symmetric roles. The set
S0 = {a0, . . . , ak} is given by

a0 = 0, aj =
j − α

β
for j = 1, . . . , k − 1 and ak = 1 . (6.1)
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The coding map corresponding to Tα,β is denoted by i
α,β . The representation maps

ϕα,β : [α, β + α] → [0, 1] and ϕα,β : [0, k] → [0, 1] are given by

ϕα,β(x) =
x− α

β
(6.2)

and

ϕα,β(x) =





0 if 0 ≤ x ≤ α
x−α

β
if α ≤ x ≤ β + α

1 if β + α ≤ x ≤ 1 .

(6.3)

There are two important virtual itineraries (x ∈ X)

uα,β ≡ u0 := lim
x↓0

i
α,β(x) and vα,β ≡ vk−1 := lim

x↑1
i

α,β(x) .

All virtual itineraries can be expressed with the help of uα,β and vα,β

uj = juα,β for j = 1, . . . , k − 1 and vj = jvα,β for j = 0, . . . , k − 2 .

If the ϕ-expansion is valid, the virtual itineraries satisfy

uα,β � σnuα,β ≺ vα,β and uα,β ≺ σnvα,β � vα,β ∀n ≥ 0 . (6.4)

If the ϕ-expansion is valid, the shift space obtained by the coding is

Σα,β := iα,β(X) = {w ∈ Σ+
k : uα,β � σnx � σnvα,β ∀n ≥ 0} , (6.5)

Formula 2.13 applied to Tα,β gives

σnuα,β = lim
x↓0

i
α,β(Tn

α,β(x)) and σnvα,β = lim
x↑0

i
α,β(Tn

α,β(x)) . (6.6)

For commodity, we define the orbits of 0 and 1 under Tα,β as (the limits are taken with
x ∈ X)

Tn
α,β(0) := lim

x↓0
Tn

α,β(x) and Tn
α,β(1) := lim

x↑1
Tn

α,β(x) ∀n ≥ 0 . (6.7)

Notice that Tn
α,β(0) < 1 and Tn

α,β(1) > 0 for all n ≥ 0, since all laps of Tn
α,β are increasing.

From Theorem 2.12, Formula (6.6) and Theorem 2.15, we deduce that (x ∈ X)

ϕα,β
∞ (σnuα,β) = lim

x↓0
ϕα,β
∞ (iα,β(Tn

α,β(x))) = lim
x↓0

Tn
α,β(x) ≡ Tn

α,β(0) ∀n ≥ 0 , (6.8)

ϕα,β
∞ (σnvα,β) = lim

x↑1
ϕα,β
∞ (iα,β(Tn

α,β(x))) = lim
x↑1

Tn
α,β(x) ≡ Tn

α,β(1) ∀n ≥ 0 . (6.9)

In particular, these equations applied to n = 0 and n = 1 give

ϕα,β
∞ (uα,β) = 0, ϕα,β

∞ (σuα,β) = α and ϕα,β
∞ (vα,β) = 1, ϕα,β

∞ (σvα,β) = γ . (6.10)

These equations point out that uα,β and vα,β are ϕα,β-expansions of 0 and 1. Notice
that ϕα,β

∞ (w) = 0 implies that ϕα,β
∞ (σw) ≤ α. There are many sequences w such that

ϕα,β
∞ (w) = 0, but only few of them satisfy ϕα,β

∞ (σw) = α. For example, with w = 0∞, we
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get ϕα,β
∞ (w) = ϕα,β

∞ (σw) = 0. As we will see later, uα,β is the greatest sequence w such

that ϕα,β
∞ (w) = 0. Similar remarks are true for vα,β .

In view of (6.4) and (6.5), we give the following definition. Let u, v ∈ Σ+
k be such that

u0 = 0, v0 = k − 1 and

u � σnu � v and u � σnv � v ∀n ≥ 0 . (6.11)

Then we set

Σ(u, v) := {x ∈ Σ+
k : u � σnx � v ∀n ≥ 0} . (6.12)

Comparing (6.4) and (6.11), notice that we relax the strict inequalities as in Chapter 4.
We work in this manner in order to include borderline cases inherited from Tα,β-maps.

6.1.1 The set of ϕα,β-expansion of 0 and 1

Equations (6.10) show that uα,β and vα,β are ϕα,β-expansions of 0 and 1. Because of
the presence of discontinuities in the map Tα,β , there may be other pairs of sequences
u, v verifying (6.10) and (6.11). One of the keys of our work on the map Tα,β is a good
description of these pairs. This is the contents of Propositions 6.2, 6.3 and 6.4. We also
take into consideration the borderline cases α = 1 and γ = 0. When α = 1 or γ = 0 the
dynamical system Tα,β is defined using formula (2.10). The orbits of 0 and 1 are defined as
before. For example, if α = 1 it is the same dynamical system as T0,β , but with different
symbols for the coding of the orbits. The orbit of 0 is coded by u1,β = 1∞. Similarly,
if γ = 0 the orbit of 1 is coded by vα,β = (k − 2)∞. We always assume that α ∈ [0, 1],
γ ∈ [0, 1] and β ≥ 1.

Lemma 6.1. Fix y ∈ [0, 1]\S0. The equation

y = ϕα,β(j + t), j ∈ Ak, t ∈ [0, 1]

has a unique solution. If y < y′ ∈ [0, 1]\S0, then the solutions of the equations

y = ϕα,β(j + t) and y′ = ϕα,β(j′ + t′)

are such that either j = j′ and Tα,β(y′) − Tα,β(y) = β(y′ − y) or j < j′.

Proof: It is sufficient to use (2.10) and Tα,β(y) /∈ {0, 1}:

y /∈ S0 =⇒ y = ϕα,β(j + t) ⇐⇒ i
α,β
0 (y) + Tα,β(y) = j + t .

For the second statement, we use d
ds
ϕα,β(s) = 1

β
.

Proposition 6.2. Let 0 ≤ α < 1 and assume that the ϕ-expansion is valid. The following
assertions are equivalent.

1. There is a unique solution in Σ+
k (u = uα,β) of the equations

ϕα,β
∞ (u) = 0 and ϕα,β

∞ (σu) = α . (6.13)

2. The orbit of 0 is not periodic or x = 0 is a fixed point of Tα,β.

3. uα,β is not periodic or uα,β = 0∞.
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Proposition 6.3. Let 0 < γ ≤ 1 and assume that the ϕ-expansion is valid. The following
assertions are equivalent.

1. There is a unique solution in Σ+
k (v = vα,β) of the equations

ϕα,β
∞ (v) = 1 and ϕα,β

∞ (σv) = γ . (6.14)

2. The orbit of 1 is not periodic or x = 1 is a fixed point of Tα,β.

3. vα,β is not periodic or vα,β = (k − 1)∞.

Proof: We prove Proposition 6.2. Assume 1. The validity of the ϕ-expansion implies
that uα,β is a solution of (6.13). If α = 0, then u0,β = 0∞ is the only solution of (6.13)

since x 6= 0∞ implies ϕ0,β
∞ (x) > 0 and x = 0 is a fixed point of T0,β . Let 0 < α < 1. Using

Lemma 6.1 we deduce that u0 = 0 and

α = Tα,β(0) = ϕα,β
∞ (u1 + ϕα,β

∞ (σ2u)) .

If α = aj , j = 1, . . . , k−1, then (6.13) has at least two solutions, which are 0j(σ2uα,β) with

ϕα,β
∞ (σ2uα,β) = T 2(0) = 0 (see (6.8)), and 0(j − 1)vα,β with ϕα,β

∞ (vα,β) = 1. Therefore, by

our hypothesis we have α /∈ {a1, . . . , ak−1}, u1 = uα,β
1 and ϕα,β

∞ (σ2uα,β) = T 2(0) ∈ (0, 1).
Iterating this argument we conclude that 1 =⇒ 2.
Assume 2. If x = 0 is a fixed point, then α = 0 and u0,β = 0∞. If the orbit of 0 is not
periodic, (6.6) and the validity of the ϕ-expansion imply

σnuα,β = lim
x↓0

i
α,β(Tn

α,β(x)) ≻ lim
x↓0

i
α,β(x) = uα,β .

Assume 3. From (6.8) and the validity of the ϕ-expansion we get

ϕα,β
∞ (σnuα,β) = Tn

α,β(0) > ϕα,β
∞ (uα,β) = 0 ,

so that the orbit of 0 is not periodic. The orbit of 0 is not periodic if and only if Tn
α,β(0) 6∈

{a1, . . . , ak−1} for all n ≥ 1. Using Lemma 6.1, we conclude that (6.13) has a unique
solution.

Propositions 6.2 and 6.3 give necessary and sufficient conditions for the existence and
uniqueness of the solution of Equations (6.13) and (6.14). In the following discussion
we consider the case when there are several solutions. All results are summarized in
Proposition 6.4. We assume the validity of the ϕ-expansion.

Suppose first that the orbit of 1 is not periodic and that the orbit of 0 is periodic,
with minimal period p := min{n ≥ 1 : Tn

α,β(0) = 0} > 1 (the case p = 1 ⇐⇒ α = 0 is
already treated in Proposition 6.2). Hence 0 < γ < 1 and 0 < α < 1. Let u be a solution
of Equations (6.13) and suppose furthermore that w is a ϕ-expansion of 1 such that

∀n : u � σnu � w with ϕα,β
∞ (w) = 1 , ϕα,β

∞ (σw) = γ .

By Lemma 6.1 we conclude that

uj = uα,β
j and T j+1

α,β (0) = ϕα,β
∞ (σj+1u) , j = 1, . . . , p− 2 .

Since T p
α,β(0) = 0, we have T p−1

α,β (0) ∈ {a1, . . . , ak−1} and the equation

T p−1
α,β (0) = ϕα,β

∞

(
up−1 + ϕα,β

∞ (σpu)
)
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has two solutions. Either up−1 = uα,β
p−1 and ϕα,β

∞ (σpu) = 0 or up−1 = uα,β
p−1 − 1 and

ϕα,β
∞ (σpu) = 1. Let a be the prefix of uα,β of length p and a′ the word of length p obtained

by changing the last letter of a into1 uα,β
p−1 − 1. We have a′ ≺ a. If up−1 = uα,β

p−1, then we
can again determine uniquely the next p− 1 letters ui. The condition u � σnu for n = p
implies that we have u2p−1 = uα,β

p−1 so that, by iteration, we get the solution u = uα,β for

the equations (6.13). If up−1 = uα,β
p−1 − 1, then

1 = ϕα,β
∞ (σpu) = ϕα,β

∞

(
up + ϕα,β

∞ (σp+1u)
)
.

When ϕα,β
∞ (σpu) = 1, by our hypothesis on u we also have ϕα,β

∞ (σp+1u) = γ. By Proposi-
tion 6.3 the equations

ϕα,β
∞ (σpu) = 1 and ϕα,β

∞ (σp+1u) = γ

have a unique solution, since we assume that the orbit of 1 is not periodic. The solution
is σpu = vα,β , so that u = a′vα,β ≺ uα,β is also a solution of (6.13). In that case there
is no other solution for (6.13). The borderline case α = 1 corresponds to the periodic

orbit of the fixed point 0, u1,β = 1∞. Notice that ϕ1,β
∞ (σu1,β) 6= 1. We can also consider

ϕ1,β
∞ -expansions of 0 with u0 = 0 and ϕ1,β

∞ (σu) = 1. Our hypothesis on u implies that

ϕ1,β
∞ (σ2u) = γ. Hence, u = 0v1,β = a′vα,β ≺ uα,β is a solution of (6.13).

We can treat similarly the case when uα,β is not periodic, but vα,β is periodic. When
both uα,β and vα,β are periodic, we have more solutions, but the discussion is similar.
Assume that uα,β has (minimal) period p > 1 and vα,β has (minimal) period q > 1. Define
a, a′ as before, b as the prefix of length q of vα,β , and b′ as the word of length q obtained
by changing the last letter of b into vα,β

q−1 + 1. When 0 < α < 1 and 0 < γ < 1, one shows

as above that the elements u 6= uα,β and v 6= vα,β which are ϕα,β-expansions of 0 and 1
are of the form

u = a′bn1b′an2 · · · , ni ≥ 0 and v = b′am1a′bm2 · · · , mi ≥ 0 .

The integers ni and mi must be such that (6.11) is verified. The largest solution of (6.13)
is uα,β and the smallest one is a′vα,β .

For all β ≥ 1 and α ∈ [0, 1] such that the ϕ-expansion is valid, define (recall that
k = ⌈β + α⌉)

Dα,β := {(u, v) ∈ Σ+
k × Σ+

k : the pair (u, v) satisfies (6.11), (6.13) and (6.14)} .

In particular, (uα,β , vα,β) ∈ Dα,β for all α, β such that the ϕ-expansion is valid. The next
proposition collects all results from Proposition 6.2 to here.

Proposition 6.4. Let β ≥ 1 and α ∈ [0, 1] be such that the ϕ-expansion is valid.

1. If α = 0, then uα,β = 0∞. Moreover

(a) if γ ∈ (0, 1) is such that vα,β is not periodic, then Dα,β = {(uα,β , vα,β)}.
(b) if γ ∈ (0, 1) is such that vα,β has (minimal) period q, then defining b′ =

vα,β

[0,q−2)(v
α,β
q−1 + 1), we have Dα,β = {(uα,β , vα,β), (uα,β , b′uα,β)}.

(c) if γ = 0, then Dα,β = {(uα,β , (k − 1)uα,β)}.
1
u

α,β
p−1 ≥ 1. u

α,β
p−1 = 0 if and only if p = 1 and α = 0.
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(d) if γ = 1, then Dα,β = {(uα,β , (k − 1)∞)}.

2. If γ = 1, then vα,β = (k − 1)∞. Moreover

(a) if α ∈ (0, 1) is such that uα,β is not periodic, then Dα,β = {(uα,β , vα,β)}.
(b) if α ∈ (0, 1) is such that uα,β has (minimal) period p, then defining a′ =

uα,β

[0,p−2)(u
α,β
p−1 − 1), we have Dα,β = {(uα,β , vα,β , (a′vα,β , vα,β)}.

(c) if α = 1, then Dα,β = {(0vα,β , vα,β)}.

3. If α ∈ (0, 1) and γ ∈ (0, 1) are such that

(a) uα,β and vα,β are both non periodic, then Dα,β = {(uα,β , vα,β)}.
(b) uα,β is not periodic and vα,β has (minimal) period q, then defining b′ as before,

we have Dα,β = {(uα,β , vα,β), (uα,β , b′uα,β)}.
(c) uα,β has (minimal) period p and vα,β is not periodic, then defining a′ as before,

we have Dα,β = {(uα,β , vα,β), (a′vα,β , vα,β)}.
(d) uα,β has (minimal) period p and vα,β has (minimal) period q, then (a = uα,β

[0,p),

b = vα,β

[0,q), a
′ and b′ are defined as before)

uα,β = max{u : ∃v s.t. (u, v) ∈ Dα,β} = a∞ ,

ũα,β := min{u : ∃v s.t. (u, v) ∈ Dα,β} = a′(b)∞ ,

and

vα,β = min{v : ∃u s.t. (u, v) ∈ Dα,β} = b∞ ,

ṽα,β := max{v : ∃u s.t. (u, v) ∈ Dα,β} = b′(a)∞ .

The cases 1a, 1b and 1d were considered by Parry in [P1]. Notice that the cases 2a,
2b and 2c are symmetric formulations of cases 1a, 1b and 1c. Similarly the cases 3b and
3c are symmetric. Notice also that, except for the case 3d, (uα,β , vα,β) is the unique pair
(u, v) ∈ Dα,β satisfying the strict inequalities (6.4).

6.1.2 An algorithm to find (α, β) with respect to the virtual itineraries

Given a pair (u, v) satisfying u0 = 0, v0 = k−1 and (6.11), we look for (α, β) such that the
equations (6.13) and (6.14) are satisfied. In particular, we are interested in the existence
and the uniqueness of the solution of this problem. To this end, we describe an algorithm,
which assigns to a pair of strings (u, v), satisfying weaker hypotheses than (6.11), a pair of
real numbers (α, β) ∈ [0, 1] × [1,∞). At the end of the algorithm, there is a condition to
check. If this condition is true, then the pair (α, β) is the solution we are looking for. The
uniqueness needs a result we prove later, but it is stated in Section 6.1.2 for consistency.

We tacitly assume that for all the pairs (α, β) one has α ∈ [0, 1], β ≥ 1 and ⌈β + α⌉ ∈
[k − 1, k]. In particular, β ≥ k − 2 and the map ϕα,β verifies

0 < ϕα,β(t) < 1 ∀t ∈ (1, k − 1) .

Recall that γ = α+ β − k + 1 and notice that our assumptions imply that 0 ≤ γ ≤ 1.

61



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Figure 6.1: The graph of ϕα,β with k = 3, α = 0.3, β = 2.05 and α+ β = 2 + γ = 2.35.

Definition 6.5. The map ϕα,β dominates the map ϕα′,β′

if ϕα,β(t) ≥ ϕα′,β′

(t) for all
t ∈ [0, k] and there exists s ∈ [0, k] such that ϕα,β(s) > ϕα′,β′

(s).

Lemma 6.6. If ϕα,β dominates ϕα′,β′

, then, for all x ∈ Σ+
k , ϕα,β

∞ (x) ≥ ϕα′,β′

∞ (x). If

0 < ϕα,β
∞ (x) < 1 or 0 < ϕα′,β′

∞ (x) < 1 ,

then the inequality is strict.

Proof: If ϕα,β dominates ϕα′,β′

, then, by our implicit assumptions on (α, β), we get by
inspection of the graphs that

∀t ≥ t′ : ϕα,β(t) > ϕα′,β′

(t′) if t, t′ ∈ (α, α′ + β′) = (α, α+ β) ∪ (α′, α′ + β′) ,

otherwise ϕα,β(t) ≥ ϕα′,β′

(t′). Therefore, for all n ≥ 1,

ϕα,β
n (x) ≥ ϕα′,β′

n (x) .

Suppose that 0 < ϕα,β
∞ (x) < 1. Then x0 + ϕα,β

∞ (σx) ∈ (α, α+ β) and

ϕα,β
∞ (x) = ϕα,β(x0 + ϕα,β

∞ (σx)) > ϕα′,β′

(x0 + ϕα′,β′

∞ (σx)) = ϕα′,β′

∞ (x) .

Similar proof for 0 < ϕα′,β′

∞ (x) < 1.

Lemma 6.7. Let α = α′ ∈ [0, 1] and 1 ≤ β < β′. Then, for x ∈ Σ+
k ,

0 ≤ ϕα,β
∞ (x) − ϕα,β′

∞ (x) ≤ |β − β′|
β′ − 1

.

Let γ = γ′ ∈ [0, 1], 0 ≤ α′ < α ≤ 1 and β′ > 1. Then, for x ∈ Σ+
k ,

0 ≤ ϕα′,β′

∞ (x) − ϕα,β
∞ (x) ≤ |α− α′|

β′ − 1
.

The map β 7→ ϕα,β
∞ (x) is continuous at β = 1.
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Proof: Let α = α′ ∈ [0, 1] and 1 ≤ β < β′. For t, t′ ∈ [0, k],

|ϕα,β′

(t′) − ϕα,β(t)| ≤ |ϕα,β′

(t′) − ϕα,β′

(t)| + |ϕα,β′

(t) − ϕα,β(t)| ≤ |t− t′|
β′

+
|β − β′|
β′

,

because the maximum of |ϕα,β′

(t) − ϕα,β(t)| is taken at α+ β. By induction

|ϕα,β′

n (x0, . . . , xn−1) − ϕα,β
n (x0, . . . , xn−1)| ≤ |β − β′|

n∑

j=1

(β′)−j .

Since β′ > 1 the sum is convergent. This proves the first statement. The second statement
is proved similarly using

|ϕα′,β′

(t′) − ϕα,β(t)| ≤ |ϕα′,β′

(t′) − ϕα′,β′

(t)| + |ϕα′,β′

(t) − ϕα,β(t)| ≤ |t− t′|
β′

+
|α− α′|
β′

which is valid for γ = γ′ ∈ [0, 1] and 0 ≤ α′ < α ≤ 1. We prove the last statement. Given
ε > 0 there exists n∗

ϕα,1
n∗ (x) ≥ ϕα,1

∞ (x) − ε .

Since β 7→ ϕα,β
n∗ (x) is continuous, there exists β′ so that for 1 ≤ β ≤ β′,

ϕα,β
n (x) ≥ ϕα,β′

n∗ (x) ≥ ϕα,1
n∗ (x) − ε ∀n ≥ n∗ .

Hence
ϕα,1
∞ (x) − 2ε ≤ ϕα,β

∞ (x) ≤ ϕα,1
∞ (x) .

Corollary 6.8. Given x and 0 ≤ α∗ ≤ 1, let

gα∗(γ) := ϕα∗,β(γ)
∞ (x) with β(γ) := γ − α∗ + k − 1 .

For k ≥ 3 the map gα∗ is continuous and non-increasing on [0, 1]. If 0 < gα∗(γ0) < 1, then
the map is strictly decreasing in a neighborhood of γ0. If k = 2 then the same statements
hold on [α∗, 1].

Corollary 6.9. Given x and 0 < γ∗ ≤ 1, let

hγ∗(α) := ϕα,β(α)
∞ (x) with β(α) := γ∗ − α+ k − 1 .

For k ≥ 3 the map hγ∗ is continuous and non-increasing on [0, 1]. If 0 < hγ∗(α0) < 1, then
the map is strictly decreasing in a neighborhood of α0. If k = 2 then the same statements
hold on [0, γ∗).

Proposition 6.10. Let k ≥ 2, u, v ∈ Σ+
k verifying u0 = 0 and v0 = k − 1 and

σu � v and u � σv .

If k = 2 we also assume that σu � σv. Then there exist α ∈ [0, 1] and β ∈ [1,∞) so that
γ ∈ [0, 1]. If β > 1, then

ϕα,β
∞ (σu) = α and ϕα,β

∞ (σv) = γ .
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Proof: We consider separately the cases σv = 0∞ and σu = (k− 1)∞ (i.e. uj = k− 1 for
all j ≥ 1). If σv = 0∞, then u = 0∞ and v = (k − 1)0∞; we set α := 0 and β := k − 1
(γ = 0). If σu = (k − 1)∞, then v = (k − 1)∞ and u = 0(k − 1)∞; we set α := 1 and
β := k.

From now on we assume that 0∞ ≺ σv and σu ≺ (k − 1)∞. Set α0 := 0 and β0 := k.
We consider in detail the case k = 2, so that we also assume that σu � σv.
Step 1. Set α1 := α0 and solve the equation

ϕα1,β
∞ (σv) = β + α1 − k + 1 .

There exists a unique solution, β1, such that k − 1 < β1 ≤ k. Indeed, the map

Gα1
(γ) := gα1

(γ) − γ with gα1
(γ) := ϕα1,β(γ)

∞ (σv) and β(γ) := γ − α1 + k − 1

is continuous and strictly decreasing on [α1, 1] (see Corollary 6.8). If σv = (k− 1)∞, then
Gα1

(1) = 0 and we set β1 := k and we have γ1 = 1. If σv 6= (k − 1)∞, then there exists a

smallest j ≥ 1 so that vj ≤ (k − 2). Therefore ϕα1,k
∞ (σjv) < 1 and

ϕα1,k
∞ (σv) = ϕα1,k

j−1

(
v1, . . . , vj−1 + ϕα1,k

∞ (σjv)
)
< 1 ,

so that Gα1
(1) < 0. On the other hand, since σv 6= 0∞, ϕα1,k−1

∞ (σv) > 0, so that Gα1
(0) >

0. There exists a unique γ1 ∈ (0, 1) with Gα1
(γ1) = 0. Define β1 := β(γ1) = γ1−α1+k−1.

Step 2. Solve in [0, γ1) the equation

ϕα,β(α)
∞ (σu) = α with β(α) := γ1 − α+ k − 1 = β1 + α1 − α .

If σu = 0, then set α := 0 and β := β1. Let σu 6= 0. There exists a smallest j ≥ 1 such
that uj ≥ 1. This implies that ϕα1,β1

∞ (σju) > 0 and consequently

ϕα1,β(α1)
∞ (σu) = ϕα1,β1

j−1

(
u1, . . . , uj−1 + ϕα1,β1

∞ (σju)
)
> 0 .

Since σu � σv,
0 < ϕα1,β1

∞ (σu) ≤ ϕα1,β1
∞ (σv) = γ1 .

We have γ1 = 1 only in the case σv = (k− 1)∞; in that case we also have ϕα1,β1
∞ (σu) < 1.

By Corollary 6.9, for any α > α1 we have ϕα1,β1
∞ (σu) > ϕ

α,β(α)
∞ (σu). Therefore, the map

Hγ1
(α) := hγ1

(α) − α with hγ1
(α) := ϕα,β(α)

∞ (σu)

is continuous and strictly decreasing on [0, γ1), Hγ1
(α1) > 0 and limα↑γ1

Hγ1
(α) < 0. There

exists a unique α2 ∈ (α1, γ1) such that Hγ1
(α2) = 0. Set β2 := γ1−α2+k−1 = α1+β1−α2

and γ2 := α2 + β2 − k + 1 = γ1. Since α2 ∈ [0, γ1), we have β2 > 1. Hence

α1 < α2 < γ1 and 1 < β2 < β1 and γ2 = γ1 . (6.15)

If σv = (k − 1)∞, γ2 = 1 and we set α := α2 and β := β2.
Step 3. From now on σu 6= 0∞ and σv 6= (k − 1)∞. Set α3 := α2 and solve in [α3, 1] the
equation

ϕα3,β(γ)
∞ (σv) = γ with β(γ) := γ − α3 + k − 1 .

By Lemma 6.6 (k = 2),

ϕα3,β(α3)
∞ (σv) = ϕα2,1

∞ (σv) ≥ ϕα2,1
∞ (σu) > ϕα2,β2

∞ (σu) = α2 ,
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since 0 < α2 < 1. On the other hand by Corollary 6.9,

ϕα3,β(γ1)
∞ (σv) = ϕα3,1+γ1−α3

∞ (σv) < ϕα1,1+γ1−α1
∞ (σv) = ϕα1,β1

∞ (σv) = γ1 , (6.16)

since 0 < γ1 < 1. Therefore, the map Gα3
is continuous and strictly decreasing on [α3, 1],

Gα3
(α3) > 0 and Gα3

(γ1) < 0. There exists a unique γ3 ∈ (α3, γ1) such that Gα3
(γ3) = 0.

Set β3 := γ3 − α3 + k − 1, so that β3 < γ1 − α2 + k − 1 = β2. Hence

α3 = α2 and 1 < β3 < β2 and 0 < γ3 < γ2 < 1 . (6.17)

Step 4. Solve in [0, γ3) the equation

ϕα,β(α)
∞ (σu) = α with β(α) := γ3 − α+ k − 1 = β3 + α3 − α .

By Lemma 6.6

ϕα3,β(α3)
∞ (σu) = ϕα3,β3

∞ (σu) > ϕα3,β2
∞ (σu) = ϕα2,β2

∞ (σu) = α2 , (6.18)

since 0 < α2 < 1. On the other hand,

0 < ϕα3,β(α3)
∞ (σu) = ϕα3,β3

∞ (σu) ≤ ϕα3,β3
∞ (σv) = γ3 < 1 .

By Corollary 6.9
ϕα,β(α)
∞ (σu) < ϕα3,β(α3)

∞ (σu) ∀α ∈ (α3, γ3) .

Therefore, the map

Hγ3
(α) := hγ3

(α) − α with hγ3
(α) := ϕα,β(α)

∞ (σu)

is continuous and strictly decreasing on [α3, γ3), Hγ3
(α3) > 0 and limα↑γ3

Hγ3
(α) < 0.

There exists a unique α4 ∈ (α3, γ3). Set β4 := γ3 − α4 + k − 1 = α3 + β3 − α4 and
γ4 := α4 + β4 − k + 1 = γ3. Hence

α3 < α4 < γ3 and 1 < β4 < β3 and γ4 = γ3 . (6.19)

Repeating steps 3 and 4 we get two monotone sequences {αn} and {βn}. We set α :=
limn→∞ αn and β := limn→∞ βn.

We consider briefly the changes which occur when k ≥ 3. Step 1 remains the same.
In step 2 we solve the equation Hγ1

(α) = 0 on [0, 1) instead of [0, γ1). The proof that
Hγ1

(α1) > 0 remains the same. We prove that limα↑1Hγ1
(α) < 0. Corollary 6.9 implies

that
γ1 = ϕα1,β1

∞ (σv) = ϕα1,β(α1)
∞ (σv) > ϕα,β(α)

∞ (σv) ∀α > α1 .

Since σu � v and β(α1) = β1,

ϕα,β(α)
∞ (σu) ≤ ϕα,β(α)

(
v0 + ϕα,β(α)

∞ (σv)
)
≤ ϕα1,β(α1)

(
v0 + ϕα,β(α)

∞ (σv)
)
< 1 .

Instead of (6.15) we have

α1 < α2 < 1 and 1 < β2 < β1 and γ2 = γ1 .

Estimate (6.16) is still valid in step 3 with k ≥ 3. Hence Gα3
(γ1) < 0. We solve the

equation Gα3
(γ) = 0 on [0, γ1]. We have

ϕα3,β(γ1)
∞ (σu) = ϕα2,β2

∞ (σu) = α2 .
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By Corollary 6.8 we get

ϕα3,β(γ)
∞ (σu) > ϕα2,β2

∞ (σu) = α2 ∀γ < γ1 .

Since u � σv,

ϕα3,β(0)
∞ (σv) ≥ ϕα3,β(0)

(
u0 + ϕα3,β(0)

∞ (σu)
)
≥ ϕα2,β(γ1)

(
u0 + ϕα3,β(0)

∞ (σu)
)
> 0 .

Estimate (6.18) is still valid in step 4 so that Hγ3
(α3) > 0. Corollary 6.9 implies that

γ3 = ϕα3,β3
∞ (σv) = ϕα3,β(α3)

∞ (σv) > ϕα,β(α)
∞ (σv) ∀α > α3 .

Therefore

ϕα3,β(α3)
∞ (σu) ≤ ϕα,β(α)

(
v0 + ϕα,β(α)

∞ (σv)
)
≤ ϕα3,β(α3)

(
v0 + ϕα,β(α)

∞ (σv)
)
< 1 .

Instead of (6.19) we have

α3 < α4 < 1 and 1 < β4 < β3 and γ4 = γ3 .

Assume that β > 1. Then 1 < β ≤ βn for all n. We have

ϕαn,βn
∞ (σv) = γn , n odd

and
ϕαn,βn
∞ (σu) = αn , n even .

Let γ = α+ β − k + 1. For n odd, let β∗
n := γ − αn + k − 1; using Lemma 6.7 we get

|ϕα,β
∞ (σv) − γ| ≤ |ϕα,β

∞ (σv) − ϕαn,β∗

n
∞ (σv)| + |ϕαn,β∗

n
∞ (σv) − ϕαn,βn

∞ (σv)| + |γn − γ|

≤ 1

β − 1
(2|α− αn| + |β − βn|) + |γn − γ| ,

since β∗n = β + α− αn. Letting n go to infinity, we get ϕα,β
∞ (σv) = γ. Similarly we prove

ϕα,β
∞ (σv) = α.

Corollary 6.11. Suppose that (u, v), respectively (u′, v′), verify the hypotheses of Propo-

sition 6.10 with k ≥ 2, respectively with k′ ≥ 2. If k ≥ k′, u � u′ and v′ � v, then β
′ ≤ β

and α′ ≥ α.

Proof: We consider the case k = k′, whence σv′ � σv. From the proof of Proposition
6.10 we get γ′1 ≤ γ1 and α′

1 ≥ α1. Suppose that γ′j ≤ γj and α′
j ≥ αj for j = 1, . . . , n. If

n is even, then α′
n+1 = α′

n and αn+1 = αn. We prove that γ′n+1 ≤ γn+1. We have

γ′n+1 = ϕ
α′

n+1,β(γ′

n+1)
∞ (σv′) ≤ ϕ

α′

n+1,β(γ′

n+1)
∞ (σv) ≤ ϕ

αn+1,β(γ′

n+1)
∞ (σv) =⇒ γn+1 ≥ γ′n+1 .

If n is odd, then γ′n+1 = γ′n and γn+1 = γn. We prove that α′
n+1 ≥ αn+1. We have

αn+1 = ϕαn+1,β(αn+1)
∞ (σu) ≤ ϕαn+1,β(αn+1)

∞ (σu′) = ϕαn+1,γn+1−αn+1+k−1)
∞ (σu′)

≤ ϕ
αn+1,γ′

n+1−αn+1+k−1)
∞ (σu′) =⇒ α′

n+1 ≥ αn+1 .

We state a uniqueness result. The proof uses Theorem 6.16.
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Proposition 6.12. Let k ≥ 2, u, v ∈ Σ+
k , u0 = 0 and v0 = k − 1, and assume that (6.11)

holds. Then there is at most one solution (α, β) ∈ [0, 1] × [1,∞) for the equations

ϕα,β
∞ (σu) = α and ϕα,β

∞ (σv) = γ .

Proof: Assume that there are two solutions (α1, β1) and (α2, β2) with β1 ≤ β2. If α2 > α1,
then

α2 − α1 = ϕα2,β2
∞ (σu) − ϕα1,β1

∞ (σu) ≤ 0 ,

which is impossible. Therefore α2 ≤ α1. If β1 = β2, then

0 ≥ α2 − α1 = ϕα2,β2
∞ (σu) − ϕα1,β1

∞ (σu) ≥ 0 ,

which implies α2 = α1. Therefore we assume that α2 ≤ α1 and β1 < β2. However,
Theorem 6.16 implies that

log2 β1 = htop(Σ(u, v), σ) = log2 β2 ,

which is impossible.

6.1.3 The topological entropy of Σ(u, v)

The key of this section is a good description of the graph G(u, v) defined in Example A
at the end of Chapter 4. We recall in details the construction of G(u, v). Set u0 ≡ u,
vk−1 ≡ v and

uj = ju ∀j = 1, . . . , k − 1 and vj = jv ∀j = 0, . . . , k − 2 . (6.20)

Then Σ({uj , vj}) = Σ(u, v). Let G′ = (V ′, E ′,L′) denote the Markov diagram of Σ({uj , vj}).
Using the relations (6.20), we define an equivalence relation on quadruples by

(p, a; q, b) ∼1 (p′, a′; q′, b′) ⇐⇒ [σpa, σqb] = [σp′a′, σq′b′] .

The graph G(u, v) = (V, E ,L) is the simplification of G′ corresponding to this equivalence
relation. The next proposition summarizes the structure of the graph G(u, v). Given a
word w ∈ L(Σ(u, v)), let u(w) denote the longest suffix of w which is a prefix of u and
v(w) denote the longest suffix of w which is a prefix of v.

Proposition 6.13. The vertices of the graph G(u, v) are quadruples (p, u; q, v) with p, q ≥
0. The root is the vertex (0, u; 0, v). There are k− 2 edges labeled by j for j = 1, . . . , k− 2
going from the root to the root. The edge starting at the root and labeled by 0 terminates
at the vertex (1, u; 0, v); the edge starting at the root and labeled by k− 1 terminate at the
vertex (0, u; 1, v). Let c = (p, u; q, v) be a vertex of G(u, v) with p ≥ 1 or q ≥ 1, ie c is not

the root. If c has only one successor c′, ie up = vq, then c
up→ c′ = (p+ 1, u; q + 1, v). If c

has at least two successors, ie up < vq, then

c
up→ (p+ 1, u; 0, v) ,

c
vq→ (0, u; q + 1, v) ,

c
j→ (0, u; 0, v) ∀up < j < vq .
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Moreover, if p > q and c has at least two successors, then the path on G(u, v), starting at
the root and labeled by v[0,q) terminates at the vertex (t, u; q, v) for some t < q; this last
vertex has at least two successors, one of them is (0, u; q+1; v). If p < q and c has at least
two successors, then the path on G(u, v), starting at the root and labeled by u[0,p) terminates
at the vertex (p, u; s, v) for some s < p; this last vertex has at least two successors, one of
them is (p+ 1, u; 0, v).
Let w ∈ L(Σ(u, v)) and set p = |u(w)| and q = |v(w)|. Then the path on G(u, v), starting
at the root and labeled by w, terminates at the vertex (p, u; q, v).

Proof: The proof is immediate. It is a compilation of Lemmas 4.3, 4.5, 4.7 and Corollary
4.8. Each time we get a vertex (p, uj ; ·, ·) in the Markov diagram of Σ({uj , vj}) with p ≥ 1
and j 6= 0, we replace this vertex by (p − 1, u; ·, ·) in G(u, v); each time we get a vertex
(·, ·; q, vj) in the Markov diagram of Σ({uj , vj}) with q ≥ 1 and j 6= k− 1, we replace this
vertex by (·, ·; q − 1, v) in G(u, v).

The upper level of c = (p, u; q, v) is max{p, q} and the lower level of c is min{p, q}. It
is still true that the upper level of a vertex is the length of the shortest path from the
root to this vertex. Notice also that there are only two vertices in Vn for all n ≥ 1. This
remark allows us to index the vertices of G(u, v) by the set of words (recall that the index
of a vertex c is the labels of the shortest path from the root to c)

{ε} ∪
⋃

n≥1

{u[0,n)} ∪
⋃

n≥1

{v[0,n)} .

The vertices labeled by the prefixes of u form the upper branch of the graph, the vertices
labeled by the prefixes of v form the lower branch. We also recall a fundamental property
of the Markov diagram. By Lemma 4.3, if a path on G(u, v) starts at the root and
terminates at the vertex (p, u; q, v) with p, q ≥ 1, then the last but one visited vertex is
(p−1, u; q−1, v). Set r = min{p, q}; repeating this step r times, we conclude that, r steps
before the end of the path, the path visits the vertex (p− r, u; q − r, v) .
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Figure 6.2: The beginning of the graph G(u, v).

A typical situation is sketched in Figure 6.2. All the edges starting at the root, except
for the edges labeled by 0 and k − 1, terminate at the root. Let d2 be the vertex indexed
by w = (k − 1)bf0a. Define d1 as the last vertex before d2, where there are at least two
outgoing edges; it is indexed by (k − 1)b. Since d1 has at least two successors, f > 0.
Notice that the f -successor of d1 is a vertex d′ = (0, u; ·, ·) and d′ has only one successor
by hypothesis. Since u0 = 0, the outgoing edge at d′ is labeled by 0. Set p = |a| + 1 and
q = |a| + |b| + 3. By Corollary 4.8, u(w) = 0a and v(w) = w. Thus the vertex d2 is

d2 = (p, u; q, v) .
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d2 has at least two successors, thus e < e′. Moreover the e-successor of d2 is the vertex

c1 = (p+1, u; ·, ·). Let c3 be a vertex of the upper line such that c3
e′→ d3 and let c2 the last

vertex before c3, where there is at least two outgoing edges. The shortest path from c2 to
c3 must be indexed by f ′(k − 1)bf0a and e′′ < e′. Moreover e′′ ≥ e, since by inequalities
(6.11), 0ae . . . = u � σnu = 0ae′′ . . . for n well chosen.

We give now the setting of the next lemma and the next proposition, which are an
adaptation of Lemmas 2 and 3 in [H4]. They form the main result of that paper, where
Hofbauer gives a proof of the uniqueness of the measure of maximal entropy for the map
Tα,β . Let k ≥ 2 and a, b be two non periodic words, ie there is no word x such that a = xn

for some n ≥ 2 and similarly with b. Set p = |a| and q = |b|. Suppose that either p ≥ 2
and a0 = 0 or a = 1 is a word of length 1; similarly either q ≥ 2 and b0 = k−1 or b = k−2
is a word of length 1. Define a′ = a[0,p−1)(ap−1 + 1) and b′ = b[0,q−1)(bq−1 − 1). Then we
set

u = a∞ , ũ = a′b∞ , v = b∞ and ṽ = b′a∞ .

Suppose further that the pairs (u, v) and (ũ, ṽ) satisfy (6.11). These hypotheses correspond
to the settings of Proposition 6.4, in particular cases 1c, 2c and 3d.

Lemma 6.14. In the above settings, the vertices of the graph G(u, v) are indexed by the
words

{ε} ∪
p−1⋃

n=1

{a[0,n)} ∪
p−1⋃

n=1

{b[0,n)} .

Let r = |v(a[0,p−1))| and c1 denote the vertex indexed by a[0,p−1). If up−1 < vr, then the
edge, starting at c1 and labeled by up−1, terminates at the root. If up−1 = vr, then the
edge, starting at c1 and labeled by up−1, terminates at the vertex indexed by v[0,r]. If k = 2,
then up−1 = vr.
Let s = |u(b[0,q−1))| and d1 denote the vertex indexed by b[0,q−1). If us < vq−1, then the
edge, starting at d1 and labeled by vq−1, terminates at the root. If us = vq−1, then the
edge, starting at d1 and labeled by vq−1, terminates at the vertex indexed by u[0,s]. If k = 2,
then us = vq−1.

Proof: Up to the vertex indexed by prefixes of u of length less than p, the structure of
the graph is typical and described in Proposition 6.13. Indeed p is the minimal period of
u, thus there cannot be supplementary identifications. Now consider the vertex g1 indexed
by u[0,p−1); it is the quadruple (p− 1, u;m− 1, v) with m < p. The situation is illustrated
in Figure 6.3. If up−1 < vm−1, the successors of g1 are given by

g1 = (p− 1, u;m− 1, v)
j→





(p, u; 0, v) ∼1 (0, u; 0, v) if j = up−1,

(0, u; 0, v) if up−1 < j < vm−1,

(0, u;m, v) if j = vm−1.

All these successors already exist in G(u, v). If up−1 = vm−1, the only successor of g1 is
given by

g1 = (p− 1, u;m− 1, v)
vm−1→ = (p, u;m, v) ∼1 (0, u;m, v) .

In this later case, we prove that the vertex g′ indexed by v[0,m) is the quadruple (0, u;m, v).
By the fundamental property of the Markov diagram, u[p−m,p−1) = v[0,m−1). By hypoth-
esis, up−1 = vm−1. By Proposition 6.13, the vertex g′ is (t, u;m, v) for some 0 ≤ t < m.
Suppose that t > 0; it means that u[0,t) = v[m−t,m). Thus u[p−t,p) = u[0,t). Since σpu = u,

69



we conclude that σp−tu = u and this contradicts the hypothesis that p is the minimal
period of u. Thus the only successor of g1 is identical to g′. Finally notice that up−1 > 0.
Indeed, if p = 1, then u0 = 1 by hypothesis. Suppose p ≥ 2 and up−1 = 0, then by
inequalities (6.11),

u � σp−1u = 0u � 0(σu) = u .

This implies σp−1u = u, but this contradicts the minimality of p. If k = 2, 0 < up−1 ≤
vm−1 ≤ v0 = 1, thus up−1 = vm−1. Similarly, we consider the vertices labeled by prefixes
of v.

Proposition 6.15. In the above setting, if htop(Σ(u, v), σ) > 0, then htop(Σ(u, v), σ) =
htop(Σ(ũ, ṽ), σ).

Proof: Let M (resp. M̃) denote the adjacency matrix of the graph G(u, v) (resp. G(ũ, ṽ)).
By Formula 4.4, we must compute the spectral radius ρ(M) and ρ(M̃), thus we compare
G(u, v) and G(ũ, ṽ). The graph G(u, v) is described in Lemma 6.14. We consider now the
graph G(ũ, ṽ). Up to the vertices of upper level p−1, the graph is the same as G(u, v) since
the virtual itineraries are the same. Consider the vertex g1 indexed by ũ[0,p−1) = u[0,p−1);
as before, it is the quadruple (p− 1, ũ;m− 1, ṽ) with m < p. Since ũp−1 + 1 = up−1, the
successors of g1 are

g1 = (p− 1, ũ;m− 1; ṽ)
j→





(p, ũ; 0, ṽ) ∼1 (0, b∞; 0, b′a∞) if j = ũp−1,

(0, ũ; 0, ṽ) if ũp−1 < j < ṽm−1,

(0, ũ;m, ṽ) if j = ṽm−1.

Comparing the outgoing edges at g1 in the two graphs, we conclude that all edges which are
present in G(u, v) are also present in G(ũ, ṽ). There is only one additional edge leaving g1 in
G(ũ, ṽ). It is labeled by ũp−1 and it terminates at the vertex (p, ũ; 0, ṽ) ∼1 (0, b∞; 0, b′a∞).
Similarly we consider the vertex h1 indexed by v[0,q−1) = ṽ[0,q−1) in the two graphs. There
is only one additional edge starting at h1 in G(ũ, ṽ). It is labeled by ṽq−1 and terminates
at the vertex (0, ũ; 0, σqṽ) ∼1 (0, a′b∞; 0, a∞).

Consider the vertex g2 = (p, ũ; 0, ṽ) ∼1 (0, b∞; 0, b′a∞) indexed by ũ[0,p) in G(ũ, ṽ).
Since b[0,q−1) = b′[0,q−1), there is only one path of length q − 1 starting at g2. It is labeled
by b[0,q−1) and terminates at the vertex (p+ q − 1, ũ; q − 1, ṽ) ∼1 (0, bqb

∞; 0, (bq + 1)a∞).
This last vertex has two outgoing edges

(p+ q − 1, ũ; q − 1, ṽ)
bq→ (p+ q, ũ; 0, ṽ) ∼1 (p, ũ; 0, ṽ) ,

(p+ q − 1, ũ; q − 1, ṽ)
bq+1→ (0, ũ; q, ṽ) .

The first one is the vertex g2 indexed by ũ[0,p), the second one is the vertex h2 indexed by
ṽ[0,q). Similarly, we consider all paths starting at h2. The graph G(ũ, ṽ) is also finite. The
graph G(u, v) is a subgraph of G(ũ, ṽ). The supplementary part of G(ũ, ṽ) is a communicat-
ing class; let G̃ denote the subgraph G(ũ, ṽ)\G(u, v). The situation is illustrated in Figure
6.3. The spectral spectral radius of M̃ is the maximum between the spectral radius of M
and the spectral radius of the adjacency matrix of G̃ (see Lemma 4.4.3 in [LM]). Using
Theorem 4.9, we compute easily the characteristic polynomial of the adjacency matrix of
G̃. The rome is {g2, h2} and the characteristic polynomial is

λp+q − λp − λq = λq(λp − λp−q − 1) .
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Figure 6.3: The graph G(ũ, ṽ). The box indicates the subgraph G(u, v). The labels are
e = up−1, e

′ = e+ 1, f = bq−1 and f ′ = f − 1.

Let λ∗ denote the largest root of this polynomial; notice that λ∗ ≤ 2. To prove the
Proposition, it is sufficient to show that ρ(M) is larger than or equal to λ∗.

If k ≥ 4, there are k − 2 loops of length 1 at the root, thus ρ(M) ≥ k − 2 ≥ 2 ≥ λ∗.
If the path starting at the root and labeled by a ends at the root, which could happen
only for k ≥ 3 (see Lemma 6.14), then there is a subgraph of G consisting of two cycles
passing trough the root, one of length p or of length q and another one of length 1. This
also implies that ρ(M) ≥ λ∗. Similarly, if the path starting at the root and labeled by b
ends at the root, then ρ(M) ≥ λ∗. It remains the case, k ≤ 3, the path starting at the
root and labeled by a does not end at the root and the path starting at root an labeled
by b does not end at the root.

Let H be a communicating class of G(u, v) whose adjacency matrix has spectral radius
strictly greater than 1 (H exists by hypothesis). If the root is a vertex of H, which happens
only if k = 3, then we conclude as above that ρ(M) ≥ λ∗. Hence, we assume that the
root is not a vertex of H. The vertices of H are indexed by prefixes of a[0,p−1) and b[0,q−1).
From here, we use recursively the most important properties of the graph G(u, v), which
are emphasized in Figure 6.2 and its comments. Let c1 ∈ H be the first (ie most on the
left) vertex of the upper branch and d1 ∈ H the first vertex of the lower branch. Since
H is a communicating class, there are edges starting in H and terminating at c1 and d1.
Let c2 ∈ H be the first vertex in the upper branch, which has at least two outgoing edges
(in fact, it has two edges, because the root is not in H). Similarly, let d2 ∈ H be the first
vertex of the lower branch, which has two outgoing edges. We claim that there is an edge
from c2 to d1 and from d2 to c1.

Suppose it is not the case: for example, there is no edge from c2 to d1. Let c3 ∈ H be
the first vertex in the upper branch such that there is an edge from c3 to d1. We define by
induction two finite sequences of vertices {ei} and {fi}. The vertex ei is the last vertex
before c3 in the upper branch, having two outgoing edges. Then denote by f ′1 the vertex
of the lower branch where terminates an edge starting at e1. The vertex f1 is the vertex
immediately before f ′1 in the lower branch; it has two outgoing edges. Then denote by e′2
the vertex of the upper branch where terminates an edge starting at f1. The vertex e2 is
the vertex immediately before e′2 in the upper branch; it has two outgoing edges. Continue
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in this manner until fi = d2 or e′i = c1. We prove that the sequences are finite. H is a
communicating class, thus ei and fi are in H. Moreover the upper level (ie the length of
the shortest path from the root to the vertex) of fi is strictly smaller than the upper level
of ei; similarly the upper level of ei+1 is strictly smaller than the upper level of fi. Finally,
f ′i = d1 is impossible, because this contradicts the definition of c3. Suppose the sequences
end under condition fn = d2. The situation is illustrated in Figure 6.4.
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Figure 6.4: The beginning of the graph G(u, v).

Let xh be the word which indexes the vertex c1 and zt be the word which indexes
d1. Set r = |xh| and s = |zt|. Since d1 is the first vertex in H of the lower branch,
u[r,r+s) = zt. Since there is an edge from d2 to c1, x is a suffix of the word which indexes
d2 and h′ = h+ 1 (otherwise there is a third edge from d2 to the root). This implies that
x is a suffix of the word which indexes the vertex en and the outgoing edges at en are
labeled by h and h′. By induction, x is a suffix of the word which indexes the vertex e1
and the outgoing edges at e1 are labeled by h and h′. For the same reasons, z is a suffix
of the word which indexes the vertex c3 and the outgoing edges at c3 are labeled by t and
t− 1. Thus there exists m such that σmu = xhz(t− 1) . . . ≺ xhzt . . . = u; this contradicts
the inequalities (2.16). Similarly, we consider the case where the sequences {ei} and {fi}
end under condition e′i = c1; this situation is also absurd. Thus there is an edge from c2
to d1 and an edge from d2 to c1.

Since the spectral radius of the communicating class H is strictly greater than 1, there
exists at least one edge from some other vertex of H to c1 or d1, say c1. Let d3 be the
vertex where starts this additional edge terminating at c1. Then there are two cycles in H
rooted at c1: one follows the upper branch from c1 to c2, then it follows the lower branch
from d1 to d2, then it goes back to c1; the other one follows the upper branch from c1 to
c2, then the lower branch from d1 to d3, then it goes back to c1. By Proposition 6.13, the
first cycle has length r+ s, the second cycle has length r+ s+w where w is the length of
the path following the lower branch from d2 to d2. Moreover r+ s ≤ p and r+ s+w ≤ q.
The situation, in particular the length of the different paths, is illustrated in Figure 6.5.
Using Theorem 4.9 with {c1, d1} as a rome, we show that ρ(M) ≥ λ∗.

Theorem 6.16. Let k ≥ 2 and let u ∈ Σ+
k and v ∈ Σ+

k , such that u0 = 0, v0 = k − 1 and

u � σnu � v ∀n ≥ 0 and u � σnv � v ∀n ≥ 0 .

If k = 2 we also assume that σu � σv. Let α and β be the two real numbers defined by
the algorithm of Proposition 6.10. Then

htop(Σ(u, v), σ) = log β .

If k = 2 and σv ≺ σu, then htop(Σ(u, v), σ) = 0.
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Proof: Let β > 1. By Propositions 6.4 and 6.10 we have

Σ(uα,β , vα,β) ⊂ Σ(u, v) ⊂ Σ(ũα,β , ṽα,β) .

From Proposition 6.15 we get

htop(Σ(uα,β , vα,β), σ) = htop(Σ(ũα,β , ṽα,β), σ) = log β .

Let limn αn = α and limn βn = β = 1. We have αn < 1 and βn > 1 (see proof of
Proposition 6.10). Let

un := ũαn,βn and vn := ṽαn,βn .

By Proposition 6.4,
vα1,β1 � v � v1 .

By monotonicity,

ϕα2,β2
∞ (σv1) ≤ ϕα1,β1

∞ (σv1) = γ1 = γ2 = ϕα2,β2
∞ (σv2) .

Therefore v1 � v2 (v1
0 = v2

0) and by Proposition 6.4,

u2 � u � uα2,β2 and v � v2 .

By monotonicity,

ϕα3,β3
∞ (σu3) = α3 = α2 = ϕα2,β2

∞ (σu2) ≤ ϕα3,β3
∞ (σu2) .

Therefore u3 � u2 and
u3 � u and vα3,β3 � v � v3 .

Iterating this argument we conclude that

un � u and v � vn .

These inequalities imply

htop(Σ(u, v), σ) ≤ htop(Σ(un, vn), σ) = log βn → 0 for n→ ∞ .
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Finally let k = 2 and σv ≺ σu. If σu = (1)∞, then vj = 0 for a single value of j, so
that htop(Σ(u, v), σ) = 0. Suppose that σu 6= (1)∞ and fix any β > 1. The function α 7→
ϕα,β
∞ (σu) is continuous and decreasing since ϕα,β dominates ϕα′,β if α < α′. There exists

α ∈ (0, 1) such that ϕα,β
∞ (σu) = α. If v0 < vα,β

0 , then v ≺ vα,β and Σ(u, v) ⊂ Σ(u, vα,β),

whence htop(Σ(u, v), σ) ≤ log β. If v0 = vα,β
0 = 1, then

ϕα,β
∞ (σv) ≤ ϕα,β

∞ (σu) = α < γ = ϕα,β
∞ (σvα,β) .

The map ϕα,β
∞ is continuous and non-decreasing on Σ+

k so that σv ≺ σvα,β , whence v ≺ vα,β

and htop(Σ(u, v), σ) ≤ log β. Since β > 1 is arbitrary, htop(Σ(u, v), σ) = 0.

6.1.4 The inverse problem

In this section we solve the inverse problem for βx + α mod 1, namely the question we
address is the following: given two sequences u and v verifying

u � σnu ≺ v and u ≺ σnv � v ∀n ≥ 0 , (6.21)

can we find α ∈ [0, 1) and β ∈ (1,∞) so that u = uα,β and v = vα,β?

Lemma 6.17. Let α ∈ [0, 1) and β ≥ 1 be such that the ϕα,β-expansion is valid.

Suppose that ϕα,β
∞ (u) = 0, ϕα,β

∞ (σu) = α and u � σnu for all n ≥ 0. Then

u = uα,β ⇐⇒ ϕα,β
∞ (σnu) < 1 ∀n ≥ 0 .

Similarly, suppose that ϕα,β
∞ (v) = 1, ϕα,β

∞ (σv) = γ and σnv � v for all n ≥ 0. Then

v = vα,β ⇐⇒ ϕα,β
∞ (σnv) > 0 ∀n ≥ 0 .

Proof: We prove only the first statement. Suppose that u = uα,β . Then by (6.8),

ϕα,β
∞ (σnu) = Tn

α,β(0) < 1 for all n ≥ 0. On the other hand, suppose that ϕα,β
∞ (σnu) < 1

for all n ≥ 0. If uα,β is not periodic, then by Proposition 6.2, uα,β is the unique sequence
satisfying ϕα,β

∞ (x) = 0 and ϕα,β
∞ (σx) = α, thus u = uα,β . If uα,β has minimal period p, then

by Lemma 6.1, u[0,p−1) = uα,β

[0,p−1). We have two choices for up−1. Either up−1 = uα,β
p−1 − 1

and ϕα,β
∞ (σpu) = 1 or up−1 = uα,β

p−1 and ϕα,β
∞ (σpu) = 0. The first choice is impossible by

hypothesis. Thus u[0,p) = uα,β

[0,p). Repeating the argument, we conclude that u = uα,β .

Proposition 6.18. Suppose that the ϕ-expansion is valid. Let u be a solution of (6.13)
and v a solution of (6.14). If (6.21) holds, then

uα,β = u ⇐⇒ ∀n ≥ 0 : ϕα,β
∞ (σnu) < 1 ⇐⇒ ∀n ≥ 0 : ϕα,β

∞ (σnv) > 0 ⇐⇒ vα,β = v .

Proof: The ϕ-expansion is valid, so that (6.8) is true,

∀n ≥ 0 : ϕα,β
∞ (σnuα,β) = Tn

α,β(0) < 1 .

Lemma 6.17 implies
u = uα,β ⇐⇒ ∀n ≥ 0 : ϕα,β

∞ (σnu) < 1 .

Similarly
v = vα,β ⇐⇒ ∀n ≥ 0 : ϕα,β

∞ (σnv) > 0 .
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Let x ≺ x′, x, x′ ∈ Σ(u, v). Let ℓ := min{m ≥ 0 : xm 6= x′m}. Then

ϕα,β
∞ (x) = ϕα,β

∞ (x′) =⇒ ϕα,β
∞ (σℓ+1x) = 1 and ϕα,β

∞ (σℓ+1x′) = 0 .

Indeed,

ϕα,β
ℓ+1

(
x0, . . . , xℓ−1, xℓ + ϕα,β

∞ (σℓ+1x)
)

= ϕα,β
ℓ+1

(
x0, . . . , xℓ−1, x

′
ℓ + ϕα,β

∞ (σℓ+1x′)
)

Therefore x′ℓ = xℓ+1, ϕα,β
∞ (σℓ+1x) = 1 and ϕα,β

∞ (σℓ+1x′) = 0. Suppose that ϕα,β
∞ (σnu) = 1,

and apply the above result to σnu and v to get the existence of m with ϕα,β
∞ (σmv) = 0.

Definition 6.19. Let u ∈ Σ+
k with u0 = 0 and u � σnu for all n ≥ 0. Define the sequence

û ∈ Σ+
k as

û := sup{σnu : n ≥ 0} .

For all u ∈ Σ+
k with u0 = 0 and u � σnu for all n ≥ 0, we have

σnû � û ∀n ≥ 0 .

Indeed there exists a sequence {nj}j so that û = limj σ
nju. By continuity

σnû = lim
j→∞

σn+nju � û .

We explain the ideas developed in Theorems 6.20 and 6.21. Fix u ∈ Σ+
k with u0 = 0

and u � σnu. Choose v ∈ Σ+
k such that v0 = k − 1 and (6.21) holds. By equations

(6.10), the only possible pair (α, β) such that u = uα,β and v = vα,β is the pair (α, β)
constructed by the algorithm of Proposition 6.10. By Proposition 6.18, a necessary and

sufficient condition for u = uα,β and v = bα,β is

ϕα,β
∞ (σnu) < 1 ∀n ≥ 0 .

For our fixed u, we construct in Theorem 6.20 a critical β̂ such that this equation is true
for all β > β̂ and false for all β < β̂. This critical β̂ is constructed using û. In Theorem
6.21, we find a critical sequence u∗ such that the algorithm applied to v ≻ u∗ gives β > β̂.
Example. We consider the strings u′ = (01)∞ and v′ = (110)∞. One can prove that
u′ = uα,β and v′ = vα,β where β is the largest root of

x3 − x− 1 = 0

and α = (1 + β)−1. With the notations of Proposition 6.4 we have

a = 01 a′ = 00 b = 110 b′ = 111 .

Let
u := (00110111)∞ = (a′bb′)∞ .

We have
û = (11100110)∞ = (b′a′b)∞ .

By definition ϕα,β
∞ (σu) = α. We have

(b)∞ � û � b′(a)∞ .

From Proposition 6.4 and Proposition 6.15, we conclude that log β = htop(Σ(u, û), σ).
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Theorem 6.20. Let k ≥ 2 and let u ∈ Σ+
k and v ∈ Σ+

k , such that u0 = 0, v0 = k − 1 and

(6.21) holds. If k = 2 we also assume that σu � σv. Set log β̂ := htop(Σ(u, û), σ). Let α
and β be defined by the algorithm of Proposition 6.10. Then

1. If β̂ < β, then u = uα,β and v = vα,β.

2. If β̂ = β > 1 and uα,β and vα,β are not both periodic, then u = uα,β and v = vα,β.

3. If β̂ = β > 1 and uα,β and vα,β are both periodic, then u 6= uα,β and v 6= vα,β.

Proof: Let β̂ < β. Suppose that u 6= uα,β or v 6= vα,β . By Proposition 6.18 u 6= uα,β and

v 6= vα,β , and there exists n such that ϕα,β
∞ (σnu) = 1. Hence ϕα,β

∞ (û) = 1. If γ > 0, then

û0 = v0 = k − 1 whence σû � σv, so that ϕα,β
∞ (σû) = γ. By Propositions 6.4 and 6.15 we

deduce that
log β̂ = htop(Σ(u, û), σ) = htop(Σ(u, v), σ) = log β ,

a contradiction. If γ = 0, either û0 = k − 1 and ϕα,β
∞ (σû) = γ, and we get a contradiction

as above, or û0 = k − 2 and ϕα,β
∞ (σû) = 1. In the latter case, since σû � û, we conclude

that û1 = k − 2 and ϕα,β
∞ (σ2û) = 1. Using σnû � û we get û = (k − 2)∞ = vα,β , so that

htop(Σ(u, û), σ) = htop(Σ(u, v), σ), a contradiction.

We prove 2. Suppose for example that uα,β is not periodic. This implies that α < 1, so
that Proposition 6.2 implies that u = uα,β . We conclude using Proposition 6.18. Similar
proof if vα,β is not periodic.
We prove 3. By Proposition 6.18, u = uα,β or v = vα,β if and only if u = uα,β and v = vα,β .
Suppose u = uα,β , then u is periodic so that û = σpu for some p. This implies that

ϕα,β
∞ (σû) ≤ ϕα,β

∞ (û) = ϕα,β
∞ (σpu) < 1 .

by Proposition 6.18. Let û0 ≡ k̂ − 1. We can apply the algorithm of Proposition 6.10 to
the pair (u, û) and get two real numbers α̃ and β̃ (if k̂ = 2, using β̂ > 1 and Theorem 6.16,

we have σu � σû). Theorem 6.16 implies β̂ = β̃, whence β̃ = β. The map α 7→ ϕα,β
∞ (σu) is

continuous and decreasing, so that α 7→ ϕα,β
∞ (σu) − α is strictly decreasing, whence there

exists a unique solution to the equation ϕα,β
∞ (σu) − α = 0, which is α = α̃. Therefore

ϕα,β
∞ (σû) < 1 and we must have k̂ = k, whence

ϕα,β
∞ (σû) = α+ β − k + 1 = ϕα,β

∞ (σv) .

But this implies ϕα,β
∞ (û) = 1, a contradiction.

Theorem 6.21. Let k ≥ 2 and let u ∈ Σ+
k and v ∈ Σ+

k , such that u0 = 0, v0 = k − 1
and (6.21) holds. If k = 2 we also assume that σu � σv. Let α and β be defined by the
algorithm of Proposition 6.10. If htop(Σ(u, û), σ) > 1, then there exists u∗ � û such that

u∗ ≺ v =⇒ u = uα,β and v = vα,β

u∗ ≻ v =⇒ u 6= uα,β and v 6= vα,β
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Proof: As in the proof of Theorem 6.20 we define k̃ and, by the algorithm of Proposition
6.10 applied to the pair (u, û), two real numbers α̃ and β̃. By Theorem 6.16, log β̃ =
htop(Σ(u, û), σ). We set

u∗ :=

{
veα,eβ
∗ if veα,eβ is periodic

veα,eβ if veα,eβ is not periodic .

It is sufficient to show that u∗ ≺ v implies β > β̃ (see Theorem 6.20 point 2). Suppose
the contrary, β = β̃. Then

1 = ϕeα,β
∞ (û) ≤ ϕeα,β

∞ (v) .

We have ϕα,β
∞ (v) = 1 and for α > α, ϕα,β

∞ (v) < 1 (see Lemma 6.6). Therefore α̃ ≤ α. On
the other hand, applying Corollary 6.11 we get α̃ ≥ α so that α̃ = α and k̃ = k. From
Propositions 6.3 or 6.4, we get v � u∗, a contradiction.

Suppose that u∗ ≻ v. We have û � v ≺ u∗, whence htop(Σ(u, û), σ) = htop(Σ(u, u∗), σ)

and therefore β = β̃. As above we show that α = α̃. Notice that if ueα,eβ is not periodic,

then by Proposition 6.2 ueα,eβ = u. If veα,eβ is not periodic, then by Proposition 6.3 veα,eβ = v.

If veα,eβ is periodic, then inequalities (6.21) imply that we must have veα,eβ
∗ ≺ v. Therefore

we may have u∗ ≻ v and inequalities (6.21) only if ueα,eβ and veα,eβ are periodic. Suppose
that it is the case. If u is not periodic, then using Proposition 6.18 the second statement

is true. If u is periodic, then û = σpu for some p, whence ϕeα,eβ
∞ (u) = 1; by Proposition

6.18, u 6= ueα,eβ .

6.2 Generalized β-transformations

We consider the map of Example B. We recall briefly some facts we have already presented.
Fix k ≥ 2, β ∈ (k − 1, k] and a map s : Ak → {1,−1}. We often write the map s(j) as a
vector with k coordinates. The set S0 is given by

aj =
j

β
for j ∈ Ak, ak = 1 .

The generalized β-transformation Tβ is defined by

Tβ(x) =

{
βx− j if x ∈ Ij and s(j) = +1,

1 − (βx− j) if x ∈ Ij and s(j) = −1.

Notice that Tβ depends on the map s, however we do not write this dependence explicitly
in Tβ as well as in all the notations which follow. The corresponding coding map is i

β

and the representation function is ϕβ. There is only one important virtual itinerary

ηβ := lim
x↑1

i
β(x) .

All other virtual itineraries can be expressed with the help of ηβ (see (2.18) and (2.19)).
The shift space obtained by the coding is

Σβ := iβ(X) = {x ∈ Σ+
k : σnx � ηβ ∀n ≥ 0} . (6.22)
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Moreover the virtual itinerary ηβ satisfies

σnηβ � ηβ ∀n ≥ 0 . (6.23)

Notice that β 7→ ηβ is a strictly increasing map. Indeed, consider β < β′ ∈ (k− 1, k], then

htop(Σβ , σ) = log β < log β′ = htop(Σβ′ , σ) .

Moreover by (6.22), we have
η � η′ ⇐⇒ Ση ⊂ Ση′ ,

thus ηβ ≺ ηβ′

. Finally notice that, if s = (1,−1) or s = (−1,−1), then ηβ = 10 . . ..

Indeed, in both cases Tβ(1) = 2 − β and a1 = 1
β
. Moreover for β ∈ (1, 2], we have

2 − β <
1

β
⇐⇒ β2 − 2β + 1 = (β − 1)2 > 0 .

This remark must be compared to Lemma II.2.1 in [CE], where the situation is considered
in a combinatorial point of view.

Before studying in detail some properties of the generalized β-transformations, we must
introduce the tent map, which is an extensively studied particular case of the generalized
β-transformations (see for example [DGP], [CE] or [MS]). Let c = 1/2, β ∈ (1, 2] and
define the tent map gβ : [0, 1] → [0, 1] by

gβ(x) =

{
βx if x ≤ c,

β(1 − x) if x ≥ c.

The map gβ is continuous and it is a member of the family of unimodal maps. Let
cn = cn(β) = gn

β (c) for all n ≥ 1. The non-wandering set Ω(gβ) of gβ is included in

Ω(gβ) ⊂ {0} ∪ [c2, c1] .

If β ∈ (
√

2, 2], then Ω(gβ) is exactly this set. The interval [c2, c1] is called the core of
the tent map gβ . The non trivial dynamic is concentrated on the core. Finally we recall
the concept of renormalization in the special case of the tent map (see [MS]). Suppose
that β ∈ (2(2−m), 2(2−m+1)] for some m ≥ 1. Then, there are m intervals J1, . . . , Jm with
disjoint interior such that:

1. gβ(Ji) = Ji+1 for all i = 1, . . . ,m− 1 and gβ(Jm) = J1,

2. for all i = 1, . . . ,m, the map gm
β |Ji

is conjugated to the map gβm by an affine map
from Ji onto [0, 1].

In other words, all asymptotic properties of the tent maps can be established for β ∈
(
√

2, 2], then extended on β ∈ (1, 2] using the renormalization. This concludes our brief
reminder about the tent map.

As we will see in this section, the different results about generalized β-transformations
are easier established when β > 2. Thus we will often consider separately the cases k ≥ 3
(ie β > 2) and k = 2. This latter case splits in four cases:

1. If s = (+1,+1): this case, corresponding to the β-transformations x 7→ βx mod 1,
is the easiest.
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2. If s = (+1,−1): this case corresponds to a tent map of slope β. Indeed the map Tβ

is conjugated (by an affine map preserving the orientation) to gβ |[0,c1]. All results we
prove are known for the tent maps. The structure of the proofs is often the same:
we prove a result for all β ∈ (

√
2, 2] and then extend this result on β ∈ (1, 2] thanks

to the renormalization.

3. If s = (−1,+1): this case also corresponds to a tent map of slope β. Indeed the map
Tβ is conjugated (by an affine map changing the orientation) to gβ |[c2,c1]. We never
consider this case, because it is conjugated to the case s = (+1,−1) restricted to a
well-chosen interval.

4. If s = (−1,−1): this case is the most difficult. The techniques used for the cases 2
and 3 often work for all β ∈ (β0, 2] with β0 > 1; but contrary to the tent map case,
we cannot use the renormalization to extend the proofs on β ∈ (1, 2].

In a recent paper [G], Góra studied the generalized β-transformations; his approach
is very similar to the one of Parry’s papers [P1] and [P2]. By the general theorem of
Lasota and Yorke, we know that all generalized β-transformations Tβ admit a Tβ-invariant
probability measure which is absolutely continuous with respect to Lebesgue measure.
For all generalized β-transformations Tβ , Góra constructed the density (with respect to
Lebesgue measure) of a Tβ-invariant probability measure µβ and he proved that µβ is the
unique measure absolutely continuous with respect to Lebesgue measure.

6.2.1 Uniqueness of the maximal measure

We prove that the map Tβ has a unique measure of maximal entropy in almost all cases.
The only gap is k = 2 and s(j) = (−1,−1), where the uniqueness of the maximal measure
is proved only for β ∈ ( 3

√
2, 2]. We use the method presented in chapter 5 and in particular

Theorem 5.15. Thus the order � being fixed, we choose η ∈ Σ+
k such that

σnη � η ∀n ≥ 0 ,

and we study the graph G(η) defined in Example B at the end of chapter 4. Recall the
relations (4.9) and (4.10), expressing all virtual itineraries uj and vj with the help of η.
With these notations

Σ({uj , vj}) := {x ∈ Σ+
k : uxn � σnx � vxn ∀n ≥ 0} = {x ∈ Σ+

k : σnx � η ∀n ≥ 0} =: Ση .

We denote by G(Σ({uj , vj})) the Markov diagram of Σ({uj , vj}). Recall also that ∼1 is
an equivalence relation on the quadruples defined by

(p, a; q, b) ∼1 (p′, a′; q′, b′) ⇐⇒ [σpa, σqb] = [σp′a′, σq′b′] .

We define a second equivalence relation on the vertices of G(Σ({uj , vj})) by

c ≡ (p, a; q, b) ∼2 c
′ ≡ (p′, a′; q′, b′) ⇐⇒ (p, a; q, b) ∼1 (p′, a′; q′, b′) and

all incoming edges at c and c′ carry the same label .

The graph G(η) is the simplification of the Markov diagram according to the equivalence
relation ∼2. Finally, recall that we write

0 ≡ u0 := lim
x↓0

i
β(x) and η ≡ vk−1 := lim

x↑1
i

β(x) .
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If s(0) = 1, then 0 = 0∞; if s(0) = −1, then 0 = 0η.
For Section 6.2.1, we modify slightly the notation so that it is better suited for the

study of G(η). Notice that the root of G(Σ({uj , vj})) is the quadruple (0, 0; 0, η). The
other vertices of G(Σ({uj , vj})) are of the type (p, a; q, b) with p, q ≥ 1 and a, b ∈ U ∪ V .
We consider three cases:

1. If a /∈ {0, η} and 0 = 0∞, then (p, a; q, b) ∼1 (p − 1, a′; q, b) with a′ ∈ {0, η}. But
η being the maximal element of Σ({uj , vj}), we have a′ = 0; thus (p, a; q, b) ∼1

(0, 0; q, b).

2. If a /∈ {0, η} and 0 = 0η, then (p, a; q, b) ∼1 (p − 1, a′; q, b) with a′ ∈ {0, η}. But
η being the maximal element of Σ({uj , vj}), we have a′ = 0; thus (p, a; q, b) ∼1

(p− 1, 0; q, b). If p ≥ 2, then (p, a; q, b) ∼1 (p− 2, η; q, b).

3. If b /∈ {u0, vk−1}, then (p, a; q, b) ∼1 (p, a; q − 1, b′) with b′ ∈ {0, η}. But 0 being the
minimal element of Σ({uj , vj}), we have b′ = η; thus (p, a; q, b) ∼1 (p, a; q − 1, η).

Looking at the three cases, we see that for all vertices c = (p, a; q, b) of G(Σ({uj , vj})),
there is a quadruple (p′, a′; q′, η) ∼1 (p, a; q, b) with p′, q′ ≥ 0, a′ ∈ {0, η} and, if a′ =
0, then p′ = 0. We are now able to define our new notation. This notation has two
main characteristics. First it contains a supplementary information, the label of all edges
incoming at a vertex; this is useful to deal with the equivalence relation ∼2. Secondly
there is a precise rule to choose between all equivalent (for ∼1) notations of a quadruple.
Henceforth, the root of G(Σ({uj , vj})) is denoted by (R; 0, 0, 0, η) (recall that there is no
incoming edge at the root); the symbol R is an exceptional symbol identifying the root. A
vertex c = (p, a; q, b) of G(Σ({uj , vj})) (except for the root) is denoted by (ap−1; p

′, a′; q′, η)
with p′, a′, q′ defined by:

1. (p′, a′; q′, η) ∼1 (p, a; q, b),

2. p′, q′ ≥ 0, p′, q′ are minimal, a′ ∈ {0, η} and p′ = 0 if a′ = 0.

Notice that this notation is well-defined: since c is not the root, p ≥ 1. Moreover, there
exist unique p′, q′, a′ satisfying the requests. We get G(η) by identifying the vertices of
G(Σ({uj , vj})) having the same (new) notation. As before, we use an unordered notation

〈j; p, a; q, b〉 =

{
(j; p, a; q, b) if σpa � σqb ,

(p; q, b; p, a) if σpa ≻ σqb
.

The next proposition gives the main properties of the graph G(η).

Proposition 6.22. The root of G(η) is the vertex (R; 0, 0; 0, η). All other vertices of G(η)
are of the type (j; p, a; q, η) with j ∈ Ak, p, q ≥ 0, a ∈ {0, η}; moreover, p = 0 if a = 0.
The root has k successors. For all 0 ≤ j ≤ k − 2, the j-successor of the root is the vertex
(j; 0, 0; 0, η). The k− 1-successor of the root is the vertex (k− 1; 0, 0; 1, η) if s(k− 1) = 1,
it is the vertex (k− 1; 1, η; 0, η) if s(k− 1) = −1. Let c = (j; p, a; q, η) be a vertex of G(η),
except for the root. If c has only one successor c′, ie ap = ηq, then

c
ap→ c′ =





〈ap; p+ 1, a; q + 1, η〉 if a = η,

(ap; 0, 0; q + 1, η) if a = 0 and s(0) = +1,

(ap; q + 1, η; 0, η) if a = 0 and s(0) = −1.
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If c has at least two successors, ie ap < ηq, then

c
ηq→

{
(ηq; 0, 0; q + 1, η) if s(ηq) = +1,

(ηq; q + 1, η; 0, η) if s(ηq) = −1,

c
j→ (j; 0, 0; 0, η) ∀ap ≤ j < ηq .

Proof: We apply Lemmas 4.3, 4.5, the equivalence relation ∼2 and our convention of
notation.

If s = (1,−1) or s = (−1,−1), we already noticed that ηβ = 10 . . .. In Figure 6.6, we
draw the beginning of the graphs G(η) in both cases.

0

( R ; # ; 0 )

0

( 0 ;# ;0 )

1

( 1 ;1 ;0 ) (0 ;2 ;0 )

1

0

1

0

( R ; # ; 0 )

0

( 0 ;# ;0 )

1

( 1 ;1 ;0 ) (0 ;# ;2 )

1

0

1

Figure 6.6: The beginning of G(η). On the left, the case s = (1,−1) and η = 10 . . .; on the
right, the case s = (−1,−1) and η = 10 . . .. The notation (j; p; q) stands for the vertex
(j; p, η; q, η) and the notation (j; #; q) for the vertex (j; 0, 0; q, η).

Theorem 6.23. Let k ≥ 2, s : Ak → {1,−1} and β ∈ (k − 1, k] and consider the
corresponding generalized β-transformation Tβ. If s 6= (−1,−1), then Tβ has a unique
measure of maximal entropy. If s = (−1,−1) and β > 3

√
2, then Tβ has a unique measure

of maximal entropy.

Proof: Let η = ηβ . By Theorem 5.15, we must show that G(η) has a unique communi-
cating class of maximal spectral radius. Let c = (j; p, a; q, η) be a vertex of G(η). Let |c|
denote the length of the corresponding interval in [0, 1], ie

|c| = |ϕβ
∞(σqη) − ϕβ

∞(σpa)| .

By the monotonicity of the map x 7→ i
β(x), we have that x ∈ X ∩ [ϕβ

∞(σpa), ϕβ
∞(σqb)]

implies iβ(x) ∈ [σpa, σqb]. Now we distinguish the cases.

1. If β > 2, we prove that all vertices of G(η) without the root are a communicating
class. Let V denote the set of vertices indexed by j for j < k − 1. From any vertex
of V , we can reach in one step all successors of the root. If we prove that there is a
path from each vertex c0 to a vertex of V , we are done. Let c0 be a vertex of G(η).
If c0 has n ≥ 3 successors, then by Lemma 6.22, n−2 of them are in V . Otherwise if
c0 has one successor, define c1 as this successor; if c0 has two successors, define c1 as
the one such that |c1| is maximal. Since the slope of Tβ is ±β, we have |c1| ≥ β

2 |c0|.
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If c1 has at least three successors, then at least one of them is in V . Otherwise define
c2 as the successor of c1 such that |c2| is maximal. Continuing in this manner, we
find a vertex cn such that

|cn| ≥
(β

2

)n

|c0| .

Since β/2 > 1 and |cn| ≤ 1, this sequence is finite and there is a path from c0 to V .

2. If s = (1, 1), this is the β-transformation and it is well-know that it has a unique
measure of maximal entropy (see [T] and [H1]). By the way, it is easy to see that
all vertices of G(η) except for the root form a communicating class.

3. If s = (1,−1). The beginning of the graph is drawn in Figure 6.6 Suppose first that
β ∈ (

√
2, 2]. Let V be the set of all vertices of G(η) except for the root and the

vertex indexed by the word 0. We prove that V is strongly connected. Let v ∈ V be
the vertex indexed by the word 1; we have v = (1; 1, η; 0, η). There is a path from v
to c for all c ∈ V . Consider a vertex c0 ∈ V . Define a sequence {ci}i by induction:
ci is the successor of ci−1 such that |ci| is maximal. We claim that there exists n
such that cn and cn+1 have both two successors. If not, then for all m ≥ 1,

|c2m| ≥ β2

2
|c2m−2| ≥ · · · ≥

(β2

2

)m

|c0| .

But β2/2 > 1 and |c2m| < 1, thus we have a contradiction. Now suppose that
cn = (j; p, η; q, η) (notice that the case (j; 0, 0; q, η) is impossible, because v0 = 0η
and u1 = 1η). We consider separately the cases p < q and p > q. In both cases,
there is a path of length 2 from cn to the vertex (1; 1, η; 0, η) (see Figure 6.7). Thus
V is strongly connected. Either V is a communicating class or we must add the
vertex indexed by the word 0 to obtain a communicating class. In both cases, there
is a unique communicating class of maximal spectral radius, thus by Theorem 5.15
a unique measure of maximal entropy. Using the renormalization, we extend this
result to all β ∈ (1, 2].

( j ;p ;q )
1

( 1 ; q + 1 ; 0 )
0

( 0 ; q + 2 ; 0 )

( 0 ; p + 1 ; 0 )

10

( 1 ;1 ;0 )

( j ;p ;q )
0

( 0 ; p + 1 ; 0 )
0

( 0 ; p + 2 ; 0 )

( 1 ; q + 1 ; 0 )

11

( 1 ;1 ;0 )

Figure 6.7: On the top, the case p < q; on the bottom, the case p > q. The notation
(j; p; q) stands for the vertex (j; p, η; q, η).
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4. If s = (−1, 1). This case is conjugated to the case s = (1,−1) restricted to an
appropriate interval, thus there is also a unique measure of maximal entropy.

5. If s = (−1,−1), the proof is very similar to the case s = (1,−1). The beginning
of the graph is drawn in Figure 6.6. Suppose β ∈ (

√
2, 2]. Let V be the set all

vertices of G(η) except for the root and the vertex indexed by the word 0. We prove
that V is strongly connected. Let v ∈ V be the vertex indexed by the word 1; we
have v = (1; 1, η; 0, η). There is a path from v to c for all c ∈ V . Consider a vertex
c0 ∈ V . As in case s = (1,−1), there is a path from c0 to a vertex cn such that
cn has two successors and one of them, called cn+1, has also two successors. There
are three cases to consider: cn = (j; 0, 0; q, η), cn = (j; p, η; q, η) with p > q and
cn = (j; p, η; q, η) with p < q. The first one is trivial. We illustrate the other cases
in Figure 6.8. Since there is a path from the vertex (0; 0, 0; 0, η) to (1; 1, η; 0, η), V
is strongly connected. Either V is a communicating class or we must add the vertex
labeled by the word 0 to have a communicating class. In both cases, there is a unique
communicating class with maximal spectral radius.

( j ;p ;q )
1

( 1 ; q + 1 ; 0 )
0

( 0 ; # ; q + 2 )

( 0 ; # ; p + 1 )

10

( 1 ;1 ;0 )

( j ;p ;q )
0

( 0 ; # ; p + 1 )
1

( 1 ; p + 2 ; 0 )

( 1 ; q + 1 ; 0 )

01

( 0 ;# ;0 )

Figure 6.8: If β ∈ (
√

2, 2]. On the top, the case p < q; on the bottom, the case p > q.
The notation (j; p; q) stands for the vertex (j; p, η; q, η) and the notation (j; #; q) for the
vertex (j; 0, 0; q, η).

If β ∈ ( 3
√

2,
√

2], let V ′ be the set V without the vertex indexed by the word 1. Let
v′ ∈ V ′ be the vertex indexed by 10; we have v′ = (0; 0, 0; 2, η). Arguing as before,
we prove that V ′ is strongly connected. There is a path from v′ to all vertices
in V ′. Let c0 ∈ V ′, there exists a path from c0 to cn and two vertices cn+1, cn+2

such that cn → cn+1 → cn+2. Moreover two vertices between cn, cn+1, cn+2 have
two successors. If cn+1 is one of them, we recover the case treated in Figure 6.8.
Otherwise we consider the three cases cn = (j; 0, 0; q, η), cn = (j; p, η; q, η) with
p > q and cn = (j; p, η; q, η) with p < q. The first one is trivial. We illustrate
the other cases in Figure 6.9. Since there is a path from the vertex (1; 1, η; 0, η) to
(0; 0, 0; 2, η), V ′ is strongly connected. As before, there is a unique communicating
class with maximal spectral radius.
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( j ;p ;q )
1

( 1 ; q + 1 ; 0 )
1

( 1 ; 1 ; q + 2 )

( 0 ; # ; p + 1 )

10

( 1 ;# ;2 )

0
( 0 ; q + 3 ; 0 )

( j ;p ;q )
0

( 0 ; # ; p + 1 )
0

( 0 ; p + 2 ; 0 )

( 1 ; q + 1 ; 0 )

11

( 1 ;1 ;0 )

0
( 0 ; # ; p + 3 )

Figure 6.9: If β ∈ ( 3
√

2,
√

2]. On the top, the case p < q; on the bottom, the case p > q.
The notation (j; p; q) stands for the vertex (j; p, η; q, η) and the notation (j; #; q) for the
vertex (j; 0, 0; q, η).
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Chapter 7

Normality

This chapter is devoted to the study of the normality for the maps Tα,β and the gener-
alized β-transformations. The word ”normal” has several meanings. We use this word
in the sense which was used by Borel when he spoke of normal number. Let (X,T ) be a
measurable dynamical system and consider an ergodic measure µ ∈ M(X,T ). Roughly
speaking, a point x ∈ X is µ-normal, if the frequency of times when the orbit of x visits
any set A tends to µ(A). We will make precise this definition using the weak∗-topology.
By the Birkhoff Ergodic Theorem, we know that µ-almost all points x ∈ X are µ-normal.
We only consider piecewise monotone continuous maps with X = [0, 1]. In particular,
if µ is equivalent to Lebesgue measure, then Lebesgue almost all points are µ-normal.
However given a point x ∈ [0, 1], it is often very hard to answer the question: is the point
x µ-normal or not? Our approach consists to fix x ∈ [0, 1] and a family of expansions
described by a parameter κ ∈ K. Then we estimate the size of the set of parameters
κ ∈ K for which x is µκ-normal, where µκ is the unique measure of maximal entropy.

First we consider the family of maps Tα,β . Let µα,β ∈ M([0, 1], Tα,β) denote the
measure of maximal entropy. In Theorem 7.8, we prove that, for any x ∈ [0, 1], the
point x is µα,β-normal for Lebesgue almost all parameters (α, β). To this end, we prove
in Theorem 7.6 an intermediate result: for all x ∈ [0, 1] and all α ∈ [0, 1) (except for
x = α = 0), the point x is µα,β-normal for Lebesgue almost all β. In Theorem 7.10, we
prove a result that seems to be paradoxical: the plane of parameters (α, β) is filled by
disjoint analytic curves along which the orbit of x = 0 is at most at one point µα,β-normal.
Finally we consider the case of generalized β-transformations Tβ . Let µβ ∈ M([0, 1], Tβ)
denote the measure of maximal entropy. In Theorem 7.13, we prove that the point x = 1
is µβ-normal for almost all β. As in Theorem 6.23, there is a gap for s = (−1,−1) and
β too small. The proofs of Theorems 7.6 and 7.13 are very similar. They are inspired by
a paper of Schmeling [S]. In that paper, Schmeling considered the β-transformations βx
mod 1 and he proved that the point x = 1 is µβ-normal for almost all β (µβ is the measure
of maximal entropy). Finally, notice that we recover a result of Bruin in [Br], where he
proved that the turning point of a tent map gβ is µβ-normal for almost all β (as usual,
µβ is the measure of maximal entropy). Indeed, the tent map is a particular generalized
β-transformation and Theorem 7.13 is a generalization of Bruin’s results.
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7.1 Definitions

Let (X, d, T ) be a compact measurable dynamical system (for the definitions, see Section
3.1.1). Recall that the set of Borel probability measures M(X) is endowed with the weak∗-
topology; in particular, M(X) and M(X,T ) are compact. For all x ∈ X and all n ≥ 1,
the empirical measure of order n at x is

En(x) :=
1

n

n−1∑

i=0

δx ◦ T−i ∈M(X) ,

where δx is the Dirac mass at x. Let VT (x) ⊂M(X,T ) denote the set of all cluster points
of {En(x)}n≥1 in the weak∗-topology.

Definition 7.1. Let µ ∈M(X,T ) be an ergodic measure and x ∈ X. The orbit of x under
T is µ-normal, if VT (x) = {µ}, ie for all continuous f ∈ C(X), we have

lim
n→∞

1

n

n−1∑

i=0

f(T ix) =

∫
fdµ.

To estimate the size of sets, we use the Hausdorff dimension and the topological en-
tropy. We recall the definition of the Hausdorff dimension dimH E; one has to compare
this definition to the one of the topological entropy htop(E, T ) (see Definition 3.4). The
similarity of these two definitions is the key of Lemma 7.2, which links htop(E, T ) and
dimH E for the shift spaces. Let (X, d) be a metric space and E ⊂ X. Let Dε(E) be the
set of all finite or countable covers of E with sets of diameter smaller than ε. For all s ≥ 0,
define

Hε(E, s) := inf{
∑

B∈C

(diamB)s : C ∈ Dε(E)} .

The s-Hausdorff outer measure of E is H(E, s) := limε→0Hε(E, s). The Hausdorff
dimension of E is

dimH E := inf{s ≥ 0 : H(E, s) = 0} .
The next lemma can be found in [Fu].

Lemma 7.2. For β > 1, consider the dynamical system (Σ+
k , dβ, σ) (the metric dβ is

defined by (2.1)). Let E ⊂ Σ+
k be such that σ(E) ⊂ E, then

dimH E ≤ htop(E, σ)

log β
.

Proof: Let ε ∈ (0, 1), s ≥ 0, n ≥ 0 and C ∈ Gn(E, σ, ε). Since diamBm(x, ε) ≤ εβ−m+1 ≤
εβ−n+1 for all Bm(x, ε) ∈ C, C is a cover of E with sets of diameter smaller than εβ−n+1.
Moreover ∑

Bm(x,ε)∈C

diam (Bm(x, ε))
s

log β ≤ (εβ)
s

log β

∑

Bm(x,ε)∈C

e−ms .

Thus Hδ(E,
s

log β
) ≤ (εβ)

s
log βCn(E, σ, ε, s) with δ = εβ−n+1. Taking the limit n → ∞, we

obtain
H(E,

s

log β
) ≤ (εβ)

s
log βC(E, σ, ε, s) .
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If s > htop(E, σ, ε), then H(E, s
log β

) = 0 and s
log β

≥ dimH E. This is true for all s >
htop(E, σ, ε), thus

dimH E ≤ htop(E, σ, ε)

log β
≤ htop(E, σ)

log β
.

The next lemma is a classical result about the Hausdorff dimension, it is Proposition
2.3 in [F]. The proof is very similar to the one of the previous lemma.

Lemma 7.3. Let (X, d), (X ′, d′) be two metric spaces and ρ : X → X ′ be an α-Hölder
continuous map with α ∈ (0, 1]. Let E ∈ X, then

dimH ρ(E) ≤ dimH E

α
.

Finally we report Theorem 4.1 from [PS]. This theorem is used to estimate the topo-
logical entropy of sets we are interested in.

Theorem 7.4. Let (X, d, T ) be a compact continuous dynamical system and F ⊂M(X,T )
be a closed subset. Define

E := {x ∈ X : VT (x) ∩ F 6= ∅} .

Then
htop(E, T ) ≤ sup

ν∈F

hT (ν) .

7.2 Normality for the map βx+ α mod 1

In this section, we study the normality for the map Tα,β = βx+α mod 1 with β > 1 and
α ∈ [0, 1). Notice that the set S, where Tα,β is not well-defined, depends on the parameters
α, β. We want to work with x ∈ [0, 1] fixed and α, β varying. This could be a problem,
because Tα,β(x) may be not defined for a big subset of the set of parameters. Since all
laps of Tα,β are increasing, there is a convenient way to modify the definitions of the map
Tα,β and the coding i

α,β , in such a way that Tα,β is well defined for all x ∈ [0, 1). Until
here, the map Tα,β was defined on X1 ≡ [0, 1]\S0 and Tn

α,β was defined on X ≡ [0, 1]\S
for all n ≥ 0. Henceforth, we extend the definition of Tα,β on [0, 1) by right-continuity.
We summarize the modifications. The set S0 remains unchanged, the intervals Ij are now
defined as Ij := [aj , aj+1) for all j ∈ Ak. The maps fj : Ij → [0, 1) are always given by

fj(x) := βx+ α− j ,

and the map Tα,β : [0, 1) → [0, 1) is defined by Tα,β |Ij
= fj . Defined in this manner, the

map Tα,β is right-continuous. The coding map i
α,β : [0, 1) → Σ+

k is defined using the
intervals Ij

i
α,β(x) := i

α,β
0 (x)iα,β

1 (x) . . . with i
α,β
n (x) = j ⇐⇒ Tn

α,β(x) ∈ Ij .

As in Lemma 2.4, we can prove that i
α,β is right-continuous on [0, 1). The map ϕα,β :

[0, k] → [0, 1] remains unchanged; in particular, the map ϕα,β
∞ : Σ+

k → [0, 1] is continuous
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by Theorem 2.12. Using the right-continuity of iα,β and the continuity of ϕα,β
∞ , we check

that the point 2 of Theorem 2.15 becomes

Tn
α,β(x) = ϕα,β

∞ ◦ σn ◦ iα,β(x) ∀x ∈ [0, 1) . (7.1)

The definition of the virtual itineraries uα,β and vα,β remains unchanged. It is easy to
check that uα,β = i

α,β(0), iα,β([0, 1)) = Σα,β and the inequalities (6.4) remain true.
Finally, notice that it is also possible to extend the definitions of Tα,β and i

α,β on (0, 1]
by left-continuity. In this case, we define the intervals Ij := (aj , aj+1] and (7.1) is true for
all x ∈ (0, 1].

In [P2], Parry constructed a measure µα,β ∈ M([0, 1], Tα,β), which is absolutely con-
tinuous with respect to Lebesgue measure. Its density is (λ is the Lebesgue measure on
[0, 1])

hα,β(x) :=
dµα,β

dλ
(x) =

1

Nα,β

∑

n≥0

1x<T n
α,β

(1) − 1x<T n
α,β

(0)

βn+1
, (7.2)

with Nα,β the normalization factor. In [Ha], Halfin proved that hα,β(x) is nonnegative
for all x ∈ [0, 1]. By Formula (3.6), the topological entropy of the dynamical system
(Σα,β , σ) is log β. Hofbauer showed in [H4] that it has a unique measure of maximal
entropy µ̂α,β ∈ M(Σα,β , σ) (Proposition 6.15 is a big part of this proof). By Proposition
5.7, the dynamical system ([0, 1], Tα,β) has a unique measure of maximal entropy given

by µ̂α,β ◦ (ϕα,β
∞ )−1. Finally, Hofbauer proved in [H2] that µ̂α,β ◦ (ϕα,β

∞ )−1 is absolutely

continuous with respect to Lebesgue measure. Since the measures µα,β and µ̂α,β ◦(ϕα,β
∞ )−1

have both strictly positive densities at 0 and 1, they are equal

µα,β = µ̂α,β ◦ (ϕα,β
∞ )−1 .

7.2.1 Normality in the whole plane (α, β)

We give a lemma which shows that for given x and α, there is exponential separation
between the orbits of x under the two different dynamical systems Tα,β1

and Tα,β2
.

Lemma 7.5. Let x ∈ [0, 1), α ∈ [0, 1) and 1 < β1 ≤ β2. Define l = min{n ≥ 0 : i1
n(x) 6=

i
2
n(x)} with i

j(x) = i
α,βj for j = 1, 2. If x 6= 0, then

β2 − β1 ≤ β2

x
β−l

2 .

If x = 0 and α 6= 0, then

β2 − β1 ≤ β2
2

α
β−l

2 .

Proof: Let δ := β2 − β1 ≥ 0. We prove by induction that for all m ≥ 1, i1
[0,m)(x) =

i
2
[0,m)(x) implies

Tm
2 (x) − Tm

1 (x) ≥ βm−1
2 δx ,

where Ti = Tα,βi
. For m = 1,

T2(x) − T1(x) = β2x+ α− i
2
0(x) − (β1x+ α− i

1
0(x)) = δx .
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Suppose that this is true for m, then i
1
[0,m+1) = i

2
[0,m+1) implies

Tm+1
2 (x) − Tm+1

1 (x) = β2T
m
2 (x) + α− i

2
m(x) − (β1T

m
1 (x) + α− i

1
m(x))

= β2(T
m
2 (x) − Tm

1 (x)) + δTm
1 (x) ≥ βm

2 δx .

On the other hand, 1 ≥ Tm
2 (x) − Tm

1 (x) ≥ βm−1
2 δx. Thus δ ≤ β−m+1

2

x
for all m such that

i
1
[0,m) = i

2
[0,m). If x = 0, then T1(x) = T2(x) = α and we can apply the first statement to

y = α > 0.
Now we can state our first theorem and its corollary about the normality of orbits

under Tα,β . The proof of the theorem is inspired by the proof of Theorem C in [S], where
the case x = 1 and α = 0 is considered. The 1-dimensional Lebesgue measure is denoted
by λ.

Theorem 7.6. Let x ∈ [0, 1) and α ∈ [0, 1) except for (x, α) = (0, 0). Then the set

{β > 1 : the orbit of iα,β(x) under σ is µ̂α,β-normal}

has full Lebesgue measure.

Corollary 7.7. Let x ∈ [0, 1) and α ∈ [0, 1) except for (x, α) = (0, 0). Then the set

{β > 1 : the orbit of x under Tα,β is µα,β-normal}

has full Lebesgue measure.
If α = 0, then the orbit of x = 0 under Tα,β is never µα,β-normal.

Notice that the theorem and its corollary may also be formulated for x ∈ (0, 1] using
a left-continuous extensions of Tα,β and i

α,β on (0, 1].
Proof of the theorem: We briefly sketch the proof. It is sufficient to consider a finite
interval [β, β], since there is a countable cover by such intervals. We use the uniqueness of
the measure of maximal entropy µ̂α,β : for x ∈ Σα,β not µ̂α,β-normal, there exists ν ∈ Vσ(x)
such that hσ(ν) < hσ(µ̂α,β) = log β. Therefore we cover the set of abnormal β in [β, β] by
sets ΩN , N ∈ N,

ΩN := {β ∈ [β, β] : {En(iα,β(x))}n clusters on ν with hσ(ν) < (1 − 1/N) log β} .

We consider each ΩN separately and cover them by appropriate intervals, which we gener-
ically denote by [β1, β2]. The main idea is to imbed {iα,β(x) : β ∈ [β1, β2]} in a shift space
Σ∗ := Σ(u∗, v∗) with u∗ and v∗ well chosen. Writing D∗ ⊂ Σ∗ for the range of the imbed-
ding, we estimate the Hausdorff dimension of the subset of D∗ corresponding to points
i

α,β(x) which are not µ̂α,β-normal. Then we estimate the coefficient of Hölder continuity
of the map ρ∗ defined as the inverse of the imbedding. This gives us an estimate of the
Hausdorff dimension of the non µ̂α,β-normal points in the interval [β1, β2].

To obtain uniform estimates, we restrict our proof to the interval [β, β] with 1 < β <

β < ∞. All shift spaces below are subshifts of Σk with k = ⌈α + β⌉. Let Ω := {β ∈
[β, β] : iα,β(x) is not µ̂α,β-normal}. For β ∈ Ω, we have Vσ(iα,β(x)) 6= {µ̂α,β}. Since µ̂α,β

is the unique Tα,β-invariant measure of maximal entropy log β, there exist N ∈ N and
ν ∈ Vσ(iα,β(x)) such that hσ(ν) < (1 − 1/N) log β. Setting

ΩN := {β ∈ [β, β] : ∃ν ∈ Vσ(iα,β(x)) s.t. hσ(ν) < (1 − 1/N) log β} ,
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we have Ω =
⋃

N≥1 ΩN . We will prove that dimH ΩN < 1, so that λ(ΩN ) = 0 for all
N ≥ 1.

For N ∈ N fixed, define ε :=
β log β

2N−1 > 0 and δ := log
(
1 + ε/β

)
. Let β ∈ [β, β].

Following Proposition 4.10, choose Lβ such that

htop(Σu′,v′ , σ) ≤ htop(Σα,β , σ) + δ/2 ,

for all pairs (u′, v′) satisfying (6.11), u′[0,Lβ) = uα,β

[0,Lβ) and v′[0,Lβ) = vα,β

[0,Lβ). Choose qβ ∈ Q

such that log β − δ/2 ≤ log qβ ≤ log β. Let

J(β, Lβ, qβ) := {β′ ∈ [qβ, β] : uα,β′

[0,Lβ) = uα,β

[0,Lβ), v
α,β′

[0,Lβ) = vα,β

[0,Lβ)} .

This set is an interval, since the maps β′ 7→ uα,β′

and β′ 7→ vα,β′

are both monotone in-
creasing. Moreover β ∈ J(β, Lβ, qβ). Notice also that the family {J(β, Lβ , qβ) : β ∈ [β, β]}
is countable. Indeed the interval J(β, Lβ, qβ) is entirely characterized by uα,β

[0,Lβ), v
α,β

[0,Lβ)

and qβ . But there are only countably many triples in A
∗
k×A

∗
k×Q. Thus {J(β, Lβ , qβ) : β ∈

[β, β]} is a countable cover of [β, β]. To prove that λ(ΩN ) = 0, it is sufficient to prove that

λ(ΩN ∩J(β, Lβ, qβ)) = 0 for all β ∈ [β, β]. The interval J(β, Lβ , qβ) may be open, closed or
neither open nor closed. We need to work on a closed interval, thus we prove an equivalent
result: for any closed interval [β1, β2] ⊂ J(β, Lβ, qβ), we have λ(ΩN ∩ [β1, β2]) = 0.

Let uj = uα,βj and vj = vα,βj . Using (6.4) and the monotonicity of β 7→ uα,β and
β 7→ vα,β , we have

u1 � σnu1 � v1 � v2 ∀n ≥ 0 ,

u1 � u2 � σnv2 � v2 ∀n ≥ 0 .

Hence the couple (u1, v2) satisfies (6.11) and we set Σ∗ := Σ(u1, v2) and

D∗ := {z ∈ Σ∗ : ∃β ∈ [β1, β2] s.t. z = i
α,β(x)} .

We define a map ρ∗ : D∗ → [β1, β2] by ρ∗(z) = β ⇐⇒ i
α,β(x) = z. This map is well

defined: by definition of D∗, for all z ∈ D∗ there exists a β ∈ [β1, β2] such that z = i
α,β(x);

moreover this β is unique, since by Lemma 7.5, β 7→ i
α,β(x) is strictly increasing. On the

other hand, for all β ∈ [β1, β2], we have from (6.5)

u1 � uα,β � σn
i

α,β(x) � vα,β � v2 ∀n ≥ 0 ,

whence i
α,β(x) ∈ Σ∗ and ρ∗ : D∗ → [β1, β2] is surjective. Let log β∗ := htop(Σ

∗, σ); then
by Proposition 4.10

log β∗ = htop(Σ
∗, σ) ≤ htop(Σα,β , σ) + δ/2 = log β + δ/2 .

By definition of qβ , we have log β − δ/2 ≤ log qβ ≤ log β1, thus log β∗ ≤ log β1 + δ and

β∗ − β1 ≤ β1

(
eδ − 1

)
≤ ε . (7.3)

Let us compute the coefficient of Hölder continuity of ρ∗ : (D∗, dβ∗
) → [β1, β2]. Let

z 6= z′ ∈ D∗ and n = min{l ≥ 0 : zl 6= z′l}, then dβ∗
(z, z′) = β−n

∗ . By Lemma 7.5,

|ρ∗(z) − ρ∗(z
′)| ≤ Cρ∗(z)

−n ≤ Cβ−n
1 = C(dβ∗

(z, z′))
log β1
log β∗ ,
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where

C =

{
β
x

if x 6= 0
β

2

α
if x = 0 .

By equation (7.3) and the choice of ε, we have

β∗ − β1 ≤
β log β

2N − 1
=⇒ β∗ − β1 ≤ β1 log β1

2N − 1

⇐⇒ 1 +
β∗ − β1

β1 log β1
≤ 1 +

1

2N − 1

⇐⇒
log β1 + β∗−β1

β1

log β1
≤ 2N

2N − 1

=⇒ log β1

log β∗
≥ log β1

log β1 + β∗−β1

β1

≥ 1 − 1

2N
.

In last line, we use the concavity of the logarithm, so the first order Taylor development
is an upper estimate. Thus ρ∗ has Hölder-exponent 1 − 1

2N
.

Define
G∗

N := {z ∈ Σ∗ : ∃ν ∈ Vσ(z) s.t. hσ(ν) < (1 − 1/N) log β∗} .
Let β ∈ ΩN ∩ [β1, β2]. Then there exists ν ∈ Vσ(iα,β(x)) such that

hσ(ν) < (1 − 1/N) log β ≤ (1 − 1/N) log β∗ .

Since i
α,β(x) ∈ D∗ ⊂ Σ∗, we have i

α,β(x) ∈ G∗
N . Using the surjectivity of ρ∗, we obtain

ΩN ∩ [β1, β2] ⊂ ρ∗(G
∗
N ∩D∗). We claim that htop(G

∗
N , σ) ≤ (1−1/N) log β∗. This implies,

using Lemmas 7.3 and 7.2,

dimH(ΩN ∩ [β1, β2]) ≤ dimH ρ∗(G
∗
N ∩D∗)

≤ dimH G∗
N

1 − 1
2N

≤ htop(G
∗
N , σ)

(1 − 1
2N

) log β∗
≤ 1 − 1

N

1 − 1
2N

< 1 .

Thus λ(ΩN ∩ [β1, β2]) = 0.
It remains to prove htop(G

∗
N , σ) ≤ (1 − 1/N) log β∗. Recall that (see Definition 3.2)

hσ(ν) = sup
A

lim
n

1

n
H(ν,

n−1∨

j=0

T−jA) ,

where the supremum runs over all finite Borel partitions A. By Theorem 3.3, the partition
A1 := {[j] : j ∈ Ak} is such that hσ(ν) = hσ(ν,A1). Thus

hσ(ν) = lim
n

1

n
H(ν,An) ,

where An := {[w] : w ∈ L(Σ∗), |w| = n}. Since the cylinders are both open and closed,
for all w ∈ L(Σ∗), the map ν 7→ ν([w]) is continuous in the weak∗-topology (see Theorem
30.10 in [Ba]). Thus

ν 7→ H(ν,An) = −
∑

[w]∈An

ν([w]) log ν([w])
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is continuous in the weak∗-topology, as a finite sum of continuous functions. Moreover
1
n
H(ν,An) is decreasing in n. For all m ≥ 1, we set

F ∗
N (m) := {ν ∈M(Σ∗, σ) :

1

m
H(ν,Am) ≤ (1 − 1/N) log β∗} ,

G∗
N (m) := {z ∈ Σ∗ : Vσ(z) ∩ F ∗

N (m) 6= ∅} .

Let z ∈ G∗
N , then there exists ν ∈ Vσ(z) such that hσ(ν) < (1 − 1

N
) log β∗. Since

1
m
H(ν,Am) ↓ hσ(ν), there exists m ≥ 1 such that 1

m
H(ν,Am) ≤ (1− 1/N) log β∗, whence

ν ∈ F ∗
n(m) and z ∈ G∗

N (m). This implies G∗
N ⊂ ⋃

m≥1G
∗
N (m). Since ν 7→ H(ν,An) is

continuous, F ∗
N (m) is closed for all m ≥ 1. Finally we obtain using Theorem 7.4

htop(G
∗
N , σ) = sup

m
htop(G

∗
N (m), σ) ≤ sup

m
sup

ν∈F ∗

N
(m)

hσ(ν)

≤ sup
m

sup
ν∈F ∗

N
(m)

1

m
H(ν,Am) ≤ (1 − 1/N) log β∗ .

Proof of the Corollary: Let β > 1 be such that the orbit of iα,β(x) under σ is µ̂α,β-

normal. Let f ∈ C([0, 1]), then f̂ : Σα,β → R defined by f̂ := f ◦ ϕα,β
∞ is continuous, since

ϕα,β
∞ is continuous. Using µα,β := µ̂α,β ◦ (ϕα,β

∞ )−1, we have

∫

[0,1]
fdµα,β =

∫

Σα,β

f̂dµ̂α,β = lim
n→∞

n−1∑

i=0

f̂(σi
i

α,β(x))

= lim
n→∞

n−1∑

i=0

f(ϕα,β(σi
i

α,β(x))) = lim
n→∞

n−1∑

i=0

f(T i
α,β(x)) .

The second equality comes from the µ̂α,β-normality of the orbit of iα,β(x) under σ, the
last one is (7.1) which is true for all x ∈ [0, 1) with our convention for the extension of
Tα,β and i

α,β on [0, 1).
The last statement is trivial: if α = 0, then Tn

α,β(0) = 0 for all n ≥ 0.
The next step is to consider the question of µα,β-normality in the whole plane (α, β)

instead of working with α fixed. Define R := [0, 1) × (1,∞).

Theorem 7.8. For all x ∈ [0, 1), the set

N (x) := {(α, β) ∈ R : the orbit of x under Tα,β is µα,β-normal}

has full 2-dimensional Lebesgue measure.

Proof: We only have to prove that N (x) is measurable and to apply Fubini’s Theorem
and Corollary 7.7. The first step is to prove that for all x ∈ [0, 1) and all n ≥ 0, the maps
(α, β) 7→ i

α,β(x) and (α, β) 7→ Tn
α,β(x) are measurable. First notice that for all n ≥ 1

Tn
α,β(x) = βnx+ α

βn − 1

β − 1
−

n−1∑

j=0

i
α,β
j (x) βn−j−1 . (7.4)

The proof by induction is immediate. To prove that (α, β) 7→ i
α,β(x) is measurable, it is

enough to prove that for all n ≥ 0 and for all words w ∈ A
∗
k of length n

{(α, β) ∈ R : iα,β

[0,n)(x) = w}
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is measurable, since the σ-algebra on Σ+
k is generated by the cylinders. This set is the

subset of R2 such that




β > 1 ,

0 ≤ α < 1 ,

wj < βT j
α,β(x) + α ≤ wj + 1 ∀0 ≤ j < n .

Using (7.4), this system of inequalities can be rewritten





β > 1 ,

0 ≤ α < 1 ,

α > β−1
βj+1−1

(∑j
i=0wiβ

j−i − βj+1x
)

∀0 ≤ j < n ,

α ≤ β−1
βj+1−1

(
1 +

∑j
i=0wiβ

j−i − βj+1x
)

∀0 ≤ j < n .

From this, the measurability of i
α,β follows. If (α, β) 7→ i

α,β(x) is measurable, then
by formula (7.4), (α, β) 7→ Tn

α,β(x) is clearly measurable for all n ≥ 0. Then for all

f ∈ C([0, 1]) and all n ≥ 1, the map (α, β) 7→ Sn(f) := 1
n

∑n−1
i=0 f(T i

α,β(x)) is measurable
and consequently

{(α, β) : lim
n→∞

Sn(f) exists}

is a measurable set.
On the other hand, if f ∈ C([0, 1]), then (α, β) 7→

∫
fdµα,β is measurable. Indeed

∫
fdµα,β =

∫
fhα,βdλ

and in view of equation (7.2) and the measurability of (α, β) 7→ Tα,β(x), the map (α, β) 7→
hα,β is clearly measurable. Therefore

{(α, β) : lim
n→∞

Sn(f) =

∫
fdµα,β}

is measurable for all f ∈ C([0, 1]). Since [0, 1] endowed with the euclidian metric is a
complete and separable metric space, there exists a countable subset {fm}m∈N ⊂ C([0, 1])
which is dense with respect to the uniform convergence (see Lemma 31.4 in [Ba]). Then
setting

Dm := {(α, β) ∈ R : lim
n→∞

Sn(fm) =

∫
fmdµα,β} ,

we have N (x) =
⋂

m∈N
Dm, whence it is a measurable set.

7.2.2 Normality along particular curves

We have shown that for a given x ∈ [0, 1), the orbit of x under Tα,β is µα,β-normal for
almost all (α, β). The orbits of 0 and 1 are of particular interest (see equations (7.2)). Now
we show that through any point (α0, β0), there passes a curve defined by α = α(β) such
that the orbit of 0 under Tα(β),β is µα(β),β-normal for at most one β. A trivial example of
such a curve is α = 0, since x = 0 is a fixed point. The idea is to consider curves along
which the coding of 0 is constant, ie to define α(β) such that uα(β),β is constant.
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Define
U := {u ∈ Σ+

k : ∃ (α, β) ∈ R s.t. u = uα,β} .
We define an equivalence relation in R by

(α, β) ∼ (α′, β′) ⇐⇒ uα,β = uα′,β′

.

An equivalence class is denoted by [u] := {(α, β) ∈ R : uα,β = u}. The next lemma
describes [u].

Lemma 7.9. Let u ∈ U and set

α(β) = (β − 1)
∑

j≥0

uj

βj+1
.

Then there exists βu ≥ 1 such that

[u] = {(α(β), β) : β ∈ Ju}

with Ju = (βu,∞) or Ju = [βu,∞).

Proof: If u = 0∞, then the statement is trivially true with α(β) ≡ 0 and βu = 1. Suppose
u 6= 0∞. First we prove that

(α, β) ∼ (α′, β) =⇒ α = α′ ,

then
(α, β) ∈ [u] =⇒ (α(β′), β′) ∈ [u] ∀β′ ≥ β .

Let (α, β) ∈ [u]. Using (7.1), we have ϕα,β
∞ (σu) = Tα,β(0) = α. Since the map α 7→

ϕα,β
∞ (σu) − α is continuous (Theorem 2.12) and strictly decreasing (Lemma 6.1), the first

statement is true. Let β′ > β. By Corollary 6.8, we have that ϕα,β(σu) > ϕα,β′

(σu).
Therefore there exists a unique α′ < α such that ϕα′,β′

(σu) = α′. We prove that uα′,β′

= u.
By Proposition 6.4, we have u � uα′,β′

. By Proposition 6.15, we have

htop(Σu,vα′,β′ , σ) = htop(Σα′,β′ , σ) = log β′ .

Since Σα,β = Σu,vα,β and β′ > β, we must have vα,β ≺ vα′,β′

. Therefore

u � σnu ≺ vα,β ≺ vα′,β′ ∀n ≥ 0

u � uα′,β′ ≺ σnvα′,β′ � vα′,β′ ∀n ≥ 0 ,

are the inequalities (6.21) for the pair (u, vα′,β′

). We can apply Proposition 6.10 and
Theorem 6.20 to this pair and get u = uα′,β′

. It remains to show that α′ = α(β′).
Applying the formula (2.17) to uα,β , we have for all (α, β) ∈ R

α = (β − 1)
∑

j≥0

uα,β
j

βj+1
.

Since for all β > βu, we have u ∈ Σα,β , this completes the proof.
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For each u ∈ U , the equivalence class [u] defines an curve in R, which is strictly
monotone decreasing (except for u = 0∞),

[u] = {(α, β) : α = (β − 1)
∑

j≥0

uj

βj+1
, β ∈ Iu} .

Since β > 1 and uj ≤ k − 1, the sum is uniformly bounded on any interval [β0,∞) with
β0 > 1. Thus each curve is analytic. Moreover these curves are disjoint two by two and
their union is R.

Theorem 7.10. Let (α, β) ∈ R, u = uα,β and define α(β) and βu as in Lemma 7.9. Then
for all β > βu, the orbit of x = 0 under Tα(β),β is not µα(β),β-normal.

Proof: Let ν̂ ∈ M(Σ+
k , σ) (with k large enough) be a cluster point of {En(u)}n≥1. By

Lemma 7.9, uα(β),β = u for any β > βu. Therefore

hσ(ν̂) ≤ htop(Σα(β),β , σ) = log β ∀β > βu

and ν̂ is not a measure of maximal entropy. Moreover µα(β),β = µ̂α(β),β ◦ (ϕ
α(β),β
∞ )−1

is the unique measure of maximal entropy for Tα(β),β . Thus νβ := ν̂ ◦ (ϕ
α(β),β
∞ )−1 ∈

M([0, 1], Tα(β),β) is not a measure of maximal entropy for all β > βu.
Recall that

N (0) = {(α, β) ∈ R : the orbit of 0 under Tα,β is µα,β-normal} .

By Theorem 7.8, N (0) has full Lebesgue measure. On the other hand, by Theorem 7.10,
we can decompose R into a family of disjoint analytic curves such that each curve meets
N (0) in at most one point. This situation seems to be paradoxical, but it is very similar
to the one presented in [Mi] by Milnor following an idea of Katok.

Finally notice that, in Lemma 7.9, we construct curves along which the coding of x = 0
is constant. What happens when we consider x ∈ [0, 1]? From (2.17), it is possible to
show that for any x ∈ [0, 1] and any x, we have

{(α, β) ∈ R : iα,β(x) = x} ⊂ {(α, β) : α = (β − 1)(−x+
∑

j≥0

xj

βj+1
)} .

We can define J(x, x) ∈ (1,∞) as the unique set such that

{(α, β) ∈ R : iα,β(x) = x} = {(α, β) : β ∈ J(x, x) and α = (β − 1)(−x+
∑

j≥0

xj

βj+1
)} .

Unfortunately, we have no proof that J(x, x) is an interval except if x = 0 or x = 1.

7.3 Normality in generalized β-transformations

In this section, we consider the question of the normality in the generalized β-transformations
Tβ . We work as before: x = 1 is fixed and we estimate the size of the subset of the pa-
rameters for which x is µβ-normal. The structure of the proof is very similar. Since the
tent maps are a particular example of generalized β-transformations (they correspond to
k = 2 and s = (1,−1)), we recover a result of Bruin in [Br]. Notice that the proofs are
very different.
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Contrarily to the case of Tα,β , we consider only x = 1, because we do not have a proof
of the exponential separation of orbits for all x ∈ [0, 1], but only for x = 1. However, the
orbit of 1 is the most important orbit in this dynamical system. For example, it appears
explicitly in the density of the invariant measure µβ (see [G]). The orbit of 1 is defined
by T 0

β (1) := 1, Tβ(1) ≡ γ := limx↑1 Tβ(x) and for all n ≥ 2,

Tn
β (1) = Tn−1

β (γ) if γ ∈ X.

If γ /∈ X, then the orbit of 1 is not well-defined. Remember that the set S = S(β)
depends on the parameter β. For the map Tα,β , we solved this problem by an extension of
the definition of the orbit on [0, 1); this was possible, because all laps of Tα,β are increasing.
In this case, we will simply show that the set of β such that γ /∈ X is countable, hence
negligible.

Lemma 7.11. For any family of generalized β-transformations defined by (sn)0≤n<k, the
set {β ∈ (k − 1, k] : γ ∈ S(β)} is countable.

Proof: For a fixed n ≥ 1, we study the map β 7→ Tn
β (γ). This map is well defined

everywhere in (k−1, k] except for finitely many points and it is continuous on each interval
where it is well defined. Indeed this is true for n = 1. Suppose it is true for n, then Tn+1

β (1)
is well defined and continuous wherever Tn

β (1) is well defined and continuous, except for
Tn

β (1) ∈ S0(β). By the induction hypothesis, there exists a finite family of disjoint open
intervals Ji and continuous functions gi : Ji → [0, 1] such that (k − 1, k]\(⋃i Ji) is finite
and

Tn
β (x) = gi(β) if β ∈ Ji .

Then

{β ∈ (k − 1, k] : Tn
β (1) is well defined and Tn

β (1) ∈ S0(β)} =
⋃

i,j

{β ∈ Ji : gi(β) =
j

β
} .

We claim that {β ∈ Ji : gi(β) = j
β
} has finitely many points. From the form of the map

Tβ , it follows immediately that each gi(β) is a polynomial of degree n. Since β > 1,

gi(β) =
j

β
⇐⇒ βgi(β) − j = 0 .

This polynomial equation has at most n+ 1 roots. In fact, using the monotonicity of the
map β 7→ ηβ , we can prove that this set has at most one point. The lemma follows, since
S(β) =

⋃
n≥0 Sn(β).

Notice that, using the strict monotonicity of β 7→ ηβ , we could prove that, for all i

and j, the set {β ∈ Ji : gi(β) = j
β
} has at most one point. But the proof we gave here

is easily adapted to prove that, for all x ∈ (0, 1), the set {β ∈ (k − 1, k] : x ∈ S(β)} is
countable. The next lemma is an equivalent of Lemma 7.5 in the case of the generalized
β-transformations. It states the exponential separation of the orbits of x = 1 under two
maps Tβ1

and Tβ2
. Notice that we consider only x = 1, contrary to Lemma 7.5.

Lemma 7.12. Consider a family {Tβ}β>1 of generalized β-transformations defined by a
sequence s = (sn)0≤n<k. Let k − 1 < β1 ≤ β2 ≤ k and ηj := ηβj for j = 1, 2; define
l := min{n ≥ 0 : η1

n
6= η2

n
}.

If k ≥ 3, for all β0 > 2, there exists K such that β1 ≥ β0 implies

β2 − β1 ≤ Kβ−l
2 .
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If s = (+1,+1), then
β2 − β1 ≤ kβ−l

2 .

If s = (+1,−1) or (−1,+1), then for all β0 > 1, there exists K such that β1 ≥ β0 implies

β2 − β1 ≤ Kβ−l
2 .

If s = (−1,−1), then there exists β0 > 1 and K such that β1 ≥ β0 implies

β2 − β1 ≤ Kβ−l
2 .

The proof is very similar to the proof of Brucks and Misiurewicz for Proposition 1 of
[BM], see also Lemma 23 of Sands in [Sa].
Proof: Let δ := β2 − β1 ≥ 0 and denote Tj = Tβj

and i
j = i

βj for j = 1, 2. Let
b1, b2 ∈ [0, 1] such that r := i

1
0(b1) = i

2
0(b2). We consider four cases according to the signs

of b2 − b1 and sr. If b2 − b1 ≥ 0 and sr = 1, then

T2(b2) − T1(b1) = β2b2 − r − (β1b1 − r) = β2b2 − (β2 − δ)b1 ≥ β2(b2 − b1) .

If b2 − b1 ≤ 0 and sr = 1, then

T1(b1) − T2(b2) = β1b1 − r − (β2b2 − r) = (β2 − δ)b1 − β2b2 ≥ β2(b1 − b2) − δ .

If b2 − b1 ≥ 0 and sr = −1, then

T1(b1) − T2(b2) = 1 − (β1b1 − r) − [1 − (β2b2 − r)] = β2b2 − (β2 − δ)b1 ≥ β2(b2 − b1) .

If b2 − b1 ≤ 0 and sr = −1, then

T2(b2) − T1(b1) = 1 − (β2b2 − r) − [1 − (β1b1 − r)] = (β2 − δ)b1 − β2b2 ≥ β2(b1 − b2) − δ .

In four cases, we have
|T2(b2) − T1(b1)| ≥ β2|b2 − b1| − δ .

Applying this formula n times, we find that i1
[0,n)(b1) = i

2
[0,n)(b2) implies

|Tn
2 (b2) − Tn

1 (b1)| ≥ βn
2

(
|b2 − b1| −

δ

β2 − 1

)
.

Consider the case k ≥ 3. Set bi = Ti(1) for i = 1, 2; we have

|b2 − b1| = δ >
δ

β0 − 1
≥ δ

β2 − 1
.

Using |Tn
2 (b2) − Tn

1 (b1)| ≤ 1, we conclude that for all β0 ≤ β1 ≤ β2, if η1
[0,n)

= η2
[0,n)

then

δ ≤ β0 − 1

β0 − 2
β−n+1

2 .

For the case s = (+1,+1), we can apply Lemma 7.5 with α = 0 and x = 1.
The case s = (+1,−1) and (−1,+1) are considered in Lemma 23 of [Sa].
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For the case s = (−1,−1): for a fixed n, we want to find β0 such that for all β0 ≤ β1 ≤ β2

such that β1, β2 belongs to the same interval of continuity of β 7→ Tn
β (1), we have

|Tn
2 (1) − Tn

1 (1)| > δ

β2 − 1
. (7.5)

Then setting bi = Tn
i (1), we conclude as in the case k ≥ 3. Formula (7.5) is true, if

| d
dβ
Tn

β (1)| > 1
β−1 for all β ≥ β0. We have Tβ(1) = 2 − β, T 2

β (1) = 1 − β(2 − β) = (β − 1)2

and

T 3
β (1) =

{
1 − β(β − 1)2 if (β − 1)2 < 1/β,

2 − β(β − 1)2 if (β − 1)2 > 1/β.

Thus d
dβ
T 3

β (1) = −3β2 + 4β − 1 and | d
dβ
T 3

β (1)| = 3β2 − 4β + 1 for all β ∈ (1, 2]. Then

| d
dβ
T 3

β (1)| > 1

β − 1
⇐⇒ 3β3 − 7β2 + 5β − 2 > 0 ⇐⇒ β > 1.52818 . . . .

Thus the last claim is proved for β0 = 1.52818. Considering greater n, it is possible to
obtain smaller β0. This is illustrated in Figure 7.1, where we plot the graphs of Tn

β (1)

and | d
dβ
Tn

β (1)| for n = 1, 2, 3, 4, 5. With n = 4, we get β0 = 1.5; with n = 5, we get
β0 = 1.40796 . . ..

In the tent map case, the separation of orbits is proved for β ∈ (
√

2, 2] and then
extended arbitrarily near β0 = 1 using the renormalization. In the case s = (−1,−1),
there is no such argument and we are forced to increase n to obtain a lower bound β0.

Now we turn to the question of normality for generalized β-transformations. The
structure of the proof is very similar to the proof of Theorem 7.6 and Corollary 7.7.

Theorem 7.13. Consider a family {Tβ}k−1<β≤k of generalized β-transformations defined
by a sequence s = (sn)0≤n<k. Let β0 be defined as in Lemma 7.12. Then the set

{β > β0 : the orbit of ηβ under σ is µ̂β-normal}

has full λ-measure.

Corollary 7.14. Consider a family {Tβ}β>1 of generalized β-transformations defined by
a sequence s = (sn)n≥0. Let β0 be defined as in Lemma 7.12. Then the set

{β > β0 : the orbit of 1 under Tβ is µβ-normal}

has full λ-measure.

Proof of Theorem: Let

B0 := {β ∈ (β0,∞) : 1 /∈ S(β)} .

From Lemma 7.11, this subset has full Lebesgue measure. To obtain uniform estimates,
we restrict our proof to the interval [β, β] with β0 < β < β < ∞. Let k := ⌈β⌉ and

Ω := {β ∈ [β, β] ∩B0 : ηβ is not µ̂β-normal}. As before, setting

ΩN := {β ∈ [β, β] ∩B0 : ∃ν ∈ Vσ(ηβ) s.t. hσ(ν) < (1 − 1/N) log β} ,
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Figure 7.1: In the left column, we plot in red the graphs of Tn
β (1) for n = 1, . . . , 5 and in

blue the critical point a1 = 1
β
. In the right column, we plot in red the graph of | d

dβ
Tn

β (1)|
for n = 1, . . . , 5 and in blue the graph of (β − 1)−1; for n = 3, 4, 5, we add the critical
value β0.
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we have Ω =
⋃

N≥1 ΩN . We prove that dimH ΩN < 1. For N ∈ N fixed, define ε :=
β log β

2N−1 > 0 and L such that ηβ

[0,L) = ηβ′

[0,L) implies |β − β′| ≤ ε (see Lemma 7.12). Consider

the family of subsets of [β, β] of the following type

J(w) = {β ∈ [β, β] : ηβ

[0,L)
= w} ,

where w is a word of length L. J(w) is either empty or it is an interval. We cover
the non-closed J(w) with countably many closed intervals if necessary. We prove that

λ(ΩN ∩ [β1, β2]) = 0 where β1 < β2 are such that ηβ1

[0,L) = ηβ2

[0,L).

Let ηj = ηβj . Let

D∗ := {z ∈ Ση2 : ∃β ∈ [β1, β2] ∩B0 s.t. z = ηβ} .

Define ρ∗ : D∗ → [β1, β2] ∩ B0 by ρ∗(z) = β ⇔ ηβ = z. As before, from formula (6.22)

and strict monotonicity of β 7→ ηβ , we deduce that ρ∗ is well defined and surjective. We
compute the coefficient of Hölder continuity of ρ∗ : (D∗, dβ∗

) → [β1, β2]. Let z 6= z′ ∈ D∗

and n = min{l ≥ 0 : zl 6= z′l}, then dβ∗
(z, z′) = β−n

∗ . By Lemma 7.12, there exists C such
that

|ρ∗(z) − ρ∗(z
′)| ≤ Cρ∗(z)

−n ≤ Cβ−n
1 = C(dβ∗

(z, z′))
log β1
log β∗ .

By the choice of L and ε, we have

log β1

log β∗
≥ 1 − 1

2N
,

thus ρ∗ has Hölder-exponent of continuity 1 − 1
2N

. Define

G∗
N := {z ∈ Σ∗ : ∃ν ∈ Vσ(z) s.t. hσ(ν) < (1 − 1/N) log β∗} .

As before, we have ΩN ∩ [β1, β2] ⊂ ρ∗(G
∗
N ∩ D∗) and htop(G

∗
N , σ) ≤ (1 − 1/N) log β∗.

Finally dimH(ΩN ∩ [β1, β2]) < 1 and λ(ΩN ∩ [β1, β2]) = 0.
Proof of the Corollary: The proof is similar to the proof of Corollary 7.7. Equation
(7.1) holds, since we work on B0. �

7.4 Concluding remarks

We recall Theorem C of Schmeling’s paper [S]. Schmeling considers the family of β-
transformations Tβ := βx mod 1; it corresponds to generalized β-transformations with
s(j) = +1 for all j ∈ Ak. Schmeling’s Theorem asserts that for Lebesgue almost all β > 1,
the virtual itinerary ηβ is µ̂β-normal. This theorem is a particular case of Theorem 7.6
(take α = 0 and x = 1) and Theorem 7.13 (take s(j) = +1 for all j ∈ Ak).

The global structure of the proofs of Theorems 7.6 and 7.13 is similar. The method is
inspired from the proof of Schmeling. In particular, the imbedding of the orbits iκ(x) in a
well chosen shift space is an idea of Schmeling (κ is a generic notation for the parameter:
κ = (α, β) in Theorem 7.6 and κ = β in Theorem 7.13). However, these theorems are non
trivial generalizations of Schmeling’s Theorem.

For the β-transformations as well as for the generalized β-transformations, there is
only one important virtual itinerary. Recall that Σβ ≡ Σηβ , htop(Σβ , σ) = log β and

η � η′ ⇐⇒ Ση ⊂ Ση′ .
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Thus the map β 7→ ηβ is strictly monotone increasing and β ≤ β′ implies that Σβ ⊂ Σβ′ .

Using this remark, the choice of the shift space where the orbits i
β(x) are imbedded is

easy. We have
i

β(x) ∈ Σβ2
∀β ≤ β2 ,

and we choose to imbed the set {iβ(x) : x ∈ [β1, β2]} in Σβ2
. This choice is easy, but

above all the shift space Σβ2
is itself a generalized β-shift.

For the maps Tα,β , the situation is slightly more complicated. By Lemma 7.5, we
know that the maps β 7→ uα,β and β 7→ vα,β are strictly monotone increasing (except for
β 7→ u0,β which is constant). Thus, for all α > 0, it is false that

β1 ≤ β2 =⇒ Σα,β1
⊂ Σα,β2

,

and we cannot imbed the set {iα,β(x) : β ∈ [β1, β2]} in the shift space Σα,β2
. Fortunately,

there exists a natural choice of this shift space. It is Σ∗ := Σ(u1, v2), because

{iα,β(x) : β ∈ [β1, β2]} ⊂ Σ∗ .

Nevertheless this choice creates troubles. Indeed Σ∗ 6= Σα,β for some β ∈ [β1, β2]. When we
must compute the exponent of Hölder-continuity, it is more complicated. In the previous
case, we have only to control the length of the interval [β1, β2]; this is done by Lemma 7.12.
In the case of Tα,β , we control the length of the interval [β1, β2] by Lemma 7.5, but we must
also estimate the distance between β1 and β∗, where β∗ is defined by log β∗ = htop(Σ

∗, σ);
this is done by Proposition 4.10.

It is interesting to notice that Σ∗ is defined as Σ(u1, v2). In particular, we do not
prove that there exists a pair (α∗, β∗) such that Σ∗ = Σα∗,β∗

. In fact, this is a corollary of
Theorem 6.21, but we do not need this fact. Notice that, in Theorem 7.6, we work with
α fixed and α∗ < α (if α > 0). Thus we imbed the orbits in a really different dynamical
system. It could be a little bit surprising that we do not use the existence of (α∗, β∗) such
that Σ∗ = Σα∗,β∗

. Indeed, the shift spaces of the type Σα,β are a subfamily of the shift
spaces of the type Σ(u, v), because

Σα,β = Σ(uα,β , vα,β) .

But some ergodic properties are different: for example, Hofbauer proved in [H4] that a
shift space of the type Σα,β has a unique measure of maximal entropy, whereas he showed
that there exist shift spaces of the type Σ(u, v) having two measures of maximal entropy.

Another non trivial adaptation of the proof of Schmeling is the estimate of htop(G
∗
N , σ).

In his estimate, Schmeling uses the fact that the measure of maximal entropy is equivalent
to Lebesgue measure and its density is uniformly bounded below and above. This is true
for the β-transformations. For the maps Tα,β , it is not true in general; the condition β > 2
is sufficient (for more details see [H6]). For the generalized β-transformations, it is not
true in general, but k ≥ 3 is a sufficient condition. Our proof uses Theorem 7.4 to estimate
the topological entropy of the set G∗

N ; this adaption is necessary to cover all maps Tα,β .
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